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Abstract Estimation of grapevine vigour using mobile proximal sensors can provide an

indirect method for determining grape yield and quality. Of the various indexes related to

the characteristics of grapevine foliage, the leaf area index (LAI) is probably the most

widely used in viticulture. To assess the feasibility of using light detection and ranging

(LiDAR) sensors for predicting the LAI, several field trials were performed using a tractor-

mounted LiDAR system. This system measured the crop in a transverse direction along the

rows of vines and geometric and structural parameters were computed. The parameters

evaluated were the height of the vines (H), the cross-sectional area (A), the canopy volume

(V) and the tree area index (TAI). This last parameter was formulated as the ratio of the

crop estimated area per unit ground area, using a local Poisson distribution to approximate

the laser beam transmission probability within vines. In order to compare the calculated

indexes with the actual values of LAI, the scanned vines were defoliated to obtain LAI

values for different row sections. Linear regression analysis showed a good correlation

(R2 = 0.81) between canopy volume and the measured values of LAI for 1 m long sec-

tions. Nevertheless, the best estimation of the LAI was given by the TAI (R2 = 0.92) for

the same length, confirming LiDAR sensors as an interesting option for foliage charac-

terization of grapevines. However, current limitations exist related to the complexity of

data process and to the need to accumulate a sufficient number of scans to adequately

estimate the LAI.
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Introduction

The leaf area index (LAI) is defined as the one-side leaf area per unit ground area and is

probably the most widely used index to characterize grapevine vigour. In addition, LAI is

spatially variable and therefore maps of vineyard leaf area could be used for many pur-

poses such as to optimize site-specific management. In viticulture, there is also a clear need

for developing on-the-go ‘‘quality’’ sensors. This is one of the principal objectives of

precision viticulture. The aim is to be able to estimate parameters to define grape quality by

direct or indirect measurement at pre-harvest or at the time of harvest. However, direct

measurement of grape quality is complicated. Tisseyre et al. (2001) carried out trials with

some degree of success using sensors on grape harvesting machines to determine average

sugar content (refractrometry) and acidity (pH). On the other hand, there is a well known

inter-relationship between production (amount harvested), vine vigour and quality of the

harvested grapes. In fact, a measure of the grapevine vigour can be obtained (Tregoat et al.

2001) from estimations of the total leaf area and/or the leaf area of the lateral shoots

(Sanchez-de-Miguel et al. 2011), which can provide another factor to be considered in

indirect determinations of harvest quality and quantity (Hall et al. 2002).

It is clear that the provision of an adequate and well-exposed leaf surface affects the

amount of photosynthesis and, therefore, the final synthesis and accumulation of com-

pounds affecting grape quality (Hidalgo 2006). There are different indexes related to

grapevine vigour. Among these, the total leaf area or LAI can be estimated by direct

measurement which requires the use of destructive leaf sampling methods which are costly

and time-consuming. Faced with this technique, vineyard leaf area can be indirectly

estimated using various types of sensors (Jonckheere et al. 2004) in what has been called

indirect non-contact LAI measurement. Experiments have been carried out using plant

canopy analyzers (e.g. LAI-2000, LI-COR Inc., Lincoln, NE, USA) to indirectly estimate

the LAI in viticulture (Grantz and Williams 1993; Tregoat et al. 2001; Johnson and Pierce

2004). This kind of sensor measures the light extinction through the foliage. However, a

general trend towards underestimating LAI due to foliage clumping (Jonckheere et al.

2004; Johnson and Pierce 2004), and the requirement for an above canopy reference

reading in order to get accurate LAI estimations are known weaknesses of the LAI-2000

approach. The use of ceptometer devices and hemispherical photographs has also been

referenced (López-Lozano et al. 2009).

Another possibility is the use of ground-based sensors to get information about the

geometry and/or structure of the canopy (López-Lozano et al. 2009; Rosell et al. 2009b;

Llorens et al. 2011). Specifically, laser sensors have been tested in fruit orchards (apple and

pear) (Walklate et al. 2002; Palacı́n et al. 2007; Rosell et al. 2009a; Sanz et al. 2011), in

citrus (Wei and Salyani 2004; Lee and Ehsani 2009) and in grapevine, in which in addition

to laser sensors (Arnó et al. 2006; Rosell et al. 2009b; Llorens et al. 2011), radiometric

sensors mounted on tractors were used (Goutouly et al. 2006; Drissi et al. 2009; Mazzetto

et al. 2010). As an alternative to optical sensors, ultrasonic sensors (US) have been used to

estimate LAI in cereals (Scotford and Miller 2004) and measure canopy volume in dif-

ferent crops: fruit trees (Giles et al. 1988; Solanelles et al. 2006; Escolà et al. 2011),

grapevines (Gil et al. 2007; Llorens et al. 2011) and citrus (Tumbo et al. 2002; Schumann
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and Zaman 2005; Zaman and Schumann 2005). However, more accurate measurements are

obtained using laser sensors due to the lower vertical sampling resolution of US (Lee and

Ehsani 2009).

Remote sensing, using satellite and airborne imaging systems, is another option that has

also been used to estimate the LAI or to map vigour differences within vineyards (Johnson

et al. 2001; Hall et al. 2002). For example, Johnson et al. (2003) obtained a significant

correlation (R2 = 0.72) between the estimated leaf area per vine using the normalized

difference vegetation index (NDVI) calculated from satellite images and the leaf area per

vine obtained by direct and indirect measurements on the ground. However, it is also

known that the relationship between LAI and NDVI varies over time and requires a

specific calibration according to the different growth stages of the crop. Johnson et al.

(2003) also pointed out the difficulty of remote estimation of LAI in vineyards due to the

spatial discontinuity of this crop in which leaves are concentrated over long stems and

cover a relatively small percentage of the ground surface. Vegetation present between rows

(such as vegetative cover or weeds) further complicates the correct interpretation of

reflectance data in the images. In addition, remote sensing LAI estimates are usually

validated by handheld LAI instruments as they operate similarly and are also affected by

foliage clumping. By contrast, terrestrial laser scanners (TLS) operate laterally penetrating

the canopy from different angles, and therefore the sensor validation requires actual LAI

values obtained by destructive leaf sampling methods. The terrestrial sensors that provide

NDVI values (or other appropriate vegetation indices) operate similarly to airborne and

satellite sensors. The GreenSeeker sensor (Trimble Agriculture Division, Westminster,

CO, USA) uses bands that sample in the visible red (660 nm) and near-infrared (770 nm)

portions of the electromagnetic spectrum (Goutouly et al. 2006; Drissi et al. 2009), and the

CropCircle sensor (Holland Scientific Inc., Lincoln, NE, USA) uses bands that sample in

the visible orange (595 nm) and near-infrared (880 nm) portions of the electromagnetic

spectrum (Stamatiadis et al. 2010). Such ground-based sensors are more widely accepted in

the domain of precision agriculture (viticulture) for measuring ground level crop

reflectance.

The continuous evaluation of the canopy in vineyards is undoubtedly an important

objective in precision viticulture. A laser sensor (using Light Detection and Ranging or

LiDAR technology) has been the instrument chosen in this research work to reliably

estimate LAI and canopy density in grapevines. We have discarded US due to their low

vertical sampling resolution (Tumbo et al. 2002; Wei and Salyani 2004) and reflectance

ground-based sensors due to their relatively poor ability to estimate and encompass the

entire canopy (Drissi et al. 2009). In fact, there exist some interesting LiDAR applications

in agriculture demonstrating the potential of laser scanning systems. For example, Ehlert

et al. (2008, 2010) and Saeys et al. (2009) used a laser system for measuring crop biomass

and crop density in cereals, respectively. Gebbers et al. (2011) also used laser sensors to

map LAI in broadacre crops. Measurement of wood volume by means of a LiDAR sensor

has been proposed by Keightley and Bawden (2010) for grapevine biomass analysis. More

recently, field characterization of olive trees has also been possible using TLS systems

(Moorthy et al. 2011). As far as the possible applications in horticulture, LiDAR sensor has

become an excellent device to reliably quantify tree geometric characteristics (Rosell et al.

2009b; Sanz et al. 2011). The matter is the large amount of data provided and what are the

most suitable procedures to analyse and extract valuable information.

Wei and Salyani (2005) and Lee and Ehsani (2009) developed a laser based mea-

surement system and associated algorithms specifically designed to estimate the canopy

volume in citrus trees. Likewise, Palacı́n et al. (2007) and Rosell et al. (2009b) also
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suggested the measurement of canopy volume in orchards to subsequently make possible

the estimation of total leaf area by an allometric relationship between both parameters. In

vineyard, Llorens et al. (2011) also proposed a similar procedure. However, these methods

are very sensitive to the distance between the laser sensor travel line and the tree row line

(Palleja et al. 2010). Measurement errors could appear when the sensor deviates from the

path, usually in asymmetrically shaped trees, if there are no specific corrections. On the

other hand, the use of such allometric equations may be limited to specific conditions since

volume/leaf area relationship may depend in turn on the crop, stand density and canopy

structure.

Faced with all these methods of measuring canopy volume, Walklate et al. (2002)

obtained several canopy parameters by analysing data from a LiDAR sensor using a

probability based model. In the study presented herein, the geometric and structural

parameters mentioned in the work of Walklate et al. (2002) in orchards were obtained,

reviewed and validated for the specific case of estimating the LAI in vineyards. It is known

that sunlight is of vital importance in viticulture (Smart 1985), and light interception

through the canopy is normally described using light extinction probability models. The

Poisson model has been used in the work presented here to analyze the performance of

LiDAR measurements of foliage characteristics in vineyards. Ultimately, the goal is to

check the operation and feasibility of a ground laser scanner in viticulture as a crop sensor,

making possible a reliable LAI estimation in grapevines. In this sense, the developed

LiDAR system has to be able to estimate foliage area for both symmetric and asymmetric

tree shapes regardless of the side of the row from which the LiDAR reading is performed.

The method should also be simple, fast and non-destructive, without requiring the use of

allometric relationships. Additionally, it has to allow the estimation of foliar density within

vines.

Materials and methods

Laser scanner

LiDAR sensors operate based on the measurement of the time-of-flight of an infrared laser

pulse (Lee and Ehsani 2008). In our case, the time the pulse takes to travel from the sensor

to the canopy of vines and back. For each interception with a vine leaf, the sensor

determines the radial distance (r) between the intercepted point and the sensor position and

the angular coordinate (h) of this intercepted point according to an adequate reference

system (Fig. 1). The laser beam is sequentially emitted in different directions within a

vertical plane according to a given angular resolution. Therefore, each scanning cycle

performs a two-dimensional fan-shaped scan (Fig. 2a), so that vines are scanned in a

vertical cross-sectional plane. Field data are organized as a matrix of polar coordinates (r,

h) of intercepted points with the position of the sensor as the origin of coordinates. Thus,

each vertical scan produces a matrix of data and the displacement of the LiDAR sensor

along the row gives several scans with their corresponding polar coordinate matrices. The

LiDAR sensor used in this study was a low-cost general-purpose LMS-200 model (SICK

AG, Waldkirch, Germany) with an accuracy of ±15 mm over a range up to 8 m, with an

angular scanning range of 100� or 180� (according to the characteristics of the vegetation)

and an angular resolution of 1�. The MultiScan program developed in MATLAB (MATrix

LABoratory, The MathWorks Inc., Natick, Mass., USA) was used to control the scanner,

acquire data and subsequently process the information. Data transfer from the sensor to a
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laptop was done via the RS-232 protocol. This external communication finally limited the

scanning sampling frequency up to 12 scans/s (that resulted in a horizontal scanning

resolution of 2.3 cm row length/scan at a speed of 1 km/h). The scanner and mounting are

shown in Fig. 1 and Table 1 shows the basic specifications of the LMS-200 scanner

provided by the manufacturer.

Data analysis

The LiDAR sensor generated data (polar coordinates) according to the scanner’s reference

system shown in Fig. 2a. Thus, it was assumed that the axis Ox was parallel to the ground

and directed towards the interior of the canopy, that the Oy axis was perpendicular to the

ground and that the Oz axis was parallel to the ground and in the direction in which the

LiDAR sensor moved. With this arrangement, the origin O (LiDAR) corresponded to the

centre of the semicircle of the LiDAR scan and all the points intercepted by the laser beam

in each semicircular scan were in the Oxy plane (Fig. 2a). The provided (r, h) values were

r as the distance between the reference origin O and the intercepted vegetation, and h as the

angle between the Oy axis and the direction of the laser beam (clockwise). As the sensor

moved relative to the crop (Oz axis) (Fig. 2b), it carried out several vertical scans keeping

an approximately constant height from the ground, Hg.

For the subsequent analysis of the data, the interception points of the whole scanned 5

volume along the Oz axis (Fig. 2c) were projected onto a two-dimensional grid of polar

cells in the Oxy plane (Fig. 2d), so the overall projected cross-section of the canopy

volume was divided into cells with equal angle increments of Dh ¼ 3� and equal radial

increments of Dr = 100 mm. The height of the sensor from the ground is denoted by Hg

and dt is the distance used to exclude intercepted points at ground and trunk level whose

Cartesian coordinates in height (Oy) satisfy: y \ -(Hg - dt).

A diagram showing a two-dimensional polar cell (k, j) is also shown in Fig. 2d, where

‘k’ refers to the angular position of the cell from the Oy axis (clockwise), and ‘j’ refers to

Fig. 1 LMS-200 scanner (left) and mounting used in the field trials (right) (Rosell et al. 2009b)
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Fig. 2 a Coordinate system of the sensor for a complete single scan (0�–180�). b Simulated vertical scans
along the row. c Intercepted points generated by several scans along a row (1 m in length) seen in the Oxy
plane. d Projection of the scans along the Oz axis onto a two-dimensional grid of polar cells in the Oxy plane

Table 1 LMS-200 LiDAR sensor specifications

Wavelength (nm) 905

Maximum measurement distance (m) 8 (mm-mode), 80 (cm-mode)

Scanning range (�) (selectable) 180 (0�–180�) and 100 (40�–140�)

Angular resolution (�) (selectable) 0.25�, 0.5� and 1�
Scanning time (ms/cycle) 53, 26 and 13 at 0.25�, 0.5� and 1�, respectively

Precision (mm) ±15 (mm mode), ±40 (cm mode)

Weight (kg) 4.5

Dimensions (mm) 185 (width) 9 156 (length) 9 210 (height)
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the radial position (distance) relative to the LiDAR sensor. For a specific polar cell, the

number of interceptions, Dnk;j, occurring between the laser beam and the presence of

vegetative material in its path within the cell should satisfy the following expression:

Dnk;j ¼ nk;j � nk;jþ1 ð1Þ

where nk;j is the number of laser beams reaching the entrance side of the polar cell (k, j) and

nk;jþ1 is the number of beams that cross the exit side of the cell and, therefore, enter the

next cell. To apply Eq. (1), it was necessary to know the number of beams entering the first

cells, that is the cells close to the LiDAR sensor (k, j = 1). This value could be easily

established by taking into account that the number of scans carried out over a section of

4 m in the row was between 163 and 191, the angular resolution of the sensor was 1�, and

the angle increment Dh of the cells was 3�. So, typical number of entering beams ranged

from 489 to 573. Readings from the LiDAR sensor were finally structured according to two

data matrices: the interception matrix (Dnk;j) and the matrix of beams entering each cell

(nk;j). In other words, the information about the crop was reduced to a two-dimensional

distribution over the Oxy plane of the laser beam interception with the crop canopy, and a

two-dimensional distribution on the same plane describing the attenuation that the laser

beam undergoes on passing through the crop canopy. The crop vegetation parameters

shown in Table 2 were obtained from the two aforementioned matrices.

In the most recent scientific literature (Llorens et al. 2011), the estimation of canopy

volume has been proven to be a useful method for the indirect determination of leaf area in

vineyards. In this study, the total canopy volume was obtained by adding up the volumes of

the individual slices (scans), as shown in Table 2. This methodology differs from that used

by Walklate et al. (2002), where the canopy volume is calculated from the cross-sectional

area (A) and the row scanned length.

Table 2 Vegetative parameters of vines computed from the LiDAR sensor data

Parameter Formulae Notation

Tree heighta

(H) (m)
H ¼ Hg þmax rjdk;j sin p

2
� hk

� �� �
Hg is the height of the LiDAR above the

ground (m) and rj (m) and hk (rad) are the
polar coordinates of the cell (k, j).

Cross-sectional
area (A) (m2)

A ¼ DhDr
PK

k¼1

PJk

j¼1 rjdk;j This is the cross section projected onto the
Oxy plane, where rj is the polar distance
(m), Dh is the angle increment (rad) and
Dr is the radial increment (m).

Canopy volume
(V) (m3)

V ¼ Dz
1000

PN
i¼1 Ai This is the sum of the unit volumes from

each scan, where Ai is the cross-sectional
area of each scan i, Dz is the width (mm)
between two consecutive scans, and
N the number of scans carried out.

Tree area index
(TAI)
(dimensionless)

TAI ¼ � Dh
W

PK
k¼1

PJk

j¼1 rjdk;j ln 1� Dnk;j

nk;j

� �
Using the Poisson model to determine the

probability of the laser beam’s
transmission within vines, the TAI index
is formulated as the ratio between the
crop detected area by the LiDAR sensor
and the ground area. W (m) is the row
spacing.

a In all the formulae, the presence or absence of foliage in each cell was indicated by the function dk;j taking

a value of dk;j ¼ 1 when the coefficient Dnk;j=nk;j is greater or equal to 0.01, and a value of dk;j ¼ 0 when the

coefficient is \0.01 (Walklate et al. 2002)
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Faced with the parameters related to geometry of the crop (H, A and V), the TAI is the

most related parameter to the leaf density of the crop. In obtaining this parameter, and

similarly to Walklate et al. (2002), firstly it was considered (Fig. 2d) that the probability of

transmission of laser beam in a generic cell (k, j) could be established by dividing the

amount of beams at the output (nk;jþ1) and the amount of beams at the entrance (nk;j),

Tk;j ¼ 1� Dnk;j

nk;j
ð2Þ

and, secondly, this probability could be approximated by the Poisson probability model

when sufficiently small distances Dr, and random spatial distribution of the canopy are

considered (Walklate 1989),

Tk;j ¼ exp �Dr � ak;j

� �
: ð3Þ

Thus, it was possible to assign to each cell (k, j) a particular value of the parameter ak,j

(local area density of the crop [L-1]), which could be considered as the ratio of the area

detected by the LiDAR in the direction Dr and the volume of the corresponding cell.

Combining the expressions (2) and (3), the value of the local area density for a cell (k,

j) was obtained from LiDAR data as

ak;j ¼ �
1

Dr
ln 1� Dnk;j

nk;j

� �
ð4Þ

Adding the vegetation detected by the LiDAR sensor in each cell and dividing by the

total ground area on which the scan was performed, TAI is finally obtained using the

equation shown in Table 2.

Field trials

The field trials were carried out in a vineyard (Merlot) in Raimat (Lleida, Spain). They

consisted of four trials at four different growth stages of the vines. In each trial a 4-m long

row section was scanned corresponding to three consecutive vines (LAI zone) which were

subsequently manually defoliated according to the sections shown in the diagram in Fig. 3.

LAI was then determined for 1 m row lengths taking individual sections 1, 2, 3 and 4

(Fig. 3). LAI for 2-m row length sections was obtained by combining sections 1 and 2 and

sections 3 and 4, while LAI for 4-m row length was obtained by combining all the sections.

A planimeter (Delta-T Devices Ltd., Cambridge, UK) was used in combination with a

gravimetric method correlating fresh weight of leaves and leaf area. LAI was determined

for both left and right sides of the row separately and as an average for the total row width.

The LAI zone (Fig. 3) was scanned twice from each side of the row, at a speed of

approximately 1 km/h, with the sensor at 1.60 m above ground level, obtaining a total of 4

readings per row scanned length. The establishment of the LAI zones was possible using

reference stands 0.55-m wide and 1.10-m high, located 0.40 m from the center of the row

as shown in Fig. 4. For the experiments (Table 3), the LMS-200 was operated in the mm-

mode and scanned the vines in different scanning ranges (depending on the development of

the crop) with an angular resolution of 1�. The ground surface of the travel path for the

tractor was relatively even and, to avoid measurement errors, field trials were carried out in

calm wind conditions.

Finally, the relationship between LAI and the LiDAR parameters was evaluated by

regression analysis according to linear models of the following type:
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LAI ¼ b̂0 þ b̂1 � LiDAR ð5Þ

where LAI is the leaf area index (m2/m2), LiDAR is the considered vegetative parameter

(expressed in the corresponding units) and b̂0 and b̂1 are the estimates of the model

parameters obtained by the method of least squares. Regression analysis was performed

using Microsoft Excel 2002 and the goodness of fit was checked by the coefficient of

determination (R2) and the contrast of the regression (model significance).

1 2 3 4

1 m

LAI zone

LIDAR 
sensor

Left path

Right path

Right row 
side

Left row 
side

Left path

Right path

Fig. 3 Diagram of the scanning procedure over a row using LiDAR sensor (left), and defoliation sections 1,
2, 3 and 4 (1-m length) of the LAI zone (right). Thus, either eight values of the LAI were obtained when left
and right row sides were considered separately (shaded area), and four values when the row was considered
as a whole

Fig. 4 Left-side view of block III with vines with foliage (left) and right-side view of defoliated vines of the
same block III (right)

Table 3 Field trials

Date Block Vines Scanning range (�) Number of scans
(1-m long section)

5/10/2005 I 15, 16 and 17 60–180 42

6/6/2005 II 21, 22 and 23 40–160 46–48

7/7/2005 III 24, 25 and 26 40–160 41

8/24/2005 IV 18, 19 and 20 40–160 46
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Results and discussion

LiDAR performance in measuring LAI and leaf area density

In general, when the leaf area (LAI) of the vines increased, there was a proportional

increase in the values of the parameters obtained by the LiDAR sensor. However, the TAI
was the parameter that showed the greatest ability to predict the LAI. Specifically, with

defoliation sections of 1 m, the TAI parameter was able to explain 92 % of the variability

of LAI, compared with 81 % that was explained by the canopy volume. Both regression

models estimate the LAI of the total width of the row, i. e. regardless of the side of the row

from which the sensor readings are made. The cross-sectional area and the tree height

parameters also showed interesting results (Table 4), but they are slightly poorer given the

R2 results (0.72 and 0.62, respectively).

LiDAR parameters were different (although with slight variation) when the sensor

scannings were made from different sides (left or right) of the row. Probably, as suggested

by Walklate et al. (2002), these differences were due to the asymmetry of the vegetative

structure of the vines. This result raised the question of whether it was appropriate to use

the LiDAR sensor only from one side to estimate the total leaf area of the row or, by

contrast, it was more convenient to formulate a model that was specifically applicable to

estimate the leaf area of only half the width of the row (right or left sides). Thus, in a

second analysis, four additional regression models were obtained with the aim of inves-

tigating the relationship between leaf area of each half of the row-width (or partial LAI)

and the LiDAR parameters obtained using readings from the corresponding side of the row

(1-m long). By considering the LAI of the right and left sides of the row separately, a

greater number of data was handled (32 LAI values and 64 values of each LiDAR

parameter). Once again, the canopy volume (R2 = 0.71) and the tree area index

(R2 = 0.83) were the parameters showing the best estimation of LAI (Table 4). On the

other hand, the vine height did not seem to be a good option when estimating grapevine

leaf area (R2 = 0.54).

LAI prediction for longer lengths was another option (Table 4). The models obtained

for sections of 2 and 4 m showed even better results, essentially attributable to the lower

amount of points used. Except for the tree height parameter, higher R2 values were

obtained (between 0.86 and 0.99), confirming the excellent performance of the LiDAR

sensor. However, results for section lengths of 1 m were probably more reliable as they

were based on more robust models (with higher number of observations/points).

It is clear that the TAI showed itself to be a valuable parameter for estimating the LAI.

To bring together one overall model that would be valid for canopy sections of 1-, 2- and

4-m lengths, and also to estimate the total, or partial, leaf area of a row, LAI could be

estimated with the following average equation:

LAI ¼ 1:2646 � TAI � 0:1935 ðR2 ¼ 0:99Þ ð6Þ

which was obtained by regression analysis of the predicted LAI values (or fit LAI values)

using the four linear models shown in Table 4 for canopy sections of 1, 2 and 4 m.

Equation (6) has an obvious advantage because the LAI of vines could be estimated from

scanning only one of the sides of the row. This feature is especially interesting as it reduces

the mapping and scanning time required for a field.

The final proposed model (6) may be questionable according to two basic concepts.

First, LiDAR does not distinguish between green and non-green elements which makes the
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TAI a parameter conceptually similar to plant area index (PAI) as proposed in Moorthy

et al. (2011), and second, actual canopy foliage is not uniform or randomly distributed due

to vegetation structure (Weiss et al. 2004). In fact, Moorthy et al. (2011) obtain the PAI

after calculating a clumping index that, unlike the TAI, considers nonrandom distribution

of vegetation. Furthermore, the TAI parameter can vary in leafless vines that have different

wooden structure. Therefore, estimation of LAI based on the Poisson model using the TAI
parameter will provide estimates of an effective LAI (Leff) as suggested by Weiss et al.

(2004). The term ‘‘effective LAI’’ is useful for describing optical LAI estimates using

Table 4 Statistical analysis of simple linear regression models for predicting the LAI in vineyards

LiDAR parameter Model
significance

R2 Coefficient*

b̂0

Coefficient*

b̂1

CI 95 % for b̂1

Lower Upper

Estimation of LAI of the total width of the row (sections of 1-m long)

Tree height, H (m) \0.0001 0.62 -3.8104
(0.4972)

2.1790
(0.2158)

1.7476 2.6103

Cross-sectional area,
A (m2)

\0.0001 0.72 -0.1931
(0.1140)

1.8982
(0.1497)

1.5990 2.1975

Canopy volume, V (m3) \0.0001 0.81 -0.6685
(0.1193)

11.2666
(0.7032)

9.8608 12.6723

Tree area index, TAI \0.0001 0.92 -0.2329
(0.0566)

1.3014
(0.0491)

1.2032 1.3996

Estimation of LAI of only half the width of the row (right or left sides, sections of 1-m long)

Tree height, H (m) \0.0001 0.54 -3.7416
(0.5844)

2.1490
(0.2536)

1.6420 2.6560

Cross-sectional area,
A (m2)

\0.0001 0.66 -0.2149
(0.1337)

1.9279
(0.1756)

1.5770 2.2789

Canopy volume, V (m3) \0.0001 0.71 -0.6681
(0.1535)

11.2640
(0.9049)

9.4552 13.0728

Tree area index, TAI \0.0001 0.83 -0.2444
(0.0873)

1.3118
(0.0759)

1.1602 1.4635

Estimation of LAI of the total width of the row (sections of 2-m long)

Tree height, H (m) \0.0001 0.57 -3.3512
(0.7183)

1.9577
(0.3084)

1.3278 2.5876

Cross-sectional area,
A (m2)

\0.0001 0.87 -0.2515
(0.1047)

1.6362
(0.1140)

1.4034 1.8690

Canopy volume, V (m3) \0.0001 0.86 -0.7379
(0.1430)

5.8418
(0.4229)

4.9781 6.7054

Tree area index, TAI \0.0001 0.95 -0.1741
(0.0603)

1.2395
(0.0522)

1.1329 1.3461

Estimation of LAI of the total width of the row (sections of 4-m long)

Tree height, H (m) \0.0001 0.74 -3.8960
(0.8131)

2.1764
(0.3466)

1.4331 2.9198

Cross-sectional area,
A (m2)

\0.0001 0.96 -0.2875
(0.0801)

1.4440
(0.0750)

1.2831 1.6048

Canopy volume, V (m3) \0.0001 0.98 -1.0398
(0.0870)

3.3759
(0.1290)

3.0992 3.6527

Tree area index, TAI \0.0001 0.99 -0.1226
(0.0331)

1.2057
(0.0288)

1.1439 1.2674

* Standard errors of b0 and b1 estimators’ are shown in parentheses
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methods that do not distinguish leaves from other plant elements, and are unable to

compensate for non-random positioning of leaves within the canopy (Jonckheere et al.

2004). Underestimation errors caused by clumping and the inherent row structure of

vineyards are therefore expected when comparing TAI derived from LiDAR measurements

with the actual LAI value measured with destructive sampling (Johnson and Pierce 2004).

Testing the effect of clumping has been possible by forcing the linear regression model

according to the expression:

LAI ¼ b̂ � TAI ¼ b̂ � Leff ð7Þ

where Leff is the ‘effective’ LAI (m2/m2) computed as TAI, and b ([1, if clumping effect is

true) is the model’s coefficient. Table 5 shows the obtained results. As expected, in both

cases (whole and half row width) the TAI parameter underestimates the true value of LAI

by about 10 %, confirming the irregular but non-random distribution of leaves in vineyard.

However, the sensitivity of TAI to LAI is evident (Tables 4, 5) and no saturation occurs for

higher values of LAI (figures not shown). TAI is therefore a valid parameter for the

estimation of LAI, and this result also confirms the findings of López-Lozano et al. (2009)

in which the Poisson model can be applied for LAI \3 (which are typical values in

vineyards) using LiDAR to provide lateral observations of the vines from perpendicular

scans to the rows.

The leaf area density is defined as the total one-side leaf area of photosynthetic tissue

per unit canopy volume (Weiss et al. 2004). As already mentioned above, TAI is a

parameter that was obtained taking into account the foliage density of the crop. The two-

dimensional plot of the local density values (ak,j) (4) should allow the visual interpretation

of foliage density (or foliage distribution) detected by the LiDAR sensor within the canopy.

Figure 5 shows the foliage density plots for each of the scanned blocks of 4-m length

(scans accumulated over 4 m and performed from the left side of the row). The highest

densities appeared to concentrate within the inner parts of the canopy and, also, with

increasing LAI there was a proportional increase in TAI and cross-sectional area. The

measurement of high values of local density in some cells of the lower parts of the canopy

could be due to the presence of grapes in these zones.

Required number of accumulated scans to derive LAI

After verifying the suitability of the tree area index for estimating the LAI, the analysis of

foliage variability could be addressed by analyzing the variability of TAI along the row.

Figure 6a shows the values of TAI for each of the scans performed in block I (early stages

of crop cycle). It is observed that the variability of TAI (and, presumably, the leaf area)

along the row was evident and, more importantly, repeated readings (in blue) of the same

block showed very similar results to those obtained in the first scan (in red). These results

Table 5 Linear regression models between the LAI and the ‘effective’ leaf area index (Leff) for 1-m long
sections of crop vegetation

Whole-row width Half-row width

Coefficient b̂ R2 RMSE Coefficient b̂ R2 RMSE

1.1082 0.90 0.1509 1.1091 0.81 0.2191
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confirmed the suitability of LiDAR sensors to accurately and repeatedly detect and

quantify vineyard canopies.

The remaining issue was to determine the required row length that should be scanned

for an optimal use of the LiDAR sensor. At first, data available were the values of TAI
based on the projection of scans made over a certain row length (in our case, 4, 2 and 1 m).

However, further calculation of the accumulated values of TAI, as scans were progressively

overlaid and projected, provided very interesting information about the operation and use

of LiDAR technology in field conditions. Figure 6 shows the evolution of TAI with the

accumulation of LiDAR scans. Specifically, it shows the cumulative values for different

row lengths (b-4 m, c-2 m, d-1 m) for the vegetation block tested on 10 May, 2005 (Block

I). Graphical analysis of the block (Fig. 6) reveals that the value of TAI showed some

stabilization with higher number of scans accumulated. This trend was more evident in

May 10 field trial, LAI = 0.5033

Cross-sectional Area, A = 0.599 m2

Tree Area Index, TAI = 0.532
Cross-sectional Area, A = 1.017 m2

Tree Area Index, TAI = 1.162

June 6 field trial, LAI = 1.2646

Cross-sectional Area, A = 1.350 m2

Tree Area Index, TAI = 1.495

July 7 field trial, LAI = 1.6591 August 24 field trial, LAI = 1.3601

Cross-sectional Area, A = 1.138 m2

Tree Area Index, TAI = 1.189

ak,j (m-1)

mm mm

mm mm

mm mm

mm mm

LIDAR
sensor

LIDAR
sensor

LIDAR
sensor

LIDAR
sensor

Fig. 5 Grapevine foliage density of the scanned blocks (4-m row length from the left side) by plotting the
values of local area density, ak,j (4)
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sections (row lengths) of 4 and 2 m, probably contributing to smooth the TAI values and to

mask the spatial variability at these scales. However, in sections of 1 m the values of the

last cumulative TAI presented greater differences from one to another section, being the

0.0
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Fig. 6 TAI values in two repeated readings (red and blue) from the left side of the row, cv. Merlot, 10 May,
2005 (Block I): a Individual values of TAI for each of the 170 scans performed; b accumulated TAI scans along
the row (4-m length); c and d cumulative values of TAI in lengths of 2 and 1 m, respectively (Color figure online)
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detection of foliage variability along the row more effective in this spatial scale. Faced

with the possibility of using the LiDAR scanner as a sensor for mapping LAI at parcel

level, we suggest calculating the value of TAI based on scans accumulated in 1 m length

sections in each of the sampling areas. In our working conditions, this means calculating

the TAI after 40–50 accumulated scans.

The assessment of leaf area variability along a row can be addressed through the use of

LiDAR technology. However, further research is needed to confirm the LiDAR as a

reliable crop sensor. If the good results of this study were confirmed, LiDAR sensors could

have several and interesting applications in viticulture. For instance, LiDAR sensors could

be an excellent device for predicting grape yield and quality related parameters when the

spatial covariance between vigor, yield and quality is acceptable. In this sense, they would

solve the need for sensors for indirect and continuous monitoring of grape quality, simi-

larly to how grape yield monitors work.

Conclusions

LiDAR sensors with the configuration proposed in this research provide a feasible method

to monitor within-field leaf area variability and can have several applications in precision

viticulture. Among the parameters obtained from the LiDAR sensor data, the canopy

volume and, above all, tree area index have shown a higher ability to estimate leaf surface

(or LAI) in vineyards. Furthermore, estimation of leaf area corresponding to the total width

of the row can be done by scanning with LiDAR from only one side of the row. In other

cases, TAI can also be used to estimate leaf area of half the width of the row corresponding

to the scanned side, i.e. to estimate the leaf area between the canopy and the average plane

defined by the trunks of vines. As grapevine leaf surface is variable along the row, the use

of LiDAR sensors for obtaining reliable LAI maps should also consider the section row

length to be scanned in each sampling area. Specifically, scanning section row lengths of

1 m (40–50 scans) is the option we recommend. Scanned lengths of 2 and 4 m provided

TAI values that are somewhat smoothed since they account for a greater row length. This

would mask the spatial variability detected at these scales. The main difficulties with the

technology are the non-random distribution of leaves (which moves away from the Poisson

model) and the presence of leaves and other non-green vegetative elements within the

canopy. Since the intensity of the returned laser beam is also provided by some LiDAR

sensors, future research could explore the applicability of this information to better

characterize grapevine canopies.
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