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Canonical Dependency Analysis based on Squared-loss Mutual Information

Masayuki Karasuyamaa, Masashi Sugiyamab

aInstitute for Chemical Research, Kyoto University Gokasyo, Uji, Kyoto 611-0011, Japan
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Abstract

Canonical correlation analysis (CCA) is a classical dimensionality reduction technique for two sets of variables that iteratively
finds projection directions with maximum correlation. Although CCA is still in vital use in many practical application areas, recent
real-world data often contain more complicated non-linear correlations that can not be properly captured by classical CCA. In
this paper, we thus propose an extension of CCA that can effectively capture such complicated non-linear correlations through
statistical dependency maximization. The proposed method, which we call least-squares canonical dependency analysis (LSCDA),
is based on a squared-loss variant of mutual information, and it has various useful properties besides its ability to capture higher-
order correlations, for example, it can simultaneously find multiple projection directions (i.e., subspaces), it does not involve
density estimation, and it is equipped with a model selection strategy. We demonstrate the usefulness of LSCDA through various
experiments on artificial and real-world datasets.
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1. Introduction

Canonical correlation analysis (CCA) (Hotelling, 1936) is
a classical dimensionality reduction technique for two data
sources, which finds projection directions with maximum
correlation. CCA has been successfully applied in various
fields such as neuroscience (Becker & Hinton, 1992; Becker,
1996; Favorov & Ryder, 2004), econometrics (Vinod, 1968;
Bossaerts, 1988), psychometrics (McKeon, 1967), meteorol-
ogy (Storch & Zwiers, 2002), bioinformatics (Vert & Kane-
hisa, 2003; Yamanishi et al., 2003; Naylor et al., 2010; Gumus
et al., 2012), and information retrieval (Vinokourov et al., 2003;
Hardoon et al., 2004; Li & Shawe-Taylor, 2006).

Although CCA has been originally developed as an unsuper-
vised learning method, it is also closely related to supervised
tasks such as classification. Indeed, in some special cases, CCA
is equivalent to Fisher’s Linear Discriminant Analysis (LDA)
(Bartlett, 1938). Such CCA-based classification methods have
been widely studied (Farquhar et al., 2005; Rai & Daume, 2009;
Sun et al., 2011; Kursun et al., 2011), which incorporate class
information in various ways to learn projections that are infor-
mative for discrimination. The usefulness of these approaches
have been demonstrated in various modern pattern recogni-
tion problems such as multi-label classification (Rai & Daume,
2009; Sun et al., 2011) that utilizes correlations among labels
for improving classification performance.

However, since classical CCA only captures correlations un-
der linear projections, it is often insufficient to analyze com-
plex real-world data that contain higher-order correlations. To
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be more flexible, non-linear CCA methods have been devel-
oped. A simple approach uses neural networks for handling
non-linear projection (Becker & Hinton, 1992; Becker, 1996;
Fyfe & Lai, 2000; Favorov & Ryder, 2004), but neural networks
are prone to local optima. Another approach first non-linearly
transforms data samples into feature spaces and then apply lin-
ear CCA (Akaho, 2001; Gestel et al., 2001; Melzer et al., 2001).
Given that the non-linear transformation is fixed, this two-step
approach allows analytic computation of the global optimal so-
lution via a generalized eigenvalue problem in the same way as
linear CCA. Since reproducing kernel Hilbert spaces (RKHSs)
(Aronszajn, 1950) are used as feature spaces, this approach
is called kernel CCA (KCCA). Alternating regression is an-
other possible way of flexibly finding dependency, which is
closely related to CCA (Wold, 1966; Breiman & Friedman,
1985; Branco et al., 2005; Kursun & Favorov, 2010). A typ-
ical approach is Alternating Conditional Expectation (ACE)
(Breiman & Friedman, 1985), which estimates transformations
for two variables alternately by minimizing the squared error
between transformed variables. These non-linear variants of
CCA are highly flexible, but obtained results are often difficult
to interpret due to non-linearity.

The above non-linear CCA approaches can be regarded as
capturing correlations along non-linear projection directions.
Another extension of CCA, which we call canonical depen-
dency analysis (CDA), captures higher-order correlations un-
der linear projections. It was shown in Bach & Jordan (2002)
that KCCA with a universal RKHS (Steinwart, 2001) such as
the Gaussian RKHS allows efficient detection of higher-order
correlations. However, the choice of universal RKHSs affects
the practical performance, and there is no systematic method
to choose a suitable RKHS (Fukumizu et al., 2009). An-
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other approach to higher-order CCA called informational CCA
(ICCA) (Yin, 2004) uses mutual information (MI) (Shannon,
1948; Cover & Thomas, 2006) as a dependency measure, where
MI is estimated via kernel density estimation (KDE) (Silver-
man, 1986). Since KDE is equipped with systematic model se-
lection strategies (Silverman, 1986; Scott, 1992; Härdle et al.,
2004), ICCA is practically more preferable than the KCCA-
based CDA method.

In the ICCA method, one-dimensional projection directions
are found in an iterative manner. However, it would be more
powerful if multi-dimensional projection directions (i.e., sub-
spaces) were directly found in CDA. In the experiments in
Section 4, we show that directly estimating multi-dimensional
projections compares favorably with iteratively estimating one-
dimensional projection directions, because the iterative ap-
proach often gets trapped into poor local optima. However,
ICCA may not be reliable in such a multi-dimensional scenario
since it involves the ratio of estimated densities which tends to
produce large estimation error.

The purpose of this paper is to give a novel CDA method that
is equipped with model selection and that is reliable even when
multi-dimensional projection directions are searched. Our
method, which we call least-squares CDA (LSCDA), uses a
squared-loss MI (SMI) as a dependency measure. As ordinary
MI, SMI also includes the ratio of probability densities and thus
its accurate estimation is challenging. In LSCDA, we use an an-
alytic SMI estimator called least-squares MI (LSMI) (Suzuki
et al., 2009) that directly estimates the density ratio without go-
ing through density estimation (Kanamori et al., 2009). Thus,
LSMI is more reliable than an estimator based on KDE (see
Suzuki & Sugiyama (2010) for theoretical convergence analy-
sis of the LSMI estimator). Possible benefits of our approach
can be summarized as follows:

• It can capture higher-order correlations under linear pro-
jection.

• It can accurately estimate multi-dimensional projection
matrices.

• It does not involve density estimation.

• It is equipped with a model selection strategy.

As examples of real-world applications, we apply our ap-
proach to multi-label classification problems in image annota-
tion and audio tagging. In multi-label classification, extract-
ing features that have strong dependency on labels and that in-
corporate correlations among labels is desirable. Through ex-
periments, we demonstrate that the proposed method improves
prediction performance of a subsequent classifier in practical
multi-label classification scenarios.

The remainder of this paper is structured as follows: In Sec-
tion 2, we formulate our LSCDA algorithm using SMI as a
dependency measure. Section 3 describes relationships with
several existing approaches. In Section 4, we present our ex-
perimental results obtained by a variety of datasets including
artificial and real-world datasets, demonstrating advantages of

the proposed approach over other methods. Finally, Section 5
concludes the paper.

2. Canonical Dependency Analysis via SMI Estimation

In this section, we describe our novel algorithm for finding
statistical dependency between a pair of variables.

2.1. Problem Formulation
Let X ⊂ Rm be the domain of x and Y ⊂ Rn be the do-

main of y. Suppose we are given ℓ independent and identically
distributed (i.i.d.) paired samples,

S = {(xi, yi) | xi ∈ X, yi ∈ Y, i = 1, . . . , ℓ},

drawn from a joint distribution with density pxy(x, y).
In this paper, we would like to find the low-dimensional sub-

spaces of x and y in which projections are maximally dependent
on each other. Here, we focus on linear dimension reduction:

u = Ux and v = Vy,

where U ∈ Rp×m and V ∈ Rq×n are transformation matrices with
p and q being the projection dimensions for u and v, respec-
tively. We assume that U and V belong to the Stiefel manifolds
Sm

p (R) and Sn
q(R), respectively:

Sm
p (R) = {U ∈ Rp×m | UU⊤ = Ip},
Sn

q(R) = {V ∈ Rq×n | VV⊤ = Iq},

where Ip is the p-dimensional identity matrix and Iq is the q-
dimensional identity matrix. Hereafter, we assume that the pro-
jection dimensions p and q are known; practically, p and q may
be chosen by cross-validation. We write ui = Uxi and vi = Vyi

for i = 1, . . . , ℓ.
Our goal is to find the transformation matrices U and V such

that the dependency between u and v is maximized. To this
end, we employ squared-loss mutual information (SMI) as our
dependency measure:

SMI :=
1
2

∫∫ (
pvu(u, v)

pu(u)pv(v)
− 1

)2

pu(u)pv(v)dudv,

where puv(u, v) is the joint density of u and v, and pu(u) and
pv(v) are the marginal densities of u and v, respectively. SMI
is the Pearson divergence (Pearson, 1900) from puv(u, v) to
pu(u)pv(v), while the ordinary MI is the Kullback-Leibler diver-
gence (Kullback & Leibler, 1951) from puv(u, v) to pu(u)pv(v):

MI :=
∫∫

puv(u, v) log
puv(u, v)

pu(u)pv(v)
dudv.

Both of the Pearson divergence and the Kullback-Leibler di-
vergence belong to the class of f -divergences (Ali & Silvey,
1966; Csiszár, 1967) and they share similar properties. For ex-
ample, SMI and MI are nonnegative and take 0 if and only if
puv(u, v) = pu(u)pv(v). Therefore, SMI allows us to evaluate
the statistical independence between u and v.
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Now we want to find matrices U and V that maximize SMI.
However, we can not directly maximize SMI since densities
pvu(u, v), pu(u), and pv(v) are usually unknown. Below, we uti-
lize an SMI estimator called least-squares mutual information
(LSMI) (Suzuki et al., 2009), which involves direct density-
ratio estimation (Kanamori et al., 2009) instead of density es-
timation. LSMI was shown to possesses superior convergence
properties (Suzuki & Sugiyama, 2010).

2.2. SMI Approximation via Direct Density-ratio Estimation

Here, we review LSMI (Suzuki et al., 2009). A key idea of
LSMI is to directly estimate the density ratio,

g∗(u, v) :=
puv(u, v)

pu(u)pv(v)
,

without estimating each density. We model the density ratio
function g∗(u, v) using the following linear model:

g(u, v) := α⊤φ(u, v),

where ⊤ denotes the transpose of a matrix or a vector,

α := (α1, . . . , αb)⊤

are parameters to be learned from samples, and

φ(u, v) := (φ1(u, v), . . . , φb(u, v))⊤

is a basis function such that φ(u, v) ≥ 0b for all u and v. 0b de-
notes the b-dimensional vector with all zeros, and the inequality
for a vector is applied in the element-wise manner.

Note that the number of basis functions b is not necessarily a
constant; it can depend on the number of samples ℓ. Similarly,
the basis function φ(u, v) could be dependent on the samples S.
This means that the kernel models (i.e., b = ℓ and φi(u, v) is a
kernel function “centered” at {(ui, vi)}ℓi=1) are also included in
the above formulation. In Section 2.3, we explain how the basis
functions φ(u, v) are practically chosen.

We estimate the parameter α in g(u, v) so that the following
squared error J0 is minimized:

J0(α) :=
1
2

∫∫
(g(u, v) − g∗(u, v))2 pu(u)pv(v)dudv

=
1
2

∫∫
g(u, v)2 pu(u)pv(v)dudv

−
∫∫

g(u, v)puv(u, v)dudv +C, (1)

where

C :=
1
2

∫∫
g∗(u, v)2 pu(u)pv(v)dudv

is a constant and therefore can be safely ignored by assuming
C < ∞. Let us denote the first two terms of (1) by J:

J(α) := J0(α) −C =
1
2
α⊤Hα − h⊤α, (2)

where

H :=
∫∫

φ(u, v)φ(u, v)⊤pu(u)pv(v)dudv,

h :=
∫∫

φ(u, v)puv(u, v)dudv.

Approximating the expectations in H and h by empirical aver-
ages, we obtain the following optimization problem:

α̂ := argmin
α∈Rb

[
1
2
α⊤Ĥα − ĥ⊤α +

λ

2
α⊤α

]
,

where we included λ2α
⊤α (λ > 0) for regularization purposes,

and

Ĥ :=
1
ℓ2

ℓ∑
i,i′=1

φ(ui, vi′ )φ(ui, vi′)⊤,

ĥ :=
1
ℓ

ℓ∑
i=1

φ(ui, vi).

Taking the derivative of the above objective function and set it
as zero, we obtain:

α̂ = (Ĥ + λIb)−1 ĥ,

where Ib is the b-dimensional identity matrix. Thus, the solu-
tion can be computed analytically by solving a system of lin-
ear equations. Then an analytical approximation of SMI called
least-squares mutual information (LSMI) is given as

ŜMI := ĥ⊤α̂ − 1
2
α̂⊤Ĥα̂ − 1

2
,

which is obtained based on the following expression of SMI
(Suzuki & Sugiyama, 2010):

SMI =
∫∫

g∗(u, v)puv(u, v)dudv

− 1
2

∫∫
g∗(u, v)2 pu(u)pv(v)dudv − 1

2
.

Using J(α), SMI can be written as follows:

SMI = − infαJ(α) − 1
2

Here, we assume that the true density ratio g∗ is contained in
the model, i.e., g∗ ∈ {g(u, v) | α ∈ Rb}. Therefore, comput-
ing SMI is reduced to finding minimizer of J(α) (see Suzuki &
Sugiyama, 2010, for detail).

2.3. Model Selection and Basis Function Design

The performance of LSMI depends on the choice of basis
functions and the regularization parameter. We can choose
them based on cross-validation (CV) with respect to the error
criterion (2). For example, in the case of K-fold CV, we divide
the samples S = {(xi, yi)}ℓi=1 into K disjoint subsets {Sk}Kk=1 of

3



(approximately) the same size. Then, an estimator α̂k is ob-
tained using {S j} j,k (i.e., without Sk) and the approximation
error for the hold-out samples Sk is obtained as

Ĵ(K−CV) :=
1
K

K∑
k=1

(
1
2
α̂⊤k Ĥkα̂k − ĥ⊤k α̂k

)
, (3)

where, for the set Sk = {(xsi , ysi )}ℓki=1,

Ĥk :=
1
ℓ2k

ℓk∑
i,i′=1

φ(usi , vsi′ )φ(usi , vsi′ )
⊤,

ĥk :=
1
ℓk

ℓk∑
i=1

φ(usi , vsi ).

We compute Ĵ(K−CV) for each model candidate, and then choose
the best one that minimizes Ĵ(K−CV).

To exploit the above CV procedure, we have to prepare can-
didates of basis functions. Here, we use the following product
kernel as basis functions:

φk(u, v) = ϕu
k(u)ϕv

k(v),

since the number of kernel evaluation when computing Ĥk,k′ is
reduced from ℓ2 to 2ℓ:

Ĥk,k′ =
1
ℓ2

 ℓ∑
i=1

ϕu
k(ui)ϕu

k′(ui)


 ℓ∑

i=1

ϕv
k(vi)ϕv

k′(vi)

 .
We use the Gaussian kernel as the “base” kernels:

ϕu
k(u) := exp

−∥u − uk∥22
2σ2

 ,
ϕv

k(v) := exp
−∥v − vk∥22

2σ2

 ,
where {(uk, vk)}bk=1 are Gaussian centers randomly chosen from
{(ui, vi)}ℓi=1 and ∥ · ∥2 denotes the ℓ2-norm.

In the experiments, we fix the number of basis functions at

b = min(200, ℓ), (4)

and choose the Gaussian width σ and the regularization param-
eter λ by CV with grid search.

2.4. Least-squares Canonical Dependency Analysis (LSCDA)
Given the SMI estimator ŜMI, we maximize it with respect

to U and V:

argmax
U∈Rp×m,V∈Rq×n

ŜMI(U,V)

s.t. UU⊤ = Ip and VV⊤ = Iq.
(5)

We call this approach to finding U and V least-squares canon-
ical dependency analysis (LSCDA). The entire algorithm of
LSCDA is summarized in Figure 1. We can employ various
optimization techniques to obtain a solution of the above opti-
mization problem. Below, we show several possibilities.

1: Initialize U and V.
2: Optimize Gaussian width σ and regularization parameter λ

by CV (explained in Section 2.3).
3: Update U and V such that ŜMI is maximized.
4: Repeat 2. and 3. until U and V converge.

Figure 1: The LSCDA algorithm.

2.4.1. Plain Gradient Algorithm
A plain gradient ascent technique updates U and V by the

following forms:

U ← U + t
∂ŜMI
∂U

and V ← V + t
∂ŜMI
∂V
,

where t > 0 is a step size chosen by a line search method such
as Armijo’s rule (Nocedal & Wright, 1999). The gradients are
given by

∂ŜMI
∂Uk,k′

=
∂ĥ
∂Uk,k′

(2α̂ − β̂) − α̂⊤ ∂Ĥ
∂Uk,k′

(
3
2
α̂ − β̂),

∂ŜMI
∂Vk,k′

=
∂ĥ
∂Vk,k′

(2α̂ − β̂) − α̂⊤ ∂Ĥ
∂Vk,k′

(
3
2
α̂ − β̂),

where β̂ := (Ĥ + λIb)−1Ĥα̂. A naive gradient ascent ap-
proach does not take into account the orthonormality con-
straints UU⊤ = Ip and VV⊤ = Iq. Thus, we orthonormalize
U and V after each update, e.g., using the Gram-Schmidt pro-
cess (Golub & Van Loan, 1996). However, this may be rather
time-consuming.

2.4.2. Sequential Quadratic Programming
We can use a sequential quadratic programming (SQP) (No-

cedal & Wright, 1999) technique to efficiently handle the or-
thonormality constraints. SQP is one of the standard optimiza-
tion techniques for a non-linear objective function and nonlin-
ear constraints. In the MI-based CCA method (Yin, 2004), SQP
is used to optimize MI under similar constraints to (5). This
approach is also applicable to our optimization problem (5).
The SQP method iteratively solves a quadratic programming
subproblem which locally approximates the true optimization
problem.

Let

z =
[
vec(U⊤)
vec(V⊤)

]
,

where the “vec” operator vectorizes a matrix by concatenating
all of its columns. At the k-th iteration, we “model” problem
(5) as the following quadratic program:

(U′(k+1),V′(k+1)) := argmax
U∈Rp×m,V∈Rq×n

z⊤W(k) z +
∂ŜMI
∂z

∣∣∣∣∣∣∣
⊤

z=z(k)

z

s.t. U(k)U⊤ = Ip and V(k)V⊤ = Iq,

where z(k), U(k), and V(k) are the estimates obtained at the k-th
iteration and W(k) is a (usually negative semi-definite) approxi-
mation of the Hessian matrix of the Lagrangian function of (5).

4



The solution of this problem provides search directions for the
(k + 1)-th iteration:

U(k+1) ← U(k) + t
(
U′(k+1) − U(k)

)
,

V(k+1) ← V(k) + t
(
V′(k+1) − V(k)

)
,

where t is a step size. t is chosen so that the following merit
function is maximized:

ŜMI − µ
(
∥UU⊤ − Ip∥1,1 + ∥VV⊤ − Iq∥1,1

)
,

where ∥ · ∥1,1 denotes the sum of absolute values of all elements
of a matrix and µ > 0 is the penalty parameter which penalizes
deviations from the feasible region of the original problem (5).
We can easily determine µ so that the increase of the merit func-
tion is guaranteed (Nocedal & Wright, 1999). An implemen-
tation of SQP is available, e.g., “fmincon” in the MATLAB R⃝

optimization toolbox. However, since this is a general-purpose
optimizer, it is sometimes inefficient in solving a problem with
specific structure.

2.4.3. Natural Gradient Algorithm
Another approach to efficiently handling the orthonormality

constraints in (5) is a natural gradient algorithm (Amari, 1998).
Due to the orthonormality constraints UU⊤ = Ip and VV⊤ = Iq,
the matrices U and V should belong to the Stiefel manifolds
Sm

p (R) and Sn
q(R), respectively. The ordinary gradient gives the

steepest direction in the Euclidean space, whereas the natural
gradient gives the steepest direction on a manifold. The natural
gradient is the projection of the ordinary gradient to the tangent
space of its manifold. If the tangent space is equipped with the
canonical metric ⟨G1,G2⟩ = 1

2 tr(G⊤1 G2), the natural gradients
for U and V are given by

∇UŜMI =
1
2

∂ŜMI
∂U

− U
∂ŜMI
∂U

⊤

U
 ,

∇VŜMI =
1
2

∂ŜMI
∂V

− V
∂ŜMI
∂V

⊤

V
 .

Then the geodesics from U and V to the directions of the natu-
ral gradients ∇UŜMI and ∇VŜMI over Sm

p (R) and Sn
q(R) can be

represented as

Ut := U exp

t(U⊤ ∂ŜMI
∂U

− ∂ŜMI
∂U

⊤

U)

 ,
Vt := V exp

t(V⊤ ∂ŜMI
∂V

− ∂ŜMI
∂V

⊤

V)

 ,
where “exp” for a matrix denotes the matrix exponential and
t > 0 is a step size which can be chosen by a line search method
such as Armijo’s rule. See (Nishimori & Akaho, 2005) for more
details of geometric structure of the Stiefel manifold.

In the experiments, we use the natural gradient method
for optimization. Our MATLAB R⃝ is available from
http://www.bic.kyoto-u.ac.jp/pathway/krsym/

software/LSCDA/index.html.

3. Relation to Existing Methods

In this section, we review existing methods for analyzing
paired samples {(xi, yi)}ℓi=1, and discuss the relationship to the
proposed method.

3.1. Canonical Correlation Analysis (CCA)

CCA iteratively finds projection directions g and h so that
the correlation between g⊤x and h⊤y is maximized (Hotelling,
1936).

More formally, given the first k solutions g1, . . . , gk and
h1, . . . , hk, the (k + 1)-st solution gk+1, hk+1 of CCA is given
as

argmax
g∈Rm,h∈Rn

g⊤Σ̂XYh√
g⊤Σ̂XX g

√
h⊤Σ̂YYh

,

s.t. g⊤j Σ̂XX g = 0 and h⊤j Σ̂YYh = 0, j = 1, . . . , k.

Σ̂XX and Σ̂YY are the sample covariance matrices of x and y,
respectively, and Σ̂XY is the sample cross-covariance matrix of
x and y.

The CCA solution g1, . . . , gd and h1, . . . , hd for d ≤
min(m, n) is given analytically by the generalized eigenvectors
associated with the d largest generalized eigenvalues of the fol-
lowing generalized eigenvalue problem:[

O Σ̂XY

Σ̂⊤XY O

] [
g
h

]
= η

[
Σ̂XX O
O Σ̂YY

] [
g
h

]
,

where O is the zero matrix. Finally, CCA projection matrices
are constructed as

U = (g1 | · · · | gd)⊤ and V = (h1 | · · · | hd)⊤ . (6)

Although the classical CCA has been widely used in a vari-
ety of fields, it can only capture correlations under linear pro-
jections. Thus, it is often insufficient to analyze complex real-
world data. If pxy(x, y) is jointly normal, MI can be computed
as a function of canonical correlations (Kullback, 1959; Kay,
1992; Bach & Jordan, 2002). Although this implies that CCA
is closely related to MI under the Gaussian assumption, such re-
lation to MI does not hold in general since CCA only evaluates
the second-order correlation. On the other hand, our proposed
approach can capture statistical dependency for any distribu-
tion, which is a strong advantage in real-world complex data
analysis.

3.2. Kernel Canonical Correlation Analysis (KCCA)

KCCA (Akaho, 2001; Gestel et al., 2001; Melzer et al., 2001)
could be a more flexible alternative to the classical CCA.

The basic idea of KCCA is to first non-linearly transform
data samples into feature spaces by reproducing kernels (Aron-
szajn, 1950), and then apply ordinary CCA in the feature
spaces. This corresponds to considering non-linear projections
in the original spaces. Thanks to the reproducing property of
the kernel functions, the global optimal solution of KCCA can
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be computed efficiently even when the dimensionality of the
feature spaces is very high. This is a significant advantage over
general non-linear approaches such as a method based on neu-
ral networks which suffers from local optimality (Fyfe & Lai,
2000). However, the result of KCCA is often difficult to inter-
pret because projections are non-linear in the original space.

Bach & Jordan (2002) proposed a method that learns linear
projection matrices using a KCCA-based dependence measure
in the context of independent component analysis. They also
proposed another kernel-based dependency measure called the
kernel generalized variance (KGV) that is closely related to
mutual information. Gretton et al. (2005) also proposed another
kernel-based dependency measure called the Hilbert-Schmidt
independence criterion (HSIC). These dependency measures
can be directly applied to the CDA problem by maximizing
each dependency measure with respect to the linear projection
matrices (in the experiments shown later, we call these methods
KCCA-CDA, KGV-CDA, and HSIC-CDA, respectively). Since
these methods learn linear projection matrices in the original
space, we can interpret the results easily. However, a critical
limitation of these kernel-based approaches is that it contains
free parameters to be tuned such as the regularization parame-
ter and the kernel parameter. Although practical heuristics were
suggested for tuning parameter choice (Bach & Jordan, 2002;
Gretton et al., 2005), there seems no theoretical justification and
thus it is not clear whether such heuristics are always reliable.
In a related context, cross-validation was used to choose the
regularization parameter so that the first canonical correlation
is maximized (Leurgans et al., 1993). However, this approach
was shown not to work well for subsequent projection vectors.

On the other hand, LSCDA is equipped with cross-validation
(3) and thus all tuning parameters can be objectively determined
in a data-dependent manner, which is a significant advantage.

3.3. Informational Canonical Correlation Analysis (ICCA)

ICCA (Yin, 2004) shares the same goal as the proposed
LSCDA, i.e., it obtains linear projections that maximize the de-
pendency between two projected variables. However, in ICCA,
the dependency is measured by MI,

MI :=
∫∫

puv(u, v) log
puv(u, v)

pu(u)pv(v)
dudv,

which is estimated using kernel density estimation (KDE).
ICCA iteratively finds projection directions g and h so that

the KDE-based MI estimate between g⊤x and h⊤y is maxi-
mized. Let p̂uv(u, v), p̂u(u), and p̂v(v) be density estimators
obtained by KDE. Then, given the first k solutions g1, . . . , gk

and h1, . . . , hk, the (k + 1)-st solution gk+1, hk+1 of ICCA is
given as

argmax
g∈Rm,h∈Rn

1
ℓ

ℓ∑
i=1

log
p̂uv(g⊤xi, h⊤yi)

p̂u(g⊤xi) p̂v(h⊤yi)

s.t. g⊤Σ̂XX g = h⊤Σ̂YYh = 1,

g⊤j Σ̂XX g = h⊤j Σ̂YYh = 0, j = 1, . . . , k.

Although bandwidths of KDE were chosen based on Silver-
man’s rule (Silverman, 1986; Scott, 1992) in the original ICCA
paper (Yin, 2004), we found in our preliminary experiments
that likelihood cross-validation (LCV) (Härdle et al., 2004)
tends to perform better. For this reason, we decided to use LCV
in our experiments.

ICCA iteratively estimates pairs of projection vectors
{(gi, hi)}di=1 for d ≤ min(n,m), and then projection matrices
are constructed by (6). This means that only one or two-
dimensional density estimation is involved in ICCA, and thus
KDE-based MI estimation would be reasonable. However, this
approach corresponds to estimating rows of U and V one by
one in a greedy manner. Although greedy optimization was
shown to give the global optimal solution in the case of clas-
sical CCA (Izenman, 2008), it usually leads to a local optimal
solution in ICCA. Indeed, as we will show experimentally, di-
rectly estimating multi-dimensional projections (i.e., global op-
timization) is potentially more powerful. We can easily extend
ICCA so that entire projection matrices U and V are estimated
at once:

argmax
U∈Rp×m,V∈Rq×n

1
ℓ

ℓ∑
i=1

log
p̂uv(U⊤xi,V⊤yi)

p̂u(U⊤xi)p̂v(V⊤yi)
.

However, this formulation involves higher-dimensional density
estimation (e.g., puv is now defined on the (p + q)-dimensional
space), which tends to be inaccurate. Furthermore, taking the
ratio of estimated densities tends to magnify the estimation er-
ror. For this reason, multi-dimensional ICCA may not be reli-
able in practice.

On the other hand, our proposed approach mitigates this dif-
ficulty by directly estimating the density ratio without going
through density estimation, which tends to give more reliable
solutions.

4. Experiments

In this section, we experimentally evaluate the performance
of the proposed LSCDA and existing methods. In the proposed
method, we used the Gaussian kernel and fixed the number of
basis functions by (4). The Gaussian widthσ and regularization
parameter λ were chosen based on 5-fold CV with grid search.
We employed the natural gradient method as an optimization
strategy for LSCDA. We restarted the gradient procedure 10
times with random initial points and chose the one having the
minimum CV score (3).

4.1. Artificial Datasets
Here, we compared the performance of the LSCDA al-

gorithm with classical CCA (Hotelling, 1936), KCCA-CDA
(Bach & Jordan, 2002), KGV-CDA (Bach & Jordan, 2002),
HSIC-CDA (Gretton et al., 2005), and ICCA (Yin, 2004) us-
ing artificial datasets. For classical CCA, we used the “canon-
corr” function in the MATLAB R⃝ Statistics Toolbox. In ICCA,
we estimated densities in MI using KDE following the original
paper (Yin, 2004). We optimized the bandwidth parameters of
KDE based on likelihood cross-validation (LCV), as mentioned
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Figure 2: Artificial datasets. We generated four types of artificial datasets which have linear and/or nonlinear dependencies. The definitions of x and y are in Section
4.1. In Data 3, although we have x ∈ R5 and y ∈ R5, we only plot the relationships between y1 and (x1, x2), and y2 and (x1, x2), respectively. For Data 4, we plot
the relationships between y1 and (x1, x2), and y2 and (x3, x4), respectively.

in Section 3.3. In KCCA-CDA and KGV-CDA, the Gaussian
width and the regularization parameter were set by the heuris-
tics suggested in the original paper (Bach & Jordan, 2002). In
HSIC-CDA, the Gaussian width was set to the median of sam-
ple distances, following the suggestions of the original paper
(Gretton et al., 2005). We evaluated the performance of each
method by

1
2

 1√
2p
∥Û⊤Û − U∗⊤U∗∥Fro +

1√
2q
∥V̂⊤V̂ − V∗⊤V∗∥Fro

 ,
where ∥·∥Fro denotes the Frobenius norm, Û and V̂ are estimated
projection matrices, and U∗ and V∗ are the optimal projection
matrices. Note that the above measure takes its value in [0, 1],
and smaller is better.

Let U(D) denote the uniform distribution on D, and let

N(µ, σ2) denote the normal distribution with mean µ and vari-
ance σ2. We used the following 4 datasets (see Figure 2) for
performance comparison, where the reduced dimensions of x
and y were set to be the same number d ≤ min(m, n).

(a) Data 1: x = (x1, x2)⊤, y = (y1, y2)⊤, and d = 1, where

y1 =x1 + ε,

x1, x2 ∼ U([−1, 1]2), y2 ∼ U([−1, 1]), ε ∼ N(0, 0.1), and
ℓ = 100.

(b) Data 2: x = (x1, x2)⊤, y = (y1, y2)⊤, and d = 1, where

y1 =x2
1 + ε,

x1, x2 ∼ N(0, 0.25), y2 ∼ N(0, 0.25), ε ∼ N(0, 0.1), and
ℓ = 200.
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(c) Data 3: x = (x1, . . . , x5)⊤, y = (y1, . . . , y5)⊤, and d = 2,
where

y1 = x1 + x2 + ε,

y2 = x2
1 + ε,

x1, . . . , x5 ∼ N(0, 0.25), y3, . . . , y5 ∼ N(0, 0.25), ε ∼
N(0, 0.1), and ℓ = 200.

(d) Data 4: x = (x1, . . . , x8)⊤, y = (y1, . . . , y8)⊤, and d = 5,
where

y1 = x2
1 + x2

2 + ε,

y2 = x2
3 + x4 + ε,

y3 = x2
1 + x2

3 + ε,

y4 = x2
4 + x2 + ε,

y5 = x2
5 + x3 + ε,

x1, . . . , x8 ∼ N(0, 0.25), y6, . . . , y8 ∼ N(0, 0.25), ε ∼
N(0, 0.1), and ℓ = 200.

The performance of each method is summarized in Table 1,
which shows the mean and standard deviation of the Frobenius-
norm error over 10 trials. For both of the ICCA and LSCDA
methods, we evaluated the following two types of optimization
strategies:

• Directly estimate d-dimensional projection matrices us-
ing the natural gradient method. In the table, ICCA and
LSCDA indicate ICCA and LSCDA with this approach.

• Iteratively estimate pairs of projection vectors {(gi, hi)}di=1
using the SQP method. ICCA’ and LSCDA’ in the table
indicate the methods where projection matrices are op-
timized by this greedy approach. The original paper of
ICCA (Yin, 2004) takes this approach.

Note that the above two approaches are equivalent for the
datasets (a) and (b) where d = 1.

In Table 1, we can see that the proposed LSCDA has bet-
ter or comparable performance to other methods. Although
KGV-CDA and HSIC-CDA also tend to work reasonably well,
LSCDA outperforms them for some datasets. These differences
of performance seem to come from inappropriate choices of
tuning parameters in KGV-CDA and HSIC-CDA.

For the dataset (a) having simple linear dependency, most
of the methods have comparable performance. For the dataset
(b) having dependency but no correlation, the classical CCA
did not work well, whereas other methods more successfully
captured the dependency of variables.

For the dataset (c), LSCDA performed well compared with
LSCDA’. The reason why LSCDA’ failed to estimate projection
matrices for this dataset may be explained as follows. In the first
iteration, g1 ∝ (1, 1, 0, 0, 0)⊤ and h1 ∝ (1, 0, 0, 0, 0)⊤ are typi-
cally obtained. Let gi j be the jth component of gi and hi j be the
jth component of hi. Then, in the second iteration, g23, . . . , g25
must be 0 because x3, x4, and x5 are irrelevant to y. There-
fore, due to the orthogonality g⊤1 g2 = 0, g2 ∝ (1,−1, 0, 0, 0)⊤
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2
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Figure 3: Relationship between (x1− x2)/
√

2 and y2 in dataset (c). There seems
no strong dependency between these two quantities.

should be obtained. Similarly, since h23, . . . , h25 must be 0,
h2 ∝ (0, 1, 0, 0, 0)⊤ should be obtained. However, since there
seems no strong dependency between g⊤2 x = (x1 − x2)/

√
2 and

h⊤2 y = y2 (see Figure 3), it is difficult to find this solution by the
iterative approach.

The dataset (d) contains rather complicated dependencies of
variables in higher-dimensional subspaces. Due to the same
reason as the dataset (c), the one-dimensional greedy strat-
egy did not work well for the dataset (d). Furthermore, since
ICCA involved higher-dimensional density estimation (10- and
5-dimensional density estimations are needed for the dataset
(c)), it did not perform well compared with LSCDA. On the
other hand, LSCDA mitigated this difficulty thanks to the direct
density-ratio estimation approach.

4.2. Application to Real-world Multi-label Classification Prob-
lem

Finally, we evaluate the performance of the proposed method
in real-world multi-label classification problems. Here, the pro-
posed LSCDA is compared to the classical CCA, HSIC-CDA,
and ICCA. We used a real-world image dataset called the PAS-
CAL Visual Object Classes (VOC) 2010 dataset (Everingham
et al., 2010) and a real-world audio dataset called the Freesound
dataset (Akkermans et al., 2011). In both of the datasets, we
consider a set of binary classification problems that is to pre-
dict a binary label vector y ∈ {−1,+1}n from an input vector
x ∈ Rm. In these problems, the labels in each dimension
are not independent of each other, but often have strong cor-
relations. Then, extracting informative features while incorpo-
rating co-occurrence patterns among labels y is important for
better prediction. Therefore, here we compared each method
by prediction performance of subsequent classifier.

To evaluate each method, the one nearest-neighbor classi-
fier was applied to transformed samples. We employed the re-
ceiver operating characteristic (ROC) analysis (Fawcett, 2006)
and calculated the area under the ROC curve (AUC) as a per-
formance measure of each method. The AUC corresponds to
the probability that the classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative in-
stance. The AUC is often calculated through varying a thresh-
old of a classifier. Since the usual nearest-neighbor classifier
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Table 1: Mean and standard deviation of the Frobenius norm error for artificial datasets. The best method in terms of the mean error and comparable ones
according to the t-test at the significance level 1 % are specified by boldface. In the table, ICCA’ and LSCDA’ indicate that projection matrices are optimized by
one-dimensional greedy approach, while ICCA and LSCDA estimate d-dimensional projection matrices directly. Since LSCDA and LSCDA’ (and also ICCA and
ICCA’) are equivalent in the case of d = 1, for datasets (a) and (b), we only reported results of LSCDA (and ICCA).

Dataset CCA KCCA-CDA KGV-CDA HSIC-CDA ICCA’ ICCA LSCDA’ LSCDA
(a) .05(.03) .06(.03) .05(.03) .05(.03) - .07(.04) - .05(.03)
(b) .54(.28) .06(.05) .06(.04) .08(.06) - .08(.04) - .07(.04)
(c) .56(.13) .59(.16) .20(.06) .27(.17) .56(.15) .42(.19) .46(.17) .16(.06)
(d) .51(.05) .49(.08) .30(.06) .22(.09) .41(.05) .53(.04) .40(.06) .23(.07)

does not have a threshold, we decided to use weighted distances
to neighboring instances of each class. More specifically, we
used the following distance function dist : Rm × Rm → R for
the nearest-neighbor classifier:

dist(x, xi) =
{
α∥U(x − xi)∥22 for yi = 1,
(1 − α)∥U(x − xi)∥22 for yi = −1,

where x is a test data point, xi is a training data point, and α ∈
[0, 1] is a weight parameter that corresponds to a threshold of
the classifier. For instance, when α is set as 0, the classifier
always outputs y = 1. On the other hand, it always outputs
y = −1 when α = 1. Changing α from 0 to 1, we calculate the
AUC for each element of y and show their average.

4.2.1. PASCAL VOC 2010 Dataset
The PASCAL VOC 2010 dataset consists of 20 binary clas-

sification tasks of identifying the existence of objects in given
images such as a person and an aeroplane. The total number
of images in the dataset is 11319 and we randomly divided it
into training and test dataset 10 times. The number of training
instances is 500 and the rest are used for testing.

In this experiment, we first extracted visual features from
each image using the speed up robust features (SURF) algo-
rithm (Bay et al., 2008), and obtained 500 visual words as the
cluster centers in the SURF space. Then, we computed a 500-
dimensional bag-of-feature vector by counting the number of
visual words in each image.

We reduced the dimensionalities of x and y from m = 500
and n = 20 to p ∈ {15, 10, 5, 1} and q = 10, and ob-
served performance for each p. In this setting, except for
the classical CCA, we have to run each method 4 times for
p ∈ {15, 10, 5, 1}. For computational efficiency, we employed
the following re-starting strategy in HSIC-CDA, ICCA, and
LSCDA. Let Û(1) ∈ R15×500 be an estimated projection matrix
for p = 15 and û(1) := Û(1)x. Using this, we further reduce the
dimensionality from û(1) by estimating an “additional” projec-
tion matrix Û(2) ∈ R10×15. Thus, the 10-dimensional projected
vector is written as Û(2)û(1). Note that Û(2)Û(1) lies also in the
Stiefel manifold: Û(2)Û(1)Û(1)⊤Û(2)⊤ = I10. Since this strategy
reduces the size of projection matrices, we can save the compu-
tation cost for large dimensional problems. The same technique
can also be applied to the projection matrix for y.

The results are plotted in Figure 4. In the plot, “NDR” (no
dimension reduction) corresponds to the one nearest-neighbor
classification in the original space. The results show that the
classical CCA has the worst performance and its AUC value is
close to the chance level. Therefore, more flexible approaches
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Figure 4: Comparison of the average AUC score for the PASCAL VOC 2010
dataset. The best method and comparable methods according to the t-test at the
significance level 1% are specified by “◦”. “NDR” denotes the original data
without dimension reduction. The horizontal axis is corresponding to projected
dimensionality of x (i.e., dimensionality of u).

seem to be required for this problem. Although ICCA and
HSIC-CDA had better performance compared to the classical
CCA, the proposed LSCDA outperformed all of them. LSCDA
achieved almost the same performance as “NDR” with only a
5-dimensional subspace.

Figure 5 is CPU time comparison of each dimensionality re-
duction method. For classical CCA, we can obtain projection
matrices for every dimension by only solving an eigenvalue
problem once. On the other hand, HSIC, ICCA and LSCDA
needed relatively large computational costs to maximize their
dependency measures. Since HSIC, ICCA and LSCDA em-
ployed re-start strategy from a solution of large p to small p,
their CPU time decreased with the increase of p.

4.2.2. Freesound Dataset
The Freesound dataset (Akkermans et al., 2011) consists of

various audio files annotated with word tags such as “people”,
“noisy”, and “restaurant”. We used 230 tags in this experiment.
The total number of audio files in the dataset is 5905 and we
used 500 randomly chosen audio files for training and the rest
for testing.

We first extracted the mel-frequency cepstrum coefficient
(MFCC) (Rabiner & Juang, 1993) from each audio file, and ob-
tained 1024 audio features as the cluster centers in the MFCC
space. Then, we computed a 1024-dimensional bag-of-feature
vector by counting the number of audio features in each audio
file. We randomly chose the training and test datasets 10 times.

We reduced the dimensionalities of x and y from m = 500
and n = 230 to p = {15, 10, 5, 1} and q = 30. As in the case of
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Figure 5: CPU time comparison of dimensionality reduction. The horizontal
axis is corresponding to projected dimensionality of x (i.e., dimensionality of
u). Since HSIC, ICCA and LSCDA employed re-start strategy from solution of
large p to small p, the CPU time is decreasing with increase of p. For CCA,
we can obtain projections for every dimension by performing the eigenvalue
decomposition only once.
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Figure 6: Comparison of the average AUC score for the Freesound dataset.
The best method and comparable methods according to the t-test at the signifi-
cance level 1% are specified by “◦”. “NDR” denotes the original data without
dimension reduction. The horizontal axis is corresponding to projected dimen-
sionality of x (i.e., dimensionality of u).

the PASCAL VOC dataset, we employed the same re-starting
strategy for efficient computations.

The results are plotted in Figure 6, showing again that
LSCDA outperformed the existing methods and it had compa-
rable performance to “NDR” with only p = 5.

Figure 7 is CPU time comparison of each dimensionality re-
duction method. Here again, HSIC, ICCA and LSCDA were
computationally expensive compared to classical CCA.

5. Conclusions

In this paper, we proposed a novel dimensionality reduc-
tion method for paired data, called least-squares canonical de-
pendency analysis (LSCDA), that maximizes dependency be-
tween two projected variables. The proposed LSCDA can cap-
ture higher-order correlations which can not be detected by
classical canonical correlation analysis (CCA). As a criterion
of dependency, we employed squared-loss mutual information
(SMI) which can be accurately and analytically estimated by
least-squares mutual information (LSMI). Our method does not
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Figure 7: CPU time comparison of dimensionality reduction. The horizontal
axis is corresponding to projected dimensionality of x (i.e., dimensionality of
u).

involve density estimation which is often difficult in higher-
dimensional problems, but we estimate the ratio of densities
directly. Through experiments, we demonstrated the effective-
ness of our LSCDA method using artificial datasets and real-
world image and audio datasets. In our future work, we will
improve the computational efficiency of LSCDA.
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