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The interplay between electronic coupling, spectral linewidth, and rate of electronic energy transfer
between chromophores is examined in the context of a quantum electrodynamical~QED! model.
The QED framework properly allows us to identify the partitioning between the near and far zone
mechanisms for transfer of energy between chromophores dispersed in condensed phase~liquid or
solid! host media. The extent to which coupling is modified by the medium is investigated. A
general QED treatment of higher multipole contributions to the coupling between transition
moments is also derived, whence interactions involving electric dipole, quadrupole and octopole as
well as magnetic dipole and quadrupole interactions are examined explicitly. A new formulation is
presented wherein expressions for the multipolar coupling tensors are obtained in terms of spherical
Bessel functions, providing a clear, compact representation of the retarded coupling interaction and
its distance-dependence. The irreducible tensor formulation of the coupling is discussed,
highlighting features concerning the exact form of the orientation factors that have often in the past
escaped notice. The detailed method of implementing a rotational averaging of the resultant
interaction tensors is demonstrated, finally leading to a novel and concise representation for
multipolar couplings of arbitrary order. The coupling between bacteriochlorophylla chromophores
is discussed as an example. ©1997 American Institute of Physics.@S0021-9606~97!02837-7#

I. INTRODUCTION

Electronic energy transfer~EET! is the process by means
of which a chromophore remote from another initially-
excited chromophore may indirectly be excited.1–7 ~Here we
use the term ‘‘chromophore’’ in the broadest sense, to denote
any molecule, atom or ion, or any part of such with a distinct
electronic identity and optical response.! It is known that
EET plays an important function in light harvesting, solar
energy conversion and photosynthesis—it also significantly
contributes to the operating characteristics of solid-state laser
media. However, at the present time, further theoretical con-
siderations of the mechanism of this fundamental phenom-
enon are still required in order to adduce the reasons under-
lying fast EET and energy migration observed in
experiment.8–11

If both chromophores, donor and acceptor, have allowed
singlet–singlet transitions then the EET is promoted prima-
rily by a coupling ~approximately dipole–dipole! between
transition moments.6,12,13 The nature of such an interaction
has been examined previously within the framework of
quantum electrodynamics, and two principal interaction re-
gimes have been established.14–22 At close separations~the
near zone! the familiarR26 distance dependence for the rate
of ~dipole–dipole! EET is recovered. At large separations,
where the separation between donor and acceptor chro-
mophores exceeds the appropriate reduced wavelength of

light ~the far zone!, a trivial radiative EET mechanism is
found to operate. This involves emission and absorption of a
real photon and leads to anR22 distance dependence for the
rate of EET. Over intermediate distances, the energy transfer
mechanism has a more intricateR-dependence.

In the present work the electronic coupling-linewidth re-
lationship ~noted previously23 as a factor determining the
‘‘adiabaticity’’ of a vibronic interaction! is investigated by
incorporating line broadening into the quantum electrody-
namical model for EET. As recent nonlinear spectroscopic
studies of condensed phase photophysics show,24 the inter-
play between electronic processes and random bath fluctua-
tions is critical in determining the rate of transition. The
quantum electrodynamical framework affords a general and
lucid formulation, and permits a more appropriate partition-
ing between near and far zone mechanisms for molecular
systems in the condensed phase. We address the question: Is
the electronic coupling modified significantly the solvent/
host medium?

In Sec. III a QED treatment of higher multipole contri-
butions to the general retarded coupling between transition
moments is presented. Thence interactions involving electric
dipole, quadrupole, and octopole as well as magnetic dipole
and quadrupole interactions are examined. A new formula-
tion is derived, which obtains a general, limpid representa-
tion of the retarded coupling and its distance-dependence.
We investigate the form of these interactions with particular
regard to their irreducible tensorial structure, highlighting the
complete form of the interaction, including phase factors.
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Appropriate expressions for the requisite rotational averages
are formulated, leading to a concise representation for mul-
tipolar couplings of arbitrary order. The near and wave zone
regime limits are compared and discussed.

II. A QED FRAMEWORK FOR THE CONDENSED
PHASE

A. Rate expressions

In this section it is demonstrated how the framework
previously established for the molecular quantum electrody-
namical~QED! treatment of EET~Refs. 15–21! maybe com-
bined with a density matrix-based treatment of spectral line
shape accommodating multiphoton processes.25–27 Such a
unification is symbiotic. For instance, homogeneously and
inhomogeneously-broadened transition line shapes are incor-
porated into the QED formalism~e.g., by using a Brownian
oscillator model for the molecule-bath coupling27!, permit-
ting meaningful extrapolation between the weak and strong
coupling limits. At the same time, microscopic radiative in-
teractions are properly introduced into the Liouville space
model. We begin by discussing rate expressions, then we
consider the coupling between transition moments.

Recently Juzeliūnas and Andrews have accommodated
medium effects in a quantum electrodynamical treatment of
resonant energy transfer in condensed matter.28,29 In the
present work we wish to extend this work by examining
damping effects in relation to the dynamic line-broadening
caused by coupling with the host or solvent. We adopt the
stochastic approach used previously for the description
of absorption line shapes,25,30 resonance Raman and
fluorescence emission phenomena31 and multiphoton
processes,26,27,32–34allowing elucidation of line broadening
effects without recourse to microscopic detail.

We consider explicitly here the Liouville space path-
ways for interactions between the donor moleculeD and the

acceptorA, as depicted in Fig. 1. The initial stateud& corre-
sponds to excitedD, ground stateA, and a vacuum radiation
field, uD* A(Qt);0&. The initial molecule and solvent coor-
dinates (Q0) correspond to those of the ground state,
uDA(Q0);0&. At time t these coordinates are writtenQt .
The Q represent the vibrational component of the propaga-
tion of a wave packet along the reaction coordinate so as to
provide, for example, a Stokes’ shift of the donor excitation
energy.35,36The final stateua& denotesuDA* (Qt);0& and the
intermediate statesum& and un& include the configurations
uDA(Qt);1(k,l)& and uD* A* (Qt);1(k,l)&, respectively,
where 1(k,l) denotes a single quantum excitation of the
radiation field characterized by wave vectork and polariza-
tion l.

The Hamiltonian is writtenH5H01V, with

H05ud&@Er0~Q0!1gd~ t !#^du1ua&@Es0~Q0!1ga~ t !#

3^au1um&@\ck1gm~ t !#^mu1un&

3@Er0~Qt!1Es0~Qt!1\ck1gn~ t !#^nu, ~1!

where Ei0(Q0)[Ei2E0 is the excitation energy from
ground to excited statei ~i 5r or s for D or A, respectively!
at the ground state nuclear configurationQ0 . Equation~1!
includes the Hamiltonian for the radiation field, expressed in
terms of the transverse electric displacement vectord' and
fundamental magnetic fieldb, integration being carried out
over all spacer ~c is the speed of lightin vacuoande0 is the
vacuum permittivity!. The gi(t) ~i 5d, a, n or m! provide
~possibly stochastic! modulations to the excitation and emis-
sion energies, originating from interactions between the
chromophores and fluctuations of the bath. They would
therefore be slow in a glassy or crystalline host, but fast in
room temperature liquids~providing in the latter case an op-
tical dephasing time that can be as short as a few tens of
femtoseconds!.

The interaction Hamiltonian is taken to be

V5(
m

~Vdmud&^mu1Vmdum&^du1Vamua&

3^mu1Vmaum&^au!, ~2!

and the intermediate states are depicted in Fig. 2. For dia-
gram ~i! we have

Vdm5^1~k,l!;E0
A~Q!,E0

D~Q!uH intuEr
D~Q!,E0

A~Q!;0&

5 i(
k,l

S \ck

2e0VD 1/2

ēi
~l!~k!m i

0r~QD!e2 ik–RD,

Vam5^0;Es
A~Q!,E0

D~Q!uH intuE0
D~Q!,E0

A~Q!;1~k,l!&

52 i(
k,l

S \ck

2e0VD 1/2

ej
~l!~k!m j

s0~QA!eik–RA, ~3!

with

H int5(
N

2e0
21m~QN!•d'~RN! ~4!

FIG. 1. Double-sided Feynman diagrams for electromagnetic field-mediated
energy transfer involving virtual photon emission-absorption~upper dia-
grams! or absorption-emission~lower diagrams! interactions.
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for radiation modes characterized by polarization vectors
ei

(l) ~an overbar denoting complex conjugation! with V the
quantization volume andRN the position vector of molecule
N. The operatorH int is the radiation-matter interaction
Hamiltonian, expressed as in Eq.~4!, wherem(QN) is the
dipole operator for moleculeN with nuclear coordinates
QN—at this stage we employ the dipole approximation to be
consistent with previous work. This assumes that those inter-
actions mediated via interchromophore orbital overlap are
negligible, which should be the case for chromophores with
quite strongly allowed electronic transitions, at intermediate
to long separations,12,37 or for the coupling involving a caro-
tenoidS1 state, investigated recently.38 Interchromophore or-
bital overlap effects are ignored in this work, but higher mul-
tipole contributions toH int are considered in Sec. III. At
close separations, where strong coupling obtains, a simple
Golden Rule formulation of the rate probably no longer ap-
plies anyway;19,35 then the nature of the initially prepared
state as well as electronic and vibrational coherences be-
comes important.

A sum over the appropriate manifold of vibrational
states is associated with the transition momentsm i

0r andm j
s0,

and it is assumed thatm i is approximately independent of
nuclear and solvent configuration. By expandingQN about
the equilibrium nuclear configuration in a Taylor expansion
the Condon approximation may be applied and vibronic cou-
pling may be included in Eqs.~3!.23

In the usual QED treatment of EET we would now de-
termine matrix elements for diagrams~i! and ~ii ! using sec-
ond order perturbation theory~cf. Sec. III!. Under appropri-
ate conditions of weak coupling a rate may then be obtained
using Fermi’s Golden Rule. In this section, however, we will
examine a generalized rate equation for EET via the Liou-
ville equation for the density matrix,r.27,39,40We may then
obtain the generalized master equations of Eq.~5! ~with the
initial diagonality condition39! for the occupation probability
of statea,Pa(t)[^aur(t)ua&, wherer(t) is the density op-
eratorr(t)[uC(t)&^C(t)u related to the wave function for
the systemC(t),

dPa~ t !

dt
5E

0

t

dt(
d

@Wad~ t2t!Pd~t!

2Wda~ t2t!Pa~t!#, ~5a!

Ṗ5E
0

t

dtW~ t2t!P~t!. ~5b!

Equation~5b! is a more general formulation of Eq.~5a! in-
volving the population vectorP and the generalized rate ma-
trix W.

By employing the time-ordered molecular propagator we
obtain the tetradic generalized rate of Eq.~6! in terms of the
Liouville space pathways depicted in Fig. 1. This explicitly
incorporates the radiation field into the rate expression via
the intermediate statesm. The photon associated withm may
assume real or virtual character, essentially depending on its
propagation time, and it will be shown here how this affects
the dynamics ofP @Eq. ~5!#. For an intermediate state involv-
ing a real photon, there exists the possibility of a trivial en-
ergy transfer mechanism reflecting a classical sequence of
emission and absorption events~as has been recognized
previously18!. It is possible to isolate from the population
pathway, involving a real photon intermediate state, this
trivial mechanism of the Bloch limit. It can be shown that the
coherent pathway is given by the termK I of Eq. ~8!, whilst
the population pathway is given byK II1K III in analogy to
resonance Raman vs fluorescence, although we do not repro-
duce the derivation here.

Fluctuations in the transition frequencies are described
in terms of an electronic frequency correlation function
M (t), using the line broadening function,gi(t), for a mode
i such that27,34

gi~t!5 il iE
0

t

dt1Mi~ t1!1^Dv i
2&E

0

t

dt1E
0

t1
dt2Mi~ t2!.

~6!

This formulation thereby incorporates the reorganization en-
ergyl i ~providing the solvent Stokes’ shift! and the coupling
strength ^Dv i

2&1/2, which are related by the fluctuation-
dissipation theorem. We then haveg(t)5( igi(t). The form
of g(t) dictates how frequency fluctuations are treated.27

There are six contributions to the memory kernel, which
may be represented as the three Liouville space pathways of
Fig. 1 and their complex conjugates. These are given as

K I~v!5Re (
m,m8

~2 i !^Vm8dGm8a
†

~v3!Vam8Gda~v2!

3VmaGdm~v1!Vdmrd1c.c.&, ~7a!

K II~v!5Re (
m,m8

~2 i !^Vm8d~v3!Gm8aVam8Gm8m
†

~v2!

3VmaGdm~v1!Vdmrd1c.c.&, ~7b!

K III ~v!5Re (
m,m8

~2 i !^Vm8d~v3!Gm8a
† Vam8Gm8m

†
~v2!

3VmaGm8d~v1!Vdmrd1c.c.&, ~7c!

where the angular brackets denote an ensemble average. We
have used the labeling of Takagaharaet al.30 for the path-
ways. Mukamelet al.31 denote our pathway I as III, and III
as I. In our work,K I defines the coherent pathway whilst the
population pathway is given byK II1K III .

To apply a factorization approximation we average over
the bath degrees of freedom for eachG(v), which we here

FIG. 2. Liouville space pathways for the interaction contributionsK I , K II ,
andK III .
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denote by a ‘‘bar’’ notation, such that theḠnm(v) are com-
plex generalized line-shape functions for then←m
transition,27,32

Ḡnm~v!52 i E
0

`

dt exp~ ivt!

3exp@2 ivnmt2 1
2~gn1gm!t2gnm~t!# , ~8!

with gn
21 the lifetime of leveln, t5t22t1 and vnm[En

2Em . Such a simplification of the four-time correlation
function is based on the assumption of a separation of time
scales for the chromophore and bath, such that the average of
the product of operators in Eq.~7! factorizes into a product
of operator averages~denoted by bars!, Eq.~8!. This approxi-
mation becomes exact in the impact limit~the limit of a short
bath correlation time!. A more general approach for evalua-
tion of the four-point correlation function is to take the semi-
classical limit, then make a weak coupling approximation.27

An expression is then obtained which involves the line
broadening associated with all pairs of levels.

The middle terms of Eqs.~7! provide the spectral over-
lap integral~SOI!, J, which was first noted by Fo¨rster,1 and
essentially ensures energy conservation for the concerted de-
excitation–excitation process. The Fo¨rster SOI is determined
by convolution of the donor emission and acceptor absorp-
tion spectra, which gives the probability that an emitted pho-
ton ~after transit through the bath medium! is absorbed by an
acceptor chromophore. In other words, it gauges the extent to
which the donor emission and acceptor absorption spectra
are ‘‘in resonance.’’ So, for the trivial mechanism, energy
conservation between initial and final states is ensured be-
cause the photon absorbed by the acceptor is that emitted by
the donor, and no ostensibly virtual states are involved.
Moreover, the SOI for the trivial mechanism is equivalent to
the impact~fast modulation! limit of the population pathway.
The dynamics of the fluorescence Stokes’ shift have been
incorporated in the SOI recently by Mukamel and
Rupasov.36 Generally, the four-point correlation function is
expected to modify the SOI from that derived by Fo¨rster.
The SOI for the coherent pathway accounts for coherence
effects between initial and final states even within the factor-
ization approximation. In the impact limit it reduces to the
usual Fermi Golden Rule expression.

B. Coupling matrix elements

We discuss here the Liouville space matrix elements
which promote the energy transfer; beginning with the, es-
sentially, electronic coupling factors. To this end, the cou-
pling is assumed to be independent of nuclear coordinate.
The QED matrix elements have a form indicated by

M nm~v![(
m

VmmḠnm~v!Vnm , ~9!

where we have made a factorization approximation. Owing
to the short population time of the virtual intermediate state,
this should be a reasonable approximation in the near zone

limit. In the usual QED formulation15,18we would have sim-
ply Ḡnm(v)5(En2Em)21; however, by considering Eqs.
~3! and ~7! we shall here need to evaluate

Mda~v!5(
k,l

\ck

2e0V
md

0r~Qd!ma
s0~Qa!@2ed

~l!~k!

3ēa
~l!~k!exp~ ik–R!Ḡdm~\ck!1ea

~l!~k!

3ēd
~l!~k!exp~2 ik–R!Ḡdn~2\ck!#. ~10!

To evaluate Eq.~10! we first sum over polarizations, then
convert thek-sum to an integral. The usual treatment of the
coupling may be retrieved by application of the ‘‘impact
limit,’’ such that g(t) is linear in time,g(t)5 iV1Ĝt, with
V[l/s providing a solvatochromic shift andĜ[^Dv2&/s
describing the stochastic modulation of the excitation energy
leading to line broadening.34 This is equivalent to assuming
an homogeneous broadening limit, wherein the time scale of
bath fluctuations is very fast compared to the rate of the
electronic energy transfer process. Hence we put,

Ḡnm~k!5
1

k2znm
, ~11!

where

cznm[vnm1V2 i ~ 1
2gn1 1

2gm1Ĝnm!, ~12!

andk[v/c. Note the equivalence of the formulation involv-
ing Eq. ~12! with Eqs.~3.1! and~3.2! of Ref. 29. Hence, we
obtain

Mda~k!5md
0r~Qd!ma

s0~Qa!E d3k
k

2e0~2p!3

3~dab2 k̂ak̂b!S eik•R

zdm2k
2

e2 ik•R

zdm1kD . ~13!

We now put d3k5k2dkdF and integrate over the solid
angleF. Keeping in mind that terms odd ink vanish, we
obtain

Mda~k!5md
0r~Qd!ma

s0~Qa!E dk
exp~ ikR!

4p2i e0R3

1

zdm
2 2k2

3@~ ikR21!~dab23R̂aR̂b!

1k2R2~dab2R̂aR̂b!#. ~14!

Integrating over an appropriate semicircular contour into the
positive imaginary axis42 we finally obtain

Mda~k!5md
0r~Qd!ma

s0~Qa!
exp~ izdmR!

4pe0R3 @~12 izdmR!

3~dab23R̂aR̂b!2~zdmR!2~dab2R̂aR̂b!#.

~15!

In view of the explicit nature ofzdm , as given by Eq.~12!,
exp(izdmR) incorporates damping into the rate expression, as
investigated also in Refs. 28 and 29. In Ref. 28@cf. Eq.
~4.35!# dielectric effects of the host medium are accounted
for using a factor written in the formy5nv/c5(n8
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1in9)v/c. This may be compared to the present work by
inspection of Eq.~12! such thatzdm5(n81 in9)v/c, with

n8511V/v and n952( 1
2gn1 1

2gm1Ĝnm). In vacuum,
whereczdm can be exactly identified withvdm , the exponen-
tial in Eq. ~15! has a purely imaginary argument and as usual
represents an oscillatory phase factor that disappears in
the ensuing rate expression. A long-range inverse square
dependence on distance is the necessary consequence.
However, in dissipative media wherezdm acquires complex
character, the same exponential also accommodates a damp-
ing contribution that tempers the long-range distance depen-
dence.

III. QED TREATMENT OF THE COUPLING

The quantum electrodynamical~QED! representation of
the interaction between transition moments~which has been
discussed previously in the dipole approximation16,18! will
now be developed to higher order. The explicit properties,
form and significance of higher multipole contributions to
the ‘‘near’’ and ‘‘wave’’ zone interactions are elucidated.

The interaction Hamiltonian of Eq.~16! couples mol-
eculeN to the electromagnetic field. In this way the intermo-
lecular interactions are mediated entirely by the exchange of
transverse photons.~It is important to note that the term
‘‘transverse’’ here refers to the character of the vector field
with respect to the propagating vectork. Since the energy
transfer process properly accommodates all possible modes
for the mediating photon, the resultant coupling displays fea-
tures both transverse and longitudinal with respect to the
intermolecular displacement vector.!

H int5(
N

$2e0
21ma~N!da

'~RN!2e0
21uab~N!¹adb

'~RN!

2e0
21Vabg~N!¹a¹bdg

'~RN!2•••2ma~N!ba~RN!

2mab~N!¹abb~RN!2•••%. ~16!

Herema(N), Qab(N), andVabg(N) are components of the
electric dipole (E1), quadrupole (E2), and octopole (E3)

transition moment tensor operators, respectively~for mol-
ecule N!, while ma(N) is the magnetic dipole (M1) and
mab(N) is the magnetic quadrupole (M2) transition moment
operator. In Cartesian tensor notation they are defined as

ma~N!5(
i

ei~r i2RN!a , ~17a!

Qab~N!5
1

2! (
i

ei~r j2RN!a~r i2RN!b , ~17b!

Vabg~N!5
1

3! (
i

ei~r i2RN!a~r i2RN!b~r i2RN!g ,

~17c!

ma~N!5(
i

ei

2mc
@~r i2RN!3pi #a , ~17d!

mab~N!5
1

2! (
i

ei

3mc
@~r i2RN!3pi #a@r i2RN#b .

~17e!

Outside the source the transverse displacement vector,
d'(RN), equals the total electric displacement field atRN

~the position vector of moleculeN!, sincedi(r ) is zero for a
neutral system.

A. Fully retarded interaction matrix element

Using second order Rayleigh–Schro¨dinger perturbation
theory~which is equivalent to the impact limit withG set to
zero for clarity! we can write down an expression for the
matrix element for the coupling, mediated via the radiation
field.16,18 Having demonstrated in Sec. II the modulation of
the matrix element owing to interactions between the mol-
ecule and the host medium, we now focus attention to the
explicit form of the multipolar coupling. To this end, and for
simplicity, it is appropriate to consider here the vacuum form
of the coupling. Hence, proceeding from Sec. II@cf. Eq. ~3!#
we obtain Eq.~18!, which essentially represents the summed
interaction between all transition multipoles of the interact-
ing pair,

Mda
Coul5(

m
^auH intum&^muH intud&/~Ed02\ck!5(

k,l

\ck

2e0V
$@ma

0nmb
m01 i k̂gk~ma

0nQbg
m02Qag

0n mb
m0!1 k̂gk̂dk2Qag

0n Qbd
m0

1 k̂gk̂dk2~ma
0nVbgd

m0 1Vagd
0n mb

m0!1•••#@ea
~l!~k!ēb

~l!~k!E~2 !2eb
~l!~k!ēa

~l!~k!E~1 !#1@ma
0nmb

m01 i k̂gk~ma
0nmbg

m0

2Qag
0n mb

m0!#@ ēa
~l!~k!bb

~l!~k!E~2 !2ea
~l!~k!bb

~l!~k!E~1 !#1@ma
0nmb

m01 i k̂gk~ma
0nQbg

m02mag
0n mb

m0!#@ b̄a
~l!~k!

3eb
~l!~k!E~2 !2ba

~l!~k!ēb
~l!~k!E~1 !#1ma

0nmb
m0@ba

~l!~k!b̄b
~l!~k!E~2 !2bb

~l!~k!b̄a
~l!~k!E~1 !#%, ~18!

where E(6)[exp(7ik–R)/(En2E06\ck). We sum over
polarizations using the identities of Eq.~19!, whereeabg is
the Levi–Civita unit tensor,

(
l

ea
~l!~k!ēa

~l!~k!5~dab2 k̂ak̂b!,

(
l

ea
~l!~k!b̄a

~l!~k!5eabgk̂g ,

(
l

ba
~l!~k!b̄a

~l!~k!5~dab2 k̂ak̂b!. ~19!
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We then convert thek-sum to an integral and pute6

[exp(7ik–R)/(k6k) with k5(En2E0)/\c5(Em

2E0)/\c, so as to obtain

Mda
Coul5E d3kS (

P,Q
EP

0nEQ
m01M P

0nMQ
m0D

3
k

2e0~2p!3 ~dab2 k̂ak̂b!@e~2 !2e~1 !#

1E d3kS (
P,Q

EP
0nMQ

m01M P
0nEQ

m0D
3

k

2e0~2p!3 eabgk̂g@e~2 !2e~1 !#. ~20!

Here we have introduced the notationEp
0n ,M p

0n , etc.
whereE denotes an electric, andM a magnetic, multipole
interaction. The value ofP or Q specifies the multipole, so
that each contribution from Eq.~18! is specified. The inte-
grations are now performed as in Sec. II, to give the retarded
interaction matrix element of Eq.~21!, gradients being re-
trieved from the polarization unit vectors using the relation
k̂g@e(2)2e(2)#52 ik21¹g@e(2)1e(2)#, etc. A detailed
derivation of Eq.~21! has been presented previously,40

Mda
Coul5~4pe0!21@ma

0nmb
m01~ma

0nQbg
m02Qag

0n mb
m0!¹g

1Qag
0n Qbd

m0¹g¹d1~ma
0nVbgd

m0 1Vagd
0n mb

m0!¹g¹d

1ma
0nmb

m0#~¹2dab2¹a¹b!R21 exp~ ikR!

1~4pe0!21@ ima
0nmb

m01 ima
0nmb

m01~ma
0nmbd

m0

1mad
0nmb

m0!¹d1~ma
0nQbd

m02Qad
0nmb

m0!¹d#

3eabg¹gR21k exp~ ikR!. ~21!

We now rewrite Eq.~21! in the form

Mda
Coul5@~ma

0nmb
m01ma

0nmb
m0!Vab1~ma

0nQbg
m0

2Qbg
0n ma

m0!Vabg1~Qag
0n Qbd

m01ma
0nVbgd

m0

1Vbgd
0n ma

m0!Vabgd1•••1Im~ma
0nmb

m0

1mb
0nma

m0!Vab8 1Im~ma
0nQbd

m02Qad
0nmb

m0!Vabg8

1Im~ma
0nmbg

m01mbg
0n ma

m0!Vabg8 1•••#, ~22!

where it may be noted that the magnetic transition moment
tensors are purely imaginary, that is,2 ima5Im(ma), etc.
TheVj are the transition moment coupling tensors discussed
below. Note that those associated withE–E or M –M inter-
actions differ from those forE–M coupling~highlighted by
the primes!, essentially owing to their different time-reversal
signature.

The structure of theE–E andM –M coupling tensor is
given by Vi 1i 2••• i n

5¹ i 1
•••¹ i n22

(¹2d i n21i n
2¹ i n21

¹ i n
)

3(eikR/R), which runs asR2(n11), where (eikR/R) can be
identified with ikh0

(1)(kR), a spherical Bessel function of
the third kind.44 Similarly, coupling tensors associated with
the E–M cross terms have the general formVi 1i 2••• i n

8

5 (4pe0)21@¹ i 1
¹ i 2

••• ¹ i n23
(e i n22i n21i n

¹ i n
)(keikR/R)#.

The spherical Bessel function is defined in terms of the Han-
kel function of order integer plus half ashn

(1)(z)
5(p/2z)1/2Hn1(1/2)

(1) (z), and is given by

hn
~1!~z!5 i 2n21

eiz

z (
k50

n

~21!k
~n1k!!

k! ~n2k!!

1

~2iz!k . ~23!

We can now evaluate the gradients of Eq.~21! by use of the
identities collected in the following equations:

¹aR5R̂a , ~24a!

¹aR̂b5
1

R
~dab2R̂aR̂b!, ~24b!

¹a exp~ ikR!5 ikR̂a exp~ ikR!, ~24c!

¹ahn
~1!~kR!5F n

R
hn

~1!~kR!2khn11
~1! ~kR!GR̂a . ~24d!

Finally, we obtain expressions for the coupling tensors
given in Eqs.~25! and ~26!. It is evident that the use of the
spherical Bessel function formulation provides a clear, com-
pact representation of the retarded coupling interaction and
its distance-dependence,

Vab~k,R!5
2 ik3

4pe0
Fdabh0

~1!~kR!2
1

kR
dabh1

~1!~kR!

1R̂aR̂bh2
~1!~kR!G , ~25a!

Vabg~k,R!5
ik4

4pe0
FdabR̂gh1

~1!~kR!2
1

kR

3~dabR̂g1dagR̂b1dbgR̂a!h2
~1!~kR!

1R̂aR̂bR̂gh3
~1!~kR!G , ~25b!

Vabgd~k,R!5
ik5

4pe0
Fdabdgdh1

~1!~kR!2
1

k2R2 ~dabdgd

1dagdbd1daddbg!h2
~1!~kR!

2dabR̂gR̂dh2
~1!~kR!1

1

kR
~dabR̂gR̂d

1dagR̂bR̂d1dadR̂bR̂g1dbgR̂aR̂d

1dbdR̂aR̂g1dgdR̂aR̂b!h3
~1!~kR!

2R̂aR̂bR̂gR̂dh4
~1!~kR!G , ~25c!

Vab8 ~k,R!5
ik3

4pe0
eabgR̂gh1

~1!~kR!, ~26a!

Vabg8 ~k,R!5
ik4

4pe0
F 1

kR
eabddgdh1

~1!~kR!

2eabdR̂gR̂dh2
~1!~kR!G . ~26b!
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Equations~25!–~26! proves a more amenable basis for deri-
vation of the higher order coupling than the algebraically
equivalent linear combination of spherical Bessel functions
employed in previous work.45 These higher order coupling
tensors may be used to obtain improved estimates of the
distance and orientation dependence of energy transfer, as
discussed in Sec. IV.

B. Irreducible tensor formulation

It is instructive to consider the coupling between donor
and acceptor transition multipoles in terms of irreducible ten-
sors. Consider the coupling between a donor electric or mag-
netic transition multipole moment,Ep or Mp ~p51 denot-
ing dipole, p52 quadrupole, etc.! written for generality as
Di1...ip , and an acceptor multipoleEq or Mq, written as
Ai1...iq . Each multipole as given explicitly by Eqs.~17! is in
general expressible as a sum of irreducible tensors,Di 1 ...i p

( j )

and Ai 1 ...iq
( j ) , characterized by integer weightsj 50•••p(q).

These are tensors which have the transformation properties
of angular momentaj under the symmetry operations of the
full rotation-inversion group SO~3!. When a donor multipole
of rank p couples with an acceptor multipole of rankq, the
coupling tensor has rankp1q and in principle accommo-
dates weights running fromup2qu up to p1q.

Not all weights j 50•••p(q) are manifest however.
First, because each multipole is fully symmetric with respect
to interchange of any of its indices, those weights for which
(p2 j ) or (q2 j ) are odd, vanish.46 Second, thej 50 contri-
butions, which need therefore only be considered for even
p(q), necessarily vanish for a quite different reason. This is
because on contraction with, for example,¹ i 1

•••¹ i p21
di p

' ,

the even rank weight 0 tensors, constructed from a product of
Kronecker deltas, lead to a factor¹•d'. This divergence
term is zero, the electric displacement field in the multipolar
gauge being explicitly transverse. The same argument ap-
plies for the magnetic multipoles, as the magnetic field of
electromagnetic radiation is intrinsically divergence-free.
Thus the weights run from~at least! 1 up top(q) if the rank
is odd, and from~at least! 2 up to p(q) if the rank is even.
Notice that weights different from the rank arise forp(q)
.2, so that the higher multipoles are not natural tensors.
This is a feature that has only recently been signaled in con-
nection with electric octopole coupling,47 where the weight 1
part of the rank 3 tensor has often in the past escaped
notice.48 For example,Vabg carries only weights 1 and 3, as
can be demonstrated by explicit decomposition49–51—the re-
sult is as follows:

Vabg~k,R!5Vabg
~1! ~k,R!1Vabg

~3! ~k,R! ~27!

with

Vabg
~1! ~k,R!5

ik4

4pe0
Fh1

~1!~kR!2
1

kR
h2

~1!~kR!

1
1

5
h3

~1!~kR!GdabR̂g1F21

kR
h2

~1!~kR!

1
1

5
h3

~1!~kR!G~dagR̂b1dbgR̂a!, ~28a!

Vabg
~3! ~k,R!5

ik4

4pe0
h3

~1!~kR!F R̂aR̂bR̂g2
1

5
~dabR̂g

1dagR̂b1dbgR̂a!G . ~28b!

The evident absence of weight 2 contributions reflects the
paired effect of thea,b symmetry ensuing from the index
symmetry of theVab of Eq. ~25a!, from which theVabg is
derived, and the quite separateb,g symmetry arising because
the coupling tensor contracts with the index symmetric quad-
rupole transition moment in Eq.~22!.

The irreducible tensor decomposition of the coupling
tensorVn shows that for evenn the R-dependence of the
weight 0 part which then arises always runs ash0

(1)(kR); a
spherical Bessel function of the third kind. This can be seen
from the fact that the weight 0 contribution can be obtained
by tracing the product of nabla operators, necessarily leading
to a product of (n/2) Laplacians, (¹2)n/2. Since the Laplac-
ian can here be written asR21(]2/]R2)R, its successive op-
eration on (eikR/R) simply introduces the multiplicative fac-
tor (ik)n into the same function.

For electric–electric or magnetic–magnetic interactions,
each contribution to the matrix element for the coupling is
clearly expressible in the form

DpAqVp1q5(
j

(
j 8

(
j 9

Dp
~ j !Aq

~ j 8!Vp1q
j 9 , ~29!

using the single subscript on each tensor to represent its full

set of indices. The productDp
( j )Aq

( j 8) , for the reasons out-
lined above, is a tensor of rankp1q which contains even
weights j - running from 0 up top1q if the latter sum is
even, or odd weightsj- from 1 up top1q if the sum is odd.
In coupling this resultant tensor withVp1q only the products
with j -5 j 9 can contribute since the result is necessarily a
scalar. This has a significant bearing on the form of result
that ensues on rotational averaging, as will be shown in Sec.
III C.

Hence, not only additional physical insight but also a
significant degree of simplification of Eq.~22! is achieved by
representing the donor and acceptor transition multipole mo-
ments as sums of their nonvanishing irreducible components
@i.e., weights 1,...,p(q) for a multipole of odd rank or
weights 2,...,p(q) for a multipole of even rank#, then consid-
ering the nonvanishing terms in the multipole product ten-

sors,Dp
( j )Aq

( j 8) , and the coupling tensors,Vp1q , as discussed
above.

C. Rotational averages

In systems that exhibit resonance energy transfer be-
tween structurally uncorrelated centres, the theory as devel-
oped above stands in need of further refinement before its
results can be related to experiment. In such systems, includ-
ing microscopically disordered solids, glasses and fluids, it is
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necessary to relate theory to measurement by performing ro-
tational averages to account for the distribution of donor and
acceptor orientations. For simplicity we shall proceed on the
assumption of an isotropic orientational distribution, in
which the donor and acceptor are orientationally uncorre-
lated, though partially ordered systems can properly be ad-
dressed by application of a related procedure also based on
irreducible tensors.52,53

Through application of a procedure described in detail
elsewhere54 the implementation of such an average~denoted
below by angular brackets!, on the rate equation whose root
is Eq. ~29!, gives a result expressible as

^uDpAqVp1qu2&5(
j

(
j 8

(
j 9

^Dp
~ j !D̄p

~ j !&^Aq
~ j 8!Āq

~ j 8!&

3^Vp1q
j 9 V̄p1q

j 9 &, ~30!

where j , j 8, and j 9 satisfy the rules of angular momentum
coupling as outlined in the previous section. For our pur-

poses the key feature is^Vp1q
j 9 V̄p1q

j 9 &, which carries identifi-
able contributions.

We takeE1 –E1 coupling as an example. The form of
the spherical Bessel functions which comprise the coupling
tensorVab(k,R) given in Eq.~25! dictates the form of the
rate expression. The second rank coupling tensor can be re-
duced into two nonvanishing irreducible components such
that,

Vab~k,R!5Vab
~0!~k,R!1Vab

~2!~k,R!, ~31!

with

Vab
~0!~k,R!5

2 ik3

4pe0
Fh0

~1!~kR!2
1

kR
h1

~1!~kR!

1
1

3
h2

~1!~kR!Gdab , ~32a!

Vab
~2!~k,R!5

2 ik3

4pe0
h2

~1!~kR!S R̂aR̂b2
1

3
dabD . ~32b!

The form of the spherical Bessel functions dictates that the
former contribution is only significant in the wave zone. In
the fully averaged rate equations the following factors arise:

Vab
~0!~k,R!V̄ab

~0!~k,R!5
v4

12p2e0
2c4R2 , ~33a!

Vab
~2!~k,R!V̄ab

~2!~k,R!5
v4

24p2e0
2c4

3S 1

R2 1
3c2

v2R4 1
9c4

v4R6D . ~33b!

The rotational average given by the final factor in Eq.
~31! is then expressible as

A~k,R!5Vab
~0!~k,R!V̄ab

~0!~k,R!1Vab
~2!~k,R!V̄ab

~2!~k,R!

52~4pe0R3!22@31~kR!21~kR!4#, ~34!

which is the familiar excitation transfer function forE1 –E1
coupling.18 The wave-zone dependence of the rate is thus
established asR22, a result which necessarily holds for all
multipolar couplings. This ensures radiative energy
conservation—the net energy flux through a shell at a wave-
zone distanceR@k21 from the donor must be imperceptibly
dependent on the distance from the source.

IV. DISCUSSION

The QED framework affords a general and lucid formu-
lation for examining the mechanism of energy
transfer.13–21,55Host dynamics have been incorporated into
the QED model in Sec. II of the present work, properly al-
lowing us to identify the partitioning between the near and
far zone mechanisms for transfer of energy between chro-
mophores dispersed in condensed phase~liquid or solid! host
media. It has been shown that the form of the phase factor
associated with the coupling acquires a complex character in
dissipative media, tending to moderate the long-range dis-
tance dependence~typically donor–acceptor separations of
greater than 100 nm!. A previous study28 has associated this
exponential decay factor with a quenching of bath polaritons
involved in mediating the EET. Such a subsystem is neces-
sarily dissipative because of the dense excitation spectrum of
the medium.

Coherent and ‘‘population’’ Liouville space pathways
have been investigated in Sec. II B. It was shown that, in the
fast modulation~homogeneous broadening! limit, spectral
overlap integrals representative of each pathway may be
identified. They may be compared to the Fo¨rster expression,
which essentially represents the limit of a ‘‘trivial’’~photon
emission-absorption! mechanism. At close separations~typi-
cally less than 100 nm!, the near zone, the exponential phase
and damping factors identified in Eq.~15! vanish, and the
influence of the host medium enters only via the spectral
overlap integral. Screening contributions and local field ef-
fects owing to the dielectric properties of the host medium
may be considered also, as was shown recently.28,56 For
small interchromophore separations~e.g., less than about
20–30 Å!, typical of model bichromophores, aromatic poly-
mers, or photosynthetic light harvesting complexes, the host
medium refractive index does not feature in the rate equa-
tion, although the rate expression may be modified my mi-
croscopic solvent effects.57 When the donor–acceptor sepa-
ration greatly exceeds the host molecule ‘‘radius’’~i.e., a
large number of host/solvent molecules may be accommo-
dated between donor and acceptor chromophores!, then the
refractive index factor~l /n4 in the Förster expression! should
be included.28,57

A general QED treatment of higher multipole contribu-
tions to the coupling between transition moments has been
presented in Sec. III, whence interactions involving electric
dipole, quadrupole, and octopole as well as magnetic dipole
and quadrupole interactions were examined. The utility and
need for the establishment of such a physical picture in the
QED formalism has been highlighted by a recent study of the
coupling between the carotenoidS1 state and chlorophylls.38
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A new formulation has been presented wherein expres-
sions for the multipolar coupling tensors are constructed in
terms of spherical Bessel functions, providing a clear, com-
pact representation of the retarded coupling interaction and
its distance-dependence@cf. Eqs.~22!, ~25!, and~26!#. It has
been shown that, starting from Eqs.~25a! and ~26a!, higher
coupling tensors are obtained easily by successive applica-
tion of Eq. ~24d!.

The most common regime for which higher multipole
interactions may require consideration in a study of elec-
tronic energy transfer is the near zone~i.e., at close separa-
tions, wherekR!1!. In this limit, the interaction tensors of
Eqs. ~25! and ~26! reduce to those of Eqs.~35! and ~36!
below:

Vab'
1

4pe0
~dab23R̂aR̂b!/R3, ~35a!

Vabg'
1

4pe0
@15R̂aR̂bR̂g23~dabR̂g1dagR̂b

1dbgR̂a!#/R4, ~35b!

Vabgd'
1

4pe0
@2105R̂aR̂bR̂gR̂d23~dabdgd1dagdbd

1daddbg!115~dabR̂gR̂d1dagR̂bR̂d

1dadR̂bR̂g1dbgR̂aR̂d1dbdR̂aR̂g

1dgdR̂aR̂b!#/R5, ~35c!

Vab8 '
1

4pe0
eabgR̂gk/R2, ~36a!

Vabg8 '
1

4pe0
eabd~dgd23R̂gR̂d!k/R3. ~36b!

In the spherical Bessel function representation, these
equations are found by taking the limiting values of the
hn

(1)(kR) for small arguments. The near zone interaction has
a form reminiscent of the interaction between two static di-
poles, although the irreducible tensor formulation of the cou-
pling discussed in Sec. III B signals features that have often
in the past escaped notice. At very large donor–acceptor
separations~i.e., in the wave zone, withkR@1! all multipo-
lar couplings assume ak2/R distance dependence, consistent
with Poynting vector calculations.

Orientation factors for the multipolar coupling are ob-
tained by making the substitutionsdab→a•b and R̂a→a
•R̂, wherea denotes a unit vector in the direction of tensor
componenta of the transition moment andR̂ specifies the
direction of the center-to-center vector. Directions of the
transition moment tensor components are depicted in Fig. 3.
When the dipole transition moments of donor and acceptor
are normal toR̂, we obtain cosw, 0 and2(3/2)cosw for the
orientation factors for Eqs.~35a!, ~35b!, and ~35c!, respec-
tively, wherew is the angle between these dipole transition

moments. However, all multipole transition moments con-
tribute to the coupling wheneverua andub ~see Ref. 6! are
different from 90°.

The relative weight of the transition multipole moments
may be estimated by recourse to the approximate relations,
umuc'umua, uuu'umu l , uVu'umu l 2, etc., witha51/137 and
l the length of the transition dipole. From such consider-
ations one would expect that at the interchromophore sepa-
ration R5 l , all Ep–Eq interactions should contribute
equally, which is congruent with the dipole approximation
being considered valid forR@ l . This was investigated re-
cently for various model dimer separations.6,37

Examination of the form for the coupling tensors for the
electric-magnetic cross termsEp–Mq, V8, shows that the
interaction depends always uponk, even in the near zone.
Thus these constitute examples of ‘‘entirely retarded’’
couplings.58 Similarly, contributions to the coupling outside
the wave zone also involve an explicitk-dependence. Con-
sideration of Sec. II C~which leads to the substitution of
zdm-type terms fork! suggests the damping owing to a dis-
sipative host medium should be enhanced for these interac-
tions. In general, the interactions involving magnetic multi-
pole transition moments will be significantly smaller than
those involving electric multipole moments owing to this
k-dependence of the coupling, which is typically equivalent
to a factor of 1/(5000 Å).

Using the theory developed in the present work, a de-
tailed study has been undertaken of the convergence of the
multipolar expansion of the near zone coupling between
various chromophores, including bacteriochlorophylla, as a
function of separation and orientation.60 It was found that
corrections to the dipole approximation from higher multi-
pole couplings are significant to fairly high order at separa-
tions typical of those in biological light-harvesting aggre-
gates. The reason for this is simply that the transition
moments do not behave as ideal dipoles. A feel for the prob-
lem is obtained by considering the axial components of the
dipole, quadrupole, and octopole transition moments calcu-
lated for the bacteriochlorophylla Qy transition; my

'14 D, Qyy'29D Å, and Vyyy'225 D Å.2,60 It is clear
that interactions involving the quadrupole transition moment
will be relatively small compared to those involving the di-
pole and octopole~as expected for an allowed transition5,6!.
By using these transition multipole moments together with
Eqs. ~22! and ~35! we can easily determine the ratio of, for
example, the dipole–dipole coupling to the dipole–octopole
coupling ~i.e., Mdo/Mdd!. By using the orientation depicted

FIG. 3. Illustration of the directions of multipolar transition moment tensor
components; dipole, quadrupole, and octopole~left to right!.
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in Fig. 4, with u565° ~such that the orientation factor for
dipole–dipole coupling is 0.46 and that for dipole–octopole
coupling is 3.73! we obtainMdo/Mdd as a function of sepa-
ration ~Fig. 5!. This shows that, for bacteriochlorophylla,
the higher multipole couplings are very significant and the
expansion should be taken to fairly high order to calculate
couplings with reasonable accuracy. This is not so surprising
given the size of these chromophores. A more detailed analy-
sis is provided in Ref. 60.

V. CONCLUSIONS

~i! The interplay between electronic coupling, spectral
linewidth and rate of electronic energy transfer be-
tween chromophores was examined in the context of a
quantum electrodynamical~QED! model, allowing us
to identify the partitioning between the near and far
zone mechanisms for transfer of energy between chro-
mophores dispersed in condensed phase~liquid or
solid! host media. The long-range distance-
dependence of the coupling was shown to be modified
by a phase factor, through which damping effect were
manifest.

~ii ! A general QED treatment of higher multipole contri-
butions to the coupling between transition moments
was derived. A new formulation was presented
wherein expressions for the multipolar coupling ten-
sors were obtained in terms of spherical Bessel func-
tions, providing a clear, compact representation of the
retarded coupling interaction and its distance-
dependence for multipolar couplings of arbitrary or-
der. The irreducible tensor formulation of the cou-
pling was discussed, highlighting features concerning
the exact form of the orientation factors that have of-
ten in the past escaped notice, and the detailed method
of implementing a rotational averaging of the result-
ant interaction tensors was demonstrated. The cou-
pling between bacteriochlorophylla chromophores

was examined as an example; illustrating the real sig-
nificance of higher multipolar couplings for separa-
tions less than 20 Å.
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APPENDIX A

For convenience, the relevant spherical Bessel functions
are collected here. They are obtained from Eq.~23!:

h0
~1!~kR!52 ieikR/kR, ~A1!

h1
~1!~kR!52eikRS 1

kR
1

i

k2R2D , ~A2!

h2
~1!~kR!5eikRS i

kR
2

3

k2R22
3i

k3R3D , ~A3!

h3
~1!~kR!5eikRS 1

kR
1

2i

k2R22
15

k3R32
15i

k4R4D , ~A4!

h4
~1!~kR!5eikRS 2 i

kR
1

10

k2R2 1
45i

k3R32
105

k4R42
105i

k5R5D .

~A5!

APPENDIX B

Equations~7! may be obtained explicitly in the impact
limit by using

FIG. 4. Comparison of orientation factors for the dipole–dipole and dipole–
octopole couplings between bacteriochlorophylla Qy transitions, calculated
using Eqs.~35!, for the orientation depicted in the inset.

FIG. 5. Distance-dependence of the ratio of the dipole–octopole to dipole–
dipole couplings between bacteriochlorophylla Qy transitions, calculated
using Eqs.~22! and ~35!, for the orientation depicted in Fig. 4 withu
565°.
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Ḡnm~k!5
1

k2znm
,

Ḡnm
† ~k!5

21

k2znm
† , ~B1!

with cznm
† [vnm1V1 iGnm , and the relations summarized

as

1

v6 iG
5

v7 iG

v21G2 ,

lim
G→01

1

v6 iG
5P

1

v
7 ipd~v!, ~B2!

which serves as a double-check of Eqs.~7!, and compares
with Ref. 59.
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