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Abstract—In this paper, an algorithm is proposed that robustly 

extracts urban areas from polarimetric synthetic aperture radar 
(SAR) images. Polarization orientation angle (POA), volume 
scattering power (Pv) derived by four-component decomposition, 
and total power (TP) are utilized in the proposed algorithm. The 
dependence of the four decomposition components on POA can be 
lessened by rotating the elements of the coherency matrix by the 
POA. However, a level of POA dependence remains even after the 
correction. The proposed algorithm utilizes POA-corrected 
components, but pixels are grouped into several categories 
according to POA. First, urban and farmland training data are 
selected for each category in a study area. Then, urban and 
mountain areas are separated from farmland, bare ground, and 
sea by utilizing the Pv–TP scattergram. Finally, a measure of the 
POA randomness between neighboring pixels is used to 
discriminate between urban areas with nearly homogeneous POA 
and mountain areas with randomly distributed POAs. When 
performing classification on more than one study area, thresholds 
manually selected for one of the study areas are used to 
automatically estimate thresholds for the other areas. An 
accuracy assessment demonstrates that POA-based categorization 
and utilization of POA randomness contribute to improving 
classification accuracy. 
 

Index Terms—Four-component decomposition, polarimetric 
synthetic aperture radar, polarization orientation angle, urban 
area extraction. 
 

I. INTRODUCTION 
AND cover classification is a highly anticipated 
application of satellite remote sensing. Land cover 

classification using synthetic aperture radar (SAR) has proved 
difficult, however, because the scattering of microwaves 
emitted from SAR has a greater dependence on target structure 
than on land cover type. Even in urban areas, a large change in 
scattering intensity is found, dependent on whether the normal 
to a building’s wall is parallel to the sensor's ground range 
direction. When this normal is parallel to the range direction, 
the scattering intensity from the building is high; otherwise, the  
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scattering intensity is weak. This dependence of scattering on  
 
the relative azimuth between the wall normal and the radar's 
ground range direction is a factor that makes land cover 
classification using SAR challenging. 

The polarization orientation angle (POA) [1] can be used to 
reduce this dependence. Applying a four-component 
decomposition method [2], [3] to the fully polarimetric SAR 
data gives the surface scattering power (Ps), the double-bounce 
scattering power (Pd), the volume scattering power (Pv), and 
the helix scattering power (Pc); however, these components are 
also sensitive to POA. Thus, Yamaguchi et al. [4] proposed an 
algorithm that rotates the coherency matrix by the POA in order 
to reduce the dependence of the components on the relative 
azimuth. However, the dependence was found to remain even 
after this correction [5], and removing the remaining angular 
effects is considered nontrivial. Therefore, in this paper, we 
propose an algorithm for extracting urban areas from data 
containing these angular effects. The remainder of the paper is 
organized as follows. Section II explains the indices used in the 
proposed algorithm. The algorithm itself is then described in 
Section III, and experimental results are reported and discussed 
in Section IV. Finally, the paper is concluded in Section V. 

II. INDICES USED 
The format of polarimetric SAR data consists of a complex 

scattering matrix given by 
 
 

(1) 
 
Here, for simplicity, SHV and SVH are assumed to be equivalent 
[2], [3], and a coherency matrix expressed by 
 
 
 

(2) 
 
 
 
 
 

A. Four-component Decomposition 
Four-component decomposition is a method of decomposing 

the observed backscattering into four components, where each 
component is calculated from the coherency matrix.  
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Furthermore a rotation can be applied to the coherency 
matrix as follows 
 
 

 (3) 
 
 
Here, †  denotes complex conjugation and transposition, and 

)(θpR  is the rotation matrix given by 
 
 

(4) 
 
 

B. Polarization Orientation Angle (POA) 
POA, θ , is estimated as follows: 

 
 (5) 

 
 
θ  is determined such that the wall normal is parallel to the 
sensor’s ground range direction and is equivalent to minimizing 

)(33 θT . 

III. METHODS 
For urban areas in Tokyo, Fig. 1 shows plots of the four 

power components and the total power (TP) versus POA before 
and after the scattering intensity was corrected according to the 
POA. The POA dependence can be seen to decrease as a result 
of the correction. After the correction, Pv is almost constant 
regardless of POA, whereas the other components still depend 
on POA. In general, the scattering intensity in urban areas is 
stronger than that in farmland. However, the scattering 
intensity in urban and mountain areas is similar in some cases. 
This similarity results from the POA dependence of urban areas. 
The scattering intensity from non-orthogonal buildings is 
weaker than that from orthogonal buildings. Hereinafter, this 
“orthogonality” condition denotes measurement geometry with 
POA of 0°. Discriminating between orthogonal urban areas and 
mountain areas is straightforward. However, the scattering 
intensity from non-orthogonal urban areas and mountain areas 
is similar. As a result, discriminating between these two land 
covers is hard in some cases. Therefore, instead of using the 
power components, another approach is necessary to 
discriminate between urban areas and mountain areas. As 
shown in Fig. 2, the proposed algorithm for urban area 
extraction consists of two steps. The first step is classification 
of urban/mountain area and farmland/bare ground/sea. The 
second step then classifies the urban and mountain areas.  
 

A. Classification Using Pv and TP 
Fig. 3 shows urban and farmland areas in Tokyo, Japan from 

which training data were obtained. Fig. 4 shows the results of 
principal component analysis (PCA) of Pv–TP scattergrams for 
the training data areas, at POAs of 0°, 15°, 30°, and 45°. The 

combination of Pv and TP was found to be effective for 
discriminating between urban areas and farmland, and the 
scattergrams show that the discriminant between urban areas 
and farmland may depend on POA. We also attempted to utilize 
combinations of the other three power components (Ps, Pd, and 
Pc), but they were highly sensitive to POA and building type. 
Consequently, even within an urban area, these three scattering 
intensity parameters vary greatly. In contrast, Pv is not strongly 
dependent on POA, and TP is robust against differences in 
building type. Therefore, the combination of Pv and TP was 
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Fig. 1.  Relation between POA and power components derived by 
four-component decomposition. (a) Uncorrected data, and (b) POA-corrected 
data. Red line denotes surface scattering power (Ps), green denotes 
double-bounce scattering power (Pd), navy blue denotes volume scattering 
power (Pv), pink denotes helix scattering (Pc), and sky blue denotes total 
power (TP). 
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Fig. 3. Urban and farmland areas (Tokyo, Japan)  from which training data 
were obtained. 
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Fig. 2.  Flowchart of urban area extraction. 
 



IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 
 

3 

found most suitable for the robust extraction of urban areas. 
Because the discriminant depends on POA, the POA space is 
divided into four categories: (-7.5° to 7.5°), (-22.5° to 7.5°, 7.5° 
to 22.5°), (-37.5° to -22.5°, 22.5° to 37.5°), and (-45.0° to 
-37.5°, 37.5° to 45.0°). Thus each pixel of a SAR image is 
assigned to one of these categories. In this paper, a scattering 
intensity with a negative POA is regarded as equivalent to that 
with the absolute value of its POA. This equivalency is 
considered acceptable because each component in Fig. 1 is 
approximately symmetrical about the POA of 0°. 

Gravity points of urban areas and farmland were found to 
differ between areas. Therefore, the threshold used for land 
cover classification must be optimized for the study area of 
interest. However, in the proposed algorithm, manual threshold 
selection is reduced via the following procedure.  

First, urban and farmland training data are manually selected 
from a study area. Next, principal component analysis is 
applied to the training data, and the threshold for discriminating 
between urban areas and farmland is determined. Initially, 
Otsu’s method [6] was employed to determine the threshold for 
Tokyo. However, the resulting threshold was found to 
misclassify the majority of areas as urban. Hence, the threshold 
was determined from the means and standard deviations of the 
first principal components of the two land cover types. The 
standard deviation of the first principal components associated 
with farmland is larger than that of urban areas. As a result, 
when using the overall mean, the second principal component 
over-extracts urban areas in most cases. Therefore, the 
difference between the means of the two land cover types is 
divided in proportion to the standard deviations, and a break 
point is obtained. Then, the second principal component is 
shifted along the first principal component so as to pass the 
break point, and the shifted second principal component is used 
as the threshold. The threshold is then applied to another study 
area, and an attempt is made to separate the urban areas from 
farmland. The difference is calculated between the urban 
gravity points in the new area and in the initial study area, and 
this difference is used to adjust the threshold. The updated 

threshold is again applied to the new study area, and the gravity 
point difference is calculated. Iteration of this process is 
terminated when the change in the threshold is within a 
predefined limit.  

Note that the scattering intensity from farmland orthogonal 
to the ground range direction is as strong as that from an urban 
area. Orthogonal farmland is seen in only the first POA 
category, and another discriminant is necessary to remove these 
data. In the proposed algorithm, a second discriminant is 
independently determined from the training data. This 
discriminant is a second threshold that is optimized after 
optimization of the first threshold. By applying the above 
procedure, land cover with weak scattering, sea, and bare 
ground are classified as farmland. 

 

B. Classification Using POA Randomness 
The Pv–TP scattergrams of urban areas and of mountain 

areas mostly overlap (Fig. 5). These two land covers cannot be 
clearly classified by setting a threshold as in Section III-A. 
However, the difference in POA randomness between urban 
and mountain areas is considered to be an appropriate index for 
classifying them. The majority of buildings in an urban area are 
aligned in the same direction, and thus, POAs in a district will 
be nearly homogenous; in contrast, mountain areas are covered 
by natural vegetation, and POAs differ randomly (Fig. 6). By 
considering this phenomenon, a procedure to discriminate 
between urban areas and mountain areas is proposed as follows.  

 
1) Each pixel is labeled using one of five POA-based groups 

(Fig. 7(a)).  
2) A window, denoted in red in Figure 7(b), is set surrounding 

a pixel. Taking each pixel in turn within the window, the 

Fig. 4.  Results of PCA of Pv–TP scattergrams for urban and farmland areas in 
Tokyo. Scattergrams at POA of (a) 0°, (b) 15°, (c) 30°, and (d) 45°. Horizontal 
and vertical axes denote the first and shifted second principal component axes 
(first threshold), respectively, and the pink line denotes the second threshold. 
Red, green, and navy points denote urban areas, farmland, and orthogonal 
farmland, respectively, and the black point denotes urban gravity. 
 

(a) (b) 

(c) (d) 

Fig. 5.  Pv–TP scattergrams for urban, farmland, and mountain areas at POA of 
15° in Sapporo. Red, green, and yellow points denote urban, farmland, and 
mountain areas, respectively. 
 

-π/4 π/4 0 8(km) 

(a) (b) 

Fig. 6.  POAs of pixels for urban and mountain areas in Sapporo: (a) AVNIR-2 
image, and (b) POA map. 
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POA labels of the four neighboring pixels are compared 
with that of the central pixel, defined as the “reference 
pixel” (e.g., Label 1 in Fig. 7(d)). If all four pixels have 
labels that are equal to the reference pixel’s label (Label 1) 
or are one away from it (Label 2 or 5), the pixel is not 
counted (Fig. 7(c)). In all other cases, the pixel is counted 
(Fig. 7(d)). The number of pixels counted is then assigned 
to the central pixel of the window (orange in Fig. 7(b)). 

3) The center of the window is then shifted and step (2) is 
again executed.  

 
Using this procedure, the pixel count is expected to be small 

in urban areas, and large in mountain areas. 
At first, an attempt was made to classify urban and mountain 

areas by using a POA variation coefficient. However, the 
classification results were considered unacceptable, because 
the majority of non-orthogonal buildings were categorized as 
mountain areas. In Fig. 6, different POAs are randomly 
distributed in non-orthogonal urban areas. The accuracy of 
POA estimation decreases when POAs are far from 0°. 
Therefore, POA variation between neighboring pixels in 
non-orthogonal areas is as large as that in mountain areas, and 
discriminating between these two land covers using this 
method is not viable.  

In this study, categorization using the POA-based groups 
explained above was instead applied. However, using too many 
or too few POA-based groups led to unsuccessful classification 
results. If the number of groups is small, POA randomness 
effects are increased and the categorization is poor. In contrast, 
if the number of groups is large, extraction of non-orthogonal 
urban areas is difficult. In non-orthogonal urban areas, the 
accuracy of POA estimation is low, thus POA values are 
somewhat different around reference pixels. POA randomness 
is large even in non-orthogonal urban areas, and little 
difference is found between non-orthogonal urban and 
mountain areas. Therefore, care must be taken that the number 
of POA-based groups is not too large. By considering the 
standard deviation of POAs in non-orthogonal urban areas 
(approximately 20°), five groups were deemed to be 
appropriate. In general, the number of pixels with POAs of 
around 0° is much larger than that with POAs of around 45° in 
the whole image when applying a filter to the coherency matrix 
(In this study, a 3 × 3 boxcar filter). Thus, each group’s interval 
was decided as above, due the larger POA variation in 
mountain areas. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
In this study, fully polarimetric Advanced Land Observing 

Satellite (ALOS)/Phased Array type L-band SAR (PALSAR) 
level 1.1 (L1.1) data were used. Furthermore, ALOS/Advanced 
Visible and Near Infrared Radiometer type 2 (AVNIR-2) 
optical sensor data were used as a reference. Three study areas 
were selected: Tokyo, Sapporo, and Fukuoka in Japan. Urban 
and farmland training data were manually selected from the 
Tokyo area. Thus, the threshold for discriminating between 
urban areas and farmland was determined for Tokyo, and then 
optimized for other areas.  

To terminate the optimization loop, the minimum change in 
the urban gravity point was set to 0.01 dB. If the minimum 
change is set smaller than 0.01 dB, the number of iterations 
increases; however, the gravity point is almost the same as 
when the minimum is set to 0.01dB. For POA randomness 
calculations, the window size was set at 31 × 31 pixels, and the 
ratio between the pixel count and the total number of pixels in 
the window for discriminating between urban and mountain 
areas was set to 0.35. The window size was determined such 
that a clear difference was seen between the POA randomness 
of non-orthogonal urban areas and mountain areas. If the 
window is small, this difference cannot be seen. If the window 
is too big, the boundary between urban and mountain areas 
becomes ambiguous. Moreover, the POA randomness 
threshold was set by ensuring that non-urban areas were not 
removed. If the POA randomness threshold is less than 0.35, a 
proportion of non-urban areas are removed, whereas a 
threshold greater than 0.35 retains the majority of the mountain 
areas. 

 

A. Result of Classification Using Pv and TP 
Two issues were examined by conducting an accuracy 

assessment in all three study areas, where reference data were 
obtained manually (Fig. 8). The first is how the classification 
results of the proposed algorithm compare with those of a 
conventional (maximum likelihood) algorithm, and the second 
is the effect of POA categorization, described in Section III-A, 
on classification results. For comparison, urban area extraction 
was conducted using a conventional maximum likelihood 
estimation algorithm. Five training datasets were manually 
obtained a priori for urban areas, mountain areas, farmland, 
bare ground, and sea, in each study area. After training, 
maximum likelihood estimation was then applied to the Pv–TP 
scattergrams. In the calculation, the likelihood was inversely 
proportional to the Mahalanobis distance between the center of 
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Fig. 8.  Effect of POA categorization on accuracy for the three study areas. 
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the training dataset and the target point. The results generated 
by maximum likelihood estimation were found to have lower 
accuracy than those generated by the proposed algorithm. 
Moreover, results generated by the proposed algorithm with 
POA categorization were found to have higher accuracy than 
those without it, especially in Sapporo where an improvement 
in classification accuracy of 7.1% was achieved. By optimizing 
the threshold for Tokyo to suit the other areas of interest in the 
PCA process, discriminant equations for each area were 
automatically estimated in the proposed algorithm.  

Fig. 9 shows the results of classification without and with 
POA categorization for Sapporo. Most of the non-orthogonal 
urban areas were classified as mountain areas or bare ground by 
categorization using maximum likelihood estimation. In many 
case, non-orthogonal urban areas were included in land cover 
with weak scattering, which caused a great reduction in 
accuracy. Therefore, discriminating between non-orthogonal 
urban areas and mountain areas by using the power components 
is ineffective. Without categorization, urban areas were 
over-extracted. In contrast, urban and non-urban areas were 
classified more accurately by setting an appropriate threshold 
for each POA category. In heavily built-up urban areas, POA 
categorization is not as effective. However, categorization is 
valid in areas such as Sapporo with mixed land cover types. 
Classification using TP is successful in removing bare ground 
and mountains, but TP is sensitive to POA. Thus, POA 
categorization is applicable in these areas, and setting POA 
thresholds for each category enabled more accurate extraction 
of urban areas. 

 

B. Result of Classification Using POA Randomness 
Without the use of POA randomness, approximately 50% of 

mountain areas were misclassified as urban areas. Conversely, 
the addition of POA randomness succeeded in avoiding such 
misclassification (Fig. 9(d)).  

Without POA randomness, pixels along mountain ridges 
were also misclassified as urban areas, because sections of the 
ridges have strong scattering intensity. The proposed algorithm 
properly classified such pixels as mountain areas. 

V. CONCLUSIONS 
In this paper, a classification algorithm was proposed that 

successfully extracts urban areas from polarimetric SAR 
images. Pv and TP data, generated by four-component 
decomposition, are used for classification. Pixels are 
categorized based on POAs and a different classification 
threshold is set for each category.  

In general, the scattering intensity in urban areas is stronger 
than that in farmland. However, the scattering intensity 
depends on POA. The scattering intensity in non-orthogonal 
urban areas and that in orthogonal farmland is similar in some 
cases, which may lead to misclassification, such as the 
over-extraction of urban areas. Therefore, pixels with the same 
POAs should ideally be compared. In this paper, POA 
categorization reduced this misclassification.  

Thus, POA randomness is able to discriminate urban areas 
from mountain areas, and experimental results demonstrate that 
the proposed method can extract urban areas in the study area. 
Moreover, the proposed algorithm automatically estimates the 
optimal POA threshold of other study areas from that 
determined for an initial study area. Classification results show 
that thresholds output by this algorithm are valid, and 
additional training data from images do not need to be 
analyzed. 

Hence, the proposed algorithm for urban extraction is robust 
and applicable to various areas. The algorithm was applied to 
ALOS/PALSAR data, and application to higher resolution 
sensor data, for example, from TerraSAR-X, will be attempted 
in the future 
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Fig. 9.  Effect of POA categorization and POA randomness for Sapporo: (a) 
AVNIR-2 image; (b) classification generated by maximum likelihood 
estimation; (c) classification without POA categorization (white pixels denote 
urban areas and black pixels denote non-urban areas); (d) classification with 
POA categorization (white pixels denote urban areas, green pixels denote the 
pixels classified as farmland via procedure in Section III-A, and black pixels 
denote the pixels classified as mountain areas via procedure in Section III-B). 
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