
Serializable Isolation for Snapshot Databases

This thesis is submitted in fulfillment of the requirements for the
degree of Doctor of Philosophy in the School of Information Technologies at

The University of Sydney

MICHAEL JAMES CAHILL

August 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sydney eScholarship

https://core.ac.uk/display/41233593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © 2009 Michael James Cahill
All Rights Reserved

Abstract

Many popular database management systems implement a multiversion concurrency control algorithm

called snapshot isolation rather than providing full serializability based on locking. There are well-

known anomalies permitted by snapshot isolation that can lead to violations of data consistency by

interleaving transactions that would maintain consistency if run serially. Until now, the only way to pre-

vent these anomalies was to modify the applications by introducing explicit locking or artificial update

conflicts, following careful analysis of conflicts between all pairs of transactions.

This thesis describes a modification to the concurrency control algorithm of a database management

system that automatically detects and prevents snapshot isolation anomalies at runtime for arbitrary ap-

plications, thus providing serializable isolation. The new algorithm preserves the properties that make

snapshot isolation attractive, including that readers do not block writers and vice versa. An implementa-

tion of the algorithm in a relational database management system is described, along with a benchmark

and performance study, showing that the throughput approaches that of snapshot isolation in most cases.

iii

Acknowledgements

Firstly, I would like to thank my supervisors, Dr Alan Fekete and Dr Uwe Röhm, without whose guid-

ance I would not have reached this point.

Many friends and colleagues, both at the University of Sydney and at Oracle, have helped me to develop

my ideas and improve their expression. Thank you to Alex, Ashok, Danny, James, Keith, Kevin, Margo,

Mat, Mike, Mohammad, Raymes, Tim, Tara and Vincent, among many others. Of course, any errors,

inaccuracies, blemishes or bugs that remain are entirely my own.

Lastly, I am profoundly grateful to my wife Rachel and to my children Patrick and Evelyn. Your support

and patience while I have been busy working has been invaluable.

v

CONTENTS

Abstract iii

Acknowledgements v

List of Figures xi

Chapter 1 Introduction 1

1.1 Why does serializable execution matter? . 1

1.2 What makes snapshot isolation an attractive alternative? . 2

1.3 Why is a new approach needed? . 4

1.4 Contributions . 4

1.4.1 Serializable Snapshot Isolation . 4

1.4.2 Implementation Experience . 5

1.4.3 Anomaly-aware Performance Evaluation . 6

1.4.4 Summary . 7

1.5 Outline of the Thesis . 7

Chapter 2 Background 9

2.1 Transactions . 9

2.2 Serializable Execution . 11

2.2.1 Strict Two-Phase Locking . 12

2.3 Weak Isolation . 13

2.4 Multiversion Concurrency Control . 14

2.5 Snapshot Isolation . 14

2.5.1 Write Skew Anomalies . 16

2.5.2 Phantoms . 19

2.6 Making Applications Serializable with Snapshot Isolation . 20

2.6.1 Materialization . 23

2.6.2 Promotion . 24

vii

viii CONTENTS

2.6.3 Mixing Isolation Levels . 25

2.6.4 Automating Static Analysis of Applications . 26

2.7 Serialization Graph Testing . 27

2.8 Database Performance Measurement . 28

2.8.1 The TPC-C benchmark . 29

2.8.2 The SmallBank Benchmark . 31

2.8.3 SmallBank Transaction Mix . 32

2.8.4 SmallBank Static Dependency Graph . 33

2.8.5 Making SmallBank Serializable . 34

2.9 Summary . 35

Chapter 3 Serializable Snapshot Isolation 37

3.1 Design alternatives . 39

3.1.1 After-the-fact analysis tool . 39

3.1.2 Approaches to runtime conflict detection . 40

3.2 The Basic Algorithm . 41

3.3 Transaction lifecycle changes . 46

3.4 Correctness . 47

3.5 Detecting phantoms . 49

3.6 False positives . 51

3.7 Enhancements and optimizations . 54

3.7.1 Abort early . 54

3.7.2 Victim selection . 54

3.7.3 Upgrading SIREAD locks . 54

3.8 Mixing queries at SI with updates at Serializable SI . 55

3.9 Summary . 56

Chapter 4 Implementation Details 57

4.1 Berkeley DB Introduction . 57

4.2 Adding Snapshot Isolation to Berkeley DB . 57

4.3 Adding Serializable SI to Berkeley DB . 60

4.3.1 Transaction Cleanup in Berkeley DB . 60

4.3.2 Analysis of the code changes . 61

4.4 InnoDB Introduction . 61

CONTENTS ix

4.5 Adding Snapshot Isolation to InnoDB . 63

4.6 Adding Serializable SI to InnoDB . 64

4.6.1 Transaction Cleanup in InnoDB . 66

4.6.2 Analysis of the code changes . 66

4.7 InnoDB Testing . 67

4.8 Generalizing to other database engines . 67

Chapter 5 Benchmarks 69

5.1 Adapting SmallBank for Berkeley DB . 69

5.1.1 Transaction Mix . 70

5.2 sibench: a new microbenchmark for Snapshot Isolation . 71

5.3 The TPC-C++ benchmark. 72

5.3.1 Simplifications from full TPC-C . 73

5.3.2 The Credit Check Transaction . 74

5.3.3 TPC-C++ Anomalies . 75

5.3.4 TPC-C++ Transaction Mix . 77

5.3.5 Stock Level Mix . 78

5.3.6 Data Scaling . 78

5.4 Summary . 79

Chapter 6 Performance Evaluation 81

6.1 Berkeley DB: SmallBank evaluation . 82

6.1.1 Berkeley DB Evaluation Setup . 83

6.1.2 Short Transactions Workload . 84

6.1.3 Long Transactions Workload . 85

6.1.4 More Complex Transaction Workload . 87

6.1.5 Overhead Evaluation . 88

6.1.6 Berkeley DB Evaluation Summary . 90

6.2 InnoDB Evaluation Setup . 92

6.3 InnoDB: sibench evaluation . 93

6.3.1 Mixed workload . 93

6.3.2 Query-mostly workloads . 96

6.3.3 InnoDB: sibench summary . 98

6.4 InnoDB: TPC-C++ evaluation . 98

x CONTENTS

6.4.1 Larger data volume . 100

6.4.2 High Contention . 103

6.4.3 The Stock Level Mix. 106

6.5 Summary . 109

Chapter 7 Conclusions and Future Work 113

7.1 Serializable Snapshot Isolation Algorithm . 113

7.2 Implementation Experience . 114

7.3 TPC-C++: a modification to TPC-C for snapshot isolation . 115

7.4 Experimental Evaluation . 115

7.5 Limitations . 116

7.6 Future Work . 116

References 119

Index 123

List of Figures

2.1 Serialization graph for transactions exhibiting write skew. 16

2.2 Generalized dangerous structure in the MVSG. 18

2.3 Some SI anomalies at runtime. 19

2.4 SDG example for three transactions exhibiting a read-only anomaly. 22

2.5 SDG example after introducing a conflict on the outgoing edge. 23

2.6 SDG example after introducing a conflict on the incoming edge. 23

2.7 The tables and cardinality of TPC-C. 30

2.8 Static Dependency Graph for TPC-C. 31

2.9 Static Dependency Graph for SmallBank. 33

2.10 SmallBank SDG after promoting the Balance–WriteCheck conflict. 35

3.1 Modifications to begin(T). 43

3.2 Modifications to commit(T). 44

3.3 A utility function, markConflict, called when a conflict it detected. 45

3.4 Modifications to read. 45

3.5 Modifications to write. 45

3.6 Modifications to scanRead. 50

3.7 Algorithms for insert and delete. 50

3.8 False positive: no path from Tout to Tin. 51

3.9 A modified version of markConflict, more sensitive to false positives. 53

3.10 Enhanced version of commit that is more sensitive to false positives 53

4.1 Architecture of Berkeley DB. 58

4.2 Changes to the Berkeley DB cache for MVCC. 59

5.1 Sample code for the Credit Check Transaction as SQL embedded in C. 74

5.2 Static Dependency Graph for TPC-C . 75

5.3 Static dependency graph for TPC-C++. 75

xi

xii LIST OF FIGURES

6.1 Berkeley DB SmallBank results without flushing the log during commit. 84

6.2 Berkeley DB SmallBank results when the log is flushed during commit. 86

6.3 Berkeley DB SmallBank results with complex transactions . 87

6.4 Berkeley DB SmallBank results when there is 1/10th of the contention 89

6.5 Berkeley DB SmallBank results with complex transactions and low contention . . . 90

6.6 InnoDB sibench throughput with 10 items. 94

6.7 InnoDB sibench throughput with 100 items. 94

6.8 InnoDB sibench throughput with 1000 items. 95

6.9 InnoDB sibench throughput with 10 items and 10 queries per update 96

6.10 InnoDB sibench throughput with 100 items and 10 queries per update 97

6.11 InnoDB sibench throughput with 1000 items and 10 queries per update 97

6.12 InnoDB TPC-C++ results, skipping year-to-date updates . 99

6.13 InnoDB TPC-C++ results with 10 warehouses . 101

6.14 InnoDB TPC-C++ results with 10 warehouses, skipping year-to-date updates 102

6.15 InnoDB TPC-C++ results with 10 warehouses and tiny data scaling 104

6.16 InnoDB TPC-C++ results with tiny data scaling, skipping year-to-date updates 105

6.17 InnoDB TPC-C++ Stock Level Mix results with 10 warehouses 107

6.18 InnoDB TPC-C++ Stock Level Mix results with tiny data scaling 108

CHAPTER 1

Introduction

1.1 Why does serializable execution matter?

Database management systems provide an abstraction called transactions, which group together a set of

operations that read and write data. The application can choose to commit a transaction, in which case the

DBMS guarantees that the changes will persist, even after system or application failures. Transactions

may abort, either as the result of an application request or because of some error detected by the DBMS,

in which case any changes it made are undone (rolled back) and discarded.

An application can execute multiple transactions concurrently, and the DBMS schedules the operations

in order to maintain data consistency. If the schedule is equivalent to executing the committed transac-

tions one after another in some order, it is called serializable.

If a DBMS enforces that all executions are serializable, application developers do not need to worry that

inconsistencies in the data might appear as a result of interleaving operations in concurrent transactions.

If non-serializable executions are permitted, so-called anomalies may occur such as Inconsistent Reads

or Lost Updates. The problem of scheduling operations is called concurrency control and has been an

active database research topic for over four decades.

It is well-known how to use strict two-phase locking (and various enhancements such as escrow locking

and multigranularity locking) to control concurrency so that serializable executions are produced (Gray

and Reuter, 1993). Some other concurrency control algorithms are known that ensure serializable exe-

cution, but these have not been widely adopted in practice, because they usually perform worse than a

well-engineered implementation of strict two-phase locking (S2PL).

1

2 1 INTRODUCTION

1.2 What makes snapshot isolation an attractive alternative?

Snapshot isolation (SI) (Berenson et al., 1995) is an alternative approach to concurrency control, taking

advantage of multiple versions of each data item. In SI, a transaction T sees the database state as

produced by all the transactions that committed before T starts, but no effects are seen from transactions

that overlap with T . This means that SI never suffers from Inconsistent Reads. In a DBMS using

SI for concurrency control, reads are never delayed because of concurrent transactions’ writes, nor do

reads cause delays in a writing transaction. In order to prevent Lost Update anomalies, SI does abort a

transaction T when a concurrent transaction commits a modification to an item that T wishes to update.

This is called the “First-Committer-Wins” rule.

Despite the attractive properties of SI, it has been known since SI was formalized in (Berenson et al.,

1995) that SI permits non-serializable executions. In particular, it is possible for an SI-based concurrency

control to interleave some transactions, where each transaction preserves an integrity constraint when

run alone, but where the final state after the interleaved execution does not satisfy the constraint. This

occurs when concurrent transactions modify different items that are related by a constraint, and it is

called the “Write Skew” anomaly.

Example 1. Suppose that a table Duties(DoctorId, Shift, Status) represents the status (“on duty” or

“reserve”) for each doctor during each work shift. An undeclared invariant is that, in every shift, there

must be at least one doctor on duty. A parametrized application program that changes a doctor D on

shift S to “reserve” status, can be written as follows:

BEGIN TRANSACTION

UPDATE Duties SET Status = ’reserve’

WHERE DoctorId = :D

AND Shift = :S

AND Status = ’on duty’

SELECT COUNT(DISTINCT DoctorId) INTO tmp

FROM Duties

WHERE Shift = :S

1.2 WHAT MAKES SNAPSHOT ISOLATION AN ATTRACTIVE ALTERNATIVE? 3

AND Status = ’on duty’

IF (tmp = 0) THEN ROLLBACK ELSE COMMIT

This program is consistent, that is, it takes the database from a state where the integrity constraint holds

to another state where the integrity constraint holds. However, suppose there are exactly two doctors

D1 and D2 who are on duty in shift S. If we run two concurrent transactions, which run this program

for parameters (D1, S) and (D2, S) respectively, we see that using SI as concurrency control will allow

both to commit (as each will see the other doctor’s status for shift S as still unchanged, at “on duty”).

However, the final database state has no doctor on duty in shift S, violating the integrity constraint

(Cahill et al., 2008).

Notice that the integrity constraint is violated even though the transaction checks it explicitly before

committing, because the constraint is checked on the snapshot of data visible to the transaction rather

than the final state resulting from interleaved execution.

SI has become popular with DBMS vendors in spite of the fact that it permits executions that corrupt

the state of the database. It often gives much higher throughput than strict two-phase locking, especially

in read-heavy workloads, and it provides application developers with transaction semantics that are

easy to understand. Many popular and commercially important database engines provide SI, and some

in fact provide SI when serializable isolation is requested (including Oracle (Jacobs et al., 1995) and

PostgreSQL (PostgreSQL, 2009)). As a result, the documentation for these systems warns users that

their products can produce inconsistent results even at what they call serializable isolation:

Because Oracle Database does not use read locks, even in SERIALIZABLE trans-

actions, data read by one transaction can be overwritten by another. Transactions

that perform database consistency checks at the application level should not assume

that the data they read will not change during the execution of the transaction (even

though such changes are not visible to the transaction). Database inconsistencies

can result unless such application-level consistency checks are coded carefully, even

when using SERIALIZABLE transactions. (Ashdown and others, 2005, page 2-17)

4 1 INTRODUCTION

1.3 Why is a new approach needed?

Because SI permits data corruption, and is so common, there has been a body of work on how to ensure

serializable executions when running with SI as concurrency control. The main techniques proposed so

far (Fekete et al., 2005; Fekete, 2005; Jorwekar et al., 2007) depend on performing a design-time static

analysis of the application code, and then modifying the application if necessary in order to avoid the

SI anomalies. For example, (Fekete et al., 2005) shows how one can modify an application to introduce

conflicts, so that all executions will be serializable even when the application uses SI.

Using static analysis to make applications serializable when run at SI has a number of limitations. It

relies on an education campaign so that application developers are aware of SI anomalies, and it is unable

to cope with ad-hoc transactions. In addition, this must be a continual activity as an application evolves:

the analysis requires the global graph of transaction conflicts, so every minor change in the application

requires renewed analysis, and perhaps additional changes (even in programs that were not altered).

In this thesis, we instead focus changing the DBMS internals to guarantee that every execution is serial-

izable regardless of the semantics of the transactions, while still having the attractive properties of SI, in

particular much better performance than is allowed by strict two-phase locking.

1.4 Contributions

1.4.1 Serializable Snapshot Isolation

We describe a new concurrency control algorithm, called Serializable Snapshot Isolation (Serializable

SI), with the following innovative combination of properties:

• The concurrency control algorithm ensures that every execution is serializable, no matter what

application programs run.

• The algorithm never causes a read operation to block; nor do reads block concurrent writes.

• Under a range of conditions, the overall throughput is close to that allowed by SI, and better

than that of strict two-phase row-level locking.

1.4 CONTRIBUTIONS 5

• The algorithm is easily implemented by small modifications to a data management platform

that provides SI: less than 1% of the DBMS code was modified in either of our prototype

implementations.

The key idea of our algorithm is to detect, at runtime, distinctive conflict patterns that must occur in

every non-serializable execution under SI, and abort one of the transactions involved. This is similar

to the way serialization graph testing (SGT) works, however our algorithm does not operate purely as

a certification at commit-time, but rather aborts transactions as soon as the problem is discovered; also,

our test does not require any cycle-tracing in a graph, but can be performed by considering conflicts

between pairs of transactions, and a small amount of information which is kept for each of them. Our

algorithm is also similar to optimistic concurrency control (Kung and Robinson, 1981) but differs in that

it only aborts a transaction when a pair of consecutive conflict edges are found, which is characteristic

of SI anomalies. This leads to significantly fewer aborts than optimistic techniques that abort when any

single conflict edge is detected. Our detection is conservative, so it does prevent every non-serializable

execution, but it may sometimes abort transactions unnecessarily.

1.4.2 Implementation Experience

We describe prototype implementations of the algorithm in two open source database management sys-

tems: Oracle Berkeley DB (Olson et al., 1999) and the InnoDB transactional storage engine for MySQL

(MySQL AB, 2006). Our primary finding relating to implementation experience was that it is feasible

to add serializable isolation with non-blocking reads to systems that had previously offered snapshot

isolation.

One important principle that guided the design of the Serializable SI algorithm was to use existing

DBMS mechanisms such as the locking subsystem and the multiversion visibility checks. Our experi-

ence of implementing the algorithm in two systems demonstrated the soundness of this principle: only

small changes were required, in a few isolated parts of the DBMS code.

6 1 INTRODUCTION

We describe some implementation choices that had a major impact on the system’s usability and perfor-

mance. In particular, we delay the selection of read snapshot for transactions that start with a locking op-

eration until after the lock is acquired. This design, described in detail in Section 4.5, ensures that single-

statement transactions (including auto-commit transactions), never abort due to the first-committer-wins

rule.

The biggest structural change to the DBMS required by Serializable SI is that some locks and transac-

tions stay active in a suspended state after commit. The implementation needs to make a tradeoff re-

lating to managing suspended transactions. Aggressively cleaning up suspended transactions will keep

the quantity of additional information smaller at the expense of doing more work in every transaction

commit.

1.4.3 Anomaly-aware Performance Evaluation

The traditional approach to DBMS performance evaluation focuses on two measurable quantities: through-

put, which is the number of transactions committed per unit of time, and response time, which is the total

elapsed time to execute a particular transaction. Benchmarks that discuss isolation generally specify a

correctness criterion and vendors can choose the weakest isolation level that gives correct results. Pop-

ular benchmarks such as TPC-C (Transaction Processing Performance Council, 2005) execute correctly

at weak isolation levels including snapshot isolation (Fekete et al., 2005).

We evaluate the performance of our implementation of Serializable SI compared to each product’s im-

plementations of Strict Two-Phase Locking (S2PL), Berkeley DB’s implementation of SI and a straight-

forward implementation of Snapshot Isolation that we added to InnoDB. To do so, we need a benchmark

that is not serializable when run at SI so that we can measure the cost of providing serializable execu-

tions. We describe three benchmarks ranging from a very simple microbenchmark, sibench through

to a basic banking workload, SmallBank, and concluding with a modification to TPC-C that we call

TPC-C++, which introduces a new transaction type to the TPC-C mix that makes the modified workload

non-serializable when run at SI.

1.5 OUTLINE OF THE THESIS 7

The performance evaluation demonstrates that the cost of ensuring serializable isolation is generally

small compared to the performance of SI. In the Berkeley DB evaluation, we demonstrate the short-

comings of page-level locking and versioning, including the high rate of false positives detected by

our algorithm in this environment. In the InnoDB evaluation, we show that performance is comparable

with SI in the majority of cases we investigate (less than 10%). In some carefully constructed, extreme

cases, we show that the additional lock manager activity required by Serializable SI can cause the single-

threaded design of the InnoDB lock manager to limit throughput. Our results illustrate that Serializable

SI generally has a small execution cost versus SI and can scale to support significant workloads.

1.4.4 Summary

A preliminary version of this work appeared as (Cahill et al., 2008), which described the addition of

a new algorithm for serializable isolation to Oracle Berkeley DB. This thesis extends the approach to

a relational DBMS using row-level locking and versioning, and deals with the associated problem of

phantoms. We describe the implementation of a prototype based on our algorithm in the InnoDB storage

manager for MySQL. The detailed evaluation we give here includes a new benchmark based on a small

modification to TPC-C (Transaction Processing Performance Council, 2005), which is more complex

and representative of typical OLTP workloads than the SmallBank benchmark presented in (Alomari et

al., 2008a) and used in (Cahill et al., 2008). Our results indicate that Serializable SI provides serializable

isolation with performance close to snapshot isolation and generally much better than strict two-phase

locking.

1.5 Outline of the Thesis

This thesis is structured as follows.

Chapter 2 gives an introduction to database concurrency control with a focus on snapshot isolation. It

describes current approaches to ensuring serializable isolation with SI.

Chapter 3 presents the new Serializable SI algorithm and outlines a proof of its correctness. Some

enhancements and optimizations over the initial, basic description are also given.

8 1 INTRODUCTION

Chapter 4 describes some details of two prototype implementations of Serializable SI, one in Berkeley

DB and the other in InnoDB.

Chapter 5 deals with the difficulty of performance evaluation for weak isolation, and presents three

benchmarks that are sensitive to the difference between SI and S2PL. That is, the benchmarks either

highlight a situation in which SI performs better than S2PL, or give incorrect results when run at snapshot

isolation, allowing the performance impact of serializable execution to be measured.

Chapter 6 presents the results of an extensive performance evaluation of the two prototype systems using

the benchmarks of Chapter 5.

Chapter 7 concludes with a summary of our work and ideas for the direction of future work.

CHAPTER 2

Background

2.1 Transactions

The programming abstraction provided by database management systems for managing concurrency is

called a transaction. A transaction is a list of operations that are executed by the DBMS as a group. We

usually think of the operations as reads or writes to named data items in the database, where a data item

may be a row in a relational table, but it can be any object in the database including a physical page or

an entire table. Operations can also be more complex, including inserts and deletes that create or delete

data items, and predicate reads that return a collection of data items matching some condition. We call

a transaction consisting solely of read operations a query, and transactions containing any operation that

modifies data an update.

The application makes a request to begin a transaction, then performs the operations, then requests that

the transaction commit or abort (also known as a rollback). The list of operations for a transaction,

including the begin and the commit or abort, and called the transaction’s log. Transactions T1 and T2

are concurrent if there is an intersection between the interval [begin-time(T1), commit-time(T1)) and

the interval [begin-time(T2), commit-time(T2)).

Transactions can be understood in terms of the so-called “ACID” properties:

atomicity: all of the results of a transaction should be visible in the database, or none of them

should be. It should never be possible to see the results of some operations in a transaction

without the others.

9

10 2 BACKGROUND

consistency: transactions should transform the database from one consistent state to another, in

the sense that rules, constraints and referential integrity conditions required by the application

should be maintained by each transaction.

isolation: each transaction should execute as if it is running alone in the system. The result of

concurrent execution of transactions should be equivalent to some serial execution.

durability: once a transaction successfully commits, the DBMS guarantees that its results will

be seen by subsequent transactions regardless of process or system failures.

Among these properties, atomicity, isolation and durability are provided by the DBMS. Consistency is

sometimes enforced by the DBMS, through declared constraints such as referential integrity; however,

not all consistency properties are declared, and so it becomes a responsibility of application developers

to ensure that no transaction breaks any of the assumptions made by the application. However, assuming

that each transaction program has been designed to maintain the consistency of the database, the con-

current execution of the transactions by a DBMS should also maintain consistency due to the isolation

property.

Implementing transactions in a DBMS to provide the ACID properties involves a combination of the

following techniques (Hellerstein et al., 2007):

pessimism (locking): operations have to first place entries into a lock table before the operation

can proceed. If there is a conflicting operation in progress, attempting to acquire a lock will

block, delaying the operation until the conflicting lock is released.

logging: writing records sequentially that describe the operations being carried out by each trans-

action. Log records are used both to undo a transaction in the case of an abort, and also to

recover after a crash and bring databases to a consistent state before processing restarts.

optimism: performing operations without blocking or verifying whether they conflict, then when

a commit is requested, checking some conditions and aborting the transaction if certain patterns

of conflicts has occurred.

managing multiple versions of data items: locking can be avoided for read operations by po-

tentially reading obsolete data.

Each DBMS implementation combines these techniques in different ways, making tradeoffs that deter-

mine how they perform given different workloads.

2.2 SERIALIZABLE EXECUTION 11

2.2 Serializable Execution

Intuitively, a concurrent execution of transactions should give results equivalent to running the transac-

tions one after another in some order. Formally, this is captured by a definition of serializable execution.

This term is used in discussing an execution history, which is the complete list of operations executed by

the transactions, as they are interleaved by the DBMS. An execution history is serializable if there is an

equivalence if there is an equivalence between the database states generated by the execution history and

the database states that would be created by executing the transactions in some serial order. A system

provides serializable isolation if all of the execution histories it permits are serializable. There are sev-

eral different definitions of ‘equivalent’ used, which lead to different notions of serializable execution.

An important form of equivalence is conflict equivalence, leading to a definition of conflict serializabil-

ity. An execution history is conflict equivalent to a serial execution, if both contain the same operations,

and all pair of conflicting operations (as defined below) are ordered the same way in both cases. Conflict

serializability is a sufficient but not necessary condition for general serializability. The importance of

conflict serializability is that it is easy to determine whether a given execution history is conflict serial-

izable, but checking whether it meets the conditions for more general view serializability requires much

more complex and time-consuming algorithms.

Verifying that a history is conflict serializable is equivalent to showing that a particular graph is free of

cycles. The graph that must be cycle-free contains a node for each transaction in the history, and an edge

between each pair of conflicting transactions. Transactions T1 and T2 are said to conflict (or equivalently,

to have a dependency) whenever they perform operations whose results reveal something about the order

of the transactions; in particular when T1 performs an operation, and later T2 performs a conflicting

operation. Operations O1 and O2 are said to conflict if swapping the order of their execution would

produce different results (either a query producing a different answer, or updates producing different

database state). A cycle in this graph implies that there is a set of transactions that cannot be executed

serially in some order that gives the same results as in the original history.

This is formalized in Theorem 1, which models each transaction as a log of operations, which is a

list of read or write operations on named data items. The execution history is then an interleaving

of the different logs; each log is a subsequence of the execution history involving the ops of a single

transaction.

12 2 BACKGROUND

Theorem 1 (Conflict serializability, (Stearns et al., 1976)). zi Let T = {T1, . . . , Tm} be a set of transac-

tions and let E be an execution of these transactions modeled by logs {L1, . . . , Lm}. E is serializable

if there exists a total ordering of T such that for each pair of conflicting operations Oi and Oj from

distinct transactions Ti, and Tj (respectively), Oi precedes Oj in any log L1, . . . Lm if and only if Ti

precedes Tj in the total ordering.

Serializable isolation is the ideal for a DBMS because it allows transactions to be analyzed individually

to ensure that each transaction maintains data consistency. That is, if each transaction maintains all

of the (possibly undeclared) constraints required by an application when considered separately, any

serializable execution of the transactions will also maintain consistency. Serializable isolation enables

the development of a complex system by composing modules, after verifying that each module maintains

consistency in isolation.

2.2.1 Strict Two-Phase Locking

Serializable isolation can be implemented with strict two-phase locking (S2PL). “Strict” 2PL is sufficient

but not necessary to implement serializable isolation, but is a common choice because it simplifies

processing of rollbacks (in particular, it avoids Cascading Aborts).

Implementing S2PL amount to building a 2PL scheduler, a lock manager that processes lock requests in

accordance with the 2PL specification (Bernstein and Goodman, 1981). This involves acquiring a shared

lock for data item x before reading x, and acquiring an exclusive lock on x before modifying x. The

locks must be held for the full duration of the transaction: they can only be released after the transaction

commits or aborts. A request for an exclusive lock on x must wait until any locks on x already held

by other transactions are released. Similarly, if another transaction already holds an exclusive lock on

x, any requests for a lock on x must wait until the exclusive lock is released. If a set of transactions

become blocked waiting for locks, such that each of the transaction is waiting for a lock held by one of

the others, a deadlock is detected by the DBMS and at least one of the transactions is aborted.

The intuition for how S2PL guarantees serializable executions is that it forces the order of conflicts

between operations to correspond with the order of transaction commits. If T1 performs an operation,

and later T2 performs a conflicting operation, then the lock obtained by T1 must be released before T2

2.3 WEAK ISOLATION 13

can do its operation. As T1’s lock is only released after T1 commits, and the conflicting operation in

T2 must occur before T2 commits, we see that T1 must commit before T2 commits. Thus there can be

no dependency from T2 to T1 if T1 commits before T2, so the graph of dependencies is cycle-free and

committed transactions can be serialized in order of their commit-times.

2.3 Weak Isolation

Serializable isolation implemented with S2PL is widely considered too slow for applications that require

high-performance transaction processing because shared locks must be held for the whole duration of the

transaction, leading to many lock conflicts and high rates of deadlocks for many applications. For this

reason, DBMS platforms have long offered application developers a choice of weaker isolation levels,

where serializable executions are not guaranteed, and the interleaving of operations in concurrent trans-

actions can cause incorrect results, called anomalies, that would not be possible were the transactions

executed serially.

The proposal to provide application developers with a choice of isolation levels weaker than fully seri-

alizable comes from (Gray et al., 1975). Each weak isolation level is implemented by early release of

some of the locks acquired by S2PL, or by avoiding taking some locks at all. The proposal in that paper

gives specific locking algorithms that provide each level; the levels are named “Degree 0”, “Degree 1”,

and so on. Degrees 1 and 2 were later called Read Uncommitted and Read Committed, respectively, in

the ANSI SQL standard.

When using weak isolation, verifying the correctness of a system composed of many different types

of transactions involves complex analysis of the interactions between all pairs of transactions. Further,

there are complete theoretical frameworks for determining the correctness for applications only for the

cases where the transactions use snapshot isolation, or mixture of SI and two-phase locking (Fekete,

2005; Fekete et al., 2005). Performing updates at any isolation level other than serializable requires

careful analysis to avoid data corruption. In summary, weak isolation levels give application developers

a mechanism that trades performance for correctness. While measuring the effect on throughput may

not be difficult, it is not easy to measure or predict how much effect the choice of a weak isolation level

will have on correctness.

14 2 BACKGROUND

2.4 Multiversion Concurrency Control

A different approach to improving the performance of serializable isolation is to design algorithms that

allow data items to be read without acquiring shared locks. Instead, the DBMS maintains multiple

versions of each data item, and modifying a data item creates a new version rather than overwriting the

existing data (Reed, 1978). Each version of a data item has an associated timestamp, create(xi), assigned

when the version xi is committed, which defines the order of versions of each item. Read operations

also have an associated timestamp, read-time, and access the version xi with the largest create(xi) ≤

read-time.

If queries are separated from updates, and queries are assigned a single read timestamp for all of the data

items they read, it is clear that this approach will guarantee that queries see a consistent snapshot of the

database, since all versions of data updated by a transaction become visible at a single timestamp, so a

query will never see part of an update. The detailed performance study of MVCC algorithms in (Carey

and Muhanna, 1986) showed that MVCC is a viable alternative to S2PL in many cases.

In much of the work on MVCC prior to Snapshot Isolation, it was assumed that update transactions

would continue to use S2PL (Chan et al., 1983; Bober and Carey, 1992; Mohan et al., 1992), although

more complex schemes were proposed for distributed databases (Bernstein and Goodman, 1981).

2.5 Snapshot Isolation

Snapshot Isolation (or SI) is a multiversion concurrency control approach that provides lock-free reads,

while avoiding many of the anomalies associated with other weak isolation levels. Unlike most other

MVCC algorithms, update transactions can also avoid locking for their reads. When a transaction T

starts executing at SI, it gets a conceptual timestamp begin-time(T); whenever T reads a data item

x, it does not necessarily see the latest value written to x; instead T sees the version of x which was

produced by the last to commit among the transactions that committed before T started and also modified

x. There is one exception to this: if T has itself modified x, it sees its own version. Thus, T appears

to execute against a snapshot of the database, which contains the last committed version of each item

2.5 SNAPSHOT ISOLATION 15

at the time when T starts plus T ’s own changes. When T commits, it gets another timestamp commit-

time(T); conceptually, all of T ’s changes are installed instantaneously as new versions that are visible

to transactions that begin at or after commit-time(T).

SI also enforces an additional restriction on execution, called the “First-Committer-Wins” (FCW) rule:

two concurrent transactions that both modify the same data item cannot both commit. In other words,

when the interval [begin-time(T1), commit-time(T1)) has a non-empty intersection with the interval

[begin-time(T2), commit-time(T2)) and both have written to the same item, at least one of them will

abort. The FCW rule prevents the traditional Lost Update anomaly: the history of each data item is a

totally ordered list of versions, and any update must be based on the most recent version.

In practice, most implementations of SI use locking during updates to prevent a transaction from modi-

fying an item if a concurrent transaction has already modified it. The first transaction to acquire the lock

for an item is permitted to update the item; concurrent transactions attempting to update the same item

will block waiting to acquire the lock. If the first transaction goes on to commit, any blocked transac-

tions will detect that a new version has been created and abort after the lock is released. On the other

hand, if the first transaction aborts, then no new version will have been installed and one of the blocked

transactions will acquire the lock and be permitted to install its version. This is sometimes referred to as

“First-Updater-Wins”, but the effect on permitted transaction histories is the same as the more abstract

First-Committer-Wins rule given above.

SI was introduced in the research literature in (Berenson et al., 1995), and it has been implemented by the

Oracle RDBMS, PostgreSQL, Microsoft SQL Server 2005, and Oracle Berkeley DB, among others. It

provides significant performance improvements over serializability implemented with two-phase locking

(orders of magnitude for benchmarks containing a high proportion of reads) and it avoids many of the

well-known isolation anomalies such as Lost Update or Inconsistent Read. In some systems that do not

implement S2PL, including the Oracle RDBMS and PostgreSQL, snapshot isolation is provided when

the application requests serializable isolation, despite the fact that (Berenson et al., 1995) proved that

they are not equivalent.

16 2 BACKGROUND

T1 T2

rw(y)

rw(x)

FIGURE 2.1: Serialization graph for transactions exhibiting write skew.

2.5.1 Write Skew Anomalies

As noted in (Berenson et al., 1995), SI does not guarantee that all executions will be serializable, and it

can allow corruption of the data through interleaving between concurrent transactions which individually

preserve the consistency of the data.

Example 2. Consider the interleaving of two transactions, T1 and T2, withdrawing money from bank

accounts x and y, respectively, subject to the constraint that x + y > 0. Here is an execution that can

occur under SI:

r1(x=50) r1(y=50) r2(x=50) r2(y=50) w1(x=-20) w2(y=-30) c1 c2

Each of the transactions begins when the accounts each contain $50, and each transaction in isolation

maintains the constraint that x + y > 0: when T1 commits, it calculates x + y = −20 + 50 = 30,

and when T2 commits, it calculates x + y = 50 + −30 = 20. However, the interleaving results in

x+ y = −50, so the constraint has been violated. This type of anomaly is called a write skew.

We can understand these situations using a multiversion serialization graph (MVSG). There are a number

of definitions of general MVSG structures in the literature, because the general case is made complicated

by uncertainty over the order of versions, which indeed renders it NP-Hard to check for serializability

of a multiversion schedule. For example, there are definitions in (Bernstein and Goodman, 1983; Hadzi-

lacos, 1988; Raz, 1993; Adya, 1999).

With snapshot isolation, the definitions of the serialization graph become much simpler, as versions of

an item x are ordered according to the temporal sequence of the transactions that created those versions

(note that First-Committer-Wins ensures that among two transactions that produce versions of x, one

will commit before the other starts). In the MVSG, we put an edge from one committed transaction T1

to another committed transaction T2 in the following situations:

2.5 SNAPSHOT ISOLATION 17

• T1 produces a version of x, and T2 produces a later version of x (this is a ww-dependency);

• T1 produces a version of x, and T2 reads this (or a later) version of x (this is awr-dependency);

• T1 reads a version of x, and T2 produces a later version of x (this is a rw-dependency, also

known as an anti-dependency, and is the only case where T1 and T2 can run concurrently).

In Figure 2.1 we show the MVSG for the history with write skew, discussed above. In drawing our

MVSG, we will follow the notation introduced in (Adya, 1999), and use a dashed edge to indicate a

rw-dependency.

As usual in transaction theory, the absence of a cycle in the MVSG proves that the history is serializ-

able. Thus it becomes important to understand what sorts of MVSG can occur in histories of a system

using SI for concurrency control. (Adya, 1999) showed that any cycle produced by SI has two rw-

dependency edges. This was extended in (Fekete et al., 2005), which showed that any cycle must have

two rw-dependency edges that occur consecutively, and further, each of these edges is between a pair of

transactions that are concurrent with each other. The formal statement of this is in Theorem 2

Theorem 2 ((Fekete et al., 2005)). Suppose H is a multi-version history produced under Snapshot

Isolation that is not serializable. Then there is at least one cycle in the serialization graph MVSG(H),

and in every cycle there are three consecutive transactions Tin, Tpivot, Tout (where it is possible that Tin

and Tout are the same transaction) such that Tin and Tpivot are concurrent, with an edge Tin → Tpivot,

and Tpivot and Tout are concurrent with an edge Tpivot → Tout. Further, among these three transactions,

Tout is the first to commit.

The intuition for this theorem is that under SI, a ww- or wr-dependency from Ti to Tj implies that

Ti commits before begin(Tj); so if we consider a cycle in MVSG, and look at the transaction that

commits first (call it Tout), the edge into Tout must be a rw-dependency between concurrent transactions.

Furthermore, the transaction Tpivot from which this edge goes must commit after begin(Tout), or there

would be no rw-dependency between them. If we then consider the edge of the cycle that leads to Tpivot

(call the transaction at the start of this edge Tin), we see that Tin can’t commit before begin(Tpivot), as

that would be before commit(Tout) which was chosen to be the earliest commit in the cycle. Similarly,

the edge Tin → Tpivot must be a rw-dependency between concurrent transactions.

18 2 BACKGROUND

Tin Tout

Tpivot

rw(y) rw(x)

any path

FIGURE 2.2: Generalized dangerous structure in the MVSG.

We adopt some terminology from (Fekete et al., 2005), and call an rw-dependency between concurrent

transactions a vulnerable edge; we call the situation where two consecutive vulnerable edges occur in a

cycle as a dangerous structure. It is illustrated in Fig 2.2. We refer to the transaction at the junction of

the two consecutive vulnerable edges as a pivot transaction, Tpivot in the figure. We call the transaction

that is the source of the edge into the pivot the incoming transaction (Tin), and the remaining transaction

the outgoing transaction, Tout. The theory of (Fekete et al., 2005) shows that in any non-serializable

execution allowed by SI there is a pivot transaction and the outgoing transaction commits first of all

transactions in the cycle.

Example 3. We take an interesting example from (Fekete et al., 2004) to illustrate how a dangerous

structure may occur at runtime. Consider the following three transactions:

Tpivot: r(y) w(x)

Tout: w(y) w(z)

Tin: r(x) r(z)

These three transactions can interleave such that Tin, a read-only transaction, sees a state that could

never have existed in the database had Tpivot and Tout executed serially. The issue is that if Tpivot and

Tout run concurrently, then in a serial schedule, Tpivot would have to be serialized before Tout because

Tpivot’s read of y will not see the update from Tout. However, the read-only transaction Tin can be

interleaved such that it reads a snapshot containing updates committed by Tout but not Tpivot. If Tin is

omitted, Tpivot and Tout are serializable because there is only a single anti-dependency from Tpivot to

Tout.

2.5 SNAPSHOT ISOLATION 19

bpivot cpivotrpivot(y) wpivot(x)

wout(y) wout(z)bout cout rin(x) rin(z)bin cin

increasing time
(a) Reading old values, where the reader commits last.

bpivot cpivotrpivot(y)

wout(y) wout(z)bout cout rin(x) rin(z)bin cin

wpivot(x)

increasing time
(b) A write after a read, where the pivot commits last.

FIGURE 2.3: Some SI anomalies at runtime.
-

Two of the possible non-serializable interleavings of these three transactions are illustrated in Figure 2.3.

These diagrams should be read from left to right; the dashed arrows indicate the rw-dependencies

between transactions. In Figure 2.3(a), both reads occur after the writes. In Figure 2.3(b), Tin reads x

before it is written by Tpivot.

Also note in Figure 2.3(a) that rin(x) occurs after cpivot. That is, the read-write conflict on data item

x is not detected until after the pivot has committed. One of the challenges that an algorithm to detect

SI anomalies at runtime must overcome is that we cannot always know when a transaction commits

whether it will have consecutive vulnerable edges.

We allow for the possibility of blind writes in our formalism where there is no read of a data item

before it is written, such as the w(x) in Tpivot of the example above. This increases the generality of the

approach without introducing complexity into either the discussion or the algorithm.

2.5.2 Phantoms

Throughout the discussion so far, we have followed typical concurrency control theory and assumed that

a transaction is a sequence of reads and writes on named data items. In general, a relational database

engine must also deal with predicate operations (such as SQL “where” clauses). These mean that a

20 2 BACKGROUND

concurrency control algorithm must also consider phantoms, where an item created or deleted in one

transaction would change the result of a predicate operation in a concurrent transaction if the two trans-

actions executed serially.

The problem was identified in (Eswaran et al., 1976), but the general purpose “predicate locking” solu-

tion suggested there has not been widely adopted because of the difficulty in testing mutual satisfiability

of predicates. Instead, locking DBMS implementations commonly use algorithms based on “next-key

locking”. In these, a range of key space is protected against concurrent insertion or deletion by acquiring

a shared lock on the next row in order, as a scan is made to check whether rows match a predicate. The

scan might be through the data records or through an index. Inserts and deletes follow the same protocol,

obtaining an exclusive lock on the row after the one being inserted or deleted. The result of this locking

protocol is that a range scan prevents concurrent inserts or delete within the range of the scan, and vice

versa.

The state-of-the-art of concurrency control algorithms for DBMS engines is presented with great clarity

in (Hellerstein et al., 2007). For locking approaches, the widely-used techniques include an efficient

lock manager (Gray and Reuter, 1993), with phantoms prevented by some form of next-key or index

lock (Mohan, 1990; Mohan and Levine, 1992; Lomet, 1993).

InnoDB uses a modification of next-key locking involving ”gap” locks (MySQL AB, 2006). The motiva-

tion for “gap” locks is that a read of the range [a, c) should not conflict with update(c). Similarly,

insert(b) should not prevent a concurrent update(c). A gap lock on x is conceptually a lock on

the gap just before x: it conflicts with other gap locks on x, but does not conflict with locks on item x

itself. Logically, a gap lock is equivalent to using a different key in the lock table for the same data item

x. Scans, inserts and deletes acquire gap locks on the next key (or the special supremum key for the last

key in a table) to prevent phantoms without introducing conflicts with ordinary reads and updates on the

next key.

2.6 Making Applications Serializable with Snapshot Isolation

An extensive line of research has considered, not the serializability of particular executions allowed

by SI, but rather the question of whether a given set of application programs is guaranteed to generate

2.6 MAKING APPLICATIONS SERIALIZABLE WITH SNAPSHOT ISOLATION 21

serializable executions when run on a system with SI as the concurrency control mechanism. This

problem was addressed in (Fekete, 1999) and the techniques were refined in (Fekete et al., 2005).

The key to this work is to consider a static analysis of the possible conflicts between application pro-

grams. Thus a Static Dependency Graph (SDG), is drawn, which has nodes which represent the trans-

action programs that run in the system. There is a edge in the SDG from program P1 to P2, if there can

be an execution where P1 generates a transaction T1, P2 generates T2, and there is a dependency edge

from T1 to T2, for example, T1 reads item x and T2 writes item x. Certain of the edges are distinguished

from the others: we say that the edge from P1 to P2 is vulnerable if P1 can give rise to transaction T1,

and P2 can give rise to T2, and T1 and T2 can execute concurrently with a read-write conflict (also called

an anti-dependency); that is, where T1 reads a version of item x which is earlier than the version of x

which is produced by T2. Vulnerable edges are indicated in graphs by a dashed line.

It was shown how a non-serializable cycle in the MVSG can be related to a similar structure in the SDG,

and this justified the intuition of experts, who had previously decided that every execution of the TPC-C

benchmark (Transaction Processing Performance Council, 2005) is serializable on a platform using SI.

As stated in Definition 1, an SDG is said to contain a dangerous structure when there are two vulnerable

edges in a row as part of a cycle (the other edges of the cycle may be vulnerable, or not).

Definition 1 ((Fekete et al., 2005)). The static dependency graph SDG(A) has a dangerous structure if

it contains nodes P, Q and R (some of which may not be distinct) such that:

(a) There is a vulnerable anti-dependency edge from R to P

(b) There is a vulnerable anti-dependency edge from P to Q

(c) Either Q=R or else there is a path in the graph from Q to R; that is, (Q,R) is in the reflexive transitive

closure of the edge relationship.

The main theorem of (Fekete et al., 2005), given here as Theorem 3, is that if a SDG is free of dangerous

structures, then every execution of the programs is serializable on a DBMS using SI for concurrency

control.

Theorem 3 ((Fekete et al., 2005)). If an application A has a static dependency graph SDG(A) with no

dangerous structure, then A is serializable under SI; that is every history resulting from execution of the

programs of A running on a database using SI is serializable.

22 2 BACKGROUND

Tin Tout

Tpivot

FIGURE 2.4: SDG example for three transactions exhibiting a read-only anomaly.

The papers described above give theorems which state that, under certain conditions on the programs

making up an application mix, all executions of these programs will be serializable. What is the DBA

to do, however, when s/he is faced with a set of programs that do not meet these conditions, and indeed

may have non-serializable executions? A natural idea is to modify the programs so that the modified

forms do satisfy the conditions; of course the modifications should not alter the essential functionality

of the programs. Several such modifications were proposed in (Fekete et al., 2005). The simplest idea

to describe, and the most widely applicable, is called materializing the conflict. In this approach, a

new table is introduced into the database, and certain programs are modified to include an additional

statement which updates a row in this table. Another approach is promotion; this can be used in many,

but not all, situations. We give more detail of these approaches below.

The idea behind both techniques is that we choose one edge of the two successive vulnerable edges that

define a dangerous structure, and modify the programs joined by that edge, so that the edge is no longer

vulnerable. We can ensure that an edge is not vulnerable, by making sure that some data item is written

in both transactions (to be more precise, we make sure that some item is written in both, in all cases

where a read-write conflict exists). Clearly we need to do this for one edge out of each pair that makes

up a dangerous structure. If there are many dangerous structures, there are many choices of which edges

to make non-vulnerable. (Jorwekar et al., 2007) showed that choosing a minimal set of appropriate

edges is NP-hard.

Example 4. Figure 2.4 shows the static dependency graph for the example transaction programs given

above in Example 3. Update transactions are shown shaded and have heavy outlines. The dangerous

cycle of edges is highlighted, and the pivot is drawn as a diamond.

2.6 MAKING APPLICATIONS SERIALIZABLE WITH SNAPSHOT ISOLATION 23

Tin Tout

Tpivot

FIGURE 2.5: SDG example after introducing a conflict on the outgoing edge.

Tin Tout

Tpivot

FIGURE 2.6: SDG example after introducing a conflict on the incoming edge.

Figures 2.5 and 2.6 show the effect on the SDG of making either the outgoing or incoming edge a write-

write conflict in order to break the dangerous structure. In both cases, Tpivot is no longer a pivot because

one of the consecutive vulnerable edges has been eliminated. Note, however, that the situations are not

symmetrical: Tout is already an update transaction, so introducing an additional update on that edge

does not change the basic nature of Tout. On the other hand, Tin is read-only in Example 3, so choosing

to break the cycle on the incoming edge of Tpivot necessarily changes Tin into an update. Depending

on the details of the technique chosen (promotion or materialization), in a more complex application

the choice of edge and technique may have further implications for conflicts with other transactions in

the application. This issue is explored in more detail in Section 2.8.5 when we discuss techniques for

making the SmallBank benchmark serializable.

2.6.1 Materialization

To eliminate a vulnerable edge by materialization, we introduce a new table called Conflict, and

an update statement into each program involved in the edge. The update statement modifies a row of

the special Conflict table, which is not used elsewhere in the application. In the simplest approach,

24 2 BACKGROUND

each program modifies a fixed row of Conflict; this will ensure that one of the programs aborts

whenever they are running concurrently as a consequence of the the First-Committer-Wins. However, is

is preferable to introduce contention only if it is needed to avoid rw-conflicts. Thus if we have programs

P1 and P2 which have a read-write conflict when they share the same value for some parameter x, then

we can place into each a statement:

1 UPDATE Conflict

2 SET val = val + 1

3 WHERE id = :x

This introduces a ww-conflict only when the programs share the same parameter x, which is precisely

the case needed to prevent both concurrent transactions from committing.

2.6.2 Promotion

To use promotion to eliminate a vulnerable edge from P1 to P2, an update statement is added to P1

called an identity write, which does not change the value of the item on which the read-write conflict

occurs; P2 is not altered at all. Suppose that for some parameter values, P2 modifies some item in table

T where a condition C holds, and P1 contains:

1 SELECT ...

2 FROM T

3 WHERE C

An extra statement is added to P1 as follows:

1 UPDATE T

2 SET col = col

3 WHERE C

Once again, the FCW rule will ensure that P1 and P2 do not run concurrently in situations where the

parameter values mean that there is a read-write conflict. Promotion is less general than materialization,

2.6 MAKING APPLICATIONS SERIALIZABLE WITH SNAPSHOT ISOLATION 25

since it does not work for conflicts where one transaction changes the set of items returned in a predicate

evaluation in another transaction.

In some platforms, there is another approach to promotion by replacing the SELECT statement (that is

in a vulnerable read-write conflict) by SELECT ...FOR UPDATE. On some platforms, including the

Oracle RDBMS, this is treated for concurrency control exactly like an update, and a transaction contain-

ing a SELECT ...FOR UPDATE cannot commit if it is concurrent with another that modifies the item.

In other platforms, such as PostgreSQL, this statement prevents some but not all of the interleavings that

give a vulnerable edge.

In particular, in PostgreSQL the following interleaving is permitted, even though it gives a vulnerable

rw-conflict from T to U:

T U

begin(T)
... begin(U)

read-sfu(T , x)
...

commit(T)
...

write(U , x)

commit(U)

As a consequence, promotion using SELECT ...FOR UPDATE cannot be used on PostgreSQL (or

other platforms with the same behavior).:w

2.6.3 Mixing Isolation Levels

All popular DBMS platforms allow applications to switch isolation levels for each transaction that is

submitted to the system. This has implications when designing and implementing new concurrency

control schemes: each transaction must get the requested isolation level regardless of operations that are

executed in concurrent transactions at other isolation levels.

This is one of the reasons that snapshot isolation is often implemented using write locks: a transaction

in the same system running at S2PL will acquire shared locks for the data items it reads, blocking a

26 2 BACKGROUND

concurrent transaction running at SI from writing any of those items. If SI were implemented without

write locking, by checking for conflicts optimistically before each SI transaction commits, a concurrent

transaction that requested serializable isolation running at S2PL would not be guaranteed repeatable

reads.

Mixing isolation levels is also an important technique that application can use to balance correctness

with performance. In particular, the theory of (Fekete et al., 2005) was extended in (Fekete, 2005) to

the case where some transactions use SI and others use S2PL (as is possible with Microsoft SQL Server

2005 or Oracle Berkeley DB). It is shown that executing the pivot transactions at S2PL is sufficient to

ensure that an application’s execution will be serializable, but this requires analyzing the application in

order to determine the static dependency graph so that the pivots can be identified.

Detailed performance studies (Alomari et al., 2008b) analyzed the implications of mixing isolation levels

to achieve serializable isolation. They indicate that with the optimal choice of technique, the impact of

guaranteeing serializable isolation on throughput can be small. However, it is not always clear which

technique will be optimal for a given mix of transaction programs on a particular platform.

2.6.4 Automating Static Analysis of Applications

(Jorwekar et al., 2007) describes a system that automates the detection of transaction program conflicts

using syntactic features of program texts, such as the names of the columns accessed in each statement.

Working purely at the level of SQL syntax results in coarse granularity of conflict detection, resulting

in a large proportion of false positives, where benign transaction programs were flagged by the tool

for further (manual) analysis. When dangerous access patterns were manually confirmed, anomalies

were avoided by modifying the transaction programs by hand. One important finding of their work is

that snapshot isolation anomalies do exist in applications developed using tools and techniques that are

common throughout the software industry.

An alternative approach to ensuring correctness when running on platforms with SI is in (Bernstein

et al., 2000), where conditions are given to ensure all executions preserve given integrity constraints,

without necessarily being serializable.

2.7 SERIALIZATION GRAPH TESTING 27

2.7 Serialization Graph Testing

While locking techniques delay operations in order to guarantee serializable executions, another ap-

proach, called Serialization Graph Testing (SGT) schedulers, operate without locking by preventing any

operation that would lead to a non-serializable execution. An SGT scheduler accepts requests from

transactions that want to perform an operation, and determines whether each request would create a

cycle in the serialization graph.

To decide whether to allow each operation, the SGT scheduler maintains a data structure representing

the complete graph of conflicts between transactions. Nodes are added to the graph when a transaction

first makes a request of the scheduler, and associated with each node is a representation of the set of data

items read and written by the corresponding transaction. Edges are added to the graph when operations

in concurrent transactions conflict. If a requested operation would create a cycle in the graph, the SGT

scheduler will disallow the request, and the requesting transaction will usually rollback, as it would to

handle a deadlock in a locking scheduler.

This description suggests that the data structure maintained by the SGT grows without bound. In fact,

nodes and edges can be removed from the graph eventually, once there is no possibility that they will

be involved in a cycle. Unfortunately, this may not be the case until some time after the transaction

commits, so an SGT scheduler must maintain the graph for a sliding window into the complete history

of execution (larger than the set of currently running transactions).

According to (Weikum and Vossen, 2002, page 170),

note that an SGT scheduler, although attractive from a theoretical point of view . . . is

not practical to implement. For example, the (worst case) space required to maintain

the serialization graph grows with the square of the number of relevant transactions,

some of which are not even active anymore. We even need to keep around the infor-

mation about the read sets and write sets of such already-committed transactions. In

addition, and even more importantly, the testing of cycles in the graph, albeit only

linear in the number of edges (i.e., quadratic in the number of nodes in the worst

case), may be unacceptable at run time simply because such a test would be invoked

28 2 BACKGROUND

very frequently. After all, concurrency control measures are part of a data server’s

innermost loops, and their run-time overhead is thus an extremely critical issue.

Previously, several researchers have proposed altering multiversion concurrency control algorithms to

avoid non-serializable executions at run-time, by using a form of SGT. Examples are given in (Tada

et al., 1997; Shi and Perrizo, 2002; Yang, 2007). There is at least one commercial system purported

to be based on SGT (Sarin, 2009), but the details are proprietary. Our thesis also suggests avoiding

non-serializable executions at run-time, but we do not need to the cost of full cycle detection.

2.8 Database Performance Measurement

The measurement of database performance has been a topic of interest since the field began, and is the

subject of entire textbooks (Kumar, 1995). Generally, benchmarks generate a workload representing

some number of concurrent clients executing some mix of transactions in the DBMS. The number of

clients is called the multiprogramming level, or MPL, and this is usually the independent variable in

graphs of performance.

There are several different ways in which the database community has quantified the performance of

different systems, including investigating the impact of different concurrency control algorithms. One

approach has focused on measuring the performance under controlled conditions (Gray, 1993). Jim Gray

was responsible for much of (Anonymous, 1985), which introduced a small banking set of programs as

a benchmark, to allow fair comparison of performance, especially peak and sustainable throughput. The

industry has formed a consortium, the Transaction Processing Performance Council (TPC), which has

standardized many benchmarks, fixing precisely what is to be measured, and under what conditions

(Transaction Processing Performance Council, 2005).

The two aspects of performance that are most commonly measured by benchmarks are the number of

transactions that can be processed in a given amount of time, known as the throughput; and the total

elapsed time required to execute a particular transaction, called the response time. Some benchmarks

constrain one of these and measure the other: for example, setting a maximum response time and re-

porting the sustained throughput while requiring that 95% of measured response times are below the

specified maximum. Another approach is to fix the throughput for a given data volume, so that in order

2.8 DATABASE PERFORMANCE MEASUREMENT 29

to demonstrate higher throughput, the DBMS must be able to process a greater volume of data while

maintaining response times.

Another way to investigate performance is by detailed simulations, where a software representation of

a whole system is evolved through many steps. An early simulation paper was (Carey and Stonebraker,

1984). (Agrawal et al., 1987a) compares the throughput obtained at different MPL, under different

assumptions about the level of disk and CPU resources. A similar simulation study has particularly

focused on multiversion concurrency control algorithms (Carey and Muhanna, 1986).

2.8.1 The TPC-C benchmark

One of the standard benchmarks developed by the Transaction Processing Performance Council for

measuring the performance of the core transaction processing functionality of a DBMS is the TPC-C

benchmark (Transaction Processing Performance Council, 2005). TPC-C models the database require-

ments of a business selling items from a number of warehouses to customers in some geographic districts

associated with each warehouse.

TPC-C uses a mix of five concurrent transaction types of varying complexity. These transactions include

creating and delivering orders, recording payments, checking the status of orders, and monitoring the

level of stock at the warehouses. TPC-C exercises most of the components at the core of a DBMS

storage engine by including:

• The simultaneous execution of multiple transaction types of varying complexity.

• Tests for transaction integrity (ACID properties).

• Moderate system and application execution time.

• Significant disk input/output, controlled by a scaling parameter.

• Non-uniform distribution of data access through primary and secondary keys.

• Databases consisting of tables with a variety of sizes, attributes, and relationships.

• Contention on data access and update.

TPC-C performance is measured in new-order transactions per minute. The primary metrics are the

transaction rate (tpmC) and the associated price per transaction ($/tpmC). The table of top TPC-C results

30 2 BACKGROUND

Note that we list table abbreviations with concluding dots (.), something that is not done in the TPC-C benchmark
specification [TPC-C]. In what follows, we also list tablename/columname pairs in the form T.CN; for example, to
specify what Warehouse a Customer row is affiliated with (see definition below), we would use C.WID, whereas in
[TPC-C] it is represented as C_W_ID. We find that the complexity of names in the TPC-C specification is distract-
ing; the abbreviations we use should be easily understood by readers wishing to tie our discussion to the original.

Figure 4.2 provides a schema for how the tables of Figure 4.1 relate to one another. If we assume that a database on

which the TPC-C benchmark is run has W Warehouse rows, then some of the other tables have cardinality that is a
multiple of W. There are 10 rows in the District table associated with each Warehouse row, and the primary key for
District is D.DID D.WID, specifying each district row's parent Warehouse; there are 3000 Customer rows for each
District, and the primary key for Customer is C.CID C.DID C.WID, specifying each Customer row's parent District
and grandparent Warehouse.

We now describe tables and programs, while discussing the program logic. The reader may wish to refer back to Fig-
ure 4.1 to follow this short (and incomplete) discussion. Full Transaction Profiles for programs are given in [TPC-
C].

NEWO Program. An order, represented by a row in the Order table (O), is placed for a customer (a row in the Cus-
tomers table, C), by a call to the New-Order program (NEWO); in addition to creating (inserting) a row in the Order
table O, the NEWO program inserts a row in the New-Order table (NO, which basically points to the Order row) and
a series of rows in the Order-Line table (OL) that make up the individual stock orders that constitute a full order.
(The NO row inserted by NEWO is later deleted when a Delivery program (DLVY) delivers this particular order; the
O row is retained.) To accomplish its task, the NEWO program reads and/or updates a number of fields from the
Warehouse table (W), District table (D), Customer table (C), Item table (I), and Stock table (S), but it turns out that
only two of these accesses have potential conflicts, the one in S to S.QTY, the quantity of a stock item on hand,
which NEWO decrements, and the one in D to the column D.NEXT, the next order number for the district, which
NEWO uses and increments. We only know about potential conflicts after annotating table accesses by all programs,
but we use this future knowledge here to simplify our discussion

PAY Program. The Payment program (PAY) accepts a payment for a specific customer, increments the customer
balance (C.BAL) and also reflects this incremental information in the warehouse (W.YTD -- payments Year-To-Date)
and District (D.YTD), then inserts a record of this payment to the History table H. PAY is the only program to ac-
cess H. The payment is not associated with a particular order, so the O table is not accessed. We note that PAY
looks up the appropriate C. row by primary key (C.CID, C.DID, C.WID) some fraction of the time, but sometimes
looks up the row by lastname and firstname (C.WHERE: PY lookup by C.LAST, sort by C.FIRST, select the me-
dian row, in position ROOF(n/2), where there are n rows with the given C.LAST). Once the target row of C is lo-
cated by either means, PAY increments C.BAL.

DLVY Delivery. The DLVY program is executed in deferred mode to deliver one outstanding order per transaction
(or more -- up to 10 orders for each of the ten distinct districts within a warehouse, but for now we consider only one
order per transaction). An outstanding order is one that remains in the NO table, and the logic of DLVY starts by
searching for a row in NO with a specific NO.WID, a specific NO.DID, and the minimum (oldest undelivered)
NO.OID. If no such NO row is found, then delivery for this warehouse/district is skipped. Else, if a NO row is
found, it is deleted, and DLVY retrieves the O row with identical WID, DID, and OID, reads the O.CID (Customer

Warehouse District

History

Customer

New-Order

OrderOrder-LineItem

Stock

W W*10

3k

1+

W*30k

W*30k+
5-15

0-1

1+
W*30k+

W*9k+

W*300k+

3+

100k

W

W*100k

100k

10

Figure 4.2. TPC-C Table Layout With Relationships
FIGURE 2.7: The tables and cardinality of TPC-C (Transaction Processing Perfor-
mance Council, 2005).

has been an important driver of competition between the commercial DBMS vendors, who are locked in

an ongoing race to each claim that they have the best OLTP system.

The schema and cardinality of TPC-C are given in Figure 2.7, and the benchmark consists of the follow-

ing transactions:

• approximately 43% New Order transactions, abbreviated as NEWO, where a customer places

an order for a list of different items;

• at least 43% Payment transactions, abbreviated as PAY, where a customer pays for an order

placed earlier;

• 4% Delivery transactions, abbreviated as DLVY, which marks an order in each of 10 districts

delivered. Following (Fekete et al., 2005), we split the Delivery transaction into two parts:

DLVY1, where there are no new orders, so there is no work for the transaction to do; and

DLVY2, where there is at least one new order awaiting delivery;

• 4% Order Status transactions, abbreviated as OSTAT, where a customer checks the status of

an order; and

• 4% Stock Level transactions, abbreviated as SLEVEL, where the company checks whether a

warehouse is running low on any recently-ordered items.

It has long been known that TPC-C is serializable when run at snapshot isolation, and this was formally

proved in (Fekete et al., 2005). We adopt their abbreviations and analysis, and Figure 2.8 gives the static

dependency graph they derived for TPC-C. One issue that arose in deriving the SDG for TPC-C was

2.8 DATABASE PERFORMANCE MEASUREMENT 31

DLVY1

NEWODLVY2

PAY SLEV
(RO)

OSTAT
(RO)

FIGURE 2.8: Static Dependency Graph for standard TPC-C, with rw-conflicts shown
as dashed edges and ww-conflicts shown in bold (Fekete et al., 2005).

that the description of the transactions in the TPC-C specification includes a mixture of SQL with flow

control. Some of the TPC-C transactions behave quite differently depending on the state of the database

that they encounter. For this reason, the TPC-C delivery transaction was split into two cases, DLVY1

and DLVY2, in order to remove ambiguity in the SDG and eliminate a superficial dangerous structure.

Once the SDG has been derived, however, it is easy to see by inspection of Figure 2.8 that it is free of

cycles, and thus all executions will be serializable when TPC-C is executed with SI.

2.8.2 The SmallBank Benchmark

Standard benchmarks such as TPC-C (Transaction Processing Performance Council, 2005) are carefully

designed to exercise a range of features of a system and would be of use in measuring the pure overhead

of making SI serializable. However, we cannot use TPC-C directly to compare different ways of

making applications serializable, since TPC-C itself generates only serializable executions on SI-based

platforms, as described above. Thus in this thesis we have used a benchmark called SmallBank,

published in (Alomari et al., 2008a), which was designed to offer a diverse choice among modifications

that will ensure serializable execution on SI. The SmallBank transaction mix is based on the example

of an SI anomaly from (Fekete et al., 2004) and provide some functionality reflecting a simple banking

system.

32 2 BACKGROUND

The SmallBank benchmark models a simple banking application. The schema consists of three ta-

bles: Account(Name, CustomerID), Saving(CustomerID, Balance), Checking(CustomerID, Balance).

The Account table represents the customers, with the name as primary key, and maps the names to

unique customer IDs. The CustomerID is a primary key for both Saving and Checking tables. The

Balance columns are numeric types, representing the balance in the corresponding account for one

customer. The transaction types for balance (Bal), deposit-checking (DC), withdraw-from-checking

(WC), transfer-to-savings (TS) and amalgamate (Amg) operations. Each of the transaction types in-

volves a small number of simple read and update operations.

2.8.3 SmallBank Transaction Mix

The SmallBank benchmark runs instances of five transaction programs. All transactions start by

looking up the customer’s name in the Account table to retrieve the CustomerID.

Balance or Bal(N): a parameterized transaction that represents calculating the total balance for

a customer with name N. It returns the sum of savings and checking balances for the specified

customer.

DepositChecking, or DC(N, V): is a parameterized transaction that represents making a deposit

into the checking account of a customer. Its operation is to increase the checking balance by V

for the given customer. If the value V is negative or if the name N is not found in the table, the

transaction will rollback.

TransactSaving, or TS(N, V): represents making a deposit or withdrawal on the savings ac-

count. It increases or decreases the savings balance by V for the specified customer. If the

name N is not found in the table or if the transaction would result in a negative savings balance

for the customer, the transaction will rollback.

Amalgamate, or Amg(N1, N2): represents moving all the funds from one customer to another.

It reads the balances for both accounts of customer N1, then sets both to zero, and finally

increases the checking balance for N2 by the sum of N1’s previous balances.

WriteCheck, or WC(N, V): represents writing a check against an account. Its operation is eval-

uate the sum of savings and checking balances for the given customer. If the sum is less than

V, it decreases the checking balance by V + 1 (reflecting a penalty of $1 for overdrawing),

otherwise it decreases the checking balance by V.

2.8 DATABASE PERFORMANCE MEASUREMENT 33

Amg

DC Bal TS

WC

FIGURE 2.9: Static dependency graph for the SmallBank benchmark (Alomari et al., 2008a).

2.8.4 SmallBank Static Dependency Graph

The static dependency graph for SmallBank is given in Figure 2.9, where the double arrows represent

write-write conflicts and the dashed arrows represent read-write conflicts. Most of the analysis is quite

simple, since TS, Amg and DC all read an item only if they will then modify it; from such a program, any

read-write conflict is also a write-write conflict and thus not vulnerable. The edges from Bal are clearly

vulnerable, since Bal has no writes at all, and thus a read-write conflict can happen when executing

Bal concurrently with another program having the same parameter. The only subtle cases are the edge

from WC (which reads the appropriate row in both Checking and Saving, and only updates the row in

Checking). Since TS writes Saving but not Checking, the edge from WC to TS is vulnerable. In contrast,

whenever Amg writes a row in Saving it also writes the corresponding row in Checking; thus if there is

a read-write conflict from WC to Amg on Saving, there is also a write-write conflict on Checking (and

so this cannot happen between concurrently executing transactions). That is, the edge from WC to Amg

is not vulnerable.

It can be seen by inspection that there is a dangerous structure Balance (Bal)→ WriteCheck (WC)→

TransactSavings (TS)→ Balance, so the transaction WriteCheck is a pivot. The other vulnerable edges

run from Bal to programs which are not in turn the source of any vulnerable edge. The non-serializable

executions possible are like the one in (Fekete et al., 2004), in which Bal sees a total balance value which

implies that a overdraw penalty would not be charged, but the final state shows such a penalty because

WC and TS executed concurrently on the same snapshot.

34 2 BACKGROUND

2.8.5 Making SmallBank Serializable

Using the techniques we described in Section 2.6, there is a choice of which of the vulnerable edges to

eliminate: either the edge from WriteCheck to TransactSaving can be made non-vulnerable (option WT),

or the edge from Balance to WriteCheck can be made not vulnerable (option BW). And as discussed in

Section 2.6, there are two main alternatives on how to make each option non vulnerable, giving the

following options:

MaterializeWT: eliminate the vulnerable edge from WriteCheck to TransactSaving by materi-

alizing the conflict. A table Conflict is created, and not accessed elsewhere in the appli-

cation, with schema Conflict(CustomerID, Value). In order to introduce write-write conflicts

only when the transactions actually have a read-write conflict (that is, when both deal with the

same customer), only the row in the Conflict table with the matching CustomerID is updated.

PromoteWT: eliminates the vulnerable WT edge by promotion, which involves adding an iden-

tity update to the Saving table in the WriteCheck transaction (or SELECT FOR UPDATE

on some systems).

MaterializeBW: eliminate the vulnerable edge from Balance to WriteCheck by materializing

the conflict. This can use the same Conflict table introduced for MaterializeWT, since the

same key, CustomerID is involved in both cases.

PromoteBW: eliminate the vulnerable BW edge by promotion, which involves adding an update

to the Checking table in the Balance transaction.

Apart from MaterializeWT, all of these options introduce updates into the Balance transactions, which

was originally read-only. We give the modified SDG for the PromoteBW case in Figure 2.10. Note that

in this case, the conflict edges from Balance to other transactions (not part of the vulnerable edge) have

changed to write-write conflicts. These additional conflicts were found in (Alomari et al., 2008a) to

have a substantial negative impact on throughput. However, this is exactly the technique recommended

by DBMS documentation (Ashdown and others, 2005) for ensuring serializable execution on databases

that only offer SI!

In evaluating the performance impact of each of these options, (Alomari et al., 2008a) found that:

2.9 SUMMARY 35

Amg

DC Bal TS

WC

FIGURE 2.10: SmallBank SDG after promoting the Balance–WriteCheck conflict
(Alomari et al., 2008a).

• Simple approaches to ensuring serializable executions (without analyzing the SDG) should be

avoided.

• One should avoid modifications that turn a query into an update, if possible.

• If a transaction type is executed with higher frequency in the application, or has stronger per-

formance requirements, one should prefer techniques that avoid modifications to the high-

frequency transaction type.

• Promotion is faster than materialization in PostgreSQL, but the opposite is true for the com-

mercial platform.

In summary, complex analysis and platform-specific evaluation are required in order to make the most

efficient use of the techniques described in Section 2.6, and the straightforward approaches to ensuring

serializable executions can have a significant impact on performance. On the other hand, the existence of

techniques that guarantee serializable executions with minimal impact on performance was an important

motivation for our work.

2.9 Summary

In this chapter, we have introduced the concepts that underpin our work. In particular, we have described:

• the notion of a transaction;

36 2 BACKGROUND

• serializable executions of a set of transactions;

• conflict graphs and conditions under which a conflict graph corresponds to a serializable exe-

cution;

• weak isolation levels and anomalies;

• multi-version concurrency control and a particular instance, snapshot isolation;

• anomalies permitted by snapshot isolation: write skew and phantoms;

• conditions on application under which snapshot isolation gives serializable execution and tech-

niques for modifying applications to make the serializable;

• serialization graph testing, an elegant but impractical approach to ensuring serializable execu-

tion; and

• a brief overview of the field of database performance evaluation, in particular describing the

TPC-C and SmallBank benchmarks, and the choices involved in making SmallBank seri-

alizable under SI.

All of these ingredients are combined and contrasted in subsequent chapters as we describe our new

algorithm for serializable isolation and evaluate its performance.

CHAPTER 3

Serializable Snapshot Isolation

The essence of our new concurrency control algorithm is to allow the standard snapshot isolation al-

gorithm to operate, but to add some book-keeping so we can dynamically detect cases where a non-

serializable execution could occur, and then we abort one of the transactions involved. This makes the

detection process a delicate balance: if there are any cases that are not detected, some non-serializable

execution may emerge (counter to our goal of having true serializability guarantees for the applications),

but if we detect too many cases, then performance will suffer as unnecessary aborts waste resources. In

addition, when designing an algorithm, we also need to keep the overhead cost of detection low. One

can imagine a concurrency control algorithm which aborts a transaction exactly when an operation will

result in a non-serializable execution; this would be a serialization graph testing (SGT) scheduler using

the appropriate multiversion serialization graph. SGT schedulers, however, require expensive cycle de-

tection calculations on each operation and would be very expensive, as discussed in Section 2.7. Thus

we accept a small chance of unnecessary aborts, in order to keep the detection overhead low.

The key design decision in our new algorithm is thus carefully defining the situations in which potential

anomalies are detected. We use the theory of (Adya, 1999) and its extension from (Fekete et al., 2005),

presented in Section 2.5.1, which proves that a distinctive pattern of conflicts appears in every non-

serializable execution of SI. The building block for this theory is the notion of a rw-dependency (also

called an “anti-dependency”), which occurs from transactions T1 to T2 if T1 reads a version of an item

x that is older than a version of x produced by T2. In (Adya, 1999) it was shown that in any non-

serializable SI execution, there are two rw-dependency edges in a cycle in the multiversion serialization

graph. (Fekete et al., 2005) extended this, to show that there are two rw-dependency edges which form

consecutive edges in a cycle. Furthermore, each of these rw-edges involves two transactions that are

active concurrently and the outgoing transaction from the pivot, Tout in Figure 2.2, must commit first.

37

38 3 SERIALIZABLE SNAPSHOT ISOLATION

Our Serializable SI concurrency control algorithm detects a potentially non-serializable execution when-

ever it finds two consecutive rw-dependency edges in the serialization graph, where each of the edges

involves two transactions that are active concurrently. Whenever such a situation is detected, one of the

transactions will be aborted. To support this algorithm, the DBMS maintains, for each transaction, two

boolean flags: T.inConflict indicates whether there is an rw-dependency from another concurrent

transaction to T , and T.outConflict indicates whether there is an rw-dependency from T to an-

other concurrent transaction. Thus a potential non-serializability is detected when T.inConflict

and T.outConflict are both true.

We note that our algorithm is conservative: it prevents every non-serializable execution, because a trans-

action is aborted whenever there is a transaction T for which both T.inConflict and T.outConflict

are set. However, we do sometimes make false positive detections; for example, an unnecessary detec-

tion may happen because we do not check whether the two rw-dependency edges occur within a cycle.

It is also worth mentioning that we do not always abort the particular pivot transaction T for which

T.inConflict and T.outConflict is true; this is often chosen as the victim, but depending on

the interleaving of operations, the victim may be the transaction that has an rw-dependency edge to T ,

or the one that is reached by an edge from T .

It is possible with Serializable SI that a pattern of unsafe conflicts is detected, causing a transaction to be

aborted and then restarted, and then the restarted transaction again causes an unsafe pattern of conflicts

and is forced to abort. However, the impact of this issue is ameliorated by two facts:

• the rate of detection of unsafe conflict patterns is very low in all the cases we have measured

(in the most extreme case, unsafe pattern detection increased the overall abort rate by 10%, but

in the majority of cases the increase was less than 1%); and

• it is very rare for our algorithm to abort pure queries, and updates involved in conflicts usually

wait for at least one write lock before they are aborted. By the time the write lock is granted,

the conflicting operation has completed, so if the update is forced to retry, it will not have the

same pattern of conflicts.

Our performance evaluation in Section 6 supports our belief that cascading aborts do not occur often

enough in practice with Serializable SI to cause a measurable impact on throughput.

3.1 DESIGN ALTERNATIVES 39

The remainder of this chapter is structured as follows. Section 3.1 discusses some of the design alter-

natives we considered while developing our approach. We then describe Serializable SI in detail. For

ease of exposition, we start by describing a basic version of the algorithm in Section 3.2, corresponding

closely to what we implemented in our Berkeley DB prototype. Then, in Section 3.3, we describe the

implications for the lifecycle of transactions, and Section 3.4 presents an argument for the correctness of

the basic algorithm. In Section 3.5, we extend the basic algorithm to detect phantoms in systems using

fine-grained locking. Section 3.6 extends the basic algorithm to improve its precision and in Section 3.7

we describe some further optimizations, implemented in our InnoDB prototype.

3.1 Design alternatives

In developing the algorithm described later in this chapter, we considered various alternative approaches

to preventing anomalies. These alternatives are discussed here in order to clarify how we arrived at the

final design we implemented and evaluated.

3.1.1 After-the-fact analysis tool

We first explored whether we could help application developers make their applications serializable

under SI with a tool that performed after-the-fact analysis of the transaction logs from a DBMS to

determine whether a particular execution was serializable. This involved logging more information than

a DBMS would usually log, since some information about the set of items read by a transaction is

required in order to build a conflict graph and check whether it contains cycles. At a high level, this

approach is similar to that of (Jorwekar et al., 2007), though our focus was execution traces rather than

static analysis.

If successful, this approach would have led to a testing tool for developers. However, as non-serializable

executions can be difficult to generate repeatably with either unit tests or randomized testing, the tool

would have been of limited value: all a developer could be confident about if the tool did not find any

anomalies is that they are uncommon in the tested scenario. There is no way that such a tool could be

used to prove that an application is serializable. We did consider creating a tool that would generate all

40 3 SERIALIZABLE SNAPSHOT ISOLATION

possible interleavings of the execution extracted from the DBMS logs, but this opens the door to false

positives, and is still not sufficient to prove that the application is serializable in general.

3.1.2 Approaches to runtime conflict detection

When considering the dynamic detection of rw-conflicts, our first idea was to use the existence of newer,

committed versions of a data item that are ignored during a read as the sole mechanism for detecting

read-write conflicts. That is, while reading a data item x, if a newer committed version of x is ignored,

we would flag that a rw-conflict had occurred. However, we soon realized that in concurrent transactions

T1 and T2, the read of a data item x in T1 can happen before an update to x in T2 (as in Figure 2.3(a)).

In other words, the newer version may not be created until after the read occurs, so relying solely on the

existence of newer versions during reads is not sufficient to detect all rw-conflicts.

We then thought about using the lock manager to detect all conflicts, inspired by the way S2PL guaran-

tees serializability. The idea was not to delay transactions, but instead to use the existing DBMS system

for detecting that two transactions had accessed the same data item. This raised several issues:

• in order to avoid blocking any transactions, a new lock mode would be required.

• the normal scoping of locks (releasing locks at commit time) is not sufficient to detect all

conflicts, as conflicts may occur after one of the transactions involved has committed.

• holding exclusive locks for any longer than the scope of the transaction would lead to a substan-

tial reduction in throughput due to increased blocking and potentially higher deadlock rates.

• we only want to flag a conflict if the two transactions involved overlap. If locks persist (tem-

porarily) after a transaction commits, the lock manager needs to check that the transaction

requesting a lock overlaps with the transaction holding any conflicting locks before indicating

that a conflict has occurred.

• this approach increases the size of the lock table and the number of requests made to the lock

manager.

Next we considered having a list of conflicts for each transaction, tracking the whole conflict graph as

done for SGT schedulers. However, we quickly discovered that maintaining this graph introduces its

own problems of concurrency control in addition to the space overhead required to represent it.

3.2 THE BASIC ALGORITHM 41

Another approach we pursued was to associate a read timestamp with each active data item, indicating

the time of the most recent read to that item. An updating transaction could use the read timestamp to

detect whether it was causing a read-write conflict by comparing the read timestamp of each data item

it read with its begin timestamp. A read timestamp more recent than the transaction’s begin timestamp

would indicate a rw-conflict similar to the way that the existence of a version created after the begin

timestamp indicates that aww-conflict occurred. However, a single timestamp cannot represent multiple

concurrent readers, and if a conflict is detected, we could mark an incoming conflict in the updating

transaction, but this approach gave us no way to find the reader(s) and mark their outgoing conflict.

Finally, we combined the checks for ignored versions of data items with the use of the lock manager to

arrive at the algorithm we present in this chapter. The advantage of this combination is primarily that

all rw-conflicts are detected. Further, while we do place some additional load on the lock manager, the

only locks that need to be held past a transaction’s commit are the new non-blocking entries in the lock

table. No scope changes are required for exclusive locks.

3.2 The Basic Algorithm

How can we keep track of situations where there is an rw-dependency between two concurrent transac-

tions? As we remarked in Section 3.1.2, we found that there are two different ways in which we notice

a rw-dependency between two concurrent transactions. One situation arises when a transaction T reads

a version of an item x, and the version that it reads (the one which was valid at T ’s start time) is not the

most recent version of x. In this case the writer U of any more recent version of x was active after T

started, and so there is a rw-dependency from T to U . When our algorithm detects this, we set the flags

T.outConflict and U.inConflict (and we check for consecutive edges and abort a transaction

if needed). This allows us to detect rw-dependency edges for which the read operation is interleaved

after a write, even though the write operation would be later in a serial execution. However, it does not

account for edges where the read is interleaved first, and subsequently a new version is created by a

concurrent transaction.

To notice these other rw-dependency cases, we rely on the lock management infrastructure of the

DBMS. Most SI implementations acquire a normal exclusive lock anyway when a new version is cre-

ated, as a way to enforce the First-Committer-Wins rule, and avoid cascading aborts. Since the update

42 3 SERIALIZABLE SNAPSHOT ISOLATION

is going to make a request of the lock manager anyway, we want to introduce special entries to the lock

table that the lock manager can use to detect these read-before-write conflicts when the write occurs.

We introduce a new lock mode called SIREAD, which is used to record the fact that an SI transaction

has read a version of an item. However, obtaining the SIREAD lock does not cause any blocking, even

if an exclusive lock is held already, and similarly an existing SIREAD lock does not delay granting of an

exclusive lock; instead, the presence of both SIREAD and exclusive locks on an item is a sign of an rw-

dependency, and so we set the appropriate inConflict and outConflict flags on the transactions

which hold the locks. One difficulty, which we discuss later, is that we need to keep the SIREAD locks

that T obtained, even after T is completed, until all transactions concurrent with T have completed.

Note, however, that our approach does not require that exclusive locks are held for any longer than they

are normally held in order to implement SI. Exclusive locks can be dropped when a transaction commits:

if a concurrent transaction subsequently reads one of the locked items, it will detect the conflict because

of the presence of the new version of the item.

We now present the Serializable SI concurrency control algorithm. In describing the algorithm, we make

some simplifying assumptions:

(1) For any data item x, we can efficiently get the list of locks held on x.

(2) For any lock l, we can efficiently get l.owner, the transaction object that requested the lock.

(3) For any version xt of a data item x, we can efficiently get xt.creator, the transaction

object that created that version.

(4) When finding a version of item x valid at some given timestamp, we can efficiently get the list

of other versions of x that have later timestamps.

(5) There is latching or other concurrency control in the DBMS so that read and write operations

involving a data item x have an unambiguous order.

These assumptions are true for both of our prototype target systems (Berkeley DB and InnoDB). In

particular, both lock tables are structured for efficient lookup of locks, there is a direct pointer from

locks to the owning transaction and there is a table lookup required to find the transaction that created

a given version of a data item. We discuss in Section 4.8 how to implement the algorithm if these

assumptions do not hold.

3.2 THE BASIC ALGORITHM 43

1 modified begin(T):
2 existing SI code for begin(T)
3 set T.inConflict = T.outConflict = false

FIGURE 3.1: Modifications to begin(T), called to start a Serializable SI transaction.

Our algorithm makes the following changes to data structures:

• two boolean flags are added to each transaction object: T.inConflict indicates whether

or not there is a rw-dependency from a concurrent transaction to T , and T.outConflict

indicates whether there is a rw-dependency from T to a concurrent transaction; and

• the new SIREAD mode for locks, assuming a lock manager that already keeps standard exclu-

sive locks.

• there is a new state for transactions that have committed but are kept suspended in order to

correctly detect conflict that occur later; this may require a new flag kept with each transac-

tion and/or a new queue for suspended transactions, depending on the details of the DBMS

internals.

The Serializable SI algorithm modifies the operations of standard snapshot isolation as shown in Fig-

ures 3.1 to 3.5. In each case, the processing includes the usual processing of the operation by the SI

protocol plus some extra steps.

The modification to the code to begin a transaction is given in Figure 3.1. This establishes the two new

boolean flags used by the Serializable SI algorithm, both initially false.

The modification to transaction commit is given in Figure 3.2. First, the modified code must mark that

the transaction is no longer running. The definition of whether a transaction “has committed” deserves

some discussion. The intent is to ensure that the conflict bits will cause a running transaction to abort, or

else if the transaction would have aborted but has already gone on to commit, the conflicting transaction

must abort instead. So this test for whether a transaction is running must be atomic with respect to the

check of the conflict flags at the beginning of commit(T). After the flags have been checked during

commit, a transaction can no longer abort due to the conflict flags being set, and should be considered

committed when checking for conflicts. These operations were made atomic in the prototype implemen-

tations described later by performing them while holding appropriate system latches (for example, the

latch protecting the log that is acquired during transaction commit).

44 3 SERIALIZABLE SNAPSHOT ISOLATION

1 modified commit(T):
2 atomic begin:
3 if T.inConflict and T.outConflict:
4 abort(T)
5 return UNSAFE_ERROR
6 mark T as committed
7 atomic end
8

9 existing SI code for commit(T), do not release SIREAD locks
10

11 if T holds any SIREAD locks:
12 suspend T, keeping SIREAD locks active
13 if T was the oldest active transaction:
14 clean up any suspended transactions older than active transactions

FIGURE 3.2: Modifications to commit(T), called to commit a Serializable SI trans-
action, checking that no unsafe pattern of conflicts has been detected.

Then in line 4 of Figure 3.2, we check the two new flags we have added to the transaction handle. If

both flags are set, that indicates that both an incoming and outgoing conflict were detected while the

transaction was running, so it may be the pivot of a cycle in the conflict graph. If two consecutive edges

are detected here, the transaction is aborted rather than continuing with the commit, and an error is

returned to the application to indicate that an error was detected.

If no unsafe pattern of conflicts is detected, we continue with the existing code to commit the transac-

tion. Then if the transaction holds any SIREAD locks, it is temporarily suspended until all concurrent

transactions have completed. In addition, we check whether the committing transaction was the oldest

active transaction in the system, and if so, clean up any suspended transactions that could no longer

participate in a conflict. This is discussed in more detail below in Section 3.3.

When a conflict is detected between a reading transaction and a writing transaction, the processing is

somewhat complicated by the fact that either the reader or the writer may have already committed.

In addition, as described above in the discussion of Figure 3.2, the check of whether the transaction

is running must be atomic with respect to the corresponding flags check during commit. We put this

processing into a separate utility function called markConflict and give its pseudocode in Figure 3.3.

When acquiring locks in Figures 3.4 and 3.5, the notation key=x indicates that a lock is acquired on

the data item x, not any particular version or value that x holds. Locks acquired with owner=T are

acquired on behalf of transaction T, and do not conflict with other locks held by T.

3.2 THE BASIC ALGORITHM 45

1 markConflict(reader, writer):
2 atomic begin:
3 if writer has committed and writer.outConflict:
4 abort(reader)
5 return UNSAFE_ERROR
6 if reader has committed and reader.inConflict:
7 abort(writer)
8 return UNSAFE_ERROR
9

10 set reader.outConflict = true
11 set writer.inConflict = true
12 atomic end

FIGURE 3.3: A utility function, markConflict(reader, writer), called
when a conflict is detected.

1 modified read(T, x):
2 get lock(key=x, owner=T, mode=SIREAD)
3 if there is a conflicting EXCLUSIVE lock(wl) on x:
4 markConflict(T, wl.owner)
5

6 existing SI code for read(T, x)
7

8 for each version (xNew) of x that is newer than what T read:
9 markConflict(T, xNew.creator)

FIGURE 3.4: Modifications to read(T, x), called to read a data item in a Serializ-
able SI transaction.

1 modified write(T, x, xNew):
2 get lock(key=x, owner=T, mode=EXCLUSIVE)
3

4 for each conflicting SIREAD lock(rl)
5 where rl.owner has not committed or commit(rl.owner) > begin(T):
6 markConflict(rl.owner, T)
7

8 existing SI code for write(T, x, xNew)
9 do not get the EXCLUSIVE lock again

FIGURE 3.5: Modifications to write(T, x, xNew), called to modify a data item
in a Serializable SI transaction.

The modified read(T, x) operation cannot omit either the check for a conflicting exclusive lock or

the check for newer versions of x. If either check were omitted, a race with a write operation on x would

be possible, since we make no assumption about mutual exclusion between operations outside the of the

46 3 SERIALIZABLE SNAPSHOT ISOLATION

lock subsystem, including obtaining a version of a particular item. If the read operation did not check

for conflicting exclusive locks, the following interleaving of threads would be possible:

T U

get lock(x, U , EXCLUSIVE)

get lock(x, T , SIREAD)

read(T , x)

write(U , x, xNew)

The result would be that neither thread detects the conflict. To avoid this race condition and ensure that

all conflicts are detected, our modification to the read operation must check both for lock conflicts and

for new versions of data items.

3.3 Transaction lifecycle changes

For the Serializable SI algorithm, it is important that the engine have access to information about a

transaction T – its transaction record, including T.inConflict and T.outConflict, as well as

any SIREAD locks it obtained – even after T has completed. The transaction record for T and any

SIREAD locks acquired by T must be kept as long as there is any active transaction that overlaps with

T . That is, we can only remove information about T after the end of every transaction that started

before T completed. For this reason, transactions that commit holding an SIREAD lock are suspended

temporarily rather than being immediately cleaned up in Figure 3.2. This suspend operation does not

delay the client: the commit returns immediately, but the transaction record is kept so that future conflicts

can be detected correctly.

Suspending transactions during commit implies that the suspended transactions are cleaned up at some

later point. Information about a transaction T can be discarded once there is no transaction still running

that was concurrent with T . It is important for efficiency that the set of suspended transactions and the

lock table do not grow unnecessarily large. Details of how to ensure prompt clean-up are quite different

between systems. In Section 4.3.1, we describe the approach we took in the Berkeley DB prototype,

and in Section 4.6.1 we describe how this information is managed in the InnoDB implementation – in

particular, how the space allocated to transaction objects is reclaimed.

3.4 CORRECTNESS 47

3.4 Correctness

The Serializable SI algorithm ensures that every execution is serializable, and thus that data integrity is

preserved (under the assumption that each transaction individually is coded to maintain integrity). Here

we outline the argument that this is so. Note that here we only consider transactions consisting of read

and write operations on individual data items. Predicate reads and the associated problem of phantoms

are discussed in Section 3.5.

By Theorem 2 of Section 2.5.1 (originally from (Fekete et al., 2005)), which shows that in any non-

serializable execution there is a dangerous structure, we are done provided that we can establish the

following: whenever an execution contains a dangerous structure (transactions Tin, a pivot Tpivot, and

Tout, such that there is a rw-dependency from Tin to Tpivot and Tin is concurrent with Tpivot, and

also there is a rw-dependency from Tpivot to Tout and Tpivot is concurrent with Tout), then one of the

transactions is aborted. In this situation, we must consider the possibility that Tin=Tout, which is the

classic example of write skew.

Our algorithm has an invariant, that whenever the execution has a rw-dependency from T to U , and

the transaction objects for both T and U exist, then both T.outConflict and U.inConflict are

set to true. By definition, the rw-dependency comes from the existence of a read by T that sees some

version of x, and a write by U which creates a version of x that is later in the version order than the

version read by T .

One of these operations (read(T, x) and write(U, x)) will happen first, because we assume

that the database engine will perform some latching during their execution, and the other will happen

later. The rw-dependency is present in the execution once the second of these operations occurs. If this

second operation is read(T, x), then at the time that operation is processed, there will already be the

version of x created by U ; lines 8-9 of the pseudocode in Figure 3.4 shows that we explicitly set both

flags as required. On the other hand, if the write(U, x) occurs after read(T, x), then there are

two cases:

(1) T gets an SIREAD lock on x before U requests its EXCLUSIVE lock, and the pseudocode in

Figure 3.5 will detect the conflict; or

48 3 SERIALIZABLE SNAPSHOT ISOLATION

(2) U acquires its EXCLUSIVE lock on x first, then T gets an SIREAD lock, and the conflict is

detected by lines 2-4 of Figure 3.4.

In all cases, regardless of the interleaving of the lock requests or the read and write operations, a rw-

conflict will be marked between T and U .

Based on the invariant just described, we now must argue that one of the transactions in any danger-

ous structure is aborted. If both rw-dependencies exist at the time Tpivot completes, then the code in

Figure 3.2 will notice that both inConflict and outConflict are set for Tpivot (because of the

invariant), and so Tpivot will be aborted when it requests to commit.

If, however, Tin reads a data item x written by Tpivot after Tpivot has committed, then a new version

xNew will be detected at line 8 of Figure 3.4. If Tpivot committed without holding an SIREAD lock,

it would not have been suspended, so it is possible that the creator of xNew is no longer available.

However, in this case, Tpivot was a pure update, so it could never have a read-write conflict with a

transaction, and thus could not be part of a cycle.

Assuming that Tpivot is the creator of xNew and is available in the call to markConflict, if an

outgoing conflict has already been detected for Tpivot, we must abort the reader, Tin, in order to prevent

a cycle. Otherwise, conflicts are marked as usual in both transactions.

Similarly, if Tout writes a data item x that Tpivot read, then Tpivot must have taken an SIREAD lock on x

and so would have been suspended during the commit. Then when Tout performs the write operation on

x, the code in Figure 3.5 will find Tpivot’s SIREAD lock and detect the conflict if the two transactions

were concurrent. If Tpivot already has an outgoing edge, we must abort Tout in order to prevent a cycle.

Otherwise, the conflicts are marked on both transactions as before.

Therefore, even if both rw-dependencies occur after Tpivot commits, the algorithm will attempt to set

both flags in Tpivot’s transaction structure, and the transaction responsible for the last detected depen-

dency will be aborted.

In summary, the argument for correctness is as follows:

3.5 DETECTING PHANTOMS 49

(1) Non-serializable executions under SI consist of a cycle including two consecutive rw-dependencies.

(2) Our algorithm detects every rw-dependency.

(3) When two consecutive rw-dependencies are detected, at least one transaction is aborted which

breaks the potential cycle.

The exhaustive testing of the implementation that we describe below in Section 4.7 further supports this

argument for the algorithm’s correctness.

3.5 Detecting phantoms

A concurrency control algorithm for a relational DBMS must consider phantoms, where an item is

created or deleted in one transaction, and the result is incorrectly not seen in a predicate operation in

a concurrent transaction. Pure record-level locking, where readers simply lock the records they read

and writers only lock the records they insert or delete, is not sufficient to prevent phantoms, because a

record can be inserted that is logically within a range read by a concurrent query with no lock conflict

occurring. Standard snapshot isolation also permits a form of write skew due to phantoms that must be

prevented in order to guarantee serializable execution.

The target system for our first prototype implementation, Berkeley DB, acquires locks at the granularity

of database pages rather than on individual records. Reading a record on page P with Berkeley DB’s

implementation of S2PL prevents any concurrent transaction from modifying page P , which includes

updating or deleting any existing record on page P or inserting a new record onto page P . This coarser

granularity of locking, combined with the fact that whenever a new page is inserted, some existing page

is updated to link to the new page, means that the SIREAD locking protocol we presented in Section 3.2

is sufficient to prevent phantoms in Berkeley DB for the same reason that the existing Berkeley DB

S2PL implementation is serializable. The enhancement we describe here is required for systems that

use record-level locking.

The approach to preventing phantoms commonly used in platforms based on record-level S2PL (includ-

ing InnoDB) are based on “next-key locking”, including its “gap locking” refinement, as described in

Section 2.5.2. In these schemes, a range of key space is protected against concurrent inserts or deletes

by acquiring a shared lock on the gap after each row in order, as a scan is made to check whether rows

50 3 SERIALIZABLE SNAPSHOT ISOLATION

1 modified scanRead(T, x):
2 get gap lock(key=next(x), owner=T, mode=SIREAD)
3 if there is a conflicting EXCLUSIVE gap lock(wl) on next(x):
4 markConflict(T, wl.owner)
5

6 modified Serializable SI read(T, x)

FIGURE 3.6: Modifications to scanRead(T, x), called when x is read during a
scan to evaluate a predicate in a Serializable SI transaction.

1 modified insert(T, x) and delete(T, x):
2 get gap lock(key=next(x), owner=T, mode=EXCLUSIVE)
3

4 for each conflicting SIREAD gap lock(rl) on next(x)
5 where rl.owner has not committed or commit(rl.owner) > begin(T):
6 markConflict(rl.owner, T)
7

8 insert: modified Serializable SI code for write(T, x, x)
9 delete: modified Serializable SI code for write(T, x, NULL)

FIGURE 3.7: Algorithms for insert(T, x) and delete(T, x) in Serializable
SI transactions.

match a predicate. Inserts and deletes follow the same protocol, obtaining an exclusive lock on the gap

after the row being inserted or deleted.

Our solution for detecting phantoms in snapshot isolation builds on gap locking by adding the SIREAD

lock mode to gap locks for scans and using these locks to detect predicate read-write conflicts between

transactions. In Figures 3.6 and 3.7, we provide an extension to the basic Serializable SI algorithm to

prevent phantoms.

The notation next(x) refers to the key in the table that sorts after x, or a special supremum key if x is

the last key in the table.

If a predicate read operation occurs before the conflicting write operation, the enhanced Serializable SI

algorithm given here detects the predicate-rw-conflict between transactions correctly.

In the case where a predicate read is interleaved after the conflicting write operation, the read would

find a data item with a creation or deletion timestamp greater than the read timestamp of the predicate

read. One situation in where a row is skipped because it has been inserted after the transaction began:

no version of this row was visible when the reading transaction started. Another situation is where a

3.6 FALSE POSITIVES 51

bpivot cpivotrpivot(y)

wout(y) wout(z)bout coutrin(x) rin(z)bin cin

wpivot(x)

increasing time

FIGURE 3.8: False positive: no path from Tout to Tin.

row is accessed by a predicate read, but that row has been deleted since the transaction began. A special

tombstone version is installed to indicate when this has occurred, and this is still a “newer version” for

our purposes. In either case, the newer version of the row will trigger the detection of a conflict as

described in Figure 3.4 without further modification. Note that tombstone versions can be reclaimed

whenever no transaction could read the last valid version: at that point, all versions of the data item are

gone so the tombstone has no further function.

This is implemented in our InnoDB prototype by building on the existing gap locking protocol built into

InnoDB to prevent phantoms for the locking serializable isolation level. Insert and delete operations

already acquire EXCLUSIVE locks on the gap, so all that was necessary was to have SIREAD locks for

predicate reads follow the same protocol, and detect conflicts in exactly the same way as with ordinary

row locks.

3.6 False positives

Our algorithm uses a conservative approximation to cycle detection in the graph of transaction conflicts,

and as such may cause some benign transactions to abort. The problem is that the two flags we have

added to each transaction cannot indicate whether there is a complete cycle in the conflict graph. On the

other hand, we expect that general cycle detection in the full conflict graph would require a prohibitive

amount of additional memory and CPU time.

In particular, the interleaving of transactions in Figure 3.8 will set inConflict on Tpivot when it

executes wpivot(x) and finds the SIREAD lock from Tin. Then outConflict will be set on Tpivot

when Tout executes wout(y) and finds Tpivot’s SIREAD lock. During the commit of Tpivot, the two flags

will be checked and since both are set, Tpivot will abort. However, this interleaving is equivalent to the

52 3 SERIALIZABLE SNAPSHOT ISOLATION

serial history {Tin, Tpivot, Tout} because Tin precedes Tout and hence there is no path of dependencies

from Tout to Tin.

To address this, we have enhanced the algorithm described above by adding incoming and outgoing

transaction references rather than single bits. These references are initially set to NULL, then set to

refer to the transaction that first causes each conflict. If there are multiple conflicts of either type, the

reference is set to point to the transaction itself. We use a self-reference as a convenience: it corresponds

to a self-loop in the MVSG, and has the advantage that the referenced transaction will be valid exactly

when needed. Setting the reference to either NULL or to the transaction itself takes the place of a single

bit set to 0 or 1 in the basic algorithm. We present pseudocode for these modifications in Figure 3.9 and

3.10.

The theory of (Fekete et al., 2005) shows that in any non-serializable execution, there is a dangerous

structure where the outgoing transaction, Tout in Figure 2.2 commits before all others in the cycle. Thus

our algorithm still ensures serializability, even if we allow a pair of consecutive rw-dependencies, as long

as we prevent situations where Tout commits first. Our algorithm does not track all transactions involved

in the cycle, but if Tout commits before all transactions in the cycle, it must at least commit before

either Tpivot and Tin. By using transaction references rather than single bits, we can check whether

Tin or Tpivot has committed before Tout, and if so, avoid an abort in that case without the possibility

of causing a non-serializable execution. In other words, using transaction references rather than single

bits makes the detection of non-serializable executions more precise, with fewer false positives than the

basic scheme described in Section 3.2.

Since transactions are only suspended temporarily and then deleted, references between transactions

cannot be kept indefinitely. To deal with this, at commit time if either the incoming or outgoing trans-

action references are set to already-committed transactions, they are replaced with self-references to the

committing transaction before it is suspended, as shown in Figure 3.10. In other words, our modified

algorithm has the invariant that suspended transactions only ever reference transactions with an equal or

later commit. Since we clean up suspended transactions in order of commit, this invariant guarantees

that no suspended transaction will ever have a reference to a deleted transaction.

In Figure 3.9, we don’t need to check if the reader has committed: in that case, the writer is the outgoing

transaction, and is still running, so cannot have committed first.

3.6 FALSE POSITIVES 53

1 markConflict(reader, writer):
2 atomic begin:
3 if writer has committed
4 and writer.outConflict is not NULL
5 and commit-time(writer.outConflict) <= commit-time(writer):
6 abort(reader)
7 return UNSAFE_ERROR
8

9 if reader.outConflict is NULL:
10 set reader.outConflict = writer
11 else:
12 set reader.outConflict = reader
13

14 if writer.inConflict is NULL:
15 set writer.inConflict = reader
16 else:
17 set writer.inConflict = writer
18 atomic end

FIGURE 3.9: A modified markConflict(reader, writer) function that is
more sensitive to false positives.

1 modified commit(T):
2 atomic begin:
3 if T.inConflict is not NULL and T.outConflict is not NULL
4 and commit-time(T.outConflict) <= commit-time(T.inConflict):
5 abort(T)
6 return UNSAFE_ERROR
7 mark T as committed
8

9 if T.inConflict is not NULL and T.inConflict has committed:
10 set T.inConflict = T
11 if T.outConflict is not NULL and T.outConflict has committed:
12 set T.outConflict = T
13 atomic end
14

15 existing SI code for commit(T), do not release SIREAD locks
16

17 if T holds any SIREAD locks:
18 suspend T, keeping SIREAD locks active
19 if T was the oldest active transaction:
20 clean up any suspended transactions older than active transactions

FIGURE 3.10: Enhanced version of commit that is more sensitive to false positives

54 3 SERIALIZABLE SNAPSHOT ISOLATION

3.7 Enhancements and optimizations

3.7.1 Abort early

For simplicity, in the description above, we did not show all the cases where we could check whether

to abort T because both T.inConflict and T.outConflict are set; we have written the check

once, in the commit(T) operation, and beyond that we only show the extra cases where an abort is

done for a transaction that is not the pivot (because the pivot has already committed). In the prototype

implementations, we actually abort an active transaction T as soon as any operation of T would cause

both T.inConflict and T.outConflict to be set.

Likewise, in the markConflict function we use in our prototypes, conflicts are not recorded against

transactions that have already aborted or that will abort due to both conflicts being detected.

3.7.2 Victim selection

When a conflict between two transactions leads to both conflict flags being set on either one, without loss

of correctness either transaction could be aborted in order to break the cycle and ensure serializability.

Our prototype implementation follows the algorithm as described above, and prefers to abort the pivot

(the transaction with both incoming and outgoing edges) unless the pivot has already committed. If a

cycle contains two pivots, whichever is detected first will be aborted.

However, for some workloads, it may be preferable to apply some other policy to the selection of which

transaction to abort, analogous to deadlock detection policies (Agrawal et al., 1987b). For example,

aborting the younger of the two transactions may increase the proportion of complex transactions run-

ning to completion. Similarly, policies for victim selection can prioritize particular classes of transac-

tions, reducing the probability of starvation. We intend to explore this idea in future work.

3.7.3 Upgrading SIREAD locks

A common pattern in database applications is a sequence of read-modify-write operations. That is, a data

item x is read by a transaction T , then some modification to x is performed, and T updates the database

3.8 MIXING QUERIES AT SI WITH UPDATES AT SERIALIZABLE SI 55

with the new value. In the basic algorithm of Section 3.2, this would lead to T holding both an SIREAD

lock and an EXCLUSIVE lock on x. Instead, the SIREAD lock can be upgraded to an EXCLUSIVE

lock in this case without loss of correctness. That is, when the EXCLUSIVE lock is requested, the lock

manager can replace the SIREAD lock with the EXCLUSIVE lock once any conflicts caused by the

EXCLUSIVE lock are resolved.

Without this optimization, SIREAD locks would be kept after the transaction commits for all items that

are modified, as well as all of the items that are simply read, leading to unnecessary conflicts and growth

of the lock table. For simple transactions, this optimization can avoid keeping transactions suspended if

they have no vulnerable reads, and hence no chance of an SI anomaly.

Note, however, that this optimization changes the conditions under which transactions must be sus-

pended when they commit. Instead of checking only whether the transaction holds SIREAD locks, we

now need to suspend a transaction if it holds SIREAD locks or if it has detected an outgoing conflict.

3.8 Mixing queries at SI with updates at Serializable SI

It is worth noting that read-only transactions, also called queries, can be run at unmodified SI and mixed

in the same system with updates run at Serializable SI. In this configuration, there is no overhead of

acquiring SIREAD locks for the queries, and no possibility of queries aborting due to the new “unsafe”

error. The update transactions are serializable when considered separately from the queries, since write

skew anomalies are prevented. Thus updates cannot introduce inconsistencies into the data as a result of

interleaving and constraints implicit in the application will be maintained.

However, this configuration of transactions taken as a whole is not guaranteed to be serializable. As

shown in (Fekete et al., 2004), it possible for a query to read a database state that could not have existed

in a serializable execution of the updates. An example from that work is analyzed in Example 3 of

Section 2.5.1.

Regardless, we expect that the possibility of non-serializable queries will be acceptable in many appli-

cations and that this configuration will be popular in practice. It may be particularly attractive when

56 3 SERIALIZABLE SNAPSHOT ISOLATION

making replicated snapshot isolation serializable, so that queries can be satisfied entirely locally at a

single replicated node without requiring any communication between nodes.

3.9 Summary

This chapter described our new algorithm for serializable isolation, called Serializable Snapshot Isola-

tion. We describe it as a set of modifications to an existing implementation of snapshot isolation in a

DBMS. It modifies existing logic relating to finding the version of an item visible to a transaction during

a read operation, and adds a new SIREAD lock mode that does not cause any blocking, but allows con-

flicts to be detected as part of the normal exclusive locking that is commonly used to by write operations

in the implementation of snapshot isolation.

We presented the Serializable SI algorithm starting from a simple description, based on reads and writes

of single data items, which also corresponds to the first prototype of the algorithm we implemented, in

Berkeley DB. Our argument for the correctness of the algorithm is that it detects all rw-dependencies

in an execution, and always aborts a transaction if two consecutive edges are found. To the simple

algorithm, we added features to detect phantoms in systems using fine-grained locking, and described

optimizations to reduce the rate of false positives flagged by Serializable SI, which in turn reduces the

rate of transaction aborts.

CHAPTER 4

Implementation Details

The algorithm described in Chapter 3 was implemented in both Oracle Berkeley DB version 4.6.21

(Olson et al., 1999) and the InnoDB transactional storage plugin version 1.0.1 for MySQL version

5.1.26. This chapter describes the two implementations, giving some details of how the algorithm was

adapted to each engine.

4.1 Berkeley DB Introduction

The algorithm described in Section 3 was implemented in Oracle Berkeley DB version 4.6.21 (Olson

et al., 1999). Berkeley DB is an embedded database that supports SI as well as serializable isolation

with S2PL. Locking and multi-version concurrency control are performed at the granularity of data-

base pages. This can introduce unnecessary conflicts between concurrent transactions, but means that

straightforward read and write locking is sufficient to prevent phantoms.

The architecture of Berkeley DB is described in Figure 4.1. It shows the subsystems that interact to

implement transactional access methods: locking, logging and the buffer cache (also known as the

memory pool in Berkeley DB).

4.2 Adding Snapshot Isolation to Berkeley DB

The author’s implementation of Snapshot Isolation was incorporated into Berkeley DB release 4.5.20,

in 2006. Prior to this version, Berkeley DB provided the standard locking isolation levels: serializable,

read committed and read uncommitted. The design adopted for Berkeley DB was to manage versions of

57

58 4 IMPLEMENTATION DETAILS

Berkeley DB

Access Methods
(btree, recno,
hash, queue)

Transactions

Replication

LockingBuffer Cache

Logging

Data
files

Log
files

FIGURE 4.1: Architecture of Berkeley DB.

whole pages. That is, a transaction running at SI reads the versions of the database pages as they were

when the transaction started, plus any changes it has made.

Implementing this page-versioning design primarily involved changes to the Berkeley DB cache man-

ager, as described in Figure 4.2. Two new links were added to the buffer header of each page in cache:

one to the creating transaction, and one to a buffer containing the previous version of the page. Fur-

ther, transactions running at SI were modified to skip all requests for shared locks, and instead, when a

page is requested, the cache manager returns the most recent version of that page committed before the

requesting transaction started (or the current version, if the requesting transaction has already modified

that page).

If a transaction requests a “dirty” page, which indicates an intent to modify the page, the cache manager

checks whether a new version of the page has been committed since the requesting transaction started,

and if so, indicates that an update conflict has occurred. This is how the First-Committer-Wins rule is

implemented in Berkeley DB.

4.2 ADDING SNAPSHOT ISOLATION TO BERKELEY DB 59

hash bucket

...

head

tail

next

next

older
version

older
version

existing cache multi-version changes

header

buffer

header

buffer

header

buffer

header

buffer

header

buffer

creating
transaction

creating
transaction

FIGURE 4.2: Changes to the Berkeley DB cache for MVCC.

This design has the following features:

• multiversion concurrency control can be turned on and off dynamically;

• there are no changes to the on-disk format of the database, and the technique is independent of

the access method (B+Tree, hash table, etc.);

• the operation of checkpoints and recovery are unchanged: both can simply ignore versioning;

• keeping copies of whole pages has high overhead for small updates, both in terms of the CPU

time to make copies and in the memory overhead in the cache; and

• it works best when the active set of versions fits in cache – otherwise, additional I/O is per-

formed to manage old versions.

60 4 IMPLEMENTATION DETAILS

4.3 Adding Serializable SI to Berkeley DB

The basic algorithm of Section 3.2 is sufficient to guarantee serializable executions in Berkeley DB,

because of the page-level locking and versioning design described in Section 4.2. That is what was

implemented in our Berkeley DB prototype: the later enhancements from Sections 3.5-3.6 were not

implemented. The more general optimizations in Section 3.7 were implemented in the Berkeley DB

prototype: a transaction is aborted when an unsafe pattern is first detected (it is not deferred until com-

mit), and SIREAD locks are upgraded when an EXCLUSIVE lock is acquired for the same data item by

the same transaction.

The following changes were made to Berkeley DB in order to implement the Serializable SI algorithm:

(1) New error returns DB_SNAPSHOT_CONFLICT, to distinguish between deadlocks and update

conflicts, and DB_SNAPSHOT_UNSAFE, to indicate that committing a transaction at SI could

lead to a non-serializable execution.

(2) A new lock mode, SIREAD that does not conflict with any other lock modes. In particular,

it does not introduce any blocking with conflicting WRITE locks. The code that previously

avoiding locking for snapshot isolation reads was modified to instead get an SIREAD lock.

(3) Code to clean old SIREAD locks from the lock table. This code finds the earliest read times-

tamp of all active transactions, and removes from the lock table any locks whose owning trans-

actions have earlier commit timestamps.

(4) When a WRITE lock request for transaction T finds an SIREAD lock already held by T, the

SIREAD lock is discarded before the WRITE lock is granted. This is done for two reasons:

firstly, whenever possible we would prefer to return an error indicating an update conflict if

that is the primary cause of the failure. Secondly, there is no need to hold those SIREAD locks

after the transaction commits: the new version of the data item that T creates will cause an

update conflict with concurrent writers.

4.3.1 Transaction Cleanup in Berkeley DB

In the Berkeley DB implementation, we did not aggressively clean up the suspended transactions and

their locks during commit. Instead, we allowed Berkeley DB’s transaction and lock tables to grow until

4.4 INNODB INTRODUCTION 61

some resource was exhausted (typically, the fixed amount of memory is fully allocated). Normally in this

situation, Berkeley DB would indicate an error, but instead we first tried to clean up obsolete transactions

and their locks.

The cleanup code is executed if the lock table becomes full (a complete sweep of all lock objects), and

also whenever a request for a WRITE lock finds an out-of-date SIREAD lock. In this latter case, only

the locks for one data item are scanned, in order to share the work of cleaning up old locks among all

threads.

4.3.2 Analysis of the code changes

Making these changes to Berkeley DB involved only modest changes to the source code. In total, only

692 lines of code (LOC) were modified out of a total of over 200,000 lines of code in Berkeley DB.

Approximately 40% (276 LOC) of the changes related to detecting lock conflicts and a further 17%

(119 LOC) related to cleaning obsolete locks from the lock table. Of the code comprising the locking

subsystem of Berkeley DB, 3% of the existing code was modified and the total size increased by 10%.

4.4 InnoDB Introduction

MySQL is a popular open source relational DBMS (MySQL AB, 2006). One of the architectural features

of MySQL is that storage engines are pluggable: new storage engines with different concurrency control

or I/O characteristics can be dynamically added to MySQL without changing the query processing “front

end”.

The most stable and popular storage engine for transactional data management in MySQL is InnoDB

(Innobase Oy, 2008). Our prototype implementation was created by modifying the InnoDB Plugin for

MySQL version 1.0.1 using MySQL version 5.1.26.

InnoDB provides multiversion concurrency control by managing multiple versions of rows, and provid-

ing an older version of a row if required to produce a consistent read of a database. Unlike Berkeley

DB, where old versions are kept until no running transaction could request them, in InnoDB, when an

62 4 IMPLEMENTATION DETAILS

old version of a row is required, undo records from the log are used to reconstruct the version of the row

that was current when the reading transaction began.

The default isolation level in InnoDB is called REPEATABLE READ, and at this isolation level, ordinary

SQL SELECT statements use a consistent read view that does not require locking. The read view is a

structure that is allocated when the transaction starts, and includes a list of active transactions (whose

changes should not be visible), so that InnoDB can determine which transactions committed before the

transaction began. This structure is used by InnoDB to ensure that the correct versions of rows are seen

by the transaction.

The REPEATABLE READ isolation level has the interesting property that reads requiring locking, such

as reads that are part of a SQL SELECT FOR UPDATE operation, always read the most recently com-

mitted values. Subsequent non-locking reads of the same item will again see the version from the

consistent read view (assuming that it was not modified during the transaction). So within a single RE-

PEATABLE READ transaction, the values returned are a mix of snapshot isolation and read committed

semantics, depending on whether the operations acquire locks.

InnoDB also provides SERIALIZABLE isolation, which is conceptually equivalent to REPEATABLE

READ but with all reads acquiring shared locks. That is, the most recently committed values are always

read, and shared locks are held until the transaction commits. Further, InnoDB’s SERIALIZABLE

isolation level acquires shared locks on the gaps between rows during predicate reads and exclusive

locks on the gaps during inserts and deletes in order to prevent phantoms as described in Section 2.5.2.

In summary, InnoDB’s SERIALIZABLE isolation is a traditional two-phase locking implementation that

does not take advantage of multiple versions of data items that are available to reads at other isolation

levels.

The existing InnoDB semantics are difficult to reason about if updates are performed at any isolation

level other than SERIALIZABLE. However, the locking implementation of SERIALIZABLE isolation

in InnoDB negates the concurrency benefits of multiversion concurrency control for reads that form part

of an update transaction.

The InnoDB lock manager provides five lock modes: shared, exclusive, intention shared, intention

exclusive and a special lock mode for auto-increment columns. The intention modes are used only at

4.5 ADDING SNAPSHOT ISOLATION TO INNODB 63

table-level granularity. Locks are represented efficiently in the lock manager as a bitmap associated with

a page in the buffer manager, indicating which rows on the page are covered by the lock. In this way,

locking a row generally only requires a few bits of memory in the lock manager.

Updates to the InnoDB lock table are protected by a global “kernel mutex”, which keeps the code simple

but limits scalability on multi-core systems.

InnoDB holds a transaction’s locks until the point in transaction commit just before the write-ahead log is

flushed. In other words, locks are released and changes become visible before log records are guaranteed

to be on stable storage. This early release of locks creates a window of vulnerability in which a query

could commit after seeing data values that would be lost after a crash. For short transactions that perform

no other I/O, this optimization in InnoDB reduces the duration for which locks are held by 1-2 orders of

magnitude. The reasoning given in the InnoDB source code for this design is that as the log is flushed

in order, any subsequent update based on the not-yet-flushed data could not be flushed before the data

it depends on. However, this reasoning does not apply to queries, which can read data that has not yet

been made durable. There are various configuration parameters that can reduce the cost of flushing the

log, including group commit and skipping the flush entirely, so releasing locks early is an interesting

design choice.

In order to amplify the effects of locking and ensure that data visibility is fully transactional, we changed

the order of operations during commit in InnoDB so that locks are not released until after the log has

been flushed. Group commit was enabled (as it is by default in InnoDB) so that multiple transactions

commits could be written to the log in a single flush, reducing the performance impact of this code

change.

4.5 Adding Snapshot Isolation to InnoDB

As part of our work, we added an implementation of standard Snapshot Isolation (SI) to InnoDB. This

involved using the existing REPEATABLE READ code to allow SI reads, including those that are part

of an update, to use a consistent read view without acquiring shared locks. Records that are updated are

locked with exclusive locks, as in REPEATABLE READ, and no gap locking is performed.

64 4 IMPLEMENTATION DETAILS

The first-committer-wins (FCW) rule was implemented by adding a check in the InnoDB code that

determines whether old versions are required for a consistent read. If an SI transaction has an exclusive

lock on the row and finds that a newer version has been committed since its read view was allocated,

a new error DB_UPDATE_CONFLICT is returned, indicating that committing the transaction would

violate the FCW rule.

Our implementation of SI has the useful property that the read view for an SI transaction is allocated

only after any initial lock is acquired for the first statement in the transaction. For example, if the first

statement is a SQL UPDATE or SELECT FOR UPDATE, an exclusive lock is acquired first, and only

after the lock is granted is the transaction snapshot for reading determined . This simple implementation

detail can dramatically reduce the number of aborts due to the FCW rule by reordering operations in

a transaction or using SELECT FOR UPDATE. In particular, it ensures that transactions consisting of

one statement that update a single data item will always read the latest version of the item, and thus will

never abort due to the first-committer-wins rule.

For example, if two instances of a simple transaction that just increments a counter x are started at

the same time, our implementation will ensure that one acquires the lock on x and commits before the

second one chooses its snapshot. In other words, the second transaction will always read the results of

the one that committed first, so there is no possibility of a update after the chosen snapshot, and thus

no need to invoke the FCW rule. This issue did not arise in InnoDB previously because the existing

REPEATABLE READ isolation level has no FCW rule, and in this simple example, since the data item

is locked during the update, the most recent version is used anyway.

4.6 Adding Serializable SI to InnoDB

The first challenge in adding Serializable Snapshot Isolation to InnoDB was representing the SIREAD

lock mode. InnoDB already has five lock modes, and packs the 5 × 5 lock conflict matrix into a 32-bit

integer, so that checking for lock compatibility can be performed by bitwise integer operations. Adding

a sixth lock mode for SIREADs would have increased the conflict matrix to 6 × 6, which cannot fit in

the existing representation. Instead, we noted that SIREAD locks are only acquired for rows (or gaps

between rows), but never at table granularity. InnoDB includes an “intention shared” lock mode (IS) that

is only ever acquired for tables, never rows. The IS locks conflict only with EXCLUSIVE locks, which

4.6 ADDING SERIALIZABLE SI TO INNODB 65

is exactly what we need for SIREAD locks. Our implementation uses IS locks on rows to represent

SIREAD locks in order to avoid adding a new lock mode.

Phantoms are prevented in InnoDB at SERIALIZABLE isolation by gap locking as described in Sec-

tion 2.5.2. We adapted InnoDB’s gap locking to detect and prevent phantoms under Serializable SI as

described in Section 3.5. This was quite straightforward to implement because SERIALIABLE trans-

actions set a field in the transaction structure indicating that SELECT statements should acquire shared

locks for rows and gaps. We use the same field to indicate that SELECT statements in Serializable SI

transactions should acquire IS locks instead.

There are two places where read-write conflicts are detected: when reading an old version of a row, and

when acquiring locks. In the lock manager, when deciding whether a row lock conflict should cause the

transaction to block, we added code to check whether either of the locks involved in the conflict have

IS mode. If so, we mark a read-write conflict, where the transaction making the IS lock request is the

reader. In the code to retrieve the version of a row required by a consistent read, we mark a read-write

conflict with the owner of any newer version.

In marking a read-write conflict, we first check that the two transactions do, in fact, overlap and that

neither is already destined to abort. We then check whether this conflict will cause one of the transactions

to abort and if so, only abort that transaction. Lastly, if neither transaction will abort as a result of

the conflict, we mark the incoming and outgoing flags of the two transaction objects as described in

Section 3.

When a Serializable SI transaction attempts to commit, we first check whether both incoming and out-

going flags are set, and if so, we roll back the transaction instead and return an error DB_UNSAFE_-

TRANSACTION. We implemented the optimizations described in Section 3.6, where the incoming and

outgoing edges are represented by references to two distinct transaction objects, and we roll back only

when Tout commits before Tin.

If any SIREAD locks are held at commit time, the transaction structure is suspended rather than im-

mediately recycled. In the InnoDB implementation, the transaction structure will be reused by the next

66 4 IMPLEMENTATION DETAILS

operation, so a new “dummy” transaction object is allocated and initialized with the committing trans-

action’s ID, SIREAD locks and conflicts, then the dummy transaction is added to a list of committed

Serializable SI transactions that overlap with some running transaction.

4.6.1 Transaction Cleanup in InnoDB

If the committing transaction has the oldest read view of all active transactions, the list of committed

Serializable SI transactions is scanned and any dummy transactions that no longer overlap with an active

transaction are cleaned up and their SIREAD locks released. This eager cleanup of suspended transac-

tions maintains a tight window of active transactions and minimizes the number of additional locks in

the lock manager.

The prototype implementation for Berkeley DB, described in (Cahill et al., 2008), used a reference count

in the transaction object to perform garbage collection when a suspended transaction was no longer

overlapping with any running transaction. Our technique has the advantage that aggressive cleanup

ensure that only the minimal number of transaction or lock objects will be kept active.

4.6.2 Analysis of the code changes

The changes to InnoDB to implement both SI and Serializable SI were modest: around 250 lines of

code were modified and 450 lines of code were inserted. There are over 180,000 lines of code in total

in InnoDB, so this represents less than 0.4% of the InnoDB source code More than half of our changes

were in the lock manager (modifying 6% of InnoDB’s locking code), to allow IS locks on rows and to

clean up locks when suspended Serializable SI transactions are freed. The remaining changes were in

the InnoDB transaction code and row visibility checking, including code to detect when a read ignores

newer versions of a row. In addition, the MySQL front-end query processing code was modified slightly

to support setting the new isolation levels and to propagate the new error codes back to clients.

4.8 GENERALIZING TO OTHER DATABASE ENGINES 67

4.7 InnoDB Testing

We have performed an exhaustive analysis of the InnoDB implementation, by testing it with all possible

interleavings of some set of transactions known to cause write skew anomalies. For example, one test

set was as follows:

T1: b1 r1(x) c1

T2: b2 r2(y) w2(x) c2

T3: b3 w3(y) c3

The implementation was tested by writing a program that generated test cases from such a set of trans-

actions, where each test case was a different interleaving of the transactions. Each interleaving was

executed by starting a separate client connection for each transaction and synchronizing between the

client connections in order to generate the specified interleaving on the server.

During development, this testing regime was invaluable in establishing that conflicts were detected in

all relevant code paths through the DBMS. For example, there are different code paths for queries that

involve scans depending on whether a relevant index is available. By testing different sets of transactions

against various configurations of the database, we gained confidence that we had modified InnoDB in

all relevant places.

In all cases where the transactions were executed concurrently against the final version of the code

(evaluated below), one of the transactions aborted with the new “unsafe” error return. These results were

manually checked to verify that no non-serializable executions were permitted although all interleavings

committed without error at SI.

4.8 Generalizing to other database engines

A key issue for an implementation is how to keep the SIREAD locks and transaction information after

the transaction commits, and then clean up the transactions and locks as efficiently as possible. In

InnoDB, it is reasonable for transaction and locks to remain in the system for some time after commit,

68 4 IMPLEMENTATION DETAILS

and we describe above (in Section 4.6) the clean up procedure during transaction commit. This is also

true for the other open source DBMS engines that we are familiar with, including Berkeley DB and

PostgreSQL.

In a different system where it is not feasible to keep transaction objects suspended after commit, a table

would need to be maintained containing the following information: for each transaction ID, the begin

and commit timestamps together with an inConflict flag and an outConflict flag. For example:

txnID beginTime commitTime inConf outConf

100 1000 1100 N Y

101 1000 1500 N N

102 1200 N/A Y N

Entries in this table can be removed from the table when the commit time of a transaction is earlier than

the begin times of all active transactions. In this case, only transaction 102 is still running (since the

commit timestamp is not set). The row for transaction 100 can be deleted, since it committed before the

only running transaction, 102, began.

Another issue is how to store SIREAD locks if the existing lock manager cannot maintain them, for

example if a new lock mode cannot be added or the lock manager cannot be modified to keep SIREAD

locks after the owning transaction commits. In this case, a table could be constructed to represent

SIREAD locks. Since SIREAD locks never cause blocking, the table would only be used to determine

whether a read-write conflict has occurred. Rows in the SIREAD lock table become obsolete and can be

deleted when the owning transaction becomes obsolete, that is, when all overlapping transactions have

completed.

CHAPTER 5

Benchmarks

Standard database benchmarks such as TPC-C (Transaction Processing Performance Council, 2005)

are carefully designed to exercise a range of features of a system. However, we cannot use TPC-C

directly to compare different ways of making applications serializable, since TPC-C itself generates

only serializable executions on SI-based platforms, as described in Section 2.8.1. To evaluate the effects

of making SI serializable, we need a benchmark that is not already serializable under SI.

In this thesis we have used three different benchmarks to evaluate our prototypes. Firstly, the SmallBank

benchmark from (Alomari et al., 2008a) was adapted to run on Berkeley DB. Secondly, a new mi-

crobenchmark that we call sibench was designed and implemented for InnoDB to highlight the per-

formance of its concurrency control algorithms including the SI and Serializable SI levels that we added.

Finally, we modified TPC-C to introduce an anomaly when run under SI, and we call the resulting

benchmark TPC-C++. We evaluated our InnoDB prototype with TPC-C++ to get a clearer picture of the

impact of concurrency control algorithms on performance of the overall system.

This chapter describes the three benchmarks. Section 5.1 describes how we adapted SmallBank to

run on Berkeley DB, then Section 5.2 describes our new sibench microbenchmark and Section 5.3

describes the TPC-C++ modifications to TPC-C.

5.1 Adapting SmallBank for Berkeley DB

Recall from Section 2.8.2 that the SmallBank benchmark models a simple banking application involv-

ing checking and savings accounts, with transaction types for balance (Bal), deposit-checking (DC),

withdraw-from-checking (WC), transfer-to-savings (TS) and amalgamate (Amg) operations. Each of

69

70 5 BENCHMARKS

the transaction types involves a small number of simple read and update operations to two records per

customer: a savings account balance, and a checking account balance. The static dependency graph

for SmallBank was given in Figure 2.9 of Section 2.8.4, and it can be seen by inspection that there

is a dangerous structure Balance → WriteCheck → TransactSavings → Balance, so the transaction

WriteCheck is a pivot.

The original SmallBank paper, (Alomari et al., 2008a), implemented the benchmark in a relational

DBMS. Here we describe how we implemented SmallBank for Berkeley DB, which provides a general

purpose storage manager, but no query processing or SQL layer. Luckily, the SmallBank schema is

straightforward to implement on Berkeley DB. It consists of three tables: Account(Name, CustomerID),

Saving(CustomerID, Balance), Checking(CustomerID, Balance). The Account table represents the

customers; it maps names to customer IDs. The CustomerID is a primary key for both Saving and

Checking tables. The Balance columns are numeric types, representing the balance in the corre-

sponding account for one customer. Since each table has only two columns, a primary key and a value,

that maps directly onto the key/data pair API provided by Berkeley DB.

5.1.1 Transaction Mix

The SmallBank benchmark runs instances of five transaction programs, chosen randomly with equal

probabilities (20%). All transactions start by looking up the customer’s name in the Account table

to retrieve the CustomerID. Here, we translate the SQL descriptions of the transaction programs given

in (Alomari et al., 2008a) into read and write operations that can be processed by Berkeley DB. This

assumes that there are Berkeley DB handles called account, savings and checking referring to

the three tables in the schema.

Balance or Bal(N): calculates a total balance for a customer:

1 ID = account.get(N)

2 return savings.get(ID) + checking.get(ID)

DepositChecking, or DC(N, V): makes a deposit into the checking account of a customer:

1 ID = account.get(N)

2 checking.put(checking.get(ID) + V)

5.2 SIBENCH : A NEW MICROBENCHMARK FOR SNAPSHOT ISOLATION 71

TransactSaving, or TS(N, V): makes a deposit or withdrawal on the savings account:

1 ID = account.get(N)

2 savings.put(savings.get(ID) + V)

Amalgamate, or Amg(N1, N2): moves all the funds from one customer to another:

1 ID1 = account.get(N1)

2 ID2 = account.get(N2)

3 checking.put(ID2, savings.get(ID1) + checking.get(ID1))

4 savings.put(ID1, 0)

5 checking.put(ID1, 0)

WriteCheck, or WC(N, V): writes a check against an account, checking for overdraft:

1 ID = account.get(N)

2 if savings.get(ID) + checking.get(ID) < V:

3 checking.put(ID, checking.get(ID) - V - 1)

4 else:

5 checking.put(ID, checking.get(ID) - V)

Once translated into this form, the transaction mix can be directly implemented on Berkeley DB.

5.2 sibench: a new microbenchmark for Snapshot Isolation

To explore the performance impact of avoiding blocking for read-write conflicts, we first illustrate the

trade-off between bottlenecks including CPU time, lock contention and write-ahead log flushes during

commits. We designed and implemented a very simple synthetic microbenchmark called sibench

based on a read-write conflict between an query transaction and an update transaction. The benchmark

uses a single table called sibench with two non-null integer columns: id, which is a primary key, and

value.

The query transaction returns the idwith the smallest value in the table. This transaction was designed

so that the DBMS must scan all rows in the table, and so that there is some CPU cost associated with

processing the rows, but the final result is small, so that communication cost is constant, and in particular,

independent of the number of rows in the table. The query transaction is implemented by a single line

of SQL:

72 5 BENCHMARKS

SELECT id FROM sitest ORDER BY value ASC LIMIT 1

The update transaction simply increments the value of a row chosen from a uniform random distribu-

tion of the identifiers. It is also implemented by a single line of SQL:

UPDATE sitest SET value = value + 1 WHERE id = :id

Note that as a consequence of the optimization described in Section 4.5, where the read snapshot is

not determined until after any lock required for the first statement has been acquired, conflicts between

concurrent updates in sibench will result in blocking but not aborts for all three concurrency control

algorithms.

Since there is only a single edge in the static dependency graph, there is no possibility of deadlocks or

write skew, and so no transactions are expected to roll back during the execution of the benchmark. We

verified during the evaluation that no transactions deadlocked or experienced write skew.

We concentrate on the primary parameter to sibench: I , the number of rows in the table. The value of

I controls the number of rows read by the query, and hence the number of lock manager requests when

the query runs at S2PL or Serializable SI. However, the query also involves a sort, so increasing I also

increases the amount of CPU required to execute the benchmark. Further, for small values of I , the rate

of write-write conflicts between simultaneous updates is high, so increasing I reduces the proportion of

write-write versus read-write conflicts.

5.3 The TPC-C++ benchmark

When proposing changes to the core of a database system, the natural choice for an evaluation is to use

one of the standard benchmarks of the Transaction Processing Council, such as the TPC-C benchmark

(Transaction Processing Performance Council, 2005) introduced in Section 2.8.1. TPC-C models the

database requirements of a business selling items from a number of warehouses to customers in some

geographic districts associated with each warehouse.

5.3 THE TPC-C++ BENCHMARK 73

TPC-C uses a mix of five concurrent transaction types of varying complexity. These transactions include

creating and delivering orders, recording payments, checking the status of orders, and monitoring the

level of stock at the warehouses. TPC-C exercises most of the components at the core of a DBMS

storage engine, but it has long been known that TPC-C is serializable when run at snapshot isolation,

and this was formally proved in (Fekete et al., 2005).

Here we describe how we modified the standard TPC-C in order to measure the cost of providing seri-

alizable execution for arbitrary applications. Our main change is to add a new transaction type, called

Credit Check, which we describe in Section 5.3.2.

5.3.1 Simplifications from full TPC-C

Our use of TPC-C as a basis for the evaluation is intended only to provide a widely-understood database

workload. We do not attempt to get certifiable TPC-C results. In particular, we deviate from the TPC-C

specification as follows:

• ignore terminal emulation entirely: only the database transactions are considered;

• omit the storage of historical data, as it has little bearing on concurrency control;

• leave out waits between transactions to increase the load on the database for a given number of

clients;

• report total transaction throughput (in units of transactions per second, or TPS), rather than

only the number of New Order transactions that are included in tpmC;

• avoid unnecessary conflicts without the complexity of partitioning the tables by assuming that

the constant w_tax field in the Warehouse table can be cached by clients;

• in some cases, omit the updates to the year-to-date field in the Warehouse and District tables,

which generate write-write conflicts every pair of Payment transactions for the same ware-

house, or between Payment and Delivery tr. This value can be calculated when required with

an aggregation query over the districts rather than having all Payment transaction update the

same field.

74 5 BENCHMARKS

1 EXEC SQL SELECT c_balance, c_credit_lim
2 INTO :c_balance, :c_credit_lim
3 FROM Customer
4 WHERE c_id = :c_id AND c_d_id = :d_id AND c_w_id = :w_id
5

6 EXEC SQL SELECT SUM(ol_amount) INTO :neworder_balance
7 FROM OrderLine, Orders, NewOrder
8 WHERE ol_o_id = o_id AND ol_d_id = :d_id
9 AND ol_w_id = :w_id AND o_d_id = :d_id

10 AND o_w_id = :w_id AND o_c_id = :c_id
11 AND no_o_id = o_id AND no_d_id = :d_id
12 AND no_w_id = :w_id
13

14 if (c_balance + neworder_balance > c_credit_lim)
15 c_credit = "BC";
16 else
17 c_credit = "GC";
18

19 EXEC SQL UPDATE Customer SET c_credit = :c_credit
20 WHERE c_id = :c_id AND c_d_id = :d_id AND c_w_id = :w_id
21

22 EXEC SQL COMMIT WORK;

FIGURE 5.1: Sample code for the Credit Check Transaction as SQL embedded in C.

5.3.2 The Credit Check Transaction

TPC-C++ keeps the same schema as TPC-C (see Figure 2.7 in Section 2.8.1), but adds a new transaction

type called Credit Check. The purpose of the Credit Check transaction is to check whether a customer

has a total balance of unpaid orders exceeding their credit limit, and to update the customer’s credit

status accordingly. Such a transaction could execute either as part of a batch job, updating the status for

all customers meeting some criteria, or as part of a workflow during an interaction between the customer

and the company.

A customer’s total outstanding balance combines both the delivered, unpaid orders (tracked in the

c_balance field of the Customer table) and total value of new orders that are not yet delivered. Sam-

ple code for the Credit Check transaction is given in Figure 5.1 in the style of appendix A of the TPC-C

specification (Transaction Processing Performance Council, 2005).

5.3 THE TPC-C++ BENCHMARK 75

DLVY1

NEWODLVY2

PAY SLEV
(RO)

OSTAT
(RO)

FIGURE 5.2: Static Dependency Graph for standard TPC-C (repeated) from (Fekete et
al., 2005).

NEWO

DLVY1

DLVY2

PAY

OSTAT
(RO)

SLEV
(RO)

CCHECK
c_balance

c_balance NO.*
c_credit

FIGURE 5.3: Static dependency graph for TPC-C++.

5.3.3 TPC-C++ Anomalies

As shown in Figure 5.3, although fairly simple, the Credit Check transaction complicates the static

dependency graph significantly. A Credit Check transaction reads the NewOrder table, into which

the New Order transaction inserts, and also reads the c_balance field of a customer record, which

is updated by both the Delivery and Payment transactions. It updates the customer’s c_credit field,

76 5 BENCHMARKS

which is read by the New Order transaction. If two Credit Check transactions were run concurrently for

the same customer, each would attempt to update the same customer record, hence the ww-conflict with

itself.

In a DBMS that performs locking and versioning at row-level granularity with the standard physical

layout of the Customer table, the conflicts between the Credit Check transaction and either Delivery or

Payment would in fact be write-write conflicts, even though the transactions update different fields in

the Customer table. It is common practice in such situations to partition the table in order to improve

concurrency, and the TPC-C specification explicitly permits partitioning and discusses some possible

partitioning schemes for the Customer table. If c_balance and c_credit were stored in different

partitions, the conflicts would be as shown even in a DBMS with row-level locking and versioning.

In the modified SDG of Figure 5.3, there are two pivots: New Order and Credit Check. There are several

cycles: the simplest is from Credit Check to New Order and back again. This simple cycle corresponds

to a credit check that runs concurrently with the placement of a new order. As a result, the Credit Check

transaction does not see the effect of the New Order, and the New Order transaction does not see the

result of the Credit Check. This is a straightforward write skew.

More complex cycles are also possible. For example, the cycle from Credit Check through New Order,

Delivery and Payment back to Credit Check. That cycle can give rise to the following example of a

non-serializable execution.

Example 5. Assume that the customer is informed during a New Order transaction if they have a bad

credit rating. The status is displayed on the terminal, so an operator might indicate to the customer that

the order will be delayed or that additional charges will apply. Further, assume that some customer has

a credit limit of $1000 and that c_balance is initially $900.

The following interleaving of transactions is possible if TPC-C++ is executed at SI, where some of the

transactions are initiated by the customer and a Credit Check is started simultaneously by a background

process at the company:

5.3 THE TPC-C++ BENCHMARK 77

Customer System

Operation Unpaid total

New Order ($200) $1100

begin Credit Check

Payment ($500) $600

New Order ($100) $700 calculate total balance = $1100

⇒ c_credit = "BC"

commit

New Order ($150) $850 + bad credit

The customer’s first New Order transaction exceeds their credit limit. The next transaction is a Payment,

which reduces the unpaid total back under the limit. If the next order were marked as “bad credit”, the

customer would recognize that their overdraft had been detected before the payment was processed.

However, in this execution, a Credit Check transaction begins concurrently with the Payment transaction

and commits concurrently with the following New Order transaction. If the credit check runs at Snapshot

Isolation, it will calculate an unpaid total of $1100, as it does not see any changes from either of the

concurrent transactions. It therefore commits a “bad credit” status, but the customer does not see the

result until after successfully placing an order with a “good credit” status.

There is no way that this could have happened in a serializable execution. If the Credit Check had been

serialized before the Payment, the $100 order would have been marked as bad credit. If the Credit Check

were serialized after the payment, or after the $100 order, it would have calculated an unpaid balance

below the $1000 credit limit and would have set c_credit = "GC".

5.3.4 TPC-C++ Transaction Mix

In most of our evaluation, we keep the relative mix of transaction types from TPC-C and execute Credit

Check transactions with the same probability as Delivery transactions. The numbers in the original

specification were chosen so that a single random integer can be generated and used to select between

transaction types.

78 5 BENCHMARKS

Adding Credit Check transactions to the mix with the same frequency as Delivery transactions gives

the following adjusted proportions: approximately 41% New Order transactions, at least 41% Payment

transactions, 4% Credit Check transactions, 4% Delivery transactions, 4% Order Status transactions,

and 4% Stock Level transactions.

The intent of this mix is primarily to stay close to the spirit of TPC-C. In addition, our goal is not to

skew the benchmark such that anomalies overwhelm the normal workings of TPC-C when run at SI. We

want to introduce the possibility of anomalies, and measure the cost of preventing them, not to create a

mix of transactions where anomalies are occurring all the time.

5.3.5 Stock Level Mix

We also want to configure TPC-C++ to highlight the effects of concurrency control. Multiversion con-

currency control provides most benefit in situations where read-write conflicts are the primary bottle-

neck, which correspond to dashed lines in the static dependency graph in Figure 5.3. Here we focus

on the edge between the New Order transaction and the Stock Level transaction, which is due to the

Stock Level transaction reading stock levels that are updated by the New Order transaction as orders are

entered into the database.

We define the Stock Level Mix of TPC-C++ as a mix consisting of just the New Order and Stock Level

transactions, where 10 Stock Level transactions are executed for each New Order transaction. The Stock

Level transaction examines the 20 most recent orders, and there are an average of 10 order lines per

order. The New Order transaction modifies approximately 20 rows on average. The result is that this

mix is skewed, with approximately 100 rows read for each row updated. Thus there are some similarities

with the sibench configuration where the table contains 100 rows, although the transactions, schema

and data volumes are much more substantial with TPC-C++.

5.3.6 Data Scaling

TPC-C++ does not make any changes to the TPC-C schema, described in Section 2.8.1. The total volume

of data generated depends on a single parameter, W , the number of warehouses. The cardinality of each

5.4 SUMMARY 79

table in the schema is defined a some multiple of W . In our evaluation, we present measurements from

two cases, W = 1 and W = 10.

Varying W , the number of warehouses, has two effects:

(1) it changes the data volume, which determines whether the data fits in cache, or alternatively,

whether read and write operations have to wait for disk I/O; and

(2) it varies the contention between threads, because the w_ytd column of the Warehouse table is

updated by every Payment transaction for that warehouse.

To separate these two effects, we also measured the workload against a data set where the scaling factors

of some of the tables was reduced, which we call the tiny scale. This allowed us to increase the number

of warehouses (decreasing contention) while keeping data within memory so that operations were not

delayed by disk I/O. In the tiny scale experiments, the number of customers is divided by 30 (there are

only 100 customers per district), and the number of items is divided by 100 (there are 1000 rows in the

Item table).

This gives the following approximate data volumes for each combination of scaling parameters:

W = 1 W = 10

standard scale 120MB 1.2GB

tiny scale 2MB 20MB

5.4 Summary

This chapter has introduced the three benchmarks we have used to evaluate our prototype implementa-

tions of Serializable SI. We adapted the SmallBank benchmark from (Alomari et al., 2008a) to run

on Berkeley DB, which provides a lower-level, non-relational programming interface. We described a

new microbenchmark that we call sibench consisting of a simple pair of transaction types, a query

and an update, designed to highlight the effect of non-blocking reads in SI and Serializable SI. Lastly,

we presented TPC-C++, a modification to TPC-C that introduces a new transaction type called Credit

80 5 BENCHMARKS

Check, which creates the potential for non-serializable executions if TPC-C++ is run with SI. TPC-

C++ enables the measurement of the cost of ensuring serializable executions within the framework of a

comprehensive transaction processing workload.

CHAPTER 6

Performance Evaluation

In this chapter, we present the performance measurements of our two prototype implementations of Se-

rializable SI: one in Berkeley DB, evaluated with the SmallBank benchmark, and another in InnoDB,

evaluated with the sibench microbenchmark and with TPC-C++, our new modification to TPC-C to

make it sensitive to snapshot isolation anomalies.

We compare each platform’s SI and S2PL implementations with our prototype implementations of Se-

rializable SI. Results for SmallBank and TPC-C++ at S2PL and Serializable SI reflect the throughput

of executions that maintain consistency, so while the throughput of SI is higher in some cases, those

executions may have left the database in an inconsistent state.

Our goals are to:

(1) Illuminate the fundamental tradeoff: how much does it cost to guarantee serializable executions

regardless of the semantics of the application?

(2) Explore the parameter space and determine which factors determine performance in various re-

gions. In particular, we would like to discover the conditions under which concurrency control

is the primary factor determining performance. How do the various concurrency control imple-

mentations behave in extreme conditions? When are they I/O bound, CPU bound, constrained

by logical locking, or by the scalability of the DBMS internals?

(3) Demonstrate that the prototype implementations operate correctly (providing serializable iso-

lation) under concurrent loads. We performed manual analysis of the tables resulting from

running each benchmark under Serializable SI to verify that the database state had not been

corrupted.

81

82 6 PERFORMANCE EVALUATION

(4) Provide some insight and recommendations regarding when Serializable SI is effective and

when it is preferable to S2PL.

This chapter is structured as follows. In Section 6.1, we measure the performance of the Berkeley DB

prototype using the SmallBank benchmark. Next, in Section 6.2 we begin the evaluation of our more

complex InnoDB prototype using the simple sibench microbenchmark to highlight the differences

between the available isolation levels and explore the behavior under extreme conditions. Lastly, we

evaluate the impact of our InnoDB prototype on the performance of the DBMS as a whole using TPC-

C++, which is based on the industry-standard TPC-C.

6.1 Berkeley DB: SmallBank evaluation

Section 5.1 describes how we adapted the SmallBank benchmark from (Alomari et al., 2008a) to run

on Berkeley DB, which provides a low-level, primary key interface to accessing and modifying data.

We used a tool called db_perf, designed and implemented by Sullivan (Sullivan, 2003), that executes

and measures a workload defined in a configuration file against Berkeley DB. The db_perf tool can

configure the many options Berkeley DB makes available for performance tuning (most of which were

left at their default values), and has built-in support for warming the cache before it starts measuring.

We extracted the access patterns of the SmallBank benchmark, and created a configuration file for

db_perf that encodes the distribution of key and data items along with the five transaction types,

based on the code in Section 5.1.1.

We configured db_perf to execute the five transaction types in a uniform random mix. There was

no sleep or think time: each thread executed transactions continually, as quickly as Berkeley DB could

process them. In all cases, the data volume was chosen so that all data fitted in cache. The only I/O

during the benchmark was the write and flush operations to put log records into the database logs when

each transaction committed. We measured the built-in S2PL and SI isolation levels in Berkeley DB with

our implementation of the new Serializable SI algorithm.

The measurements were controlled by parameters that configured:

6.1 BERKELEY DB: SMALLBANK EVALUATION 83

• the isolation level,

• the number of threads (the multi-programming level, or MPL),

• whether the transaction logs were flushed to disk during each commit, which is the difference

between executing transactions in approximately 100µs without flushes, or around 10ms when

waiting for the disk,

• the data volume (the number and size of records, together with the database page size, which

together determine the number of pages in the database),

• the complexity of the transactions, controlled a numberN of SmallBank operations to perform

in each database transaction. Initially, N = 1, but in later measurements, we explore the case

where N = 10, where each transaction is doing ten times more work.

We used Berkeley DB’s Btree access method for all tables.

6.1.1 Berkeley DB Evaluation Setup

The experiments were run on an AMD Athlon64 3200+ CPU with 1GB RAM running OpenSUSE Linux

10.2 with kernel version 2.6.18, glibc version 2.5 and GCC version 4.1.2. A single set of Berkeley DB

binaries were used for all measurements. All data was stored using the XFS filesystem on a set of four

Western Digital Caviar SE 200 GB SATA hard disks using software RAID5.

We present our results as pairs of graphs. The first shows throughput in commits per second on the

vertical axis versus multi-programming level (MPL) on the horizontal axis. The second graph for each

set of experiments shows the number of transactions that were aborted at each isolation level, grouped

by the type of error that caused the abort:

deadlocks: traditional cycles among locks of concurrent transactions

conflicts: errors are concurrent updates to a common data item (the “First-Committer-Wins”

rule).

unsafe: errors are the new aborts introduced by potential cycles in the conflict graph detected by

Serializable SI.

84 6 PERFORMANCE EVALUATION

0 

5000 

10000 

15000 

20000 

25000 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

(a) Relative throughput of SI, S2PL and Serializable SI without log flushes

0% 

2% 

4% 

6% 

8% 

10% 

12% 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

1  2  3  5  10  20  50 

Er
ro
rs
 /
 c
om

m
it
 

MPL 

SSI deadlocks 

SSI unsafe 

SSI conflicts 

SI deadlocks 

SI conflicts 

S2PL deadlocks 

(b) Relative error rates of SI, S2PL and Serializable SI at MPL 20 without log
flushes

FIGURE 6.1: Berkeley DB SmallBank results without flushing the log during commit.

All graphs include 95% confidence intervals (assuming a normal distribution of results), although in

many cases the confidence intervals are too small to be visible.

6.1.2 Short Transactions Workload

Results are given in Figure 6.1 for measurements where system was configured so that commit opera-

tions do not wait for a physical disk write before completing. This configuration is common on high-end

6.1 BERKELEY DB: SMALLBANK EVALUATION 85

storage systems with redundant power sources or in solid state drives based on Flash memory. A small

data size was configured here to model moderate to high contention: the savings and checking tables

both consisted of approximately 100 leaf pages. In other words, since Berkeley DB locks whole pages

for each operation, there is approximately a 1% probability of conflict between each pair of concurrent

transactions. In fact, the real probability is higher, due to rw-conflicts on internal pages in the B+Tree

that are updated as part of a split or merge.

In this configuration, transaction durations are very short, with response times typically around 100µs.

When there is no contention (such as in the MPL=1 case), the CPU was 100% busy throughout the tests.

It can be seen that in this configuration, in Figure 6.1, Serializable SI performs significantly better that

S2PL (by a factor of 10 at MPL 20). This is due to blocking in S2PL between read and write operations,

and also because the aborts at S2PL are caused by deadlocks, and deadlock detection introduces further

delays.

Figure 6.1(b) shows that Serializable SI has a slightly higher total rate of aborts than SI in most cases,

and approximately 25% higher than S2PL. Interestingly, a high proportion of errors (almost all) are

reported as “unsafe” errors rather than update conflicts. This is because in this benchmark, several of

the transactions execute a read operation followed by a write. If a conflict occurs in between those two

operations, a rw-conflict will be detected, leading to an unsafe error and an early abort. If the transaction

had continued instead of aborting early, its write operation would trigger the FCW rule and a “conflict”

error instead.

6.1.3 Long Transactions Workload

Figure 6.2 shows results for the same set of experiments, changing only the commit operations to wait

for a physical write to disk. This significantly increased the duration of transactions, increasing response

times by at least an order of magnitude to around 10ms. In this configuration, I/O rather than the CPU is

the bottleneck at MPL 1, and throughput increases as MPL is increased for all isolation levels, because

increasing numbers of transactions can be committed for each I/O operation due to group commit.

Up to MPL 10, there is little to separate the three concurrency control algorithms, but at MPL 20 the

rate of deadlocks at S2PL begins to have an impact on its throughput. Deadlocks are more expensive

86 6 PERFORMANCE EVALUATION

0 

500 

1000 

1500 

2000 

2500 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

(a) Throughput

0% 

2% 

4% 

6% 

8% 

10% 

12% 

14% 

16% 

18% 

20% 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

1  2  3  5  10  20  50 

Er
ro
rs
 /
 c
om

m
it
 

MPL 

SSI deadlocks 

SSI unsafe 

SSI conflicts 

SI deadlocks 

SI conflicts 

S2PL deadlocks 

(b) Error rates

FIGURE 6.2: Berkeley DB SmallBank results when the log is flushed during commit.

to detect and resolve than SI conflicts or Serializable SI unsafe errors, because the built-in behavior of

db_perf (which we did not change) is to detect deadlocks in a separate thread that runs only twice

per second. The delay between deadlock detection contributes to the poor throughput of S2PL as some

number of threads are blocked during that period.

The error rate at Serializable SI is significantly higher with longer duration transactions, due to increased

number of rw-conflicts. However, since this test is primarily I/O bound and transactions are simple, the

impact on throughput compared with SI is small.

6.1 BERKELEY DB: SMALLBANK EVALUATION 87

0 

500 

1000 

1500 

2000 

2500 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

(a) Throughput

0% 

2% 

4% 

6% 

8% 

10% 

12% 

14% 

16% 

18% 

20% 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

1  2  3  5  10  20  50 

Er
ro
rs
 /
 c
om

m
it
 

MPL 

SSI deadlocks 

SSI unsafe 

SSI conflicts 

SI deadlocks 

SI conflicts 

S2PL deadlocks 

(b) Error rates

FIGURE 6.3: Berkeley DB SmallBank results when the log is flushed during commit
and each transaction performs 10 times more operations.

6.1.4 More Complex Transaction Workload

In the workloads we have presented so far, each transaction performs only 2-3 read operations followed

by 1-2 writes. Next, we explore what happens if the transactions are made more complex. Instead of

performing a single banking transfer or balance check per transaction, Figure 6.3 shows the effect of

executing ten operations in each database transaction. The operations are chosen randomly from the

SmallBank transaction mix.

88 6 PERFORMANCE EVALUATION

This workload is primarily I/O bound: transactions spend most of their execution time waiting for the

log to be flushed so that their commit can be processed. More complex transactions write more log

records, but still usually only need to flush the log once, when they commit. For this reason, the results

in Figure 6.3 are very similar to those of Figure 6.2, even though ten times more work is being completed

by each transaction.

6.1.5 Overhead Evaluation

The results so far have concentrated on experiments with high contention in order to highlight the dif-

ferences between the isolation levels. In Figure 6.4, we present results from running the benchmark

including log flushes with a data set ten times larger. The increased volume of data results in far fewer

conflicts between transactions but still fits in RAM so the only I/O operations are log writes. For S2PL,

this produces less blocking and under SI and Serializable SI the rates of update conflicts are also lower

than in the earlier experiments. In this case, the performance of S2PL and SI are almost identical and

we can see the overhead in the Serializable SI implementation at between 10-15%.

This overhead is due in part to CPU overhead from managing the larger lock and transaction tables but

primarily to a higher abort rate due to false positives with Serializable SI, as is evident in Figure 6.4(b).

One issue in particular contributed to the false positive rate. It is clear that these errors are false positives

because probability of true conflicts between transactions is low in this workload by the choice of data

scaling.

As mentioned earlier, Berkeley DB performs locking and versioning at page-level granularity. As a

consequence, our Serializable SI implementation also detects rw-dependencies at page-level granularity.

All of our experiments use Berkeley DB’s Btree access method, so whenever any transaction needs to

update the Btree root page (for example, as a result of a page split), it will register a conflict with every

concurrent transaction, as all transaction types need to read the root page. With standard SI, concurrent

transactions simply read the older version of the root page, and with S2PL, concurrent transactions are

blocked temporarily but not aborted unless a deadlock occurs. These conflicts and the resulting higher

abort rate would not occur in a record-level implementation of Serializable SI.

6.1 BERKELEY DB: SMALLBANK EVALUATION 89

0 

500 

1000 

1500 

2000 

2500 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

(a) Throughput

0% 

1% 

2% 

3% 

4% 

5% 

6% 

7% 

8% 

9% 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

1  2  3  5  10  20  50 

Er
ro
rs
 /
 c
om

m
it
 

MPL 

SSI deadlocks 

SSI unsafe 

SSI conflicts 

SI deadlocks 

SI conflicts 

S2PL deadlocks 

(b) Error rates

FIGURE 6.4: Berkeley DB SmallBank results when the log is flushed during commit
and there is 1/10th of the contention.

In Figure 6.5, we measure the effect of combining the approach in Section 6.1.4 of using more complex

transactions with low contention. The result is that there is very little to separate the throughput of the

three isolation levels: all end up waiting for log flushes, and the contention for locks is low enough that

S2PL does not suffer the degradation seen in the earlier results.

90 6 PERFORMANCE EVALUATION

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

(a) Throughput

0% 

5% 

10% 

15% 

20% 

25% 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

1  2  3  5  10  20  50 

Er
ro
rs
 /
 c
om

m
it
 

MPL 

SSI deadlocks 

SSI unsafe 

SSI conflicts 

SI deadlocks 

SI conflicts 

S2PL deadlocks 

(b) Error rates

FIGURE 6.5: Berkeley DB SmallBank results when the log is flushed during commit,
transactions perform 10 times more operations and there is 1/10th of the contention.

6.1.6 Berkeley DB Evaluation Summary

Berkeley DB implements an update as a delete of the old value followed by an insert of the new value,

so B+Tree split and merge operations were occurring during the benchmark runs.

6.1 BERKELEY DB: SMALLBANK EVALUATION 91

The high rates of false positives under our Berkeley DB prototype of Serializable SI are a concern, and

were the motivation behind the improvements and optimizations to the basic algorithm described in

Sections 3.6-3.7.

92 6 PERFORMANCE EVALUATION

6.2 InnoDB Evaluation Setup

The MySQL server was run on a Linux system with an AMD Athlon XP 2600+ CPU with 2GB RAM

running OpenSUSE Linux 11.0 with kernel version 2.6.25, glibc version 2.8 and GCC version 4.3.1.

All data was stored using the EXT3 filesystem on a Maxtor 6Y060L0 PATA 7,200 RPM hard disk with

write cache disabled. MySQL was started with only the following parameters modifying the default

configuration (chosen after experimentation to give best throughput on our server without sacrificing

ACID properties):

--max-connections=300 --table-cache=1000

--innodb_buffer_pool_size=1G --innodb_log_file_size=256M

--innodb_log_buffer_size=16M --innodb_flush_method=fsync

It is worth noting that these parameters force the log file to be flushed on every commit. We did run

experiments where the log was not flushed, but do not include results here because in almost all cases,

there was no difference between the throughput of the three concurrency control algorithms we want to

measure.

The benchmark clients were run on a FreeBSD 7.0 system with an Intel Core(TM)2 Quad Q9300 at

2.50GHz and 4GB RAM using the Java HotSpot(TM) 64-Bit Server VM (build 1.6.0_03-p4) with the

MySQL connector JDBC driver version 5.1.6. The systems were connected via a 100MBit Ethernet

switch and were otherwise idle while the experiments ran.

We deliberately ran the database server on a slower machine so that it would reach CPU, memory and

I/O saturation under different conditions during testing.

Each configuration was measured between 3 and 5 times, and the database cache was pre-warmed by

loading all of the data into the database before measuring. Tests were run for 1 minute without measuring

to allow the workload to reach a steady state, and results were measured for a further 2 minutes. All

graphs include 95% confidence intervals (assuming a normal distribution of results), although in many

cases the confidence intervals are too small to be visible.

6.3 INNODB: SIBENCH EVALUATION 93

6.3 InnoDB: sibench evaluation

To explore the performance impact of avoiding blocking for read-write conflicts, we first illustrate the

trade-off between bottlenecks including CPU time, lock contention and write-ahead log flushes dur-

ing commits. As described in Section 5.2, we designed and implemented a very simple synthetic mi-

crobenchmark called sibench based on a read-write conflict between an query transaction and an

update transaction. Each of the two transactions consists of a single SQL statement, and no transaction

is expected to abort when the benchmark is running.

The measurements were controlled by parameters that configured:

• the isolation level,

• the number of threads (the multi-programming level, or MPL),

• the number of items in the table, and

• the ratio of query transactions to update transactions, initially 1:1, and later 10 times more

queries than updates.

In all of the results presented here, each client thread performs an equal number of query and update

transactions. In these experiments, the error rates are omitted because there are effectively zero errors

regardless of which concurrency control algorithm is selected.

6.3.1 Mixed workload

We begin by analyzing cases where there are equal numbers of query and update transactions submitted.

That is, there is a 1:1 ratio of query transactions to update transactions.

We explore cases where I ∈ {10, 100, 1000}. When I = 10 and the number of query and update

transactions are equal, there are 10 times more rows read than updated. In the extreme case where

I = 1000, there are 1,000 rows read for each row updated.

Figure 6.6 shows the in case for I = 10, where the workload has a moderate ratios of reads to updates, SI

scales to more than double the throughput of S2PL, since SI eliminates blocking for read-write conflicts.

94 6 PERFORMANCE EVALUATION

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

FIGURE 6.6: InnoDB sibench throughput with 10 items.

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

FIGURE 6.7: InnoDB sibench throughput with 100 items.

There is virtually no overhead for Serializable SI compared with SI. With such a small set of rows, the

rate of conflicts between concurrent updates is high, particularly when MPL ≥ 10, and since updates

block queries at S2PL, the throughput at S2PL is fairly flat after MPL 10.

When the number of rows is increased to 100, the workload is characterized by a high rate of reads per

update (100 times more reads than updates). Figure 6.7 shows the results for this case, where SI scales

to more than triple the throughput of S2PL, and with the larger set of rows, the rate of conflicts between

concurrent updates is moderate, so that overall throughput is higher than when I = 10. There is virtually

6.3 INNODB: SIBENCH EVALUATION 95

0 

200 

400 

600 

800 

1000 

1200 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

FIGURE 6.8: InnoDB sibench throughput with 1000 items.

no overhead for Serializable SI compared with SI until MPL 50, at which point the CPU becomes 100%

utilized at Serializable SI due to the additional work of managing the larger lock table, while at SI the

CPU is not saturated. For this reason, we begin to see a divergence between the throughput of SI and

Serializable SI at MPL 50.

When I is increased further, to 1000, in Figure 6.8, more CPU time is required to sort the rows during

each query and there are 10 times more requests to the lock manager than in Figure 6.7. Here we see

that the gap between SI and Serializable SI is more pronounced, for two reasons:

• the CPU becomes saturated earlier under Serializable SI, at around MPL 20 rather than at MPL

30 under SI, due to the additional work involved in managing SIREAD locks in the lock table;

and

• there is now significant contention for the mutex protecting the lock table. As mentioned in

Section 4.4, the InnoDB lock table is protected by a single, global mutex, so concurrent lock

requests contend for this mutex even when there is no chance that the requested locks would

conflict. A more sophisticated lock manager should scale better under this Serializable SI

workload, whereas the S2PL throughput is constrained by blocking caused by logical lock

conflicts rather than a limitation of the lock manager implementation.

96 6 PERFORMANCE EVALUATION

0 

500 

1000 

1500 

2000 

2500 

3000 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

FIGURE 6.9: InnoDB sibench throughput with 10 items and 10 queries per update.

6.3.2 Query-mostly workloads

We now consider cases where there are ten times more query transactions than update transactions

submitted. That is, there is a 10:1 ratio of query transactions to update transactions.

Note that we run the queries at the same isolation level as the update, even though the results would

be serializable with the query run at various weak isolation levels. The intent here is to measure the

performance of the concurrency control algorithms under extreme conditions, not to tune the system for

the best throughput for a given workload.

When there are 10 items, in Figure 6.9, we see that the absolute throughput rates are higher with the

query-mostly workload than with the mixed workload with the same data volume in Figure 6.6, simply

because queries do not need to flush the transaction log when they commit and so they can processed

more quickly.

Further, the throughput at S2PL is virtually constant, at 1000 tps, regardless of MPL. This is because

the disk subsystem can support approximately 100 flushes per second, and there are only 10 rows in the

table, so only 10 updates can commit simultaneously. Since an update conflicts with any concurrent read

in sibench, the rate at which updates can commit constrains the total throughput.

6.3 INNODB: SIBENCH EVALUATION 97

0 

500 

1000 

1500 

2000 

2500 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

FIGURE 6.10: InnoDB sibench throughput with 100 items and 10 queries per updates.

0 

200 

400 

600 

800 

1000 

1200 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

FIGURE 6.11: InnoDB sibench throughput with 1000 items and 10 queries per update.

In this workload there are 100 times more read operations than writes, as there are 10 queries per update

and each query reads 10 rows. So the difference between the throughput of SI and Serializable SI can

be explained by the 100 times more requests to the the InnoDB lock manager, comparable to what we

saw in Figure 6.7.

With 100 items, the query-mostly workload run at Serializable SI generates 1000 times more lock re-

quests than at SI, and in Figure 6.10 we see overall trends similar to Figure 6.8.

98 6 PERFORMANCE EVALUATION

In the extreme case of Figure 6.11, I = 1000 and there are 10 queries executed for each update trans-

action. As a result, there are 10,000 times more reads than writes. Profiling showed that both the

Serializable SI and S2PL algorithms end up spending virtually all of the time waiting for the lock man-

ager mutex. We believe that with a more scalable lock manager implementation, Serializable SI would

outperform S2PL in cases such as these because no blocking is required inside the lock manager

6.3.3 InnoDB: sibench summary

This section has measured the throughput of three concurrency control algorithms in InnoDB using our

new sibench microbenchmark, which has two main parameters: table size and ratio of reads to writes.

In spite of its simplicity, sibench enabled us to explore the parameter space, and to discover regions

where either the CPU, logical lock contention or constraints inherent in the design of InnoDB itself were

the primary factors determining throughput. Our prototype implementation of Serializable SI in InnoDB

seems to be performing well: only in extreme cases is there significant departure from the performance

obtained by SI.

6.4 InnoDB: TPC-C++ evaluation

We now present our findings from running the TPC-C++ benchmark, described in Section 5.3, with our

InnoDB prototype. This benchmark is a modification of TPC-C that introduces a new transaction type,

Credit Check, and with it, the potential for non-serializable executions when TPC-C++ is run with SI.

Many more factors are at play in a benchmark of the complexity of TPC-C++, compared with the

sibench microbenchmark. TPC-C++ can be configured to generate cache misses from data sets too

large to fit in cache and involves more complex transaction logic that includes predicates and joins.

Consequently, we do not expect that concurrency control will always be the main factor determining the

results. On the other hand, a more complex benchmark is more representative of real applications than

the workloads we have considered so far in this chapter, and gives a better sense of the impact of our

work on the performance of the system as a whole.

6.4 INNODB: TPC-C++ EVALUATION 99

0 

20 

40 

60 

80 

100 

120 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

(a) Throughput of TPC-C++ at SI, S2PL and Serializable SI.

0.0% 

0.2% 

0.4% 

0.6% 

0.8% 

1.0% 

1.2% 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

1  2  3  5  10  20  30  50 

Er
ro
rs
 /
 c
om

m
it
 

MPL 

SSI deadlocks 

SSI unsafe 

SSI conflicts 

SI deadlocks 

SI conflicts 

S2PL deadlocks 

(b) Error rates at SI, S2PL and Serializable SI.

FIGURE 6.12: Throughput and error rates for InnoDB running TPC-C++ with 1 ware-
house, skipping year-to-date updates.

Figure 6.12 shows the most common case that we saw when running TPC-C++ with a wide variety of

parameters. It shows the throughput and error rates for TPC-C++ with a single warehouse, skipping

the updates to the contentious year-to-date summary field w_ytd in the Warehouse table as described

in Section 5.3.1. Here, concurrency control is not the primary factor determining the throughput, and

all three choices of isolation level give comparable performance. Another way of putting this is that

the application might as well use Serializable SI or S2PL over SI, since serializable executions are

guaranteed with no measurable performance impact.

100 6 PERFORMANCE EVALUATION

The rates of errors are shown in Figure 6.12(b). The rates are generally low, with less than 1% of

transactions aborting. The general trends is that the rate of errors increases as the concurrent load is

increased. That is because the probability of a pair of transactions conflicting is higher when there are

more transactions running concurrently. There are somewhat higher rates of errors with Serializable

SI than with SI, but since the overall rates are low, this difference has little impact on their relative

throughputs.

6.4.1 Larger data volume

The next situation we investigate is the impact of a larger data volume. As explained in Section 5.3.6,

increasing the number of warehouses has two effects: it reduces the contention on the Warehouse year-

to-date field and it can make the data too large to fit in cache. In this section, we explore the case where

there are 10 warehouses, which corresponds to around 1.2GB of data, too much to fit in the 1GB of

RAM in our test server.

Figure 6.13 shows the throughput and error rates for TPC-C++ with W = 10. In Figure 6.13(a), we

see that the throughput for all three isolation levels are virtually identical. Again, this was by far the

most common case when we ran TPC-C++ with a variety of parameters. The TPC-C schema that we

are using is designed so that conflicts become rarer as the data volume is scaled, so it is not surprising to

see that the choice of isolation level is not the main contributor to performance.

However, recall that when TPC-C++ is run with ordinary SI, the execution is not serializable in general.

Undeclared consistency constraints may be violated. In Figure 6.13(b) we give a breakdown of error

rates in a stacked bar graph. Here the situation is simple because there are no deadlocks at any isolation

level and the FCW is the overwhelming cause of transaction aborts. “Unsafe” errors contribute only a

tiny fraction of the total (less than 1% of the FCW errors and too small to see on the graph). Figure 6.13

is the common case where avoiding SI anomalies has no measurable impact on performance.

We noticed the moderate to high rate of SI conflicts due to the first-committer-wins rule in Figure 6.13(b)

and wanted to understand what was causing the conflicts. The benchmark is run without partitioning,

so updates to the field d_next_o_id for a district in the New Order transaction conflict unnecessarily

with updates to the d_ytd field in the Payment transaction.

6.4 INNODB: TPC-C++ EVALUATION 101

0 

20 

40 

60 

80 

100 

120 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

(a) Throughput of TPC-C++ at SI, S2PL and Serializable SI.

0.0% 

2.0% 

4.0% 

6.0% 

8.0% 

10.0% 

12.0% 

14.0% 

16.0% 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

1  2  3  5  10  20  30  50 

Er
ro
rs
 /
 c
om

m
it
 

MPL 

SSI deadlocks 

SSI unsafe 

SSI conflicts 

SI deadlocks 

SI conflicts 

S2PL deadlocks 

(b) Error rates at SI, S2PL and Serializable SI.

FIGURE 6.13: Throughput and error rates for InnoDB running TPC-C++ with 10 ware-
houses, including year-to-date updates.

To investigate whether this spurious conflict is the source of the higher than expected error rates, we

ran the benchmark again but modified the Payment transaction to avoid updating the d_ytd field in the

District table and the w_ytd field in the Warehouse table, as described in Section 5.3.1. The results

are shown in Figure 6.14. Comparing Figure 6.13(b) with Figure 6.14(b), we see can see that the

rate of update conflicts at SI and Serializable SI has been reduced by approximately a factor of 100.

This indicates that the year-to-date fields contribute the overwhelming majority of update conflicts in

102 6 PERFORMANCE EVALUATION

0 

20 

40 

60 

80 

100 

120 

140 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

(a) Throughput of TPC-C++ at SI, S2PL and Serializable SI.

0.0% 

0.1% 

0.2% 

0.3% 

0.4% 

0.5% 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

1  2  3  5  10  20  30  50 

Er
ro
rs
 /
 c
om

m
it
 

MPL 

SSI deadlocks 

SSI unsafe 

SSI conflicts 

SI deadlocks 

SI conflicts 

S2PL deadlocks 

(b) Error rates at SI, S2PL and Serializable SI.

FIGURE 6.14: Throughput and error rates for InnoDB running TPC-C++ with 10 ware-
houses, skipping year-to-date updates.

TPC-C running at SI. Thus they would not occur if the District table were partitioned such that the

d_next_o_id and d_ytd fields were stored in separate partitions.

6.4 INNODB: TPC-C++ EVALUATION 103

6.4.2 High Contention

In Figure 6.15, we show the results for the case where there are 10 warehouses and data is scaled

according to the tiny scale parameters given in Section 5.3.6. This configuration creates some contention

on the Customer table, since there are only 100 customers per district. However, the results in Figure 6.15

include updates to the year-to-date fields, and that contention dominates the contention for customer

rows.

In Figure 6.15, we first note that the confidence intervals are larger than in our other results (i.e., there

is more variance between runs). The inherent randomness of the workload combines with the reduced

data set to increase the level of contention, and thus to increase the rates of deadlocks, but particularly

update conflicts, as seen in Figure 6.15(b). Given the larger confidence intervals, it is difficult be sure

of the relative performance of the three algorithms in this configuration, so next we try a more extreme

case.

In Figure 6.16, we again use the tiny scale parameters for the data volume, but now with only a single

warehouse. As mentioned in Section 5.3.6, this configuration represents under 2MB of data in total

across all of the tables, so there are many more opportunities for concurrent transactions to conflict. To

eliminate the most obvious of these, we show the results where the year-to-date fields are not updated.

That is, the errors are due to conflicts on other fields, such as the next order ID field in each District, or

from concurrent transactions choosing the same customer.

This is the only case where we found Serializable SI slower than S2PL (by approximately 10%). The

error rates clearly show the incremental effect of unsafe errors above the conflicts of standard SI. The

high rate of aborts at Serializable SI, including rates of “unsafe” errors up to 10% of the update conflict

rate, has a measurable effect on throughput in this configuration. Note however, that this is an extreme

case, with tiny data volumes chosen specifically in order to create high rates of conflicts.

104 6 PERFORMANCE EVALUATION

0 

20 

40 

60 

80 

100 

120 

140 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

(a) Throughput of TPC-C++ at SI, S2PL and Serializable SI.

0.0% 

2.0% 

4.0% 

6.0% 

8.0% 

10.0% 

12.0% 

14.0% 

16.0% 

18.0% 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

1  2  3  5  10  20  30  50 

Er
ro
rs
 /
 c
om

m
it
 

MPL 

SSI deadlocks 

SSI unsafe 

SSI conflicts 

SI deadlocks 

SI conflicts 

S2PL deadlocks 

(b) Error rates at SI, S2PL and Serializable SI.

FIGURE 6.15: Throughput and error rates for InnoDB running TPC-C++ with 10 ware-
houses and tiny data scaling, including year-to-date updates.

6.4 INNODB: TPC-C++ EVALUATION 105

0 

20 

40 

60 

80 

100 

120 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

(a) Throughput of TPC-C++ at SI, S2PL and Serializable SI.

0.0% 

5.0% 

10.0% 

15.0% 

20.0% 

25.0% 

30.0% 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

1  2  3  5  10  20  30  50 

Er
ro
rs
 /
 c
om

m
it
 

MPL 

SSI deadlocks 

SSI unsafe 

SSI conflicts 

SI deadlocks 

SI conflicts 

S2PL deadlocks 

(b) Error rates at SI, S2PL and Serializable SI.

FIGURE 6.16: Throughput and error rates for InnoDB running TPC-C++ with 1 ware-
house and tiny data scaling, skipping year-to-date updates.

106 6 PERFORMANCE EVALUATION

6.4.3 The Stock Level Mix

Finally, we tried to configure TPC-C++ to highlight the effects of concurrency control. Multiversion

concurrency control provides most benefit in situations where read-write conflicts are the primary bot-

tleneck, which correspond to dashed lines in the static dependency graph in Figure 5.3 of Section 5.3.

Here we focus on the edge between the New Order transaction and the Stock Level transaction, which

is due to the Stock Level transaction reading stock levels that are updated by the New Order transaction

as orders are entered into the database.

The Stock Level transaction examines the 20 most recent orders, and there are an average of 10 order

lines per order. The New Order transaction modifies approximately 20 rows on average. The result is

that this mix is skewed, with approximately 100 rows read for each row updated. We call this the Stock

Level Mix, as described in Section 5.3.5.

In Figure 6.17 are the results for running the Stock Level Mix with 10 warehouses. In Figure 6.17(a),

we see that Serializable SI performs approximately 20% slower than SI. However, since the data for this

configuration is larger than the cache, S2PL holds shared locks that block updates while waiting for I/O,

and we see that S2PL performs far worse than Serializable SI, with negative scaling after MPL=5 and

much higher variability.

Finally, we present Figure 6.18, where the data volume is scaled to much smaller than normal in order

to make conflicts more common. These results were obtained with tiny scale data as described in Sec-

tion 5.3.6: 1 warehouse, 10 districts, 100 customers per district, and 1000 items. The same mix of 10

Stock Level transactions per New Order transaction was measured, and Figure 6.18(a) shows that again,

Snapshot Isolation performs best, with Serializable SI between 10 and 20% faster than S2PL.

In Figure 6.18(b), we see very high rates of deadlocks at S2PL, but a comparatively small gap between

the throughput at SI and the throughput at S2PL (approximately 40% at MPL 20 in Figure 6.18(a)). The

rate of deadlocks at S2PL in this configuration may be prohibitive for applications with more complex

transactions than TPC-C++, where the cost of restarting a transaction is high. The throughput at Serial-

izable SI is in between S2PL and SI, but we believe that this case is comparable to Figure 6.11, where

the InnoDB lock manager implementation is the main factor that limits scaling.

6.4 INNODB: TPC-C++ EVALUATION 107

0 

50 

100 

150 

200 

250 

300 

350 

400 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

(a) Throughput of TPC-C++ at SI, S2PL and Serializable SI.

0.00% 

0.02% 

0.04% 

0.06% 

0.08% 

0.10% 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

1  2  3  5  10  20  30  50 

Er
ro
rs
 /
 c
om

m
it
 

MPL 

SSI deadlocks 

SSI unsafe 

SSI conflicts 

SI deadlocks 

SI conflicts 

S2PL deadlocks 

(b) Error rates at SI, S2PL and Serializable SI.

FIGURE 6.17: Throughput and error rates for InnoDB running TPC-C++ Stock Level
Mix with 10 warehouses.

108 6 PERFORMANCE EVALUATION

0 

50 

100 

150 

200 

250 

300 

350 

400 

0  10  20  30  40  50 

Co
m
m
it
s 
/ 
se
co
nd

 

MPL 

SI 

Serializable SI 

Serializable 2PL 

(a) Throughput of TPC-C++ at SI, S2PL and Serializable SI.

0.0% 

5.0% 

10.0% 

15.0% 

20.0% 

25.0% 

30.0% 

35.0% 

40.0% 

45.0% 

50.0% 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

SI
 

SS
I 

S2
PL
 

1  2  3  5  10  20  30  50 

Er
ro
rs
 /
 c
om

m
it
 

MPL 

SSI deadlocks 

SSI unsafe 

SSI conflicts 

SI deadlocks 

SI conflicts 

S2PL deadlocks 

(b) Error rates at SI, S2PL and Serializable SI.

FIGURE 6.18: Throughput and error rates for the TPC-C++ Stock Level Mix with 1
warehouse and tiny data scaling.

6.5 SUMMARY 109

6.5 Summary

In this chapter, we presented performance measurements of our two prototype implementations of Seri-

alizable SI: one in Berkeley DB, evaluated with the SmallBank benchmark, and another in InnoDB,

evaluated with the sibenchmicrobenchmark and with TPC-C++. We compared each platform’s SI and

S2PL implementations with our prototype implementations of Serializable SI. Results for SmallBank

and TPC-C++ at S2PL and Serializable SI reflect the throughput of executions that maintain consistency,

so while the throughput of SI is higher in some cases, those executions may have left the database in an

inconsistent state.

Our results show that for low-contention workloads, the cost of guaranteeing serializable executions

is small. The additional precision and optimizations implemented in the InnoDB prototype give sub-

stantially better results than we measured in the Berkeley DB prototype. However, in some situations,

where the rate of read operations was very high, the single-threaded design of the InnoDB lock manager

became evident in our measurements, and Serializable SI did not always match the performance of SI.

Summarizing our observations in this chapter:

• When the workload is CPU-bound, as in Section 6.1.2, blocking severely limits throughput:

we saw throughput using Serializable SI more than 10 times better than using S2PL, without

risking inconsistencies.

• When the workload is I/O-bound, the choice of concurrency control algorithm affects through-

put in cases where threads are holding locks while waiting for I/O. This is true for both the

exclusive locks held while the transaction log is flushed, and also for shared locks held by

S2PL while waiting to read pages that are not found in cache, as in Figure 6.17.

• Serializable SI gives performance close to SI unless the database is spending a significant

amount of time servicing reads: in that case, scalability limitations of the InnoDB lock manager

became apparent. We expect that a more sophisticated lock manager that does not rely on a

single, global mutex would help in these cases.

• If we change the transaction mix to have many read-write conflicts, we see that SI outperforms

S2PL, with Serializable SI somewhere in between, depending on the ratio of read operations

to write operations.

110 6 PERFORMANCE EVALUATION

When Serializable SI was implemented at page-level granularity (in Berkeley DB), there was a moderate

to high rate of false positives, where page-level conflicts between transactions operating on different

records caused unnecessary “unsafe” aborts, with up to 8% of all transactions aborted unnecessarily in

Figure 6.4(b).

With row-level granularity (in InnoDB) together with the optimizations in Section 3.6, the rate of false

positives detected by our prototype is much lower, because even in extreme cases such as Figure 6.16,

the rate of “unsafe” aborts was never more than 2%. In the InnoDB prototype, there was no case where

“unsafe” errors were a significant contributor to the measured throughput. This is because the true rate of

non-serializable interleavings is small and the rate of “false positives” is also low. Even when skewing

the data volume and transaction mix to induce more read-write conflicts, the interleaving required to

cause a write skew was quite rare in practice.

If read-write conflicts are the primary bottleneck, using SI or Serializable SI can significantly out-

perform S2PL, but other factors (such as I/O) often dominate the effects of concurrency control. To

measure any difference between the throughput with SI versus Serializable SI, we observed that the

following combination of conditions is required:

(1) The workload is dominated by queries run at Serializable SI (so Serializable SI is using the

lock manager but SI is not);

(2) The DBMS is using 100% CPU;

(3) There are many threads in the DBMS simultaneously (so that the lock table becomes large and

the queue waiting for the lock manager grows long); and

(4) There is no think time in the benchmark.

Each of these conditions can be addressed in turn:

(1) Run pure queries at SI. As noted in (Fekete et al., 2004), this can lead to anomalies where

a read-only query sees a database state that could not have occurred in a serializable execu-

tion. However, data consistency will be maintained, because updates will be serializable, as

described in Section 3.8.

(2) Buy a faster CPU: we used a single-CPU machine to generate results because it was more

difficult to measure differences between the isolation levels on a faster quad-CPU machine.

6.5 SUMMARY 111

(3) Limit the number of threads in the DBMS – we overrode the InnoDB default of a maximum of

8 simultaneous threads to amplify the trends.

(4) Use a benchmark that reflects a real application – we deliberately left think times out of our

benchmarks because we wanted to stress the DBMS.

CHAPTER 7

Conclusions and Future Work

This thesis began by identifying a problem: many database applications risk inconsistent results in or-

der to improve performance. In particular, we described the popular snapshot isolation algorithm that

is provided by many database systems because of its superior performance when compared with strict

two-phase locking. For applications that need to maintain data consistency using snapshot isolation,

developers have to perform careful analysis to determine whether their transactions could experience

anomalies due to interleaving of operations by the database system. If the potential for anomalies is

discovered, the only recourse is to modify the application to avoid generating non-serializable interleav-

ings. Choosing appropriate modifications is itself a delicate process of system- and application-specific

measurement and design.

Our proposal, detailed in this thesis, is to shift the responsibility for guaranteeing serializable executions

to the database management system rather than expecting application developers to detect dangerous

structures in their programs and eliminate them manually. After all, these patterns are only “dangerous”

as a consequence of the concurrency control algorithm implemented by the database platform: the same

application, run on a platform providing true serializable isolation, would maintain data consistency.

7.1 Serializable Snapshot Isolation Algorithm

This thesis presents a new method for implementing serializable isolation based on a modification of

snapshot isolation. Our Serializable Snapshot Isolation algorithm maintains the properties that make

snapshot isolation attractive, including that read operations do not delay or wait for concurrent writes,

but it prevents patterns of conflicts between transactions that could result in non-serializable executions.

Our algorithm guarantees serializable executions by adding only a small amount of data per transaction,

113

114 7 CONCLUSIONS AND FUTURE WORK

using existing mechanisms present in almost all database systems, and with low overhead under a wide

range of workloads when compared with snapshot isolation.

The Serializable SI algorithm is conservative, and in some cases leads to slightly higher abort rates than

SI. However, the impact on system throughput is generally small and in most cases when read-write con-

flicts are the primary bottleneck, performance is substantially better than the locking implementations

of serializable isolation built into Berkeley DB and InnoDB.

We presented the Serializable SI algorithm by first describing a simple version that deals only with reads

and writes to named data items, and then extending the basic algorithm to:

(1) detect phantoms introduced by predicate reads;

(2) improve its precision;

(3) reduce the cost of restarting transaction by aborting them earlier; and

(4) minimize its execution overhead by cleaning up suspended transactions and their locks earlier.

7.2 Implementation Experience

Prototype implementations of the algorithm in both Oracle Berkeley DB and the InnoDB transactional

storage backend for MySQL are described and shown to perform significantly better that two-phase

locking in a wide variety of cases, usually comparably with snapshot isolation.

One property of Berkeley DB that simplified that prototype implementation was working with page level

locking and versioning. That meant that the “basic” version of the algorithm was sufficient in Berkeley

DB to guarantee serializable executions. This thesis extends the basic algorithm to support locking and

versioning with row-level granularity, and uses a “gap” locking protocol to detect and prevent phan-

toms. The enhanced algorithm was the basis of the InnoDB prototype, and our evaluation shows the

advantages of finer granularity in much lower rates of “false positives” compared with the Berkeley DB

implementation.

7.4 EXPERIMENTAL EVALUATION 115

7.3 TPC-C++: a modification to TPC-C for snapshot isolation

In order to evaluate the performance of our algorithm, we needed a benchmark that is sensitive to SI

anomalies. Otherwise, we could only test the cost of guaranteeing serializable executions in cases where

the execution is already serializable!

Since the industry-standard TPC-C benchmark does not generate any anomalies when executed at SI,

we modified it slightly with one new transaction type, called Credit Check that determines whether the

total price of outstanding orders for a customer exceeds their credit limit, and if so, changes their credit

rating. This transaction uses the existing TPC-C schema, and is a piece of plausible business logic in

the scenario TPC-C models. However, the new transaction introduces the possibility of non-serializable

executions, where a customer may be flagged as having a bad credit rating when placing an order, even

after paying for their outstanding orders and placing another order that was not flagged as bad. We called

the modified version of TPC-C with the new transaction type TPC-C++.

7.4 Experimental Evaluation

After running a variety of workloads with the concurrency control algorithms built into Berkeley DB

and InnoDB as well as the prototype implementations of Serializable SI, we first noted that in many

cases the overall system performance was the same regardless of the choice of concurrency control. In

those situations, we recommend choosing an algorithm that guarantees serializable executions, such as

S2PL or Serializable SI, because consistency is guaranteed for essentially no cost.

To measure any difference between the throughput with SI and Serializable SI, we observed that the

workload must be dominated by queries run at Serializable SI (so Serializable SI is making many more

requests of the lock manager than SI). In addition, there must be significant load on the DBMS (with

the application spending very little time outside the DBMS). At the end of Chapter 6, we gave recom-

mendations for how to avoid this situation, so that the cost of guaranteeing serializable execution is kept

small.

116 7 CONCLUSIONS AND FUTURE WORK

7.5 Limitations

We cannot claim that our approach is superior to existing concurrency control algorithms in all situations:

• Some applications do not need strong guarantees that data is kept consistent. The data may not

be particularly valuable, or it may be feasible to reconcile inconsistencies in order to recover

from non-serializable executions.

• Our focus was on an algorithm for centralized database servers. While it would be possible to

directly implement our algorithm in a replicated or “cloud” DBMS, the overhead of maintain-

ing SIREAD locks as described in this thesis is likely to be prohibitive.

7.6 Future Work

In the future, we hope to further optimize the Serializable SI algorithm and improve its precision by

further reducing the rate of false positives. Our current scheme for determining whether transactions

have committed in an order that could cause a non-serializable execution (i.e., our tests for whether Tout

commits first) are conservative but not precise, particularly if one transaction conflicts with multiple

concurrent transactions before committing.

We remarked in Section 3.8 that if our algorithm is adopted by DBMS platforms, we anticipate that it

will be attractive to many users to run updates at Serializable SI and run queries at ordinary SI. Although

not serializable (under some conditions, queries may see a database state that could never have existed

in a serializable execution), this combination has an attractive combination of properties:

• update transactions are serializable, so they cannot introduce inconsistencies into the database

state;

• queries never need to obtain SIREAD locks, so they place no overhead on the lock manager

and never abort due to “unsafe” errors; and

• queries never need to be suspended when they commit.

We have not yet carried out a thorough performance analysis of this configuration, and would like to

pursue this in the future.

7.6 FUTURE WORK 117

Our existing approach acquires separate SIREAD locks for each read operation, including for predicates.

Efficient implementations of S2PL avoid acquiring many separate record locks and instead acquire in-

tention locks on larger granules such as database pages or tables. We would like to use the same idea

with Serializable SI by introducing intention-SIREAD locks (say at the table level) to reduce the number

of lock operations required to detect rw-conflicts.

Our evaluation highlighted the importance of a scalable lock manager. In future we hope to implement

this algorithm in a system with a highly concurrent lock manager to further explore its performance.

Similarly, our approach is compatible with techniques that improve the performance of concurrent up-

dates to a btree by holding short-term locks on interior pages. In addition, we are investigating how

to adapt this technique to a distributed setting to provide serializable isolation for replicated database

systems, where a centralized lock manager is not feasible, as it limits performance and is a single point

of failure.

There has been a substantial body of research relating to database replication, also called “cloud databases”.

In particular, several researchers have proposed algorithms for replication that offer snapshot isolation

across the cluster of databases as their model of correctness (Elnikety et al., 2005; Wu and Kemme,

2005). We would like to adapt Serializable SI to replicated databases such as these in order to guarantee

serializable execution in a distributed context. The main obstacle to doing so is the cost of communi-

cating the sets of data items read along with the write sets for each transaction in order for a commit

to be certified, so that all machines in the cluster agree whether it will commit or abort. However, we

do not need precise knowledge of all reads in order to detect potentially unsafe patterns of rw-conflicts.

It is sufficient for correctness to have an overestimate of the read set (that may have a more compact

representation), so we hope that the communication overhead will not be prohibitive.

References

[Adya1999] A. Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic Implementa-
tions for Distributed Transactions (PhD thesis). Ph.D. thesis, Laboratory for Computer Science,
Massachusetts Institute of Technology, March.

[Agrawal et al.1987a] Rakesh Agrawal, Michael J. Carey, and Miron Livny. 1987a. Concurrency con-
trol performance modeling: alternatives and implications. ACM Transactions on Database Systems
(TODS), 12(4):609–654.

[Agrawal et al.1987b] Rakesh Agrawal, Michael J. Carey, and Lawrence McVoy. 1987b. The perfor-
mance of alternative strategies for dealing with deadlocks in database management systems. IEEE
Transactions on Software Engineering, 13(12):1348–1363.

[Alomari et al.2008a] Mohammad Alomari, Michael J. Cahill, Alan Fekete, and Uwe Röhm. 2008a.
The cost of serializability on platforms that use snapshot isolation. In ICDE ’08: Proceedings of the
24th International Conference on Data Engineering, pages 576–585, Cancún, México, April 7-12.
IEEE.

[Alomari et al.2008b] Mohammad Alomari, Michael J. Cahill, Alan Fekete, and Uwe Röhm. 2008b.
Serializable executions with snapshot isolation: Modifying application code or mixing isolation lev-
els? In Jayant R. Haritsa, Kotagiri Ramamohanarao, and Vikram Pudi, editors, DASFAA, volume
4947 of Lecture Notes in Computer Science, pages 267–281. Springer.

[Anonymous1985] Anonymous. 1985. A measure of transaction processing power. Datamation,
31(7):112–118.

[Ashdown and others2005] Lance Ashdown et al. 2005. Oracle R© Database Application Developer’s
Guide - Fundamentals, 10g Release 2 (10.2), part number B14251-01. Oracle Corporation, Novem-
ber.

[Berenson et al.1995] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, , and P. O’Neil. 1995.
A critique of ANSI SQL isolation levels. In SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD
international conference on Management of data, pages 1–10. ACM Press, June.

[Bernstein and Goodman1981] Philip A. Bernstein and Nathan Goodman. 1981. Concurrency control
in distributed database systems. ACM Comput. Surv., 13(2):185–221.

[Bernstein and Goodman1983] Philip A. Bernstein and Nathan Goodman. 1983. Multiversion concur-
rency control - theory and algorithms. ACM Transactions on Database Systems (TODS), 8(4):465–
483.

119

120 REFERENCES

[Bernstein et al.2000] A. Bernstein, P. Lewis, and S. Lu. 2000. Semantic conditions for correctness at
different isolation levels. In ICDE ’00: Proceedings of the 16th International Conference on Data
Engineering, pages 57–66. IEEE, February.

[Bober and Carey1992] Paul M. Bober and Michael J. Carey. 1992. On mixing queries and transactions
via multiversion locking. In ICDE ’92: Proceedings of the eighth International Conference on Data
Engineering, pages 535–545, Washington, DC, USA. IEEE Computer Society.

[Cahill et al.2008] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2008. Serializable isolation
for snapshot databases. In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 729–738, New York, NY, USA. ACM.

[Carey and Muhanna1986] Michael J. Carey and Waleed A. Muhanna. 1986. The performance of multi-
version concurrency control algorithms. ACM Transactions on Computer Systems (TOCS), 4(4):338–
378.

[Carey and Stonebraker1984] Michael J. Carey and Michael Stonebraker. 1984. The performance of
concurrency control algorithms for database management systems. In VLDB ’84: Proceedings of the
10th International Conference on Very Large Data Bases, pages 107–118, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

[Chan et al.1983] Arvola Chan, Umeshwar Dayal, Stephen Fox, Nathan Goodman, Daniel R. Ries, and
Dale Skeen. 1983. Overview of an ada compatible distributed database manager. In SIGMOD ’83:
Proceedings of the 1983 ACM SIGMOD international conference on Management of data, pages
228–237, New York, NY, USA. ACM.

[Elnikety et al.2005] Sameh Elnikety, Willy Zwaenepoel, and Fernando Pedone. 2005. Database repli-
cation using generalized snapshot isolation. In SRDS ’05: Proceedings of the 24th IEEE Symposium
on Reliable Distributed Systems (SRDS’05), pages 73–84, Washington, DC, USA. IEEE Computer
Society.

[Eswaran et al.1976] Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving L. Traiger. 1976.
The notions of consistency and predicate locks in a database system. Communications of the ACM,
19(11):624–633.

[Fekete et al.2004] Alan Fekete, Elizabeth O’Neil, and Patrick O’Neil. 2004. A read-only transaction
anomaly under snapshot isolation. ACM SIGMOD Record, 33(3):12–14.

[Fekete et al.2005] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis
Shasha. 2005. Making snapshot isolation serializable. ACM Transactions on Database Systems
(TODS), 30(2):492–528.

[Fekete1999] Alan Fekete. 1999. Serializability and snapshot isolation. In Proceedings of Australian
Database Conference, pages 201–210. Australian Computer Society, January.

[Fekete2005] Alan Fekete. 2005. Allocating isolation levels to transactions. In PODS ’05: Proceedings
of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 206–215, New York, NY, USA. ACM.

REFERENCES 121

[Gray and Reuter1993] Jim Gray and Andreas Reuter. 1993. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann.

[Gray et al.1975] Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, and Irving L. Traiger. 1975.
Granularity of locks in a large shared data base. In Douglas S. Kerr, editor, VLDB, pages 428–451.
ACM.

[Gray1993] Jim Gray. 1993. The Benchmark Handbook (2nd ed). Morgan Kaufmann.

[Hadzilacos1988] Thanasis Hadzilacos. 1988. Serialization graph algorithms for multiversion concur-
rency control. In PODS ’88: Proceedings of the seventh ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems, pages 135–141, New York, NY, USA. ACM.

[Hellerstein et al.2007] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton. 2007. Ar-
chitecture of a database system. Found. Trends databases, 1(2):141–259.

[Innobase Oy2008] Innobase Oy. 2008. InnoDB web site http://www.innodb.com/.

[Jacobs et al.1995] K. Jacobs, R. Bamford, G. Doherty, K. Haas, M. Holt, F. Putzolu, and B. Quigley.
1995. Concurrency control, transaction isolation and serializability in SQL92 and Oracle7. Oracle
White Paper, Part No A33745.

[Jorwekar et al.2007] Sudhir Jorwekar, Alan Fekete, Krithi Ramamritham, and S. Sudarshan. 2007.
Automating the detection of snapshot isolation anomalies. In VLDB ’07: Proceedings of the 33rd
international conference on Very Large Data Bases, pages 1263–1274. VLDB Endowment.

[Kumar1995] Vijay Kumar, editor. 1995. Performance of concurrency control mechanisms in central-
ized database systems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[Kung and Robinson1981] H. T. Kung and John T. Robinson. 1981. On optimistic methods for concur-
rency control. ACM Transactions on Database Systems (TODS), 6(2):213–226.

[Lomet1993] David B. Lomet. 1993. Key range locking strategies for improved concurrency. In VLDB
’93: Proceedings of the 19th international conference on Very Large Data Bases, pages 655–664,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Mohan and Levine1992] C. Mohan and Frank Levine. 1992. ARIES/IM: an efficient and high concur-
rency index management method using write-ahead logging. In SIGMOD ’92: Proceedings of the
1992 ACM SIGMOD international conference on Management of data, pages 371–380, New York,
NY, USA. ACM.

[Mohan et al.1992] C. Mohan, Hamid Pirahesh, and Raymond Lorie. 1992. Efficient and flexible
methods for transient versioning of records to avoid locking by read-only transactions. In SIGMOD
’92: Proceedings of the 1992 ACM SIGMOD international conference on Management of data, pages
124–133, New York, NY, USA. ACM.

[Mohan1990] C. Mohan. 1990. ARIES/KVL: a key-value locking method for concurrency control of
multiaction transactions operating on b-tree indexes. In Proceedings of the sixteenth international
conference on Very large databases, pages 392–405, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

http://www.innodb.com/

122 REFERENCES

[MySQL AB2006] MySQL AB. 2006. MySQL Administrator’s Guide and Language Reference (2nd
Edition). MySQL Press.

[Olson et al.1999] Michael A. Olson, Keith Bostic, and Margo I. Seltzer. 1999. Berkeley DB. In
USENIX Annual Technical Conference, FREENIX Track, pages 183–191.

[PostgreSQL2009] Global Development Group for PostgreSQL. 2009. PostgreSQL web site http:
//www.postgresql.org/.

[Raz1993] Yoav Raz. 1993. Commitment ordering based distributed concurrency control for bridging
single and multi version resources. In Proceedings of Third International Workshop or Research
Issues in Data Engineering: Interoperability in Multidatabase Systems (RIDE-IMS), pages 189–198.
IEEE, June.

[Reed1978] David P. Reed. 1978. Naming and synchronization in a decentralized computer system.
Technical report, MIT, Cambridge, MA, USA.

[Sarin2009] Sunil Sarin. 2009. Dynamic Transaction Serializability in Netezza Performance Server.
New England Database Day, page http://db.csail.mit.edu/nedbday09/htdocs/
papers.php, January.

[Shi and Perrizo2002] Victor T.-S. Shi and William Perrizo. 2002. A new method for concurrency
control in centralized database systems. In Rex E. Gantenbein and Sung Y. Shin, editors, Computers
and Their Applications, pages 184–187. ISCA.

[Stearns et al.1976] R. E. Stearns, P. M. Lewis, and D. J. Rosenkrantz. 1976. Concurrency control
for database systems. In SFCS ’76: Proceedings of the 17th Annual Symposium on Foundations of
Computer Science, pages 19–32, Washington, DC, USA. IEEE Computer Society.

[Sullivan2003] David Gerard Sullivan. 2003. Using probabilistic reasoning to automate software tun-
ing. Ph.D. thesis, Harvard University, Cambridge, MA, USA. Adviser-Margo I. Seltzer.

[Tada et al.1997] Harumasa Tada, Masahiro Higuchi, and Mamoru Fujii. 1997. A concurrency con-
trol algorithm using serialization graph testing with write deferring. Transactions of Information
Processing Society of Japan, 38(10):1995–2003, October 15.

[Transaction Processing Performance Council2005] Transaction Processing Performance Council.
2005. TPC-C Benchmark Specification. http://www.tpc.org/tpcc.

[Weikum and Vossen2002] G. Weikum and G. Vossen. 2002. Transactional Information Systems: The-
ory, Algorithms and the Practice of Concurrency Control and Recovery. Morgan Kaufmann, San
Francisco, California.

[Wu and Kemme2005] Shuqing Wu and Bettina Kemme. 2005. Postgres-R(SI): Combining replica
control with concurrency control based on snapshot isolation. In ICDE ’05: Proceedings of the 21st
International Conference on Data Engineering, pages 422–433.

[Yang2007] Yang Yang. 2007. The adaptive serializable snapshot isolation protocol for managing
database transactions. Master’s thesis, University of Wollongong, NSW Australia.

http://www.postgresql.org/
http://www.postgresql.org/
http://db.csail.mit.edu/nedbday09/htdocs/papers.php
http://db.csail.mit.edu/nedbday09/htdocs/papers.php

Index

anomalies, 1

Berkeley DB, 15, 26, 57

buffer cache, 57

conflict equivalence, 11

conflict serializability, 11

conflicting transactions, 11

Credit Check Transaction, 74

dangerous structure, 21

database management system, 1

DBMS, see also database management system

dependency, see also conflicting transactions

dirty page, 58

execution history, 11

FCW, see also First-Committer-Wins

First-Committer-Wins, 15

Inconsistent Read, 1

Lost Update, 1

memory pool, see also buffer cache

Microsoft SQL Server, 15, 26

MPL, see also multiprogramming level

multiprogramming level, 28

multiversion serialization graph, 16

MVSG, see also multiversion serialization graph

Oracle, 15

PostgreSQL, 15

query, 55

response time, 28

S2PL, see also strict two-phase locking

SDG, see also static dependency graph

serializable execution, 11

serializable isolation, 11

serialization graph testing, 27

SGT, see also serialization graph testing

snapshot isolation, 14, 16, 26

SQL, 19, 26

static dependency graph, 21

strict two-phase locking, 12, 15

throughput, 28

tiny scale, 79

TPC-C++, 72

update conflict, 58

view serializability, 11

123

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	Chapter 1. Introduction
	1.1. Why does serializable execution matter?
	1.2. What makes snapshot isolation an attractive alternative?
	1.3. Why is a new approach needed?
	1.4. Contributions
	1.4.1. Serializable Snapshot Isolation
	1.4.2. Implementation Experience
	1.4.3. Anomaly-aware Performance Evaluation
	1.4.4. Summary

	1.5. Outline of the Thesis

	Chapter 2. Background
	2.1. Transactions
	2.2. Serializable Execution
	2.2.1. Strict Two-Phase Locking

	2.3. Weak Isolation
	2.4. Multiversion Concurrency Control
	2.5. Snapshot Isolation
	2.5.1. Write Skew Anomalies
	2.5.2. Phantoms

	2.6. Making Applications Serializable with Snapshot Isolation
	2.6.1. Materialization
	2.6.2. Promotion
	2.6.3. Mixing Isolation Levels
	2.6.4. Automating Static Analysis of Applications

	2.7. Serialization Graph Testing
	2.8. Database Performance Measurement
	2.8.1. The TPC-C benchmark
	2.8.2. The SmallBank Benchmark
	2.8.3. SmallBank Transaction Mix
	2.8.4. SmallBank Static Dependency Graph
	2.8.5. Making SmallBank Serializable

	2.9. Summary

	Chapter 3. Serializable Snapshot Isolation
	3.1. Design alternatives
	3.1.1. After-the-fact analysis tool
	3.1.2. Approaches to runtime conflict detection

	3.2. The Basic Algorithm
	3.3. Transaction lifecycle changes
	3.4. Correctness
	3.5. Detecting phantoms
	3.6. False positives
	3.7. Enhancements and optimizations
	3.7.1. Abort early
	3.7.2. Victim selection
	3.7.3. Upgrading SIREAD locks

	3.8. Mixing queries at SI with updates at Serializable SI
	3.9. Summary

	Chapter 4. Implementation Details
	4.1. Berkeley DB Introduction
	4.2. Adding Snapshot Isolation to Berkeley DB
	4.3. Adding Serializable SI to Berkeley DB
	4.3.1. Transaction Cleanup in Berkeley DB
	4.3.2. Analysis of the code changes

	4.4. InnoDB Introduction
	4.5. Adding Snapshot Isolation to InnoDB
	4.6. Adding Serializable SI to InnoDB
	4.6.1. Transaction Cleanup in InnoDB
	4.6.2. Analysis of the code changes

	4.7. InnoDB Testing
	4.8. Generalizing to other database engines

	Chapter 5. Benchmarks
	5.1. Adapting SmallBank for Berkeley DB
	5.1.1. Transaction Mix

	5.2. sibench: a new microbenchmark for Snapshot Isolation
	5.3. The TPC-C++ benchmark
	5.3.1. Simplifications from full TPC-C
	5.3.2. The Credit Check Transaction
	5.3.3. TPC-C++ Anomalies
	5.3.4. TPC-C++ Transaction Mix
	5.3.5. Stock Level Mix
	5.3.6. Data Scaling

	5.4. Summary

	Chapter 6. Performance Evaluation
	6.1. Berkeley DB: SmallBank evaluation
	6.1.1. Berkeley DB Evaluation Setup
	6.1.2. Short Transactions Workload
	6.1.3. Long Transactions Workload
	6.1.4. More Complex Transaction Workload
	6.1.5. Overhead Evaluation
	6.1.6. Berkeley DB Evaluation Summary

	6.2. InnoDB Evaluation Setup
	6.3. InnoDB: sibench evaluation
	6.3.1. Mixed workload
	6.3.2. Query-mostly workloads
	6.3.3. InnoDB: sibench summary

	6.4. InnoDB: TPC-C++ evaluation
	6.4.1. Larger data volume
	6.4.2. High Contention
	6.4.3. The Stock Level Mix

	6.5. Summary

	Chapter 7. Conclusions and Future Work
	7.1. Serializable Snapshot Isolation Algorithm
	7.2. Implementation Experience
	7.3. TPC-C++: a modification to TPC-C for snapshot isolation
	7.4. Experimental Evaluation
	7.5. Limitations
	7.6. Future Work

	References
	Index

