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Abstract

Eye movement artifacts represent a critical issue for quantitative electroencephalography (EEG) analysis and a number of mathematical
approaches have been proposed to reduce their contribution in EEG recordings. The aim of this paper was to objectively and quantitatively
evaluate the performance of ocular filtering methods with respect to spectral target variables widely used in clinical and functional EEG studies.
In particular the following methods were applied: regression analysis and some blind source separation (BSS) techniques based on second-order
statistics (PCA, AMUSE and SOBI) and on higher-order statistics (JADE, INFOMAX and FASTICA). Considering blind source decomposition
methods, a completely automatic procedure of BSS based on logical rules related to spectral and topographical information was proposed in
order to identify the components related to ocular interference. The automatic procedure was applied in different montages of simulated EEG
and electrooculography (EOG) recordings: a full montage with 19 EEG and 2 EOG channels, a reduced one with only 6 EEG leads and a third
one where EOG channels were not available. Time and frequency results in all of them indicated that AMUSE and SOBI algorithms preserved
and recovered more brain activity than the other methods mainly at anterior regions. In the case of full montage: (i) errors were lower than
5% for all spectral variables at anterior sites; and (ii) the highest improvement in the signal-to-artifact (SAR) ratio was obtained up to 40dB
at these anterior sites. Finally, we concluded that second-order BSS-based algorithms (AMUSE and SOBI) provided an effective technique for
eye movement removal even when EOG recordings were not available or when data length was short.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Quantitative analysis and interpretation of human electroen-
cephalographic (EEG) signals are useful methods to study
functional states of the brain, to evaluate drug effects and to di-
agnose psychiatric and neurological disorders. The most widely
used techniques to quantify changes in EEG signals are based
on spectral analysis and topographic mapping. In humans,
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EEG power is traditionally divided into spectral broad fre-
quency bands related to EEG generators and rhythms: delta,
theta, alpha and beta.

Electrical scalp recordings do not contain only cerebral ac-
tivity (EEG) but also non-cortical electrical activities, such as
artifacts of physiological and non-physiological origin. Physi-
ologic artifacts are generated from the subject and the ocular
activity is the most important. Eye movements and blinking
are a major source of EEG contamination because they occur
very frequently and the electrooculographic (EOG) signal am-
plitude can be several times larger than brain scalp potentials.
Their vertical ocular projection propagates quite symmetri-
cally in a anterior—posterior direction and it contaminates the
recorded EEG signals. Lateral eye movements mainly affect
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lateral frontal electrodes [1]. The potentials generated by ocular
activity interfere with the electric field of neural origin mainly,
in the anterior scalp regions. To a certain extent, neural activ-
ity especially from the anterior scalp area is also recorded by
electrodes placed near the eyes. EEG and EOG recordings are
therefore a mixture of brain and ocular electrical activity. This
is known as bidirectional contamination.

A critical point in EEG signal processing is the need for care-
ful treatment and reduction of these artifacts which contaminate
the EEG signals and can lead to wrong results and conclusions.

The aim of the study was to objectively and quantitatively
evaluate the performance of filtering methods based on linear
regression and component analysis with respect to spectral tar-
get variables and topographic maps, both widely used in clini-
cal and functional EEG studies. For this purpose, two different
EEG channel configurations were used and even the absence
of EOG recordings was also considered.

The most common reduction method is based on linear
regression in the time or frequency domain. This method
estimates and removes the influence of EOG on the signals
recorded by scalp electrodes from the EEG recordings. How-
ever, this technique has an inherent drawback that is the
aforementioned bidirectional contamination. In other words,
regression procedures consider that the EEG recording is not
correlated with the EOG recording, and this assumption is
generally erroneous. Therefore, relevant cerebral information
contained in the EOG recordings can also be cancelled in the
EEG recordings corrected by means of regression techniques
[2]. Some studies suggest that most of the high frequency
range in the EOG is of neural origin. Thus, in order to reduce
the cancellation of interesting cerebral information, low-pass
filtering of the EOG signals has been proposed before the
application of a time domain regression approach [3]. Further-
more, a recent study suggests that ocular artifact effects in
EEG signals are not only present in delta and theta ranges, but
also in alpha and beta bands, so the above-mentioned filtering
does not seem to be an adequate solution [4].

Other approaches for ocular artifact reduction are based on
a linear decomposition of the EEG and EOG recordings into
source components, the so-called blind source separation (BSS)
techniques. These component-based methods permit the iden-
tification of artifactual sources, and then the reconstruction
of EEG recordings without these sources. The first proposed
component-based procedure was the principal component anal-
ysis (PCA) [5]. By means of a rotation, PCA transforms a
multi-variable data set into components which are spatially or-
thogonal. The main drawback with PCA is the assumption of
orthogonality between neural activity and ocular artifact and
this is not generally true. Lagerlund et al. reported that PCA
could not completely separate eye artifacts from cerebral activ-
ity, especially if they have similar amplitudes [6].

In order to overcome the limitations and constraints pre-
sented by regression and PCA procedures newer approaches
use blind source extraction based on independent component
analysis (ICA). The assumption taken into account in these ap-
proaches is that sources must be statistically independent, not
just uncorrelated and this is mostly true with regard to the brain

and ocular components. ICA is currently considered an impor-
tant technique for removing artifacts from EEG signals [2,7,8].
However, most of the studies detect visually artifactual com-
ponents following a subjective criterion. In order to overcome
this subjectivity, few studies have been carried out using a com-
pletely automatic artifact correction process based on statistical
properties like kurtosis, entropy or correlation with EOG chan-
nels [9-11]. Many articles use these filtering approaches in real
EEG data. However, the quantitative evaluation of the goodness
of each correction method is very difficult because it is neces-
sary to know which are the true brain and ocular components.
To date, few sets of algorithms based on simulated data have
been evaluated in order to solve this problem [10,12]. Further-
more, opposite results were obtained: in the former study, the
best performance was obtained with an ICA algorithm [10],
while in the latter, ocular artifact correction methods based on
regression and PCA performed better than ICA-based correc-
tion procedures [12]. Besides, some of the ICA algorithms that
were evaluated and inadvisable in [10] require much longer
data segments than the epoch duration considered in that study
in order to work properly [13]. In addition, the approach on
which the results of [10] were based, an eye tracker procedure,
is quite different from the clinical routine, where spontaneous
EEG signals are commonly acquired with closed eyes and with
normal (not fast forced) eye movements. Moreover, another
recent study defended regression-based methods against BSS
when the number of EEG leads was small [14]. Concerning
this point, a reduced number of electrode configuration or even
without EOG leads (where linear regression approach and au-
tomatic procedures based on correlation with EOG channels
are not applicable) have not been yet analyzed. Finally, the ef-
fects of filtering results on the spectral bands widely used as
target variables and on the distribution of the correction effec-
tiveness through the scalp topography have not been analyzed
either.

This study takes into account all the questions mentioned
above and proposes a completely automatic BSS procedure
in simulated EEG and EOG recordings with different dura-
tions, where the cerebral and ocular components are previously
known, in order to simulate real clinical situations.

2. Methodology
2.1. Subjects and instrumentation

Forty healthy volunteers, 20 males and 20 females, aged be-
tween 20 and 32 years (mean age 23.75 years) were selected for
the study from a larger database corresponding to clinical EEG
studies with closed eyes. Twenty volunteers with normal eye
movements were selected following inspection of EOG signals.
The remaining 20 volunteers were carefully chosen based on
the criterion of no apparent eye movements. Spontaneous EEG
and EOG signals, sampled at 100 Hz, were recorded during a
3-min vigilance-controlled condition with eyes closed. During
the acquisition, the experimenter kept the volunteers alert by
means of acoustic stimulation as soon as drowsiness patterns
appeared in the EEG signals.
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The vertical EOG (VEOG) signal was recorded from mid-
forehead (2.5 cm above the pupil) to the average of one elec-
trode below the left eye and one electrode below the right eye
(2.5 cm below the pupil). The horizontal EOG (HEOG) signal
was obtained from the outer canthi. EEG signals were recorded
from 19 electrodes placed on the scalp according to the inter-
national 10-20 system on the following locations: Fpl, Fp2,
F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, TS, P3, Pz, P4, T6,
Ol and 02, referenced to averaged mastoids [15]. The ampli-
fiers used were neuroscan synamps. The signals were recorded
using a band pass filter between 0.3 and 50 Hz.

2.2. Simulated data

As the propagation of the signals (EEG and EOG) is very
fast, a simultaneous linear mixture between source EEG (EEGy)
and EOG (EOGgy) signals is proposed in order to simulate a real
case [12]. Twenty 3-min epochs were simulated according to
an instantaneous mixing model between the EEGs and EOGgq
coming signals expressed by

(EOGm> s (EOGS)
EEGy, EEG, /)’
where the subindexes m and s denote mixed and source signals.
Simulated data was created by mixing EEGy and EOG¢ com-

ing from different subjects in order to guarantee independence
between them.

ey

Regarding the ocular activity, one 3-min epoch with ver-
tical and horizontal eye movements was selected from each
one of the first 20 subjects in the database. Then, individ-
ual vertical (o) and horizontal () propagation factors, repre-
senting the proportion of the amount of EOG that is present
in a particular EEG channel, were calculated for each EEG
channel by means of linear regression using all this 3-min
epoch. That is, measured EEG signals were considered depen-
dent variables and measured VEOG and HEOG signals were
used as independent variables in the linear regression. This re-
gression was carried out for each of the 20 subjects in order
to obtain 20 sets of propagation factors that reflected differ-
ent real situations of ocular interferences. For the procedure,
only samples with high VEOG or HEOG amplitude were used
to calculate the sum of squares of regression analysis [16].
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These propagation factors were used as the weights of the
mixing matrix A which contaminates the EEGy signals. Next,
VEOG and HEOG signals from this available data were low-
pass filtered with a cut-off frequency of 7.5Hz in order to
guarantee that the majority of potentials were of ocular origin
[3]. These filtered signals were considered VEOG and HEOG
sources.

EEG sources were considered following the criterion of
low ocular activity. One 3-min epoch was selected from
each one of the remaining 20 subjects in the database. The
criterion to select a certain segment was that no samples
of the VEOG or MEOG exceeded 40 uV during the 3 min.
EEG sources were obtained by high-pass filtering all the 19
EEG derivations with a cut-off frequency of 0.5Hz in or-
der to guarantee that very low frequency components were
removed.

Ocular contamination was simulated by means of the
addition of VEOG and HEOG sources (weighted by their
corresponding propagation factors) to the EEG sources which
composed the EEGy, signals. Neural contamination by cere-
bral activity was then simulated by the partial contribution
of the average fronto-polar (Fpl and Fp2) and lateral frontal
(F7 and F8) activities which composed VEOG;, and HEOG,
signals, respectively. The partial contribution of the EEGy into
the EOG, was assumed to be the same propagation factor as
that from the VEOG; or HEOG; into the EEGy, signal. Eq.
(2) describes the global mixing process followed in order to
obtain EOGy, and EEGy, signals.

"VEOGn71 1 0 oapp/2 opp/2 O 0 0 07 [ VEOG; T
HEOG, 0o 1 0 0  Bp/2 Peg/2 O 0 | | HEOG;
Fplpm aFpl Prpi 1 0 0 0 0 0 Fply
Fp2m o2 Pr O 1 0 0 0 0 Fp2,
Fim |~ | @;7 Ppr 0 0 1 0 0 0 Fr, |0 @
F8pm ops  Prg O 0 0 10 0 F8,
L 020 1 Laogs By O 0 0 0 1L oz _

where oggG and fipgg represent the vertical and horizontal ocu-
lar propagation factors, respectively, which are calculated using
the EEG channel denoted by the subindex. Mixing procedure
by means of Eq. (2) was carried out 20 times in order to sim-
ulate 20 subjects or sets of mixed signals. In each case, EOGg
signals with their corresponding propagation factors and EEG,
were used. A schematic diagram of the simulation process is
shown in Fig. 1.

2.3. Regression-based approaches to ocular artifacts reduction

The multiple linear regression method in the time domain
which was applied in this study was based on the methodology
described in Semlitsch et al. [17]. Individual regression factors
(y for VEOG, and ¢ for HEOG,) were calculated for each
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where N and M represent the number of samples used for the
calculation of y and J, respectively.

In order to improve the estimation of these factors, only
samples with high VEOG,, or HEOGy, amplitudes were used
to calculate the sum of squares for regression analysis [16].

Regression methods assume that the recorded EEG signals
(EEGp,) are a linear, time-invariant superposition of differ-
ent sources. The corrected EEG (EEG,) signals were obtained
by removing the portion of VEOG,, and HEOG,,, which was
present in the EEGy,

EEG.(t) = EEGy(t) — y - VEOG, () — 0 - HEOG (2).  (4)

It is known that this method also removes part of the cerebral
activity which is present in the EOGy, channels [2]. To reduce
this cancellation of cerebral information, some studies suggest
a low-pass filtering (cut-off frequency of 7.5Hz) of EOGp
signals before the application of the regression procedure [3].
This option was also considered to be evaluated in this study
with the name of ‘filtered regression’ method.

2.4. Spatial component approaches to ocular artifacts
reduction

BSS methods consider the parametric estimation of the
following generative model for the data:

x=A"s, (5)

where x and s are matrices composed by n and m row vectors,
respectively, and A is a n x m matrix which must be estimated.
In other words, there are mixtures x; (0 <i<<n) composed by
original source signals s; (0 < j <m). Nothing is known about
the mixing process A or the sources s; whose estimation is the
objective of BSS.

2.4.1. Uncorrelated sources
Second-order statistics (SOS) techniques only consider the
assumption that source signals are uncorrelated in order to

estimate the mixing matrix and the original sources. Three tech-
niques were considered in this study: PCA, algorithm for mul-
tiple unknown signals extraction (AMUSE) and second-order
blind identification (SOBI). The PCA procedure calculates a
rotated orthogonal matrix A in such a way that mixtures in the
new coordinates become uncorrelated. In other words, PCA
obtains a low-dimensional representation of data which con-
tains most of their variance. AMUSE [18] and SOBI [19] be-
long to the group of spatio-temporal decorrelation procedures
with SOS. These algorithms are sometimes classified as ICA
techniques [20]. In fact, uncorrelation is a weak form of statisti-
cal independence. As EEG and EOG data have temporal struc-
tures, less restrictive conditions than statistical independence
are often sufficient to estimate the mixing matrix and sources.
Basics of AMUSE and SOBI algorithms consist of simulta-
neous diagonalization of the corresponding lagged covariance
matrix (using one time lag for AMUSE and several lags for
SOBI).

2.4.2. Independent sources

Higher-order statistics (HOS) are crucial to solve the BSS
problem when original sources are assumed to be statistically
independent. This independence is a more general concept than
decorrelation: two random variables are statistically indepen-
dent if knowledge of the values of one variable provides no
information about the values of the other one. There are sev-
eral procedures to measure statistical independence, basically
based on approaches of non-gaussianity, mutual information
and maximum likelihood estimation [20].

In this study, three common ICA methods, with their vari-
ations, were evaluated: JADE [21], INFOMAX [22] and
FASTICA [23]. The JADE algorithm is based on the joint
approximate diagonalization of eigenmatrices defined by
fourth-order cumulant tensors. The INFOMAX principle con-
sists of the maximization of the joint entropy of a neural
processor output, that is the same as minimizing the mutual
information among the output components. Besides, in this
work we applied an extended-INFOMAX version [24], which
performs the decomposition on linear mixtures with either sub-
or super-gaussian distributions. Finally, FASTICA is a com-
putationally efficient implementation based on a maximization
of the non-gaussianity given by the negentropy.

ICA algorithms require a sufficient number of samples to
provide reliable results. A minimum number corresponding to
a few times the square of the number of channels is usually
needed to obtain reliable decompositions [13]. However, sta-
tionarity of the signal cannot be assumed when long time seg-
ments are used. Thus, additional data points improve the decom-
position of HOS algorithms only if relative stationarity of the
spatial structure of the EEG and EOG sources can be assumed.
In order to evaluate this effect, different duration of epochs of
EEG, and EOGy, signals were considered when component
based methods, SOS and HOS algorithms, were applied: 5, 10,
15, 30, 60, 90, 120 and 180s.

Decomposition procedures were performed using the
functions included in the ICALAB toolbox v2.2 for
Matlab [25].
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2.4.3. Automatic selection of artifact-related components

In Eq. (5), rows of the observed matrix x were the sim-
ulated EEGy, and EOGy, signals recorded at different elec-
trodes. Once the components were estimated by means of any
of the algorithms mentioned above (§ = W - x), the rows of
the matrix § were the estimated source signals s; (indepen-
dent components: IC), and the columns of the inverse matrix
W1, which was the estimation of A, provided the projection
strengths of each IC onto the scalp sensors. Therefore, scalp
topographies of the IC allowed examination of the biological
origin and to decide whether or not an IC was related to an
artifact.

Thus, automatic artifact identification was based on fre-
quency and scalp topography aspects of the IC. The criteria
to remove an IC related to an eye movement artifact were
simultaneously:

(i) Relative power in delta band in excess of a certain high
percentage.

(i) Projection strength (normalized to the maximum) on the
EOG electrodes above a certain threshold. This condi-
tion was related to the correlation between IC and EOG
channel.

(iii) Projection strength on the EEG electrodes following a gra-
dient related to the propagation of the ocular artifact that
is empirically known [26]. These values had to decrease in
the following order: fronto-polar, frontal, central, parietal
and occipital areas in the case of vertical movement; and
frontal, central, parietal and occipital areas in the case of
horizontal movement.

(iv) Maximum projection strength on the EEG electrodes
higher than a threshold, whose value depended on whether
the interference corresponded mainly to a vertical or a
horizontal eye movement.

After detecting IC related to EOG interference, corrected
EEG was reconstructed from the remaining components by
zeroing out the corresponding rows of the matrix s.

2.5. Validation of correction

Frequency variables often used in clinical EEG studies were
selected in order to evaluate the correction effect of each tech-
nique described above. Spectral analysis was performed for all
EEG channels. Power spectral density (PSD) functions were
calculated by means of periodogram using a Hanning window
of 5-s duration [16]. Several variables were calculated from the
PSD functions: total power (0.5-35 Hz), and absolute and rela-
tive power of the following bands [27]: delta (0.5-3.5 Hz), theta
(3.5-7.5Hz), alpha (7.5-13 Hz) and beta (13-35 Hz). Relative
variables were calculated with respect to the total power. These
band power values were calculated for further comparison be-
fore and after EOG correction. Percentage errors in each spec-
tral variable were calculated between the sources (true values)
and all the corrected EEG channels. Furthermore, the mean
square error (MSE) between sources and corrected EEG signals
was calculated for all the methods.

3. Results
3.1. Simulated data

Results in the time domain of the simulation procedure can
be observed in Fig. 2. Fig. 2a shows an example of 5s epoch
corresponding to EEG sources from one volunteer and EOG
sources from another, in order to guarantee that there is no con-
tamination between them. Fig. 2b shows the mixed EEG and
EOG data obtained multiplying the sources by the correspond-
ing weight matrix applying Eq. (1). The bidirectional contam-
ination between cerebral and ocular activity can be observed
in Fig. 2b, especially in the VEOG and fronto-polar (Fpl and
Fp2) channels.

Elements of the 20 mixing matrices applied to simulate the
propagation of the ocular activity over the scalp were obtained
from the vertical and horizontal regression factors calculated
for each subject who provided the EOG sources. Table 1 shows
VEOG and HEOG propagation factors in mean and standard
deviations for the 20 subjects related to the sources of ocular
activity.

VEOG propagation factors were maximal at the fronto-polar
electrodes (Fpl and Fp2), decreasing from anterior to posterior
channels. HEOG interference had opposite signs for left and
right hemispheres, obtaining the maximal propagation factors
in absolute values at lateral-frontal channels (F7 and F8).

Signal-to-artifact ratio (SAR) was computed for each EEG
channel in order to evaluate the extent of ocular contamination
over the scalp. Thus, this index was defined as the ratio between
the total power of the true cerebral component (EEG source)
and the total power of the true EOG component (corresponding
to the propagation of both vertical and horizontal ocular activity
to that channel). This true EOG component could be rewritten
as the MSE between the mixed (contaminated) EEG signal and
the EEG source.

SARERG
SN (BEGn(i))?
=10 log — N —
Z,’:] (UEEG - VEOG; (i) + ﬁEEG -HEOG; (7))
N
E EEG
~ 10 log nergy{EEG;} ©)

MSE(EEG,, — EEGy}’

where opgg and fggg were the vertical and horizontal propa-
gation factors, respectively, for this EEG channel, and N was
the number of samples. Fig. 3 shows a scalp map with the SAR
calculated by averaging the values obtained for the 20 simu-
lated mixed data. Lower SARs were obtained in anterior chan-
nels and the index increased toward the posterior scalp sites.
The almost total symmetry of the map was logical.

3.2. Effect of artifact filtering on time courses

Fig. 4 shows three EEG channels (Fpl, F7 and C3) corre-
sponding to the same 5s interval shown in Fig. 2, before and
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Fig. 2. (a) Five seconds epoch corresponding to EEG and EOG sources from two different volunteers. (b) Five seconds segment corresponding to mixed EOG
and EEG signals obtained after applying the linear mixing simulation procedure to the sources shown in (a). Mixed EEG signals contained a prominent slow

eye movement.

Table 1
Vertical and horizontal EOG regression factors for the 20 subjects whose
EOGg were extracted for the mixture process (mean = std)

Channel VEOG HEOG

Fpl 0.969 £ 0.075 0.029 £ 0.046
Fp2 0.983 £0.083 —0.063 +0.041
F7 0.439 £0.142 0.309 + 0.055
F3 0.495 £0.101 0.085 £ 0.027
Fz 0.409 £ 0.095 —0.008 +0.022
F4 0.463 £0.107 —0.103 £ 0.026
F8 0.405 £0.143 —0.300 +0.036
T3 0.104 £ 0.046 0.114 £ 0.026
C3 0.223 £+ 0.069 0.073 £ 0.025
Cz 0.202 £ 0.069 —0.001 £0.022
Cc4 0.221 £ 0.081 —0.073 £0.023
T4 0.114 £ 0.073 —0.113 +£0.031
T5 0.005 £0.108 0.027 £+ 0.026
P3 0.113 £0.056 0.030 £ 0.024
Pz 0.094 £ 0.052 —0.001 +0.024
P4 0.050 £ 0.025 —0.033 £0.019
T6 0.053 £ 0.035 —0.035+£0.017
01 0.027 £ 0.029 0.009 £+ 0.023
02 0.027 £ 0.029 —0.007 +0.021

after applying the different ocular removal techniques. Visual
effectiveness of the proposed correction procedures on differ-
ent EEG channels can be observed. Comparing the sources
with the corrected EEG signals by means of regression-based
techniques, this approach also reduced neural activity recorded
in EOG data. This effect was especially located at anterior EEG
channels because of the bidirectional contamination between

-10 dB

-5dB

0dB

5dB

10 dB

1]
|
|
{
|

1

15 dB

20 dB

Fig. 3. Scalp topography of the averaged SAR ratio. Dark grey represent
negative values of SAR (high ocular contamination) and light grey depict
positive SAR values (weak ocular contamination).

ocular and cerebral activity. PCA procedure also removed in-
teresting cerebral activity at anterior channels. In spite of HOS-
based techniques eliminated quite accurately ocular artifacts as
the rest of the methods, corrected EEG signals showed modified
cerebral activity in frontal sited locations with respect to EEGyg
signals. By visual inspection, SOBI algorithm produced more
similar corrected EEG signals to the original source than other
methods at the fronto-polar (Fpl) and the lateral-frontal (F7)
channels. Very similar results were obtained for the AMUSE
algorithm, indicating that SOS techniques extracted eye
movement artifacts with less loss of cerebral information.
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Fig. 4. Visual comparison of results corresponding to mixed and corrected EEG signals. Different automatic ocular correction techniques were applied to the
5s segment shown in Fig. 2b). Original sources are also displayed. Only three channels are plotted as examples: (a) Fpl; (b) F7 and (c) C3. More posterior
channels showed a better performance for all the correction methods since ocular incidence is lower than in anterior channels.

No apparent visual differences between ocular correction ap-
proaches were observed for the central and more posterior
channels.

3.3. Validation of correction

3.3.1. Target variables

BSS was applied using different epoch durations: 5, 10,
15, 30, 60, 90, 120 and 180s. For the regression procedures,
the propagation factors only depended on the subject and the
electrode location at the scalp. Therefore, these factors were
obtained considering all the available 180 s in each simulated
subject. If only few seconds including ocular artifacts were
used for their computation, it was difficult to obtain reliable
factors because there were not enough eye movements for the
estimation [16]. Percentage errors between the EEG sources
and the corrected EEG signals were calculated for each filtering
technique and for all spectral variables. These errors, in abso-
lute and relative powers of delta, theta, alpha and beta bands,
are shown in Fig. 5. Mean values for all the 19 EEG channels
and all the 20 simulated data are presented using different dura-
tion of epochs for the blind separation in the component-based
procedures. Errors for AMUSE algorithm are not depicted
because they were very similar to errors obtained for SOBI

algorithm. Besides, similar percentage errors were obtained
for AMUSE and SOBI in all different epoch durations. Errors
increased slightly with higher durations for PCA. However,
errors decreased by increasing the epoch length of the data
in HOS-based techniques (JADE, INFOMAX and FASTICA).
Percentage errors for AMUSE and SOBI were lower than for
the other approaches in all epoch durations.

Table 2 shows the percentage errors averaged across chan-
nels obtained with different EOG correction procedures and
using the epoch duration which provided the minimum error in
each technique: 5s for PCA decomposition, 90s for AMUSE
and SOBI and 180-s epochs for HOS-based algorithms.
Percentage errors for non-corrected EEG signals are also
included.

The spectral band with the highest error in non-corrected
EEG signals was the delta band where there was the main
incidence of ocular contamination in the EEG channels. All
the correction methods reduced percentage errors obtained for
the mixed (no corrected) EEG signals in absolute and relative
delta band. Errors for absolute alpha and beta powers obtained
by regression analysis were high due to additional removal
of neural activity which was common to the EOG and EEG
channels. These errors were reduced after applying the filtered
version of the regression technique.
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Fig. 5. Percentage errors between corrected EEG signals and EEG sources, obtained by averaging all the 19 EEG channels and the 20 simulated subjects.
Different duration epochs in the component-based correction techniques are considered. All spectral variables are represented: absolute and relative delta ((a)
and (b), respectively), theta ((c) and (d), respectively), alpha ((e) and (f), respectively) and beta ((g) and (h), respectively). Two graphs with different y-axis
scale are used because of the different range of values between HOS-based methods (right graph) and the others (left graph).

Table 2
Percentage errors (%) in spectral variables for EOG correction procedures
Spectral variables EOG correction algorithms

Non-corrected Regression Filtered regression PCA Amuse Sobi Jade Extended INFOMAX FASTICA
Total power 97.79 27.36 8.39 22.01 1.59 2.06 22.17 35.13 40.13
Abs. delta 273.64 25.02 24.74 21.69 2.35 3.46 33.58 52.74 52.62
Rel. delta 57.03 11.19 20.48 13.97 1.11 1.83 8.28 10.56 8.91
Abs. theta 21.07 26.80 7.05 22.80 1.44 1.48 2132 29.54 40.84
Rel. theta 20.72 6.66 18.09 520 094 1.24 6.73 5.80 9.11
Abs. alpha 0.67 29.96 0.63 25.27 0.79 0.85 20.75 30.29 28.96
Rel. alpha 26.75 10.50 12.86 9.45 1.52 2.02 8.24 9.12 8.86
Abs. beta 0.00 28.22 0.00 26.68 0.62 1.08 22.19  56.28 51.71
Rel. beta 26.96 9.81 12.04 10.39 1.75 1.90 9.47 13.99 12.22
Mean of variables 58.29 19.50 11.59 17.50 1.35 1.77 16.97 27.05 28.15

Mean of all EEG channels and mean of all the simulated subjects.
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Fig. 6. Topographic maps of the errors (%) between the sources and the corrected EEG signals by means of different ocular correction procedures. Errors (%)
between sources and mixed (non-corrected) signals are included in the first column. Color key is discretized from white to black in 5% stripes. Errors higher

than 50% are depicted as a dark red colour.

Errors with HOS techniques were generally higher than with
the filtered regression-based approach in all variables, espe-
cially with INFOMAX and FASTICA algorithms. Regression,
PCA and JADE provided similar errors. Regarding the error as
an average of all variables, the lowest errors by far were ob-
tained with AMUSE and SOBI. The former algorithm was the
best approach because it provided a mean error below 2.5% for
all spectral variables.

3.3.2. Topographic maps

The extent of ocular removal in each EEG channel was eval-
uated by representing the distribution of the spectral errors over
the scalp. Fig. 6 shows the topographic maps of these per-
centage errors for each EOG correction procedure using the
epoch duration which provided the minimum error (see Sec-
tion 3.1). Observing the results for non-corrected EEG signals,
the effect of ocular artifacts only was confirmed in delta and
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Fig. 7. Topographic maps showing improvements of SAR after applying the ocular artifact correction procedure. Best performances of the methods were selected.

Table 3

Percentage errors (%) in spectral variables for bss-based ocular reduction procedures

Spectral variables EOG correction algorithms

Non-corrected PCA Amuse SOBI JADE Extended INFOMAX FASTICA
Total power 97.79 23.93 12.89 10.72 353 32.51 48.61
Abs. delta 273.64 38.99 32.77 28.36 58.66 44.04 77.77
Rel. delta 57.03 22.9 12.68 13.25 14.89 11.23 17.08
Abs. theta 21.07 23.82 7.12 6.38 34.03 27.41 43.62
Rel. theta 20.72 10.21 6.66 6.29 9.87 7.34 11.76
Abs. alpha 0.67 24.49 5.17 4.07 27.11 30.49 35.57
Rel. alpha 26.75 12.61 6.91 7.18 10.94 9.06 11.46
Abs. beta 0.00 26.67 6.76 6.49 37.75 43.19 48.33
Rel. beta 26.96 14.68 7.10 6.82 12.97 10.57 12.01
Mean of variables 58.29 22.03 10.89 9.95 26.83 23.98 33.02

No EOG information—mean of all EEG channels and mean of all the simulated subjects.

theta bands. Topographic results were coherent with the prop-
agation of eye movements over the scalp. Maximum errors
were located at anterior sites, especially in fronto-polar and
lateral-frontal channels. Although errors for absolute powers
were similar between regression and ICA techniques at fronto-
polar and lateral-frontal channels, lower values were obtained
for the latter in relative powers. The high errors for absolute
alpha power showed that regression and PCA techniques re-
moved more cerebral activity than the other methods. This was
related to the bidirectional mixing simulation approach which
introduced interferences in the broadband spectral power of the
mixed EOG signals.

Comparing regression results with their filtered version, an
improvement with the latter was observed in absolute vari-
ables related to theta and alpha bands. AMUSE and SOBI algo-
rithms presented lower percentage errors than other correction
approaches in all spectral variables. Errors in the fronto-polar
channels were low, around 5%, and they were even lower in
the remaining channels.

Another index to quantify the performance of the ocular cor-
rection techniques was the improvement of SAR. Initial SAR
for each channel before filtering was obtained using Eq. (6).
Final SAR after filtering was calculated by the quotient be-
tween energy of true EEG source and MSE corresponding to
corrected EEG signal and EEG source

Final SARggG (in dB) = 101 Energy{EEG) )
1ma m = (0] .
EEG & MSE{EEG. — EEG.}

The improvement of SAR (ASAR) was obtained subtracting
the final SAR from the initial SAR.

. MSE{EEG, — EEGg}
ASAREgG (in dB) = 101og . ®)
MSE{EEG. — EEGg}

Corrected EEG signals would be equal to the EEG source
with an ideal filtering, so MSE between them would be zero
and ASAR would tend to infinite. Fig. 7 shows the topographic
maps corresponding to improvements of SAR for each chan-
nel obtained by means of the same ocular correction methods
shown in Fig. 6. ASAR reached up to 25dB for lateral-frontal
channels with both regressions based approaches, whereas im-
provement with PCA and HOS-based techniques were around
15 dB for practically all EEG channels. AMUSE and SOBI al-
gorithms provided the highest improvements of SAR (range:
from 21.4dB (02) to 41.7dB (F7)).

3.4. Other channel configurations and absence of EOG
recordings

One of the main advantages of applying BSS procedures
with respect to linear regression methods is that EOG record-
ings are not necessary as reference channels. However, all the
studies until now reported have incorporated these ocular sig-
nals in order to improve the decomposition and the automatic
identification of the IC related to the ocular activity. The same
quantitative evaluation procedure described in this work was
proposed in order to study the performance of the ocular re-
duction techniques when EOG channels were not available.
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Fig. 8. A comparison of the percentage errors obtained for different EOG and
EEG channel configurations in some spectral variables. Mean values were
calculated from averaging all the nine target variables.

Source components were estimated by using only the 19 EEG
channels in the BSS procedure. In this case, the algorithm pro-
posed in this paper for the automatic ocular artifact identifica-
tion was modified by replacing the EOG electrodes with the
frontopolar (if vertical movement) or lateral-frontal (if horizon-
tal) channels in the second criterion. Table 3 shows average
percentage errors obtained for different ocular reduction meth-
ods using the same epoch duration as in Table 2. Comparing
results from both tables, errors for every BSS-based method not
using EOG recordings were logically higher than those obtained
when EOG channels were included in the source decomposi-
tion. However, error values for SOBI algorithm without con-
sidering EOG channels were much lower than those obtained
with the gold standard method (regression approach) and even
slightly lower in average (9.95%) than those with the filtered
regression procedure (11.59%).

On the other hand, a reduced or limited number of EEG
electrodes is often used in sleep studies [28] and when subjects
are neonates or young infants, due to the size of the head [29].
For the analysis of these situations and the comparison of these
methods with a small number of EEG channels, a configuration
including only six EEG electrodes (Fpl, Fp2, C3, C4, Ol and
02) was considered. In this case, filtered regression method
and SOBI algorithm were applied to mixed multichannel data
(two EOG and six EEG). Fig. 8 shows a comparison of the
percentage errors in several target variables obtained for the
different EEG and EOG channel configurations studied after
applying both approaches and using an epoch duration of 90 s
(similar values were obtained for AMUSE and SOBI). Results
showed that percentage errors became higher in each method
using a configuration with few EEG electrodes, but they kept
in average much lower for SOBI algorithm than for filtered
regression.

4. Discussion and conclusion

Ocular contamination of EEG data is an important and a very
common problem in the diagnosis of neurobiological events
because of the overlap between EEG and EOG in frequencies
which can lead to wrong conclusions. Several techniques have

been proposed to remove eye movement artifacts from sponta-
neous EEG signals based on regression analysis and BSS. For
component-based methods, a new automatic procedure using
logical rules, which are based on spectral and topographical in-
formation, is presented in order to identify the components re-
lated to eye activity. Results showed that all methods were able
to reduce eye activity which contaminated EEG data. Evalua-
tion of the performance of these correction techniques is dif-
ficult because of the inability to directly measure the electric
activity of eyes and brain separately. To quantify the correction
success of a method it is necessary to work with simulated EEG
signals reproducing standard clinical situations that are as real
as possible. The comparative study is based on spectral vari-
ables and topographic maps that are commonly used in clinical
routine.

Ocular removal procedures based on regression analysis are
considered as the gold standard method in spontaneous EEG
signals [16] because they provide a relatively simple mathe-
matical solution by removing the ocular component from EEG
channels. However, a partial neural component is also sub-
tracted by the regression process due to the mutual contamina-
tion between EEG and EOG channels. In this study, this was
shown by the corrected signals from the fronto-polar channels
(see Fig. 4) and by the high errors obtained for absolute al-
pha power (29.96%). This neural removal was partly reduced
by applying a low-pass filter to the EOG channels before the
subtraction. Errors with filtered regression were almost zeros
for absolute power in fast bands (alpha and beta) since no oc-
ular contamination was included by the simulation procedure.
However, worse results were shown for relative powers of these
bands (around 12%, see Table 2).

Smaller errors were obtained for PCA using short duration
data (see Fig. 5), although they were not lower than for regres-
sion (see Fig. 6). PCA does not use a realistic physical solution
since there is no reason to assume that EOG and EEG sources
are orthogonal. To overcome this unrealistic constraint, other
SOS and HOS techniques have appeared which decomposed
the sources more properly.

HOS-based techniques use statistic information as higher or-
der cumulants, entropy or maximum likelihood estimation in
order to separate the sources by minimizing an approximation
of mutual information. They are composed of time consum-
ing iterations for optimizing certain HOS-based cost functions.
HOS-based algorithms required a certain data length. Delorme
et al. [13] recommend at least a number of samples correspond-
ing to a few times (k) the square of the number of channels.
In our case, k - 212 =k - 441 samples were needed, where k
is an integer. Results showed that errors decreased with higher
data length and tended to similar values to those obtained with
PCA when increasing data length. Although the lowest errors
were obtained with an epoch duration of 180 s (18 000 samples
which corresponded to k =40), similar values to these minima
were already obtained with 90s (9000 samples which corre-
sponded to k = 20). Stationarity of the spatial structure of the
sources has to be assumed when a long data epoch is used, be-
cause these approaches would not be appropriated in another
case.
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Separation by SOS and HOS-based algorithms was not ex-
pected to be similar because they have different assumptions
about sources modeling. Sources extracted by HOS-based
methods are generally noisier than sources extracted by SOS
techniques. AMUSE and SOBI algorithms use temporal struc-
ture of mixed EEG signals to achieve the blind separation.
These spatio-temporal decorrelation procedures are simple,
fast to compute and robust. Besides, they were not sensitive
to the duration of data in the present study. Similar errors
were obtained for all epoch durations and for both approaches
(see Fig. 5). Time and frequency results indicated that these
SOS-based ocular removal techniques preserved and recovered
more brain activity than the other methods. Best ocular cor-
rected EEG signals were obtained using them for blind separa-
tion: errors lower than 5% for all spectral variables at anterior
sites (lower than 2.5% as an average of all channels) and the
highest SAR improvements up to 40 dB at these anterior sites.

In clinical routine, electrode configurations change depend-
ing on the application. Moreover, in last years, many algo-
rithms using different number of EEG and EOG electrodes
have been suggested in order to reduce ocular artifacts from
EEG data and opposite conclusions were obtained. Up to date,
some studies proposed BSS algorithms [9,10], others defended
regression analysis, especially when the number of EEG chan-
nels is small [12,14]. Although the main part of this study was
performed using 19 EEG and 2 EOG channels according to
the international 10-20 system, a comparison between meth-
ods was also carried out with only six EEG electrodes and even
in the worst situation: without EOG recordings. EOG signals
are absolutely necessary for regression-based approaches, but
not for BSS procedures. However, the studies in the literature
focused the automatic ocular identification on the correlation
between an IC source and the EOG channels. Considering only
six EEG + two EOG channels, errors in spectral parameters
obtained for SOBI technique were much lower than those cal-
culated by regression-based methods. Even, errors for SOBI
algorithm considering only 19 EEG channels (without EOG)
were slightly lower than those obtained with filtered regression
approach but recording additionally two EOG channels in the
latter.

Therefore, based on the effects quantified on clinical target
variables and applying fully automated BSS procedure in sim-
ulated EEG and EOG recordings, we conclude that AMUSE
and SOBI are the most suitable algorithms to be used in clini-
cal and functional EEG studies, not only independently of the
number of EEG leads, but also when EOG recordings are not
available.
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