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ABSTRACT 

 

The objective of this study was to evaluate the ability of a scaffold, collagen/gelatin 

sponge (CGS), to release basic fibroblast growth factor (bFGF) in a sustained manner using 

a pressure-induced decubitus ulcer model involving genetically diabetic mice. We 

confirmed that the CGS impregnated with a bFGF concentration of up to 50µg/cm
2
 were 

able to sustained the release of bFGF throughout their biodegradation. We prepared 

decubitus ulcers on diabetic mice. After debriding the ulcers, we implanted CGS (diameter: 

8mm) impregnated with normal saline solution (NSS) or bFGF solution (7, 14, 28, or 

50µg/cm
2
). At one and two weeks after implantation, the mice were sacrificed, and tissue 

specimens were obtained. The wound area, neoepithelium length, and numbers and total 

area of newly formed capillaries were evaluated. The CGS impregnated with NSS became 

infected and degraded, whereas the CGS impregnated with 7 or 14µg/cm
2
 of bFGF 

displayed accelerated dermis-like tissue formation, and the CGS impregnated with 

14µg/cm
2
 of bFGF produced significant improvements in the remaining wound area, 

neoepithelium length, and numbers and total area of newly formed capillaries compared 

with the NSS group. No significant difference was observed between the NSS and 

50µg/cm
2
 bFGF groups. CGS impregnated with 7µg/cm

2
 to 14µg/cm

2 
bFGF accelerated 

wound healing, and an excess amount of bFGF did not increase the wound-healing efficacy 

of the CGS. Our CGS is a scaffold that can release positively charged growth factors such 

as bFGF in a sustained manner and shows promise as a scaffold for skin regeneration. 
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Keywords: bFGF, artificial skin, collagen/gelatin sponge, scaffold, sustained release, 
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1. INTRODUCTION 

We were involved in the development of a bilayered acellular artificial dermis (AD,  

Pelnac®, Gunze Co. Ltd, Kyoto, Japan) as a biodegradable scaffold containing an upper  

layer composed of a silicone sheet and a lower layer made of collagen sponge by  

modifying the artificial dermis proposed by Yannas and Burke (Yannas et al., 1980; Suzuki  

et al., 1990a). After the AD has been grafted onto a full-thickness skin defect, the collagen  

sponge is biodegraded and gradually replaced with regenerated dermis-like tissue within 2  

to 3 weeks (Suzuki et al., 1990b). Basic FGF was released during the biodegradation of the  

CGS.  

Artificial dermises have been used in clinical practice for the treatment of full-thickness  

skin defects caused by severe burns and tumor excision for more than 10 years. However,  

some problems remain to be solved. Before capillaries have infiltrated the collagen sponge,  

the artificial dermis is not resistant to infection (Matsuda et al.,1992). Therefore, it is  

difficult to apply artificial dermises to chronic ulcers such as decubitus, diabetic, and leg  

ulcers, because of the high probability of infection (Matsuda   et al., 1988). 

Basic fibroblast growth factor (bFGF), which was identified in 1974 (Gospodarowicz et al., 

1974), promotes the proliferation of fibroblasts and capillary formation and accelerates  

tissue regeneration (Uchi et al., 2009). In Japan, human recombinant bFGF (FIBRAST  

SPRAY® Kaken Pharmaceutical, Tokyo, Japan) has been used clinically for the treatment  

of chronic skin ulcers since 2001, and its clinical effectiveness has been demonstrated  

(Kawai et al., 2000). Recently, combination therapy involving bFGF and artificial  

dermis has been reported to accelerate dermis-like tissue formation (Muneuchi et al., 2005;  
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Ito et al., 2005; Akita et al., 2008). In spite of its effectiveness, this combination therapy  

has not become a standard treatment because bFGF must be applied every day as it rapidly  

diffuses away from the site of administration and is also inactivated quickly after its  

administration (Kawai et al., 2000). 

To overcome these problems, we have developed a novel scaffold, collagen/gelatin 

sponge (CGS), containing a 10wt% concentration of acidic gelatin that is capable of 

releasing positively charged growth factors such as bFGF for more than 10 days in vivo via 

the formation of ion complexes between bFGF and gelatin (Takemoto et al., 2008).  

Human bFGF, which has an isoelectric point (IEP) of 9.6 (Kanda et al., 2011; Artem et al., 

2011; Takemoto et al., 2008; Kawai et al., 2005; Kawai et al.,2000; Tabata Y et al., 1999 ; 

Muniruzzaman et al., 1998), is ionically complexed with acidic gelatin, which has an IEP 

of 5.0 (Muniruzzaman et al., 1998).  CGS acts in the same manner as a scaffold such as AD, 

and the bFGF impregnated into the CGS is released during its biodegradation (Takemoto et 

al., 2008). In our previous study involving normal mouse skin defects, CGS impregnated 

with 7µg/cm
2
 bFGF accelerated dermis-like tissue formation 2 or 3 fold compared with AD 

(Kanda et al., 2011). In another study in which we created full-thickness palatal mucosa 

defects in beagles, CGS impregnated with 7µg/cm
2
 bFGF accelerated the regeneration of 

the palatal mucosa, induced good levels of neovascularization, and produced less wound 

contracture (Artem et al., 2011). We expect that CGS impregnated with bFGF will prove to 

be an effective treatment for full thickness skin defects including chronic ulcers such as 

diabetic foot ulcers and decubitus ulcers. In this study, we examined the optimal bFGF 

dosage with which to impregnate CGS and the release profile of bFGF from CGS after 
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impregnation. Then, we investigated the effectiveness of CGS impregnated with bFGF and 

the optimal bFGF dosage in an impaired wound healing model involving genetically 

diabetic mice with pressure-induced decubitus ulcers. 

 

2. MATERIALS AND METHODS 

 

2.1.  Animals and operations 

The animals were maintained at the Institute of Laboratory Animals, Graduate School of 

Medicine, Kyoto University. The number of animals used in this study was kept to a 

minimum, and all possible efforts were made to reduce suffering in compliance with the 

protocols established by the Animal Research Committee of Kyoto University. 

 

2.2. Preparation of CGS 

We used gelatin isolated from pig dermis with an isoelectric point (IEP) of 5.0 and a 

molecular weight of 99,000 (Nippi, Inc., Tokyo, Japan) and atelocollagen isolated from pig 

tendons with an IEP of 8.5 and a molecular weight of 300,000 (Nitta Gelatin, Inc., Osaka, 

Japan). CGS was produced according to production procedure has described in 

Takemoto’s paper (Takemoto et al., 2008). CGS with a gelatin concentration of 10wt% of 

the total solute was prepared by mixing 3wt% gelatin solution with 0.3wt% collagen 

solution. We then spread a thin layer of silicone paste onto a polyester mesh. Before the 

silicone paste had dried, the top of the CGS was attached to the silicone paste covered 

polyester mesh.  As the silicone paste dried, it formed a sheet that adhered to the CGS. 
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2.3. In vitro bFGF release study and degradation rate of CGS 

We prepared CGS of 10mm×20mm in size and 3.0mm in thickness. We weighed all of 

the CGS (n=10) and then placed them into 15ml test tubes (Thermo Fisher Scientific Inc. 

Osaka, Japan). We prepared distilled water (DW, Otsuka Pharmaceutical, Tokyo, Japan) 

and distilled water solution containing bFGF (FIBRAST SPRAY® Kaken Pharmaceutical, 

Tokyo, Japan) at concentrations of 0.07, 0.14, 0.28, and 0.5µg/µl and applied 200 µl of 

each bFGF solution to CGS. Thus, we prepared four bFGF groups, in which CGS was 

impregnated with 7, 14, 28, or 50µg/cm
2
 bFGF and incubated overnight at 4℃.  

We prepared Tris-HCl buffer solution (pH7.4) containing 4 units/ml collagenase  

(Collagenase Type A, Sigma-Aldrich Corporation Japan, Tokyo, Japan) and poured 5ml of 

collagenase solution into the test tubes to dissolve the CGS at 37°C. At 1, 2, 4, and 6 hours 

after the degradation, we collected 1 ml of the solution from the test tubes and used it to 

estimate the bFGF concentrations in the four bFGF groups. After collecting the solutions, 

collagenase was completely removed from the test tubes, and the CGS inside the test tubes 

were immediately washed with distilled water to stop the enzyme reaction.  The CGS were 

removed from the test tubes and freeze-dried for 12 hours to remove any water using a 

freeze dryer (BRZ350WA, ADVANTEC Toyo Kaisha, Ltd., Tokyo, Japan). The CGS 

were then weighed in order to calculate the degradation rate of the CGS impregnated with 

bFGF at each time point.  

The analysis was performed using ELISA (Enzyme-Linked Immunosorbent Assay) kits 

(Human FGF basic immunoassay kit: R&D Systems, Inc, Minneapolis, USA). To estimate 
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the concentrations of the bFGF solutions, solutions and standards were assayed in 

duplicate according to the manufacturer’s instructions. The test wavelength of each well 

was set at 490 nm using a microplate reader (MTP-450 CORONA ELECTRIC Co., Ltd., 

Ibaragi, Japan) and compared to a reference wavelength of 650 nm. The bFGF 

concentrations were determined by plotting their values on a standard curve. The amount 

of bFGF released from the CGS was calculated at each time point.  

 

2.4. Pressure-induced ulcer model in diabetic mice 

We prepared 40 genetically diabetic mice (Nine-week-old BKS.Cg-+ Leprdb/+ 

Leprdb/Jcl, CLEA Japan Inc, Osaka，Japan). All mice had their backs and abdomens 

shaved and depilated under anesthesia with diethyl ether (Wako Pure Chemical Industries, 

Osaka, Japan) and then were positioned on experimental tables. In our previous study, we 

developed a pressure induced ulcer model using diabetic mice and a pneumatic compressor 

（Kawai et al., 2005). In this study, 4 hours prolonged pressure (2h×2 pressure sessions; 

2h interval between pressure sessions; 500 g/cm
2
) was loaded onto the area above the 

femoral trochanters of the mice using a pneumatically driven compressor for two 

consecutive days (EARTH MAN AC-20 OL, TAKAGI Co., Ltd. Japan, Niigata, Japan). 

The air pressure was regulated with a precision regulator providing a constant pressure 

level. Five days after the completion of the pressure loading, the area of necrosis was 

clearly demarcated (Fig. 3A).  

 

2.5. Impregnation of bFGF into CGS and the implantation of the CGS  
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We used CGS of 8mm in diameter and 3mm in thickness. As for the dosage of bFGF, 

 the recommended therapeutic dose of bFGF for chronic ulcers is 1µg/cm
2
 per day (Uchi et 

al., 2009). In a diabetic mouse study, the daily application of bFGF produced a similar 

bell-shaped dose-response pattern with a peak at 1µg/cm
2
 per day (Okumura et al., 1996). 

This shows that the effective dosage of bFGF is not very different between humans and 

diabetic mice. According to the daily bFGF dosage recommendations and a CGS release 

period of about 10 days, we hypothesized that the optimal bFGF dosage for impregnating 

the CGS ranged from 7µg/cm
2
 to 14µg/cm

2
 for 7 or 14 days. In this experiment, we 

prepared CGS containing NSS or one of four different doses of bFGF (7, 14, 28, or 

50µg/cm
2
) as in the in vitro study and then incubated them overnight at 4°C.  

The mice were anesthetized via the intraperitoneal injection of 25mg/kg pentobarbital 

(Abbott Laboratories, North Chicago, IL, USA) and the inhalation of diethyl ether (Wako 

Pure Chemical Industries, LTD., Osaka, Japan). Five days after the completion of the 

pressure loading, the necrotic tissues were resected, and skin defects of 8mm in diameter 

were created using a 8mm-diameter skin punch biopsy tool (Kai industries, Gifu, Japan) 

and scissors (Fig. 3B). CGS impregnated with NSS or bFGF solution were implanted into 

the defects and sutured into the marginal skin wounds with 5-0 nylon sutures (Johnson & 

Johnson K.K., Tokyo, Japan) (Fig. 3C). All wounds were covered with gauze and fixed in 

place with adhesive tape (ALCARE
®

, ALCARE Co., LTD. Tokyo, Japan).   

 

2.6. Assessment of the wound area and histological assessment of neoepithelization 

One and two weeks after implantation, the mice were sacrificed via the inhalation of 
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carbon dioxide. After the removal of the silicone sheets, the wounds were photographed, 

and the wound area was measured using the imaging analyzer ImageJ software (version 

1.38, National Institutes of Health, USA). The wound area is expressed as a percentage of 

the original wound area.  

The implanted CGS and dermis-like tissue were harvested using scalpels and scissors 

and sectioned axially. Specimens were then fixed with 20% formalin fluid, 

paraffin-embedded, and sliced into 4µm thick sections, before the sections were stained 

with hematoxylin and eosin. Using a light microscope and NIS Elements (Nikon 

Instruments Company, Tokyo, Japan), the neoepithelium length of each specimen was 

measured from the innermost hair root of the marginal skin to the end of the neoepithelium 

on each side of each cross-section at a magnification of x 100. 

 

2.7. Immunohistological staining and evaluation of the area and number of newly 

formed capillaries  

Using 4µm thick paraffin-embedded sections, immunohistological staining with von 

Willebrand factor was performed to detect newly formed capillaries in the CGS. After the 

sections had been dewaxed and rehydrated, they were incubated in PBS with 0.1% trypsin 

(Vector Laboratories Inc., Burlingame, CA) for 15 minutes at 37°C for antigen retrieval. 

Anti-Von Willebrand factor rabbit polyclonal antibody (DAKO Japan, Tokyo, Japan) was 

used as the primary antibody (1: 500 dilutions), and EnVision+Rabbit/HRP (DAKO Japan, 

Tokyo, Japan) was used as the secondary antibody. These sections were exposed to DAB 

(3-3`-diaminobenzidine-4HCl) (DAKO Japan, Tokyo, Japan) for 2 minutes at room 
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temperature. Counterstaining was performed with hematoxylin.  

 Digital light micrographs of the sections of the CGS and dermis-like tissue beyond the 

muscle layers were taken at a magnification of x 100. In each section, two square areas of 

500µm in width and height were chosen from the dermis-like tissues beneath the marginal 

skin. The area and number of newly formed capillaries in two squares in each section were 

measured twice. Using a microscope, we measured the epithelium length directly using 

NIS Elements. An assessment of neoepithelization and newly formed capillaries was also 

performed using NIS Elements.  

 

2.8. Statistical analysis 

All data were analyzed using Fisher’s protected least significant difference test (Fisher’s 

PLSD) and expressed as the mean+standard error. A value of p<0.05 was accepted as 

significant. 

 

3. RESULTS 

 

3.1. The degradation of CGS and basic FGF release in vitro 

The degradation rates of the CGS are shown as percentages compared to their original 

weight or their collagenase treated weight (Fig.1). The CGS were digested by collagenase 

throughout the degradation period. There were significant differences in the degradation 

rate at 1, 2, and 4 hours after the start of the degradation between the CGS impregnated 

with 50µg/cm
2
 of bFGF and those containing 7 or 14µg/cm

2
 of bFGF, but no significant 
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differences were seen at 6 hours after the start of the degradation. The time course of bFGF 

release from the CGS is shown in Fig.2. No initial burst of bFGF release from CGS was 

observed; rather, the bFGF was continuously released throughout the degradation of the 

CGS (Fig.2).  

 

3.2. Wound area 

The gross appearance of the wounds at one and two weeks after implantation is shown in 

Fig. 4 and Fig.5. One week after implantation, the CGS in the NSS group were infected, 

whereas dermis-like tissue had begun to form in the wounds treated with the bFGF 

impregnated CGS (Fig. 4). Two weeks after the implantation, the CGS in the NSS group 

displayed implantation failure. In contrast, the wound areas covered with CGS containing 7 

or 14µg/cm
2
 of bFGF had markedly reduced and were infection-free, and the wounds 

treated with 14µg/cm
2
 of bFGF were almost completely epithelized (Fig. 5). In the wounds 

treated with CGS containing 28 or 50µg/cm
2
 bFGF, dermis-like tissue had formed but 

epithelization had not proceeded as quickly as that seen in the wounds treated with CGS 

containing 7 or 14µg/cm
2 

bFGF. 

 The time course of the remaining wound area is shown in Fig. 6. One week after 

implantation, the wound area in the 14µg/cm
2
 bFGF group was significantly smaller than 

that in the control group. Two weeks after implantation, the wound areas in the 7 and 

14µg/cm
2
 bFGF groups were significantly smaller than those in the control group and 

50µg/cm
2
 bFGF group. 
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3.3. Histological assessment of neoepithelium length 

Light microphotographs of the histological sections are shown in Fig. 7 and Fig.8. The 

low magnification image (x 40) shows the neoepithelium, CGS, and marginal skin. The 

high magnification image (x 100) shows neoepithelium formation.  The neoepithelium 

formation was especially marked in the 7 and 14µg/cm
2 

bFGF groups. 

The time course of neoepithelium length is shown in Fig. 9. One week after implantation, 

the neoepithelial lengths in the 7 and 14µg/cm
2
 bFGF groups were significantly longer than 

those in the control group. Two weeks after implantation, the neoepithelium length in the 

14µg/cm
2
 bFGF group was significantly longer than those in the control and 50µg/cm

2 

bFGF groups. 

 

3.4. Evaluation of newly formed capillaries in the wounds 

Light microphotographs of newly formed capillaries stained with von Willebrand Factor 

are shown in Fig.10. The number of capillaries in the bFGF impregnated group was 

significantly larger than that in the NSS group, although no significant difference was 

observed  among the bFGF impregnated groups（Fig. 11）. The capillary areas in the bFGF 

impregnated groups treated with 7, 14, or 28µg/cm
2
 bFGF were significantly larger than 

those in the control (almost 20 times larger) and 50µg/cm
2
bFGF groups (almost 8 times 

larger). No significant difference was observed between the control and 50µg/cm
2
 bFGF 

groups (Fig. 12). 

 

4. DISCUSSION 

Page 14 of 37

http://mc.manuscriptcentral.com/term

Journal of Tissue Engineering and Regenerative Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

15

 

Chronic skin ulcers can result from diabetic neuropathy, pressure sores, venous 

insufficiency, peripheral vascular disease, infectious disease, or acute surgical wounds in 

cases in which the healing process is disturbed. Chronic skin ulcers have a significant 

impact on public health through increased disability, morbidity, and mortality, all of which 

increase the cost of healthcare (Ho et al., 2005). In patients suffering from these conditions, 

diabetic foot ulcers are a leading cause of hospitalization and amputation. Many advanced 

technologies, such as wound dressings, topical ointments, enzymatic debridement 

compounds, and hyperbaric oxygen therapy, have been developed to improve the treatment 

of chronic skin ulcers (Heyneman et al., 2008; Dunn et al., 2008; McCallon et al., 2008; 

Collier et al., 2009; Baroni et al., 1987; Oriani et al., 1990; Kessler L et al., 2003, Ong M. 

2008).  Recently, due to advances in tissue engineering and cell culture techniques, 

cultured skin substitutes have been used in the treatment of diabetic ulcers, pressure ulcers, 

and venous leg ulcers (Karr et al., 2008;Ohara et al., 2010; Cervelli et al., 2010). Negative 

pressure wound therapy such as Vacuum Assisted Closure (VAC) Therapy (KCI, Texas, 

U.S.A.) involves the delivery of intermittent or continuous subatmospheric pressure, 

thereby providing an occlusive environment in which wound healing can proceed under 

moist, clean, and sterile conditions (Labanaris et al., 2009; Nather et al., 2010). In addition, 

various growth factors such as basic FGF (Fu et al., 2002; Kurokawa et al., 2003), 

PDGF-BB（platelet-derived growth factor (Bhansali et al., 2009), EGF (epidermal growth 

factor）(Kim et al., 2010), and PRP (platelet-rich plasma) (Cervelli et al., 2009; Kathleen et 

al., 2010) have been used for the clinical treatment of chronic wounds.  
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A major clinical problem with the use of AD is their low resistance to infection when 

applied to chronic ulcers. We have attempted to experimentally impregnate AD with 

antibiotics or sulfadiazine silver to prevent infection; however, the clinical application of 

these techniques has not been actualized because there is a danger of the emergence of 

antibiotic-resistant bacteria or silver toxicity (Matsuda et al., 1991; Kawai et al., 2001).  

Recently, the combination of AD and the daily application of bFGF was reported to 

accelerate granulation tissue formation during the treatment of uninfected chronic ulcers 

(Muneuchi et al., 2005; Ito et al., 2005; Akita et al., 2008). We previously reported that AD 

containing bFGF-impregnated gelatin microspheres (MS) sustained the release of 

biologically active bFGF, accelerated angiogenesis, and promoted dermis-like tissue 

formation (Tabata et al., 1999; Kawai et al., 2000; Kawai et al., 2005). This therapy did not 

require the daily application of bFGF; however, the injection of MS into AD is complicated 

and time consuming. Our CGS is a scaffold that can sustain the release of positively 

charged growth factors such as bFGF, PDGF-BB, and TGF-β (transforming growth factor) 

(Takemoto et al., 2008). As for the optimal dosage of bFGF to impregnate into CGS, it is 

reported that bFGF forms a polyion complex with acidic gelatin at a bFGF/ gelatin molar 

ratio of 1/1 (Muniruzzaman et al., 1998). Therefore, our CGS was able to sustain a bFGF 

concentration of more than 60µg/cm
2
 depending on the gelatin content of the CGS. In our 

previous study, we achieved the sustained release of bFGF from CGS impregnated with 20 

µg/cm
2 

bFGF.  In this study, we confirmed that CGS is able to sustain bFGF at 

concentrations ranging from 7µg/cm
2
 to 50µg/cm

2
 during its biodegradation (Fig.2). 

 It has been reported that the dose-effect relationship of bFGF is bell-shaped (Okumura et 
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al., 1996; Motomura et al., 2008; Uchi et al., 2009). In a clinical study of diabetic foot 

ulcers, Uchi reported that the bFGF showed a bell-shaped dose-response pattern with a 

peak at 1µg/cm
2 
bFGF per day (Uchi et al., 2009). In our previous studies, we compared the 

wound healing processes induced by various bFGF concentrations. In our previous study in 

which we created skin defects in C57BL mice, CGS impregnated with 7µg/cm
2
 of bFGF 

accelerated dermis-like tissue formation the most, and CGS impregnated with 14µg/cm
2
 of 

bFGF had the second strongest effect. However, the application of CGS impregnated with 

50µg/cm
2
 bFGF did not accelerate wound healing (Kanda et al., 2011 Jul 5. [Epub ahead of 

print].). In another study in which palatal mucosal defects were created in beagles, CGS 

impregnated with 7µg/cm
2
 of bFGF also accelerated the tissue regeneration the most, and 

14µg/cm
2
 of bFGF had the second strongest effect (Artem et al., 2011 Jul 23. [Epub ahead 

of print].). According to these results, we considered that a bFGF concentration of between 

7µg/cm
2
 and 14µg/cm

2
 would be optimal for accelerating wound healing.  

In this study, as expected, CGS impregnated with 7 or 14µg/cm
2
 of bFGF accelerated 

dermis-like tissue formation, and CGS containing 14µg/cm
2
 of bFGF produced a 

significant reduction in the remaining wound area compared with CGS impregnated with 

7µg/cm
2 

bFGF. The remaining wound area, neoepithelium length, and area of newly 

formed capillaries in the wounds treated with CGS containing 50µg/cm
2
 bFGF were 

significantly inferior to those of the wounds treated with CGS containing 7 or 14µg/cm
2
 

bFGF. It has been reported that treatment with an excess amount of bFGF prolonged 

wound closure in diabetic mice and prevented keratinocyte proliferation in vitro (Okumura 

et al., 1996; Motomura et al., 2008). CGS impregnated with 50µg/cm
2 

of bFGF released a 
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persistently high dose of bFGF throughout their biodegradation, which might have 

inhibited the formation of the neoepithelium and capillaries. Our results regarding the 

degradation rate of CGS suggest that 50µg/cm
2
 bFGF inhibits the activity of collagenase. 

This inhibition might prolong the biodegradation of CGS and hence bFGF release in vivo 

and so have an adverse effect on wound healing.  

Our CGS containing bFGF showed resistance to infection. Some combination therapies 

have been reported to solve the problem of the lower resistance of AD to infection. 

Combination therapy involving AD (Integra 
®

, Integra LifeSciences Corp., Plainsboro, NJ, 

USA) and the VAC Therapy System has been reported to be effective at increasing 

granulation tissue formation (Molnar et al., 2004; Pollard et al., 2008).  This therapy does 

not require daily treatment, but does need a specialized pump to maintain a constant 

negative pressure, and the patient’s movements are restricted by the device. As another 

combination therapy, AD seeded with autologous or allogeneic cultured fibroblasts has 

been reported to be effective at accelerating granulation tissue formation. The fibroblasts 

contained in the AD release various growth factors and extracellular matrix molecules and 

accelerate wound healing (Ohara et al., 2010). Kuroyanagi reported that spongy collagen 

containing allogeneic fibroblasts was an effective therapy for patients with intractable skin 

ulcers including burns, venous ulcers, and autoimmune disease (Kuroyanagi et al., 2001). 

Although tissue-engineered substitutes are attractive, some problems remain, such as the 

possibility of disease transmission, unfavorable immune and local inflammatory reactions 

and their high cost, the latter of which is very important from a clinical perspective. 

Tissue-engineered skin substitutes, such as Dermagraft® (Advanced Tissue Sciences, Inc, 
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USA.), Transcyte® (Advanced Tissue Sciences, USA.), and Aprigraf® (Organogenesis, 

Inc., Canton, MA, USA and Novartis Pharmaceuticals Corp, USA.) are expensive, and 

access to these treatments is limited in many parts of the world (Eran et al., 2006). CGS is 

cheap compared with AD, and bFGF is cheaper than treatment with the VAC Therapy 

System or living cells. The procedure for our novel combination therapy involving CGS 

and bFGF is simple; i.e., bFGF is sprayed onto the CGS just before their application.  

Basic FGF has not been authorized for use in most countries. The acidic gelatin 

contained in CGS can sustain the release of not only bFGF but also other positively 

charged growth factors such as PDGF-BB and TGF-β (transforming growth factor-β) 

found in PRP (Hong et al., 2000; Kanematsu et al., 2004).  PRP can be prepared from a 

patient’s blood and PL (platelet lysate) produced from donated platelets (Mirabet et al., 

2008). When bFGF can not be used, combination therapy involving CGS and autologous 

or allogeneic PRP is an alternative. 

 Recently, tissue engineering has been recognized as a newly emerging biomedical 

technology for regenerating and repairing body defects using various combinations of cells, 

scaffolds, and growth factors (Tsuji-Saso et al., 2007). Collagen sponge scaffolds are one 

of the most common scaffolds, and it has been reported that collagen scaffolds treated with 

growth factors are effective at regenerating various kinds of tissues such as the dermis, 

epidermis, fat, bone, and cartilage  (Langer et al., 2007; Kimura et al., 2010; Nishizawa et 

al., 2010). Our CGS, which is capable of the sustained release of positively charged growth 

factors, is useful as a scaffold for tissue engineering. 

 

Page 19 of 37

http://mc.manuscriptcentral.com/term

Journal of Tissue Engineering and Regenerative Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

20

CONCLUSIONS 

  

CGS impregnated with bFGF at concentrations ranging from 7µg/cm
2
 to 14µg/cm

2 

accelerated wound healing in decubitus ulcer models involving diabetic mice, and an 

excess amount of bFGF did not increase their wound-healing efficacy. Our CGS is a novel 

scaffold that can sustain the release of positively charged growth factors such as bFGF. 

Combination therapy involving CGS and bFGF or PRP is a promising strategy for the 

treatment of chronic skin ulcers.  
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Fig.1. Time course of the degradation of CGS by collagenase. CGS were impregnated with 7µg/cm2 (□), 
14µg/cm2 (×) 28µg/cm2 (○), or 50 µg/cm2 of bFGF (△). *p<0.05, **p<0.01 versus 7µg/cm2 of bFGF; 

#p<0.01 versus 14µg/cm2 of bFGF. $p<0.05 versus 28µg/cm2 of bFGF.  
297x420mm (300 x 300 DPI)  
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Fig. 2. Time course of bFGF release from CGS. CGS were impregnated with 7µg/cm2 (□), 14µg/cm2 (×), 
28µg/cm2 (○), or 50 µg/cm2 of bFGF (△). *p<0.05, **p<0.01 versus 7µg/cm2 of bFGF; #p<0.05, # 

#p<0.01 versus 14µg/cm2 of bFGF. $p<0.05, $$p<0.01 versus 28µg/cm2 of bFGF.  
297x420mm (300 x 300 DPI)  
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Fig. 3. （A） The gross appearance of the decubitus ulcers at 5 days after the completion of the pressure 

loading.    
(B) The necrotic tissue was resected.  

(C) The CGS were implanted into the defect and sutured in place.  
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Fig. 4. Gross appearance of the wounds at one week after CGS implantation. The wounds were treated with 
CGS impregnated with NSS (A) or 7µg/cm2 (B), 14µg/cm2 (C), 28µg/cm2 (D), or 50µg/cm2 of bFGF (E). 

One week after implantation, the CGS impregnated with NSS were infected, whereas dermis-like tissue had 
begun to form in the wounds treated with the bFGF impregnated CGS.  
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Fig. 5. Gross appearance of the wounds at two weeks after CGS implantation. The wounds were treated with 
CGS impregnated with NSS (A) or 7µg/cm2 (B), 14µg/cm2 (C), 28µg/cm2 (D), or 50µg/cm2 of bFGF (E). 

Two weeks after implantation, the CGS impregnated with NSS had become infected and degraded. In 
contrast, the wound areas covered with CGS containing 7 or 14µg/cm2 of bFGF had markedly reduced 

without infection. The wounds treated with 14µg/cm2 of bFGF had become almost completely epithelized.  
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Fig. 6. Time course of the remaining wound area. Wounds treated with CGS impregnated with NSS (◇) or 
7µg/cm2 (□), 14µg/cm2 (×), 28µg/cm2 (○), or 50µg/cm2 of bFGF (△). *p<0.05, **p<0.01 versus NSS; 

#p<0.05, ##p<0.01 versus 7µg/cm2 of bFGF. $p<0.05, $$p<0.01 versus 28µg/cm2 of bFGF. &p<0.05, 
&&p<0.01 versus 50µg/cm2 of bFGF.  

One week after implantation, the wound area in the group treated with CGS containing 14µg/cm2 bFGF was 
significantly smaller than that in the control group. Two weeks after implantation, the wound areas in the 

groups treated with CGS impregnated with 7 or 14µg/cm2 bFGF were significantly smaller than those in the 
control and CGS with 50µg/cm2 of bFGF groups.  
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Fig. 7. Hematoxylin and eosin stained sections of wounds at one week after implantation. The wounds were 
treated with CGS impregnated with NSS (A) or 7µg/cm2 (B), 14µg/cm2 (C), 28µg/cm2 (D), or 50µg/cm2 of 
bFGF (E). The low magnification image (original magnification ×40, left side) shows a whole image of the 

implanted CGS. The area of remaining CGS is indicated by a broken line. The square bounded by solid lines 
shows the area used for the immunohistological staining of newly formed capillaries. The high magnification 

image (original magnification ×100, right side) shows the newly formed epithelium on the left side. The 
black arrow with the solid line indicates the hair root. The black arrow with the broken line indicates the end 
of the neoepithelium. The neoepithelium is shown in the upper section as a black line that is closed at both 

ends.  
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Fig.8. Hematoxylin and eosin stained wound sections at two weeks after implantation. The wounds were 
treated with CGS impregnated with NSS (A) or 7µg/cm2 (B), 14µg/cm2 (C), 28µg/cm2 (D), or 50µg/cm2 of 
bFGF (E). The low magnification image (original magnification ×40, left side) shows a whole image of the 

implanted CGS. The two black solid squares (500µm in width and height) show the area of the CGS in which 
the area and number of newly formed capillaries were investigated. The area of remaining CGS is 

surrounded by a broken line. The square bounded by solid lines shows the area used for the 
immunohistological staining of newly formed capillaries. The high magnification image (original 

magnification ×100, right side) shows the newly formed epithelium on the left side. The black arrow with 
the solid line indicates the hair root. The black arrow with the broken line indicates the edge of the 

epithelium. The neoepithelium is shown in the upper section as a black line that is closed at both ends.  
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Fig. 9. Time course of neoepithelium length. Wounds treated with CGS impregnated with NSS (◇) or 

7µg/cm2 (□), 14µg/cm2 (×) 28µg/cm2 (○), or 50 µg/cm2 of bFGF (△). *p<0.01 versus NSS, #p<0.01 

versus 50µg/cm2 of bFGF. One week after implantation, the neoepithelial lengths in the wounds treated with 
7µg/cm2 or 14µg/cm2 of bFGF were significantly longer than that of the control group. Two weeks after 
implantation, the neoepithelium length of the wounds treated with 14µg/cm2 of bFGF was significantly 

longer than those of the control group and the group treated with 50µg/cm2 of bFGF.  
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Fig. 10. Immunohistological staining of CGS two weeks after implantation. The newly formed capillaries were 
immunostained with Von Willebrand Factor (original magnification ×200). CGS with NSS (A), 7µg/cm2 of 

bFGF (B), 14µg/cm2 of bFGF (C), 28µg/cm2 of bFGF (D), and 50µg/cm2 of bFGF (E). The black arrowheads 

indicate capillaries.  
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Fig.11. The area of newly formed capillaries immunostained with Von Willebrand Factor （two weeks after 

implantation).  
CGS treated with NSS  or 7µg/cm2, 14µg/cm2, 28µg/cm2, or 50µg/cm2 of bFGF. *p<0.01 versus NSS；

#p<0.01 versus 50µg/cm2 bFGF.  
The area of newly formed capillaries in the group treated with CGS impregnated with 7µg/cm2 bFGF was 

significantly larger than those in the control group and the group treated with CGS impregnated with 
50µg/cm2 of bFGF. The areas of newly formed capillaries in the groups treated with CGS impregnated with 

14µg/cm2 or 28µg/cm2 bFGF were significantly larger than that in the control group.  
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