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Abstract6

In this paper we present an inexpensive approach to create highly-detailed re-

constructions of the landscape surrounding a road. Our method is based on a

space-efficient semi-procedural representation of the terrain and vegetation sup-

porting high-quality real-time rendering not only for aerial views but also at road

level. We can integrate photographs along selected road stretches. We merge the

point clouds extracted from these photographs with a low-resolution digital terrain

model through a novel algorithm which is robust against noise and missing data.

We precompute plausible locations for trees through an algorithm which takes

into account perceptual cues. At run-time we render the reconstructed terrain

along with plants generated procedurally according to precomputed parameters.

Our rendering algorithm ensures visual consistency with aerial imagery and thus

it can be integrated seamlessly with current virtual globes.
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1. Introduction8

In the last decades we have witnessed significant improvements in digital ter-9

rain modeling, mainly through photogrammetric techniques based on satellite and10
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aerial photography, as well as terrestrial laser scanning (Kraus, 2007). These tech-11

niques allow the creation of Digital Terrain Models (DTM) that can be streamed12

over the network and explored through virtual globe applications. In rural areas,13

the environment surrounding roads is of special interest in a number of digital map14

applications. Publicly available DTMs and associated orthophotos are suitable15

for rendering aerial views of the environment but fail to provide realistic appear-16

ance at ground level for several reasons. First, the typical DTM resolutions nowa-17

days (5, 10 and 30 meters) are not enough to capture sharp slope changes due for18

example to carved roads in mountains. Higher resolution DTMs do exist, but only19

for some selected places (often urban areas). Second, DTMs do not capture the20

geometry of the vegetation on top of the terrain, causing the vegetation to lack 3D21

appearance when exploring the terrain at grazing angles. Finally, orthophotos do22

not show the color of the terrain in regions covered by trees. The typical approach23

of texture mapping the terrain with the orthophoto color becomes unacceptable as24

the viewpoint gets closer to the ground.25

These facts have motivated the use of model acquisition techniques from ter-26

restrial sensors to accurately model terrain and vegetation features. Multi-view27

stereo techniques (Seitz et al., 2006) are particularly attractive as they can be com-28

bined with commodity equipment such as vehicle-mounted cameras to provide an29

inexpensive digitizing solution. However, the detailed reconstruction of natural30

environments is particularly challenging. Unlike man-made objects, typical ter-31

rain models lack well-defined features and exhibit high levels of self-similarity32

which hinder the reconstruction process. Moreover, the acquisition of outdoor33

environments often relies on a constrained set of positions for the sensor device34

(e.g. along the road), which provides a partial model of the environment. This35
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often results in noisy, sparse, unevenly sampled data providing a limited-coverage36

model of the environment.37

In this paper we propose a new approach to render realistic images of the38

landscape surrounding a countryside road (Figure 1). Our approach meets the39

following requirements:40

• Inexpensive data acquisition. The acquisition does not require special digi-41

tizing requirement. Tasks involving the user are kept to a minimum.42

• Reconstruction completeness. We aim at providing convincing visual com-43

plexity of the environment for both aerial and road-level views. This implies44

that the vegetation on top of the terrain must be reconstructed appropriately.45

• Visual consistency with publicly available data. We want our approach46

to integrate seamlessly with current virtual globes. Therefore the recon-47

structed landscape must be visually consistent with user-provided DMTs48

and aerial imagery. Rendered landscapes should look like the user-provided49

DTM and orthophoto for distant aerial views, but have to gain plausible50

detail and 3D appearance as the camera gets closer to the road.51

• Space efficiency. The output model is compact enough to support network52

streaming.53

• Real-time rendering. Our approach supports real-time realistic rendering54

with commodity hardware.55

Our approach benefits from a collection of images of the landscape surround-56

ing the road (referred to as photographs) captured by the user for example from57

a car-mounted camera. These photographs, if available, are beneficial to provide58
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an accurate reconstruction of the terrain next to the road, specially in mountain-59

ous areas. The collection of photographs is not required to be complete, as this60

would be unfeasible for a vehicle-mounted camera due to visibility and accessi-61

bility problems.62

The reconstruction proceeds through the following steps (Figure 2). We use a63

segmented orthophoto where pixels representing vegetation have been classified64

into the following three categories: trees, shrubs and herbs. Some possibilities65

for automatically detecting and classifying vegetation pixels in the orthophoto are66

outlined in Section 6. These vegetation types are used to create plants at plau-67

sible locations on top of the terrain. A critical step is the placement of trees at68

locations visually consistent with the orthophoto, as this would affect the location69

of the tree trunks and the crown shape. When photographs are available, we first70

extract a point cloud from the photographs by detecting small series of overlap-71

ping photographs and then using multi-view stereo reconstruction. Then we use72

a robust algorithm to integrate the user-provided DTM and road model with the73

high-resolution reconstructed data. This results in a new DTM significantly more74

faithful to the actual terrain. At runtime, vegetation is created and rendered75

on-the-fly according to the vegetation type associated to each orthophoto pixel.76

The user is allowed to adjust a few parameters (such as average height and size of77

the species) controlling the procedural generation of leaves. We also use a fractal78

perturbation approach to add visual detail at close-up views by perturbing both79

color and terrain displacement values. Our rendering algorithm also handles the80

rendering of the terrain covered by trees and uses an efficient technique to sim-81

ulate complex shadows cast by the foliage onto the terrain. To the best of our82

knowledge, the pipeline we present in this paper is the first one encompassing all83
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the elements above to create realistic reconstructions of roadside landscapes.84

2. Previous work85

Terrain modeling and surface reconstruction. The creation of large-scale86

DTMs is accomplished nowadays by means of photogrammetric techniques based87

on satellite and aerial photography, as well as terrestrial laser scanning. We refer88

the interested reader to (Kraus, 2007) for a complete review. Multi-view stereo89

schemes (Seitz et al., 2006; Furukawa and Ponce, 2010) provide an inexpensive90

acquisition alternative by using arbitrary collections of partially overlapping im-91

ages to create oriented point clouds. However, converting such point clouds into92

a plausible surface is a challenging task in the presence of partial data (Gross93

and Pfister, 2007). Methods based on isosurfaces of implicit functions can be ei-94

ther local (Alexa et al., 2001) or global (Kazhdan et al., 2006). Unfortunately,95

these methods fail when the input data covers a small portion of the real surface.96

Our proposed reconstruction algorithm combines point samples from multi-view97

stereo with a low-resolution DTM to overcome these limitations.98

Fractal-based modeling of terrains. Many natural scenes and geological99

structures often exhibit self-similarity over some range of scales (Mandelbrot,100

1983). Based on this observation, a number of approaches for fractal-based mod-101

eling of artificial terrains have been proposed over the last decades (Ebert et al.,102

2003; Dachsbacher, 2006). The most common approach is to generate the alti-103

tude values of a procedural terrain using either polygon subdivision plus midpoint104

perturbation (Miller, 1986), or noise synthesis (Perlin, 1985; Saupe, 1989). Cur-105

rent procedural approaches for terrain modeling create artificial landscapes with106

impressive realism (Ebert et al., 2003; Schneider et al., 2006; Dachsbacher, 2006;107
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Dachsbacher and Stamminger, 2004). However, despite offering a plethora of108

parameters for terrain synthesis, generating artificial terrains reproducing a real109

acquired model at multiple scales is a very time-consuming task. We use fractal110

techniques to add consistent visual complexity to digital models of real terrains111

rather than creating artificial terrains from scratch.112

Estimation of fractal properties. Estimation of fractal properties is of great113

interest in nature sciences. A number of methods have been proposed to com-114

pute the fractal parameters of self-affine signals, including dispersion analysis,115

correlation analysis and power spectral analysis (see (Schepers et al., 1992) for116

a comparison). The roughness-length method (Malinverno, 1990) is based on117

measuring the standard deviation S (w) of the data considering the signal within118

windows of varying sizes. We adopted this method to estimate multiple fractal119

parameters of the terrain.120

Terrain appearance. Surface textures acquired from the real-world or com-121

puted using procedural models are crucial for photorealistic terrain rendering. We122

refer to Dachsbacher PhD thesis (Dachsbacher, 2006) for a review on procedu-123

ral terrain textures. A widely used scheme is texture splatting, i.e. blending a124

set of tileable textures (e.g. rock and grass) according to some criteria. Dachs-125

bacher et al. (Dachsbacher and Stamminger, 2005) create terrain textures on the fly126

by compositing procedural surface layers according to a set of constraints based127

on height and slope ranges. This method has been extended to include rainfall,128

solar radiation, and temperature data (Dachsbacher et al., 2006). Our procedu-129

ral model builds on these ideas but perturbs chromacity in addition to bumpi-130

ness. Example-based texture synthesis provides a powerful tool to complete131

images with arbitrarily large holes (Drori et al., 2003; Hays and Efros, 2007).132
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High-resolution exemplars can be used to synthesize images of arbitrary resolu-133

tion (Hertzmann et al., 2001; Freeman et al., 2002). Our procedural scheme for134

soil synthesis relies on a few exemplars but these are used only at construction135

time rather than at rendering time, making our approach more suitable for net-136

work streaming. For close views, vegetation and small scale detail, e.g. rocks, is137

often represented geometrically (Deussen et al., 2002; Deussen and Lintermann,138

2005; Colditz et al., 2005).139

Forest rendering. Realistic real-time lighting and rendering of forests is a140

challenging problem due to the large number of trees in aerial forest views. Com-141

mon representations include billboards, 3D textures (Decaudin and Neyret, 2004;142

Behrendt et al., 2005), point clouds (Gilet et al., 2005) and texture lobes (Livny143

et al., 2011). The problem we address though is conceptually different as the for-144

est geometry and appearance is already encoded in the DTM and orthophoto, al-145

though at low resolution. Therefore we do not care about rendering distant trees,146

nor about simulating realistic lighting (Bruneton and Neyret, 2012), but instead147

we aim to render plausible vegetation consistent with the existing data. Therefore148

variability and adaptability are key factors of our vegetation rendering approach.149

Ground-based and airborne acquisition merging. There is also work on150

merging aerial laser scans and ground-based acquisition for cities. In particular,151

(Früh and Zakhor, 2003) present a system capable of acquiring 3D geometry and152

texture data from urban environments using 2D laser scanners in horizontal and153

vertical configurations. The data is collected continuously to be later processed154

offline, where Monte-Carlo Localization is used to reduce cumulative positional155

error. As a result, both the scan points and texture images are registered to airborne156

data, which eases the fusion of the captured data. Similarly, (Wang et al., 2006)157
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uses ground-based panoramas combined with aerial images to reconstruct urban158

models. The user outlines the building footprints in the orthorectified aerial image159

and a panorama is registered to the aerial image.160

3. Terrain reconstruction161

The terrain reconstruction algorithm takes as input a DTM, an orthophoto and162

a 3D textured model of the road. The DTM is assumed to provide only a rough163

description of the terrain, as typical DTM resolutions for rural areas do not capture164

well the terrain slope next to the road (Figure 4). We assume that typical road165

vector data (centerlines, roadsides, crossing nodes) have been converted into a 3D166

model of the road. Simple automatic algorithms for such a conversion do exist167

(Section 6). We put no constraint on the user-provided road model other that168

roadside curves must be available. The terrain reconstruction steps are described169

in detail below.170

3.1. Point cloud generation through multi-view stereo171

This step is only performed when photographs are available. Photographs172

are processed to correct distortions using PtLens. Subsets of np consecutive pho-173

tographs (we used np = 12) are used for the reconstruction of partial point cloud174

models, see Figure 5. We create a partial point cloud for every subset of np con-175

secutive photographs, and we use an overlap of 2 photographs between neighbor176

photo subsets to ensure overlaps between consecutive partial point clouds for reg-177

istration purposes. In other words, the first partial point cloud is reconstructed178

from photographs 1..np while the second partial point cloud is generated from179

photos (np − 1)..(2 ∗ np − 2). Camera parameters and initial sparse reconstruc-180

tions are computed with Bundler (Snavely et al., 2006). We then use multi-view181
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stereo (Furukawa and Ponce, 2010) and its Patch-based (PMVS) implementation182

for point cloud generation. PMVS methods work very well with scenes with a183

sufficient number of well-defined features (e.g. indoor scenes or outdoor scenes184

in urban areas), but exhibit lower performance in natural environments including185

self-similar vegetation, where the correspondence problem is less robust. Align-186

ment of PMVS point clouds with the DTM data is based on roadside curves and187

on the road centerline. Roadside and certerline curves are detected in the partial188

point clouds generated by PMVS, based on its white color. They are also available189

on the orthophoto which we assume DTM-registered. Point cloud registration is190

then addressed as a 1D problem, the only degree of freedom being the location191

of each partial point cloud along their guiding roadside curves. This is a simple192

registration problem which can be efficiently solved by the Iterative Closest Point193

(ICP) algorithm. The output of this step is a registered collection of point clouds194

P (Figures 3 and 5).195

3.2. Reconstruction of the terrain mesh196

This step merges in an error-bounded way the low-resolution elevation data197

in the DTM with the 3D road model and the high-resolution 3D geometry in the198

reconstructed point clouds, in roadside areas with positive elevation with respect199

to the road. We also assume that, in these areas, the terrain is locally monotonic200

with slopes facing the road and without local hollows. We consider this as a rea-201

sonable assumption for slopes captured from the road, as non-monotonic terrain202

areas in the road side cannot be acquired due to occlusion. The algorithm starts by203

initializing a terrain elevation model E given by a uniform quadrilateral decom-204

position of the horizontal domain of the terrain. E is finer than the initial DTM.205

Initially, the cells E[i, j] contain two elevation values: ht[i, j] (computed by linear206
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interpolation of the DTM values), and hc[i, j] computed as follows. When pho-207

tographs are available, let ei j be the average elevation of the points from P within208

the prism over the [i, j] cell, and let ε be a user-defined error bound. In this case,209

the elevation hc[i, j] is initialized as210

hc[i, j] =


min(ht[i, j] + ε, ei j), if ei j ≥ ht[i, j]

max(ht[i, j] − ε, ei j), if ei j < ht[i, j].
(1)

Some cells will have an initial nil value for hc[i, j] as ei j can be undefined due to211

missing data. When photographs are not available we initialize hc[i, j] = ht[i, j].212

Moreover, the cells E[i, j] also contain distances d[i, j] computed as Chamfer213

distances (Bailey, 2004) to the road axis. The algorithm assumes that the terrain214

is locally monotonic: for every [i, j], hc[i, j] must be greater than the hc[k, l] value215

of the cells in its 1-ring such that d[k, l] < d[i, j], and hc[i, j] must be smaller than216

the hc[k, l] value of the cells in its 1-ring such that d[k, l] > d[i, j] (the 1-ring of217

[i, j] contains 8 cells). The algorithm proceeds by flooding E cells in areas of218

positive terrain elevation, starting from the road and in increasing distance order219

(a cell [i, j] belongs to a positive terrain elevation area if ht[i, j] is greater than the220

value ht of the closest point on the road axis). When flooding a cell [i, j], non-221

nil hc values from neighboring cells with lower distance value are considered, and222

hc[i, j] is updated (or created, if [i, j] had a nil value) to ensure monotonicity while223

guaranteeing the error bound |ht[i, j] − hc[i, j]| ≤ ε.224

After having estimated hc values for all cells in regions with positive terrain225

elevation, terrain height is computed as a linear interpolation between ht[i, j] and226

hc[i, j]. We consider interpolation regions along the road, their width being de-227

fined by the parameter w. Interpolation regions are only defined with positive228

terrain elevation, and include all points in these areas with a distance d to the road229
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axis between wr and wr +w, where wr is the road width (distance between the cen-230

terline and one of the roadside curves). Then, for any cell belonging to an interpo-231

lation region, the interpolation parameter α is computed as α = (d − wr)/w. The232

height ht[i, j] is only recomputed within interpolation regions, and if 0 < α < 1. In233

this case, ht[i, j] = αht[i, j] + (1 − α)hc[i, j]. After terrain height interpolation and234

as a last step, we smooth ht[i, j] by applying a number of iterations of a standard235

Laplacian filter, to smooth hc values and reduce discontinuities between cells with236

point data and cells with missing data. After several experiments, we observed237

that plausible reconstructions can be produced with a number of Laplacian itera-238

tions between 50 and 100, the terrain surface beginning to be too flat above 500239

iterations (Figure 7).240

Figure 6 shows a reconstruction example. The low-resolution DTM (Figs. 6a,e)241

fails to capture well the slope of the terrain and thus deviates significantly from242

the high-resolution point-cloud (Figs. 6b,f) which reveals a nearly-vertical wall in243

the roadside terrain. Our reconstructed mesh with w = 5 meters and 100 Lapla-244

cian iterations (Figs. 6c,g) inherits the shape reconstructed from the captured pho-245

tographs in the areas close to the road while reducing the effect of spurious vege-246

tation points in the reconstructed PMVS meshes, and adapts to the DTM in other247

areas.248

3.3. Estimation of fractal parameters249

Fractal parameters will be used during rendering to provide plausible detail250

of the terrain at close-up views. We assume that the local displacement values of251

the terrain exhibit a fractal behavior characterized by amplitude Ad and roughness252

Hd values (Saupe, 1989) such that the standard deviation S d(w) of displacement253

values within a sampling window of size w follows the power law S d(w) = AdwHd ,254

11



where Ad is a proportionality constant and 0 < Hd < 1 is the Hurst exponent. Al-255

though in practice Ad and Hd vary across the terrain, according to our experiments256

using the same Ad and Hd values for the whole terrain also yields plausible results.257

We estimate Hd and Ad as the slope and intercept of the regression line of a plot258

of log S d(w) vs. log w (Malinverno, 1990) using the 3D point samples within a259

user-provided 3D window.260

We also compute color fractal parameters that will be used during rendering261

to provide plausible detail to the terrain color. We work on YCoCg color space262

where Y represents luminance and Co, Cg are chromacity values. We will as-263

sume that these values also exhibit a fractal behavior characterized by amplitude264

and roughness values. We compute these values Ay, Hy, Ao, Ho, Ag, Hg using265

the roughness-length method as described above, taking the standard deviation of266

YCoCg components within a user-provided image.267

4. Vegetation distribution268

The vegetation types in the segmented orthophoto are used to compute plau-269

sible locations for the trees and shrubs. The output is a collection of 3D points270

corresponding to the center of the plant projected on the ground that we call tree271

buffer. No additional vegetation geometry is created at this time; vegetation will272

be created procedurally on-the-fly according to the simple leaf distribution model273

described below.274

4.1. Leaf distribution model275

A tree crown can be described using a tuple {h, t(r), b(r), d} where h is the276

height of the crown center and t(r) and b(r) are functions giving the height of the277

crown top (resp. bottom) at distance r from the tree axis. Functions t(r) and b(r)278
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describe the upper and lower profiles of the crown (see Fig. 8), which we assume279

to have approximate axial symmetry. For example, a spherical crown would be280

described by t(r) = b(r) =
√

1 − r2 if 0 ≤ r ≤ 1 and t(r) = b(r) = 0 elsewhere.281

The parameter d expresses the leaf density, which we assume to be constant within282

the crown. Let P be a vertical prism at a distance r from the tree axis, and let a be283

the area of the 2D footprint of P. The volume of P is thus v = a(t(r) + b(r)), and284

P has n = d · v leaves with heights in the interval [h − b(r), h + t(r)]. In order to285

introduce some randomness in the crown shape, we perturb t(r) and b(r) using a286

noise function.287

A family of tree crowns can be characterized by average and standard devi-288

ation values for h and d along with the t(r) and b(r) functions. We use a small289

vegetation dictionary where each entry holds µh, σh, µd, σd, t(r) and b(r) for a290

few representative plant species according to the local vegetation in the area to be291

reconstructed. Each vegetation type also holds a small collection of representa-292

tive leaf textures. Textures can represent single leaves or groups of leaves; in the293

latter case the values of µd and σd must be reduced accordingly.294

4.2. Shadow-based adjustment295

The segmented orthophoto might include misclassified vegetation pixels. Since296

we will render the vegetation with a color visually consistent with the user-provided297

orthophoto, we have observed that the effect of misclassification errors in the out-298

put images is not perceptually important. An exception is when the shadows cast299

by trees provide a clear perceptual cue about the presence of such trees. If these300

pixels are misclassified as shrub or herb, the resulting image will exhibit incon-301

sistent shadows. We use the shadows present in the orthophoto to improve the302

vegetation classification. We first label pixels in the orthophoto as shadow if their303
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luminance is below a certain threshold. We then apply a morphological opening304

operation to the set of shadow pixels to reduce the effect of noise. The result is305

a binary image I that contains an estimation of the shadows cast by high vegeta-306

tion. Since the inclination of the Sun introduces a relative shadow displacement,307

we translate I pixels by the corresponding 2D vector. This 2D vector could po-308

tentially be extracted from the orthophoto, but we introduce this value manually309

for each orthophoto that must be segmented. Finally the corresponding vegetation310

pixels in the orthophoto are labeled as tree type. This will promote misclassified311

shrubs and herb pixels to tree type in certain areas (Figure 9). Notice that only312

pixels already classified as vegetation will be affected by this step.313

4.3. Tree placement314

A key step is the placement of trees at locations visually consistent with the315

orthophoto, as this would affect the location of the tree trunks and the crown shape.316

We use a dart throwing algorithm to place trees within those areas classified as317

trees, satisfying the condition that no pair of trees are closer to each other than318

a certain minimum distance (6 m for the trees in our examples). We store the319

resulting positions in a tree buffer and compute a discrete distance field (with the320

same resolution as the orthophoto) where each pixel stores its distance r to the321

nearest tree axis.322

5. Rendering323

The runtime representation consists of the following data: the reconstructed324

terrain mesh, the estimated fractal parameters, the tree buffer, the tree distance325

field, the parameters for each vegetation type, and the initial user-provided data326

-road and orthophotos- (Figure 10). The vegetation type and the distance field327
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are encoded in a single-component texture with 2 and 6 bits, respectively. The328

following sections describe the rendering algorithm using OpenGL notation.329

5.1. Terrain rendering330

Since our reconstructed terrain is a conventional triangle mesh, it can be ren-331

dered in a variety of ways including ROAM meshes (Duchaineau et al., 1997),332

Geometry Clipmaps (Losasso and Hoppe, 2004; Asirvatham and Hoppe, 2005),333

and Batched Dynamic Meshes (Cignoni et al., 2003; Gobbetti et al., 2006), all of334

which provide view-dependent level of detail management. Here we focus only335

on the GPU shaders we use to compute the final terrain color at fragment level.336

Two colors are available for each terrain fragment: the one from the input337

orthophoto co, and a synthetic one ct created through fractal noise from a user-338

provided exemplar. Recall that co often does not represent the terrain color e.g.339

in those areas covered by vegetation. We compute the base terrain color as the340

linear interpolation cb = (1 − t)co + tct, where t = clamp(ρ, α, 1.0), 0 ≤ ρ ≤341

1 is a per-fragment interpolated value indicating the presence (1) or absence of342

vegetation (0), and 0 ≤ α ≤ 1 a user-defined parameter expressing the strength343

of the synthetic color in areas not covered by the vegetation. As α approaches344

1, the base color is synthetic even in areas not covered by vegetation. We used345

α = 0.7 for the Arrabassada dataset and α = 0.0 for the rest of models shown in346

Section 6.347

We enrich the terrain geometry with fractal detail. We use Saupe’s fractal348

evaluation method (Saupe, 1989) to compute a surface displacement value along349

the normal direction, and then use Perlin’s approach (Perlin, 1985) to perturb the350

per-fragment normal. The fragment is then lighted using the perturbed normal.351

For consistency with the orthophoto, we use a single directional light.352
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Standard techniques such as shadow mapping can be used to simulate the shad-353

ows cast e.g. by the vegetation onto the terrain. However, shadow mapping as-354

sumes opaque geometry and thus it would cause top leaves to cast hard shadows355

onto everything below. Instead we use a more efficient approach for generat-356

ing high-resolution shadows. Let x be the world space coordinates of the terrain357

fragment being processed, and let c be the fragment color after lighting. The at-358

tenuated color is computed as ca = mix(c, c · t(x), ρ(x)), where ρ(x) indicates the359

presence of vegetation and t(x) is a luminance value sampled from a predefined360

periodic texture representing the shadow cast by multiple leaves. This results in361

highly detailed shadows (see accompanying video).362

5.2. Vegetation rendering363

Vegetation leaves are rendered using OpenGL 4 tessellation and geometry364

shaders. We first sample the orthophoto using a regular grid. For each grid patch365

we use the vegetation dictionary to retrieve the parameters associated to its domi-366

nant vegetation type and then we sample the vegetation parameters h and d. Next,367

we create n leaf seeds randomly distributed above the patch according to our tree368

model. The number of leaf seeds is computed as n = a · d · k · (t(r) + b(r)) (Sec-369

tion 4.1), where 0 ≤ k ≤ 1 is a user-defined value indicating the number of initial370

seeds above the patch. Leaf seeds are generated in the CPU and stored in a vertex371

buffer object. We use the ability of tessellation engines for refining geometry to372

replicate seeds in a view-dependent manner. The tessellation evaluator shader dis-373

tributes new leaves around the seeds according to our crown model. A geometry374

shader is used to create a texture-mapped billboard rectangle for each final leaf.375

Unlike detailed polygonal models of trees (Neubert et al., 2011) our approach376

is model-independent and thus compatible with the randomness of procedurally-377
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generated instances.378

Each leaf is initially assigned the orthophoto color. The fragment shader mod-379

ulates this color by sampling the luminance from one of the typical leaf textures380

associated to the vegetation type (Figure 8), while preserving chromacity values.381

Since the leaf textures are used to perturb the vegetation color sampled from the382

orthophoto, we adjust their histograms so that they all have the same average383

luminance. This allows us to add detail to the vegetation without introducing384

a noticeable color shift with respect to the orthophoto (see Figure 14). Finally,385

self-shadowing effects are approximated by attenuating the color according to the386

distance from the top of the crown t(r) − y.387

Trunks are often not visible in the orthophoto as they are covered by vegeta-388

tion. Nevertheless, rendering trunks is key for achieving a plausible rendering of389

trees in non-zenithal views of the scene. Generation of realistic trunks (Runions390

et al., 2007) is out of the scope of this paper; we just instantiate a few predefined391

trunk models conveniently scaled to match the tree parameters.392

6. Results and Discussion393

6.1. Test datasets394

We tested our algorithm on five different datasets representing a variety of395

Mediterranean landscapes. Table 1 summarizes the input data available for each396

dataset. The 50 cm and 25 cm orthophotos are shown in Figure 11. The Arrabas-397

sada dataset contains a carved road which is poorly represented in the DTM due to398

the abrupt slope changes. For this dataset we applied the complete reconstruction399

pipeline depicted in Figure 2 using road-level photographs (Fig. 5) captured from400

a car moving along the road. The initial set had roughly one image every 1.6 m.401
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Dataset Size DTM Orthophoto Photographs Road model

Arrabassada 128,000m2 5m 50cm/px 380 900m

Andorra 810,000m2 5m 25cm/px 0 1,200m

Montserrat 810,000m2 5m 25cm/px 0 -

Roca del Corb 810,000m2 5m 25cm/px 0 -

Garraf 810,000m2 5m 25cm/px 0 180m

Table 1: Main features of the test datasets

We used a subset of 380 images. The other datasets either contain non-asphalt402

trails (Montserrat, Roca del Corb) or paved roads reasonably well represented in403

the DTM (e.g. the road going through the valley in the Andorra dataset). For404

these datasets we used our simplified version of the reconstruction pipeline with405

no road-level photographs and no multi-view stereo, as road-level photographs406

were not available in these cases.407

The input road vector data for the Arrabassada, Andorra and Garraf datasets408

was a polyline defining the road centerline. Several control points were edited409

to improve its fitting to the orthophoto, and the road width was set manually.410

Clothoids could have been used to improve the accuracy of the road model, but411

the manual fitting was considered sufficient for the purpose of our tests. The gen-412

eration of the road geometry was straightforward for the road stretches considered413

(see e.g. Fig. 4). More complex road networks with crossings, bridges and proper414

road marking can be handled in an automatic way (Bruneton and Neyret, 2008).415

The test hardware was an Intel Core I7 960 PC equipped with an NVidia 570.416
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Dataset PMVS Terrain reconst. User time Overall

Arrabassada 16 min 6 s 8 min 24 min

Andorra N/A <1 s 2 min 2 min

Montserrat N/A <1 s 65 s 65 s

Roca del Corb N/A <1 s 40 s 40 s

Garraf N/A <1 s 40 s 40 s

Table 2: Construction times for the test datasets

6.2. Preprocessing and reconstruction417

The orthophoto was first segmented into vegetation and non-vegetation pix-418

els. For this task we used the Normalized Difference Vegetation Index (NDVI)419

(Kriegler et al., 1969; Roettger, 2007). Each vegetation pixel was further classi-420

fied into trees, shrubs and herbs. We selected a few portions of the orthophoto421

showing each vegetation type and used as signature the mean HSL color of the422

vegetation together with the inverse covariance matrix of the pixels. Using this423

signature, each vegetation pixel p in the orthophoto was assigned the vegetation424

type closest to p in the Mahalanobis distance (Mahalanobis, 1936) sense. We425

found this first-order descriptor to be reasonably accurate for our test orthophotos,426

see Figure 11. More complex scenarios can be segmented using classification427

techniques based on texture features (Ruiz et al., 2004; Balaguer et al., 2010).428

Construction times are reported in Table 2, including point-cloud generation429

(PMVS), terrain reconstruction, and user time. User tasks included the road fit-430

ting and the selection of exemplars. Note that most of the time was spent in the431
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Dataset Terrain Road Orthophoto Vegetation Overall

Arrabassada 4.7 MB 97 KB 4 MB (1024×1024) 1.9 MB 10.7 MB

Andorra 6 MB 145 KB 49 MB (4096×4096) 6.4 MB 61.4 MB

Montserrat 6 MB - 49 MB (4096×4096) 5.0 MB 60.0 MB

Roca del Corb 6 MB - 49 MB (4096×4096) 5.3 MB 60.3 MB

Garraf 6 MB 200KB 49 MB (4096×4096) 2.7 MB 57.7 MB

Table 3: Size of reconstructed models

Bundler and multi-view stereo step, which can be omitted whenever the DTM432

representation of the road-side terrain is considered acceptable.433

Table 3 reports the size of the reconstructed models. Despite the Arrabassada434

dataset had the smallest extents (Table 1), its terrain mesh is much denser due to435

the 50 cm voxel size used for its construction.436

6.3. Visual results437

The reconstructed Arrabassada model is shown in Figure 12 and in the ac-438

companying videos. Figure 13 shows a visual comparison with the input DTM.439

Whereas for zenithal views our approach reproduces faithfully the orthophoto440

data, the benefits of our approach become evident at grazing angles and extreme441

zoom levels. The final terrain mesh is more accurate than the DTM in regions442

close to the road (Figure 4).443

Figure 15 shows the results for the Andorra dataset. This dataset features444

a rich variety of plant species which caused a less accurate classification of the445

vegetation. Our tree placement algorithm assumes a roughly constant separation446
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between tree trunks. In areas with a rich variety of tree species and a large range447

of tree sizes this might result in some small trees reconstructed as a unique tree448

and, conversely, large trees reconstructed as multiple smaller trees. These arti-449

facts might be noticeable if rendered images are compared side-to-side with the450

orthophoto (see accompanying Andorra video). Notice that the DTM was not ad-451

justed to the road and that no road-level photographs were used for this model.452

This resulted in a somewhat unrealistic bank angle which can be noticed in Fig-453

ure 15, view 2, and in the accompanying videos.454

Renderings of the Montserrat and Roca del Corb models are shown in Fig-455

ures 16 and 17. The corresponding orthophotos exhibit large shadow areas which456

result in a reconstructed model with slightly darker appearance due to double-457

lighting effects. Since dry vegetation is hard to detect with our first-order descrip-458

tor, some dry vegetation pixels are misclassified as terrain, causing some incon-459

sistencies which can be detected if compared with the input images (Figure 17,460

view 3). Despite these limitations, our reconstructed model provides a plausible461

reconstruction with richer details and realistic silhouettes.462

The reconstructed Garraf model is shown in Figure 18. The NDVI descrip-463

tor succeeded in classifying quarry pixels as terrain pixels, providing a clear and464

realistic view of the terrain at multiple levels of scale (see view 1 and the accom-465

panying video). This model also exhibits some regions with sparse vegetation466

(mountain top in view 1) which illustrates the critical nature of the tree placement467

algorithm. Again, the benefits of our approach are more evident at close-up views468

of the terrain (view 3).469

Figure 19 shows real and reconstructed images of two different landscapes470

in order to test the plausibility of our reconstructions. Although the time of the471
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Dataset Veget. coverage Terrain (ms) Vegetation (ms) Framerate (fps)

Andorra 72% 2.0/14.1 8.9/10.1 92/41

Montserrat 54% 1.4/10.6 6.9/9.2 120/51

Roca del Corb 58% 1.6/11.2 6.8/9.9 119/47

Garraf 30% 0.8/3.6 8.3/9.2 110/78

Table 4: Rendering times for the test datasets. Performance times refer to a distant

view (first value) and a close-up view (second value).

day, the daylight, the season and the camera locations are not identical, our re-472

constructions are capturing the structure of the landscape by producing plausible473

visualizations which can be clearly identified as belonging to each of the two spe-474

cific places.475

6.4. Rendering times476

Table 4 shows the rendering times on a 1280 × 720 viewport. For close-up477

views (we use no occlusion culling) the most expensive step is the rendering of478

the vegetation leaves, which is affected by the percentage of orthophoto pixels479

classified as vegetation (second column of Table 4). As expected, the slowest480

speed is achieved with the Andorra model (40 fps on a typical close-up view)481

with about 72% of vegetation coverage. Conversely, Garraf was the fastest to482

render (78 fps) with 30% of coverage. Vegetation rendering can be accelerated483

by using leaf textures representing larger leaf aggregations at the expense of tree484

quality.485
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6.5. Discussion486

Although the vegetation we create is synthetic and thus differs from the real487

vegetation, it preserves its basic appearance as it inherits the color captured by the488

orthophoto. This ensures color variety and consistency. Our leaf-based approach489

offers multiple advantages: the memory footprint is small (1 byte/texel for the490

vegetation type and distance field) and each resulting tree is unique. This variety491

on the vegetation is often missing in forest rendering approaches (Roettger, 2007;492

Bruneton and Neyret, 2012). Leaves can also be animated easily to simulate the493

effect of wind. We used the same set of vegetation parameters and leaf textures for494

all the test models shown in this paper. A more accurate reconstruction could be495

achieved by tuning these parameters according to the features of the local vegeta-496

tion. In a network streaming scenario, our approach introduces a small overhead.497

In terms of per-texel data, we only need to transmit the vegetation type (2 bits),498

which represents a very small overhead.499

7. Conclusions and Future Work500

In this paper we have proposed a new inexpensive approach to model and ren-501

der plausible landscape reconstructions. Our algorithm succeeds in generating a502

detail-rich representation of the terrain and vegetation, by refining the initial DTM503

to better reproduce the shape and appearance of the terrain surrounding the road,504

and creating plausible vegetation on top of it. In terms of acquisition cost and505

storage space, our approach fills the gap between publicly available DTM and or-506

thophoto data, which lack realistic appearance for close views, and more sophisti-507

cated methods (e.g. LiDAR-based) that provide very accurate reconstructions but508

require expensive acquisition equipment and generate huge datasets not suitable509
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for network streaming. An interesting avenue for future work is to explore level-510

of-detail techniques for the vegetation while preserving the variety and flexibility511

of our approach. Considering additional vegetation types would require higher512

order descriptors. We plan to use texture descriptors to detect more vegetation513

classes and to get better estimates of the vegetation height.514

We plan to integrate color information from the road-level photographs to fur-515

ther adjust the vegetation type and parameters. Our current tree placement algo-516

rithm uses a simple dart throwing approach with a minimum distance constraint.517

We also plan to extend this approach by identifying and using vegetation samples518

from the acquired point clouds to place and get shape estimates of trees in regions519

captured by the road-level photographs. This would enhance the fitting of the520

reconstructed vegetation models to the real vegetation. Finally, adding ambient521

occlusion and HDR lighting does not seem to be a hard task.522
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Figure 1: Given commonly available data (low-resolution DTM, orthophoto, road

vector data) and a set of photographs taken from a road, we model the surround-

ing landscape using a data-driven semi-procedural representation that provides

plausible terrain and vegetation details.
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Terrain mesh

Tree placementTerrain reconstruction

Multi-view stereo

Fractal estimation
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Vegetation parameters

Point cloud

Fractal parameters Tree bufferDistance field

(x,y,z)

OrthophotoDTMRoad model Vegetation types 

Figure 2: Overview of our reconstruction algorithm.

Figure 3: Point cloud (shown as point splats) reconstructed from the road-level

photographs of the Arrabassada dataset. The visibility from the road is limited

and thus the photographs only capture a part of the environment (shown as small

dots).
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Figure 4: Traditional DTMs (left and middle) do not capture well the terrain slope

next to the road. Roads are not flat and their slope is affected by that of the

neighboring terrain. We address this problem (right) by integrating the road model

and the acquired point clouds into the user-provided DTM.

Figure 5: Vehicle-mounted cameras used to acquire the photographs from the

road, two different photographs of the same area, and the point cloud as recon-

structed from 12 successive photographs.
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(a) Road-adjusted DTM (b) Point cloud and road

(c) Reconstructed mesh (d) Mesh with fractal detail

(e) Road-adjusted DTM (f) Point cloud and road

(g) Reconstructed mesh (h) Mesh with fractal detail

Figure 6: Terrain reconstruction example (Arrabassada model).
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Figure 7: Smoothing of a terrain mesh extracted from a 10 cm voxelization with

0, 10, 50, 100 and 500 Laplacian iterations.

h

r

t(r)

b(r)

Figure 8: Leaf parameters, a sample tree created with our model, and two leaf

textures.

(a) (b) (c) (d) (e)

Figure 9: Shadow-based adjustment: (a) Orthophoto, (b) Classification, (c) De-

tected shadows, (d) Adjusted classification, (e) Pixels affected by the adjustment.
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Figure 10: Overview of our rendering algorithm.

(a) Arrabassada (b) Andorra (c) Montserrat (d) Roca del Corb (e) Garraf

Figure 11: Test datasets: Input orthophotos (top row), classifications (middle row)

and reconstructed models (bottom row). The classification types are trees (in red),

shrubs (in green), grass (in blue) and terrain/road (in white).
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Figure 12: Renderings of the Arrabassada model.
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Figure 13: Initial DTM (top) and our reconstruction (bottom) for the Arrabassada

dataset.

Figure 14: Our reconstructed model integrates seamlessly with surrounding DTM

data.
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(a) DTM, view 1 (b) Reconstruction, view 1

(c) DTM, view 2 (d) Reconstruction, view 2

(e) DTM, view 3 (f) Reconstruction, view 3

Figure 15: Results with the Andorra dataset.
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(a) DTM, view 1 (b) Reconstruction, view 1

(c) DTM, view 2 (d) Reconstruction, view 2

(e) DTM, view 3 (f) Reconstruction, view 3

Figure 16: Results with the Montserrat dataset.
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(a) DTM, view 1 (b) Reconstruction, view 1

(c) DTM, view 2 (d) Reconstruction, view 2

(e) DTM, view 3 (f) Reconstruction, view 3

Figure 17: Results with the Roca del Corb dataset.
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(a) DTM, view 1 (b) Reconstruction, view 1

(c) DTM, view 2 (d) Reconstruction, view 2

(e) DTM, view 3 (f) Reconstruction, view 3

Figure 18: Results with the Garraf dataset.
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Figure 19: Plausibility analysis. Two different lanscapes are shown: Arrabassada

in the top row and Montserrat in the bottom row. The left columns show, in

both cases, real photos of the landscapes, while images of our reconstructions are

presented in the right columns.
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