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Abstract: The three most popular univariate conditional volatility models are the generalized 

autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and 

Bollerslev (1986), the GJR (or threshold GARCH) model of Glosten, Jagannathan and Runkle 

(1992), and the exponential GARCH (or EGARCH) model of Nelson (1990, 1991). The 

underlying stochastic specification to obtain GARCH was demonstrated by Tsay (1987), and 

that of EGARCH was shown recently in McAleer and Hafner (2014). These models are 

important in estimating and forecasting volatility, as well as in capturing asymmetry, which 

is the different effects on conditional volatility of positive and negative effects of equal 

magnitude, and purportedly in capturing leverage, which is the negative correlation between 

returns shocks and subsequent shocks to volatility. As there seems to be some confusion in 

the literature between asymmetry and leverage, as well as which asymmetric models are 

purported to be able to capture leverage, the purpose of the paper is three-fold, namely,  

(1) to derive the GJR model from a random coefficient autoregressive process, with 

appropriate regularity conditions; (2) to show that leverage is not possible in the GJR and 

EGARCH models; and (3) to present the interpretation of the parameters of the three popular 

univariate conditional volatility models in a unified manner. 
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1. Introduction 

The three most popular univariate conditional volatility models are the generalized autoregressive 

conditional heteroskedasticity (GARCH) model of Engle (1982) [1] and Bollerslev (1986) [2], the GJR 

(or threshold GARCH) model of Glosten, Jagannathan and Runkle (1992) [3], and the exponential 

GARCH (or EGARCH) model of Nelson (1990, 1991) [4,5]. The underlying stochastic specification to 

obtain GARCH was demonstrated by Tsay (1987) [6], and that of EGARCH was shown recently in 

McAleer and Hafner (2014) [7]. 

These models are important in estimating and forecasting volatility and in capturing asymmetry, 

which is the different effects on conditional volatility of positive and negative effects of equal 

magnitude; furthermore, they are purportedly important in capturing leverage, which is the negative 

correlation between returns shocks and subsequent shocks to volatility. The purpose of the paper is  

three-fold, namely, (1) to derive the GJR model from a random coefficient autoregressive process, with 

appropriate regularity conditions; (2) to show that leverage is not possible in the GJR and EGARCH 

models; and (3) to present the interpretation of the parameters of the three popular univariate conditional 

volatility models in a unified manner. 

The derivation of three well known conditional volatility models, namely GARCH, GJR and 

EGARCH, from their respective underlying stochastic processes raises two important issues: (1) the 

regularity conditions for each conditional volatility model can be derived in a straightforward manner; 

and (2) the GJR and EGARCH models can be shown to capture asymmetry, but they can also be shown 

to be unable to capture leverage. 

The paper is organized as follows. In Section 2, the GARCH, GJR and EGARCH models are derived 

from different stochastic processes, the first two from random coefficient autoregressive processes and 

the third from a random coefficient complex nonlinear moving average process. It is shown that 

asymmetry is possible for GJR and EGARCH, but that leverage is not possible. Issues related to 

estimation are also discussed, with a view to guaranteeing positive estimates of conditional volatility. 

Some concluding comments are given in Section 3. 

2. Stochastic Processes for Conditional Volatility Models 

2.1. Random Coefficient Autoregressive Process and GARCH 

Consider the conditional mean of financial returns as in the following: 

tttt IyEy   )|( 1  (1) 

where the returns, ty  = tPlog  represents the log-difference in stock prices ( tP ), 1tI  is the information 

set at time t − 1, and t  is conditionally heteroskedastic. In order to derive conditional volatility 

specifications, it is necessary to specify the stochastic processes underlying the returns shocks, t . 
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Consider the following random coefficient autoregressive process of order one: 

tttt   1  (2) 

where 

t  ~ iid ),0(  , 

t  ~ iid ),0(  . 

Tsay (1987) [6] showed that the ARCH(1) model of Engle (1982) [1] could be derived from  

Equation (2) as: 

2

11

2 )|(   tttt IEh   (3) 

where th  is conditional volatility, and 1tI  is the information set at time t − 1. The use of an infinite lag 

length for the random coefficient autoregressive process in Equation (2), with appropriate restrictions on 

the random coefficients, can be shown to lead to the GARCH model of Bollerslev (1986) [2]. 

As the ARCH and GARCH models are symmetric, in that positive and negative shocks of equal 

magnitude have identical effects on conditional volatility, there is no asymmetry, and hence also no 

leverage, whereby negative shocks increase conditional volatility and positive shocks decrease 

conditional volatility (see Black (1976) [8]). 

It is worth noting that at least one of   or   must be positive for conditional volatility to be positive, 

with   > 0 and   > 0 regarded as sufficient conditions for positivity of conditional volatility. From the 

specification of Equation (2), it is clear that both   and   should be positive as they are the variances 

of two different stochastic processes. 

From a practical perspective, a failure to impose the positivity restrictions on the parameters can 

increase the probability of obtaining negative estimates of conditional volatility. For example, in the 

current version R2014a of MATLAB, no positivity is imposed in estimating the parameters of GARCH. 

Similar comments apply to other standard econometric, financial econometric and statistical software 

packages, and to the GJR and EGARCH models that are discussed below. 

2.2. Random Coefficient Autoregressive Process and GJR 

The GJR model of Glosten, Jagannathan and Runkle (1992) [3] can be derived as a simple extension 

of the random coefficient autoregressive process in Equation (2), with an indicator variable )( 1tI   that 

distinguishes between the different effects of positive and negative returns shocks on conditional 

volatility, namely: 

tttttt I    )( 11  (4) 

where 

t  ~ iid ),0(  , 

t ~  iid ),0(  , 

t  ~ iid ),0(  , 

)( 1tI   = 1 when 1t < 0, 

)( 1tI   = 0 when 01 t .  
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The conditional expectation of the squared returns shocks in (3), which is typically referred to as the 

GJR (or threshold GARCH) model, can be shown to be an extension of Equation (3), as follows: 

2

11

2

11

2 )()|(   tttttt IIEh   (5) 

The use of an infinite lag length for the random coefficient autoregressive process in Equation (4), 

with appropriate restrictions on the random coefficients, can be shown to lead to the standard GJR model 

with lagged conditional volatility. 

As GARCH is nested within GJR, the interpretation of the coefficients in the two models is essentially 

the same, apart from the parameter associated with asymmetry. 

It is worth noting that at least one of ),,(   must be positive for conditional volatility to be positive, 

with   > 0,   > 0 and   > 0 regarded as sufficient conditions for positivity of conditional volatility. 

From the specification of Equation (4), it is clear that all three parameters should be positive as they are 

the variances of three different stochastic processes. 

The GJR model is asymmetric, in that positive and negative shocks of equal magnitude have different 

effects on conditional volatility. Therefore, asymmetry exists for GJR if: 

asymmetry for GJR: 0 . 

A special case of asymmetry is leverage, which is the negative correlation between returns shocks 

and subsequent shocks to volatility (see Black (1976) [8]). The conditions for leverage in the GJR model 

in Equation (5) are: 

leverage for GJR: 0  and 0 . 

It is clear that leverage is not possible for GJR as both   and  , which are the variances of two 

stochastic processes, must be positive. 

As in the case of GARCH, the positivity restrictions on the parameters of GJR are typically not 

imposed in estimation using standard econometric, financial econometric and statistical software packages. 

2.3. Random Coefficient Complex Nonlinear Moving Average Process and EGARCH 

Another conditional volatility model that can accommodate asymmetry is the EGARCH model of 

Nelson (1990, 1991) [4,5]. McAleer and Hafner (2014) [7] showed that EGARCH could be derived from 

a random coefficient complex nonlinear moving average (RCCNMA) process, as follows: 

tttttt    11 ||  (6) 

where 

t  ~ iid ),0(  , 

t  ~ iid ),0(  , 

t  ~ iid ),0(  , 

1t  is a complex-valued function of 1t . 
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The conditional variance of the squared returns shocks in Equation (6) is given as: 

111

2 ||)|(   ttttt IEh   (7) 

It is worth noting that the transformation of th  in Equation (7) is not logarithmic, but the 

approximation given by: 

1))1(1log(log  ttt hhh  

can be used to replace th  in Equation (7) with 1 + thlog . The use of an infinite lag for the RCCNMA 

process in Equation (6) would yield, after suitable logarithmic approximation, the standard EGARCH 

model with lagged conditional volatility. 

EGARCH differs from GARCH and GJR in that, given the logarithmic transformation, no sign 

restrictions on ),,(   are necessary for conditional volatility to be positive. However, it is clear from 

the RCCNMA process in Equation (6) that all three parameters should be positive as they are the 

variances of three different stochastic processes. Therefore, asymmetry exists for EGARCH if: 

asymmetry for EGARCH: 0 . 

The conditions for leverage in the EGARCH model in Equation (7) are: 

leverage for EGARCH: 0  and   . 

As acknowledged in McAleer and Hafner (2014) [7], leverage is not possible as both   and  , 

which are the variances of two stochastic processes, must be positive. 

As EGARCH is non-nested with both GARCH and GJR, the interpretation of the coefficients in 

EGARCH is not the same as in the other two conditional volatility models, although the definitions of 

asymmetry and leverage are identical. The derivations in Section 2 are intended to keep the number of 

iid processes to a minimum for ease of presentation. 

As in the case of GARCH and GJR, the positivity restrictions on the parameters of GJR are  

typically not imposed in estimation using standard econometric, financial econometric and statistical 

software packages. 

3. Conclusions 

The paper was concerned with the three most widely-used univariate conditional volatility models, 

namely the GARCH, GJR (or threshold GARCH) and EGARCH models. These models are important 

in estimating and forecasting volatility, as well as in capturing asymmetry, which is the different effects 

on conditional volatility of positive and negative effects of equal magnitude, and purportedly in 

capturing leverage, which is the negative correlation between returns shocks and subsequent shocks  

to volatility. 

As discussed in Section 2, a failure to impose the positivity restrictions on the parameters of the 

conditional volatility models can increase the probability of obtaining negative estimates of conditional 

volatility. In standard econometric, financial econometric and statistical software packages, it is typically 

the case that no positivity is imposed in estimating the parameters of the three most popular conditional 

volatility models. 
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As there seems to be some confusion in the literature between asymmetry and leverage, as well as 

which asymmetric models are purported to be able to capture leverage, the purpose of the paper was 

three-fold, namely, (1) to derive the GJR model from a random coefficient autoregressive process, with 

appropriate regularity conditions; (2) to show that leverage is not possible in the GJR and EGARCH 

models; and (3) to present the interpretation of the parameters of the three popular univariate conditional 

volatility models in a unified manner. 
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