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The interplay between electronic coupling, spectral linewidth, and rate of electronic energy transfer
between chromophores is examined in the context of a quantum electrodyn&@fidal model.

The QED framework properly allows us to identify the partitioning between the near and far zone
mechanisms for transfer of energy between chromophores dispersed in condensdtiqulidss

solid) host media. The extent to which coupling is modified by the medium is investigated. A
general QED treatment of higher multipole contributions to the coupling between transition
moments is also derived, whence interactions involving electric dipole, quadrupole and octopole as
well as magnetic dipole and quadrupole interactions are examined explicitly. A new formulation is
presented wherein expressions for the multipolar coupling tensors are obtained in terms of spherical
Bessel functions, providing a clear, compact representation of the retarded coupling interaction and
its distance-dependence. The irreducible tensor formulation of the coupling is discussed,
highlighting features concerning the exact form of the orientation factors that have often in the past
escaped notice. The detailed method of implementing a rotational averaging of the resultant
interaction tensors is demonstrated, finally leading to a novel and concise representation for
multipolar couplings of arbitrary order. The coupling between bacteriochloroptsiiromophores

is discussed as an example. 1®97 American Institute of Physid$0021-960807)02837-1

I. INTRODUCTION light (the far zong a trivial radiative EET mechanism is
found to operate. This involves emission and absorption of a
real photon and leads to &1 2 distance dependence for the
rate of EET. Over intermediate distances, the energy transfer
g]echanism has a more intricdRdependence.

In the present work the electronic coupling-linewidth re-

Electronic energy transféEET) is the process by means
of which a chromophore remote from another initially-
excited chromophore may indirectly be excited(Here we
use the term “chromophore” in the broadest sense, to denot
any molecule, atom or ion, or any part of such with a distinct . _ .
electronic identity and optical responsét is known that !fit'anh',p,(n?tEd pre'V|ou§I§f'. as a factgr .deterr.mnmg the
EET plays an important function in light harvesting, solar adlabatlc!ty (,)f a V|bron|c. |nt§ract|om is investigated by
energy conversion and photosynthesis—it also significantlj’corporating line broadening into the quantum electrody-
contributes to the operating characteristics of solid-state lasdl2mical model for EET. As recent nonlinear spectroscopic
media. However, at the present time, further theoretical conStudies of condensed phase photophysics shahe inter-

siderations of the mechanism of this fundamental phenomPl2y between electronic processes and random bath fluctua-

enon are still required in order to adduce the reasons undeHons is critical in determining the rate of transition. The
lying fast EET and energy migration observed induantum electrodynamical framework affords a general and

experiment ! lucid formulation, and permits a more appropriate partition-

If both chromophores, donor and acceptor, have allowednd between near and far zone mechanisms for molecular
singlet—singlet transitions then the EET is promoted primasystems in the condensed phase. We address the question: Is
rily by a coupling (approximately dipole—dipojebetween the electronic coupling modified significantly the solvent/
transition moment&1213 The nature of such an interaction host medium?
has been examined previously within the framework of In Sec. Ill a QED treatment of higher multipole contri-
qguantum electrodynamics, and two principal interaction rebutions to the general retarded coupling between transition
gimes have been establish¥d?? At close separationthe = moments is presented. Thence interactions involving electric
near zongthe familiarR~® distance dependence for the rate dipole, quadrupole, and octopole as well as magnetic dipole
of (dipole—dipol@ EET is recovered. At large separations, and quadrupole interactions are examined. A new formula-
where the separation between donor and acceptor chrdion is derived, which obtains a general, limpid representa-
mophores exceeds the appropriate reduced wavelength oén of the retarded coupling and its distance-dependence.
We investigate the form of these interactions with particular
3Electronic mail: g.scholes@ic.ac.uk regard to their irreducible tensorial structure, highlighting the
YElectronic mail: D.L.Andrews@uea.ac.uk complete form of the interaction, including phase factors.
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acceptorA, as depicted in Fig. 1. The initial staé) corre-
aa aa sponds to excite®, ground staté\, and a vacuum radiation
-------------------- field, [D*A(Q,);0). The initial molecule and solvent coor-
\1-1:: dinates Qg) correspond to those of the ground state,
IDA(Qg);0). At time t these coordinates are writted; .
---------- ) The Q represent the vibrational component of the propaga-
dd dd tion of a wave packet along the reaction coordinate so as to
provide, for example, a Stokes’ shift of the donor excitation
energy>>>®The final statda) denotegDA* (Q,);0) and the
aa \'HL aa intermediate statefm) and |n) include the configurations
‘:HL N IDA(Qy);1(k,\)) and |D*A*(Q,);1(k,\)), respectively,
where 1k,\) denotes a single quantum excitation of the
da nn radiation field characterized by wave vectoand polariza-
tion \.

---------- X‘ﬂ{ﬂ X"H: The Hamiltonian is writtertH =H,+V, with
dd dd

Ho=|d)[ Eo(Qo) +9ga(t) 1{d|+|a)[ Eso(Qo) + ga(t)]

FIG. 1. Double-sided Feynman diagrams for electromagnetic field-mediated X(a|+|m)[hck+gm(t)J(m|+[n)

energy transfer involving virtual photon emission-absorptiapper dia-
grams or absorption-emissioflower diagramyinteractions. X[Ero(Qq) + Eso(Qy) + Ck+ gn(t) I n| ) (1)

where E;o(Qg)=E;—Ey is the excitation energy from

Appropriate expressions for the requisite rotational avera eground to excited state(i =r or's for D or A, respectively
pprop P q 9%t the ground state nuclear configuratiQg. Equation(1)

are formulated, leading to a concise representation for mul- L O .
. ) 4 includes the Hamiltonian for the radiation field, expressed in
tipolar couplings of arbitrary order. The near and wave zon

: - . Serms of the transverse electric displacement vedtoand
regime limits are compared and discussed. oo : : ; :
fundamental magnetic fielld, integration being carried out
over all space (c is the speed of lighin vacuoande is the

Il. A QED FRAMEWORK FOR THE CONDENSED vacuum permittivity. The g;(t) (i=d, a, n or m) provide
PHASE (possibly stochastjanodulations to the excitation and emis-
A. Rate expressions sion energies, originating from interactions between the

chromophores and fluctuations of the bath. They would

I_n this secﬂo_n it is demonsirated how the frameWOrktherefore be slow in a glassy or crystalline host, but fast in
previously established for the molecular quantum electrody:-

. room temperature liquidgroviding in the latter case an op-
ngmmal(_QED) treqtment O.f EETRefs. 15-2] maybe Com- * jical dephasing time that can be as short as a few tens of
bined with a density matrix-based treatment of spectral Imq‘emtoseconds
shape accommodating multiphoton proce$se¥. Such a The interaction Hamiltonian is taken to be
unification is symbiotic. For instance, homogeneously and
inhomogeneously-broadened transition line shapes are incor-
porated into the QED formalisife.g., by using a Brownian V=2 (Vamld)(m[+Vind m)(d| +Vanla)
oscillator model for the molecule-bath couplfiy permit- "
ting meaningful extrapolation between the weak and strong X{(m|+Vndm){al), 2
coupling limits. At the same time, microscopic radiative in- ) _ _ o )
teractions are properly introduced into the Liouville space2nd the intermediate states are depicted in Fig. 2. For dia-
model. We begin by discussing rate expressions, then wgram(i) we have
consider the coupling between transition moments. _ A D D As A

Recently Juzelinas and Andrews have accommodated Vam=(1(k,\);Eg(Q),Eg(Q)[Hind Er (Q),E5(Q);0)
medium effects in a quantum electrodynamical treatment of . hck 1/2—0\) or iR

& (260\/) g (Kui (Qple D,

resonant energy transfer in condensed maf&t.In the =i
present work we wish to extend this work by examining
damping effects in relation to the dynamic line-broadening \, _ .gA gD H. |ED EAO) 1(k A
caused by coupling with the host or solvent. We adopt the ~ °" (0BS(Q).Eo(Q)fHinl B0 (Q). Eo(Q):1(k: M)
stochastic approach used previously for the description . hck |2 0 © iK-Rp
of absorption line shapés® resonance Raman and g 2ev) (K) a7 (Qa)e™ ™, )
fluorescence emission phenom&naand multiphoton
processe&®27:32-343|lowing elucidation of line broadening with
effects without recourse to microscopic detail.

We consider explicitly here the Liouville space path- H.o.= _ -1 d (R A
ways for interactions between the donor moleddland the nt E €0 #(Qu)-d"(Rw) @
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Equation(5b) is a more general formulation of E¢Ga) in-
volving the population vectdP and the generalized rate ma-
ma trix W.
By employing the time-ordered molecular propagator we
aa obtain the tetradic generalized rate of Eg). in terms of the
Liouville space pathways depicted in Fig. 1. This explicitly
K K Ku incorporates the radiation field into the rate expression via
the intermediate states. The photon associated with may
FIG. 2. Liouville space pathways for the interaction contributigs K, , ~ assume real or virtual character, essentially depending on its
andKy, . propagation time, and it will be shown here how this affects
the dynamics oP [Eq. (5)]. For an intermediate state involv-
ing a real photon, there exists the possibility of a trivial en-
for radiation modes characterized by polarization vectorergy transfer mechanism reflecting a classical sequence of
e™ (an overbar denoting complex conjugatiosith V the  emission and absorption eventas has been recognized
quantization volume anBy the position vector of molecule previously®). It is possible to isolate from the population
N. The operatorH;, is the radiation-matter interaction pathway, involving a real photon intermediate state, this
Hamiltonian, expressed as in E@), where u(Qy) is the  trivial mechanism of the Bloch limit. It can be shown that the
dipole operator for moleculN with nuclear coordinates coherent pathway is given by the teiq of Eq. (8), whilst
Qn—at this stage we employ the dipole approximation to bethe population pathway is given kg, +K,, in analogy to
consistent with previous work. This assumes that those intefresonance Raman vs fluorescence, although we do not repro-
actions mediated via interchromophore orbital overlap arguce the derivation here.
negligible, which should be the case for chromophores with  Fluctuations in the transition frequencies are described
quite strongly allowed electronic transitions, at intermediatéin terms of an electronic frequency correlation function

to long separation¥;*” or for the coupling involving a caro- M(t), using the line broadening functiog,(t), for a mode
tenoidS; state, investigated recentlyInterchromophore or- i such that’-34

bital overlap effects are ignored in this work, but higher mul-

tipole contributions toH;,, are considered in Sec. Ill. At gi(T)=i)\thdt1Mi(tl)+<Awi2>JtdtlftldtzMi(tz).
close separations, where strong coupling obtains, a simple 0 0 0

Golden Rule formulation of the rate probably no longer ap- (6)

. 9'35 w agm . . i i .

plies anyway,>* then the nature of the initially prepared Thg formulation thereby incorporates the reorganization en-

state as well as electronic and vibrational coherences b%‘rgy)\i (providing the solvent Stokes’ shifand the coupling

comes important. _ _ o strength (Aw?)*2, which are related by the fluctuation-
A sum over the appropriate manifold of wbra;%onal dissipation theorem. We then hagét)=3,g;(t). The form

states is associated with the transition momq)t?fsandﬂj » of g(t) dictates how frequency fluctuations are tredted.

and it is assumed that; is approximately independent of There are six contributions to the memory kernel, which

nuclear and solvent configuration. By expandigg about 4y he represented as the three Liouville space pathways of

the equilibrium nuclear configuration in a Taylor expansion,:ig_ 1 and their complex conjugates. These are given as
the Condon approximation may be applied and vibronic cou-

pling may be included in Eq$3).%
In the usual QED treatment of EET we would now de-
termine matrix elements for diagraniig and (ii) using sec-

dd—— dm da dd—dm dd

ma md mm

ma mm

aa aa

Ki(w)=Re > (=1)(VaaGpya(®3)Vam Caal w2)

ond order perturbation theokgf. Sec. Il). Under appropri- XVmnaGam(@1)Vampg+C.C), (7a)
ate conditions of weak coupling a rate may then be obtained
using Fermi’s Golden Rule. In this section, however, we will Ki(w)=Re E (_i)<Vm’d(w3)Gm’aVam'G;/m((uz)
examine a generalized rate equation for EET via the Liou- m,m’

: H ; i 27,39,40
ville equation for the density matrix. We may then X VmaGam( 1) Vampd+ €-CY, (7b)

obtain the generalized master equations of &§.(with the
initial diagonality conditior®) for the occupation probability

_ . t t
of statea, P,(t)=(a|p(t)|a), wherep(t) is the density op- Kin(@)=Re 2 (=i){Vird(©3)GpyoVam Cpyn @2)

eratorp(t)=|W(t))(¥(t)| related to the wave function for e
the system¥ (t), XVmaGmra(w1)VgmpgtC.Cy, (70)
dP,(t) t where the angular brackets denote an ensemble average. We
TR deTEd: [Wag(t—7)Py(7) have used the labeling of Takagahatzal° for the path-
ways. Mukamelet al3! denote our pathway | as III, and Il
—Wy(t—7)P(7)], (58 asl. In our workK, defines the coherent pathway whilst the
population pathway is given b, + K, .
p= fter(t— 7P(7). (5b) To apply a factorization approximation we average over
0 the bath degrees of freedom for eaBliw), which we here
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denote by a “bar” notation, such that t@ﬂ(w) are com-  limit. In the usual QED formulatiot?*®we would have sim-
plex generalized line-shape functions for the—u ply G,m(w)=(E,—E,) % however, by considering Egs.

transition?”:32 (3) and(7) we shall here need to evaluate
[ ([ ) ck
Gyulw)=—i [ “dr expiion) Maa()= 3,y 1 (Q0(QuI (k)
xex —iw,, 7= (7, 7)7=g,u(n]. () X e (k)explik-R)Gyp(fick) +elM (k)
. _1 . . _ _ —_—
with v, the lifetime of levelr, r=t,—t; and w,,=E, XES")(k)exp(—ik-R)Gdn(—ﬁck)]. (10)

—E,. Such a simplification of the four-time correlation

function is based on the assumption of a separation of timdo evaluate Eq(10) we first sum over polarizations, then
scales for the chromophore and bath, such that the average @@nvert thek-sum to an integral. The usual treatment of the
the product of operators in E7) factorizes into a product coupling may be retrieved by application of the “impact
of operator averagdsienoted by bajsEq.(8). This approxi-  limit,” such thatg(7) is linear in time,g(7) =iQ+I'7, with
mation becomes exact in the impact lirttite limit of a short ~ Q=\/¢ providing a solvatochromic shift anf=(A w?)/o

bath correlation time A more general approach for evalua- describing the stochastic modulation of the excitation energy
tion of the four-point correlation function is to take the semi-leading to line broadening. This is equivalent to assuming
classical limit, then make a weak coupling approximafibn. an homogeneous broadening limit, wherein the time scale of
An expression is then obtained which involves the linebath fluctuations is very fast compared to the rate of the

broadening associated with all pairs of levels. electronic energy transfer process. Hence we put,

The middle terms of Eqq7) provide the spectral over- 1
lap integral(SOI), J, which was first noted by Feter! and G_v (k)= , (12)
essentially ensures energy conservation for the concerted de- a k=2,

excitation—excitation process. Thérster SOI is determined \yhere

by convolution of the donor emission and acceptor absorp- .

tion spectra, which gives the probability that an emitted pho-  €Z,,=,,+Q—i(3y,+3y,+T,,), 12
ton (after transit through the bath medijiia absorbed by an andk= w/c. Note the equivalence of the formulation involv-

acceptor chromophore. In other words, it gauges the extent H?lg Eq.(12) with Egs.(3.1) and(3.2) of Ref. 29. Hence, we
which the donor em|SS|on and acceptor absorption Spectrgiain

are “in resonance.” So, for the trivial mechanism, energy

conservation between initial and final states is ensured be-

cause the photon absorbed by the acceptor is that emitted by Maa(k) = '“ "(Qulua (Qa)J dk 5z 2eq(27m)°
the donor, and no ostensibly virtual states are involved.
Moreover, the SOI for the trivial mechanism is equivalent to X (8 k k )( e
the impact(fast modulationlimit of the population pathway. @b e Zgm— K Zgmt k)
The dynamics of the fluorescence Stokes’ shift have beewe now putd3k=k2dkd® and integrate over the solid
incorporated in the SOl recently by Mukamel and
Rupasov® Generally, the four-point correlation function is
expected to modify the SOI from that derived byrster.

eik-R —ik-R

(13

angle ®. Keeping in mind that terms odd ik vanish, we
obtain

The SOI for the coherent pathway accounts for coherence M g,(K) = 1% (Qu) 12(Q )J exp(lkR 1
effects between initial and final states even within the factor- da ’“ 0t (Qa eR° zdm k2
ization approximation. In the impact limit it reduces to the _ ~
usual Fermi Golden Rule expression. X[(iIkR— 1)(5aﬁ_3RaRﬁ)

+K2R%( 8,5~ R,Rg)]. (14)

Integrating over an appropriate semicircular contour into the
positive imaginary axf® we finally obtain

We discuss here the Liouville space matrix elements
Whic_h promote thg energy transfer; beginn.ing with the, es- (k)= 19 (Qe)u(Q.) M [(1-iZgmR)
sentially, electronic coupling factors. To this end, the cou-
pling is assumed to be independent of nuclear coordinate.
The QED matrix elements have a form indicated by

B. Coupling matrix elements

X(éaﬁ—3f<aéﬁ)—<zdmR>2<5aﬁ— RuRp)].
_ (15
M, (@)= Vi, Gy @)V, (9)  In view of the explicit nature oy, as given by Eq(12),
m exp(zyR) incorporates damping into the rate expression, as
where we have made a factorization approximation. Owingnvestigated also in Refs. 28 and 29. In Ref. 28. Eq.

to the short population time of the virtual intermediate state(4.35] dielectric effects of the host medium are accounted
this should be a reasonable approximation in the near zorfer using a factor written in the formy=nw/c=(n’
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+in")wl/c. This may be compared to the present work bytransition moment tensor operators, respectivéty mol-
inspection of Eq.(12) such thatzy,=(n’+in")w/c, with  ecule N), while m,(N) is the magnetic dipoleM 1) and
nN=1+0/ew and n"= _(%7v+%7ﬂ+va)- In vacuum, Myg(N) is the magnetic quadrupol®/2) transition moment
whereczy,, can be exactly identified witt4,,,, the exponen- Operator. In Cartesian tensor notation they are defined as
tial in Eq. (15) has a purely imaginary argument and as usual

represents an oscillatory phase factor that disappears in  &a(N)=2> €(ri—Ry)q, (1739
the ensuing rate expression. A long-range inverse square '

dependence on distance is the necessary consequence.

However, in dissipative media wherg,,, acquires complex 0u5(N) =57 2| &i(r;—Rn)a(ri—Rn)g, (179
character, the same exponential also accommodates a damp-
ing contribution that tempers the long-range distance depen- 1
dence. Qupy(N) =37 20 &(ri=Ru)alfi=Ru)a(ri—Ru),,
(170
I1l. QED TREATMENT OF THE COUPLING
The quantum electrodynamicéDED) representation of mMy(N) = E. 2mc [(ri—=Rn)XPpila, (179

the interaction between transition mometighich has been
discussed previously in the dipole approximatfoly will
now be developed to higher order. The explicit properties, Mas(N)= 57 Z 3mc[(ﬂ Rn) X pilalri—Rulg-
form and significance of higher multipole contributions to (170
the “near” and “wave” zone interactions are elucidated.
The interaction Hamiltonian of Eq.16) couples mol-
eculeN to the electromagnetic field. In this way the intermo-
lecular interactions are mediated entirely by the exchange o
transverse photonglt is important to note that the term
“transverse” here refers to the character of the vector fieldA. Fully retarded interaction matrix element
with respect to the propagating vectior Since the energy

transfer process properly accommodates all possible mOd?ﬁ’eory(Which is equivalent to the impact limit with set to
for the mediating photon, the resultant coupling displays feaZero for clarity we can write down an expression for the
tures both transverse and longitudinal with respect to th?natrlx element for the coupling, mediated via the radiation

intermolecular displacement vector. field 18 Having demonstrated in Sec. Il the modulation of
the matrix element owing to interactions between the mol-

Outside the source the transverse displacement vector,
d*(Ry), equals the total electric displacement fieldRyg

he position vector of molecull), sinced'(r) is zero for a
neutral system.

Using second order Rayleigh—Sctiager perturbation

— -1 L 1 L
Him_% {1~ €0 1a(N)dL(Ry) — €0 0ap(N) V udg(RN) ecule and the host medium, we now focus attention to the
explicit form of the multipolar coupling. To this end, and for
— €0 Q3 (N)V ,V gd (Ry) = -+ - =M, (N)b,(Ry) simplicity, it is appropriate to consider here the vacuum form

B o of the coupling. Hence, proceeding from Sed.df. Eq. (3)]

Map(N)V bg(Ry) ;- (16 we obtain Eq(18), which essentially represents the summed
Hereu,(N), ©,5(N), andQ ,z,(N) are components of the interaction between all transition multipoles of the interact-
electric dipole E1), quadrupole E2), and octopole E3) ing pair,

fick
MG2"= 2 (alHinm)(miHind d)/ (Ego—fick) = 3 50 [ "+ ik k(05— 07 u7) + ok kOO0
+ky kK2 Q05+ QO 550 + -+ e (k)R (K)E) — e (Kl (K)E T+ [ 10" mE0+ ik k("m0

— 02 mT%) [ (k)b (K)E ) —eM (k)b (K E ]+ [m2 w20+ ik k(m2"O 50— m2" u70) ] (b (k)
x e (K)E)—bM (ke (K)E ]+ m2mTorbM (k) b2 (k) E) = b (k)bM (K ECT), (18)

where E®)=exp(ik-R)/(E,—Eo+%ck). We sum over

polarizations using the identities of E(L9), wheree, ., is 2 eM(k)bM (k)= €ap Ky

the Levi—Civita unit tensor,
> M (ke (k)= (8,5 kokg), > b (KD (K) = (8,5~ kaKp). (19
A A
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We then convert thek-sum to an integral and pug™
=exp(Fik-R)/(k=k) with k=(E,—Eg)/hc=(E
—Eg)/fic, so as to obtain

Mng”':J d3k(2 ESES+ MM )

k R
- — (—)_g(t)
X260(27T)3 (5aﬁ kakﬁ)[e € ]
+f d%(% Eg“M"Q‘°+M2“Eg°)

k R
- (=) —al+)
><2€0(27T)3 €qp,K,[ € e, (20

Here we have introduced the notati@&}",M.", etc.
where E denotes an electric, and a magnetic, multipole
interaction. The value oP or Q specifies the multipole, so
that each contribution from Ed18) is specified. The inte-

The spherical Bessel function is defined in terms of the Han-
kel function of order integer plus half ahiP(z)
= (m122) Y1 1»(2), and is given by

W1 & M 1
h(2) =1 z kgo ) =kt 2k @

We can now evaluate the gradients of E2fl) by use of the
identities collected in the following equations:

V.,R=R,, (243
~ 1 ~ A
V, expli kR)=i xR, exp(ixR), (240

n ~
Vahg”(KR):[ﬁ hM(«kR)—kh(} ,(kR)[R,. (240

grations are now performed as in Sec. II, to give the retarded  Finally, we obtain expressions for the coupling tensors
interaction matrix element of Eq21), gradients being re- 9iven in Egs.(25 and(26). It is evident that the use of the

trieved from the polarization unit vectors using the relationSPherical Bessel function formulation provides a clear, com-
k Je)—e]=—ik v [e()+el )], etc. A detailed pact representation of the retarded coupling interaction and

der|vat|0n of Eq.(21) has been presented previou$ly,
MGa"'=(4meo) [ ua' wg+ (g Oy~ O i)V,
+O OV V s+ (uI 00+ Q% suTV .V 5
+mmE°1(V28,5— V.V )R expli «R)
+(4meg) i my +|m°",ug‘°+(,u°”mg‘g
+mAuTO)V 5+ (MO 79— 0 %MV ]
X €45,V ,R” 1k explikR). (21
We now rewrite Eq(21) in the form
M@= [ (e g+ MMV gt (e O Y

mo 0 0, 0 0
Bwu“a )Va67+(® n®m tu nﬂgvﬁ

+QP TV gyst - +IM(p “mﬁ

0 0 0
+mYUTOV,a+H ImmO R - 0mE%)V, 4
+Im(lu’a mﬁ'y+mﬁ'ylu’a )Vaﬁy ”]! (22)

where it may be noted that the magnetic transition moment
tensors are purely imaginary, that is,im,=Im(m,), etc.
TheV; are the transition moment coupling tensors discussed
below. Note that those associated WHRE or M—M inter-
actions differ from those foE—M coupling (highlighted by

the primeg, essentially owing to their different time-reversal
signature.

The structure of th&—E andM—M coupling tensor is
given by V.=V -V (V2§ -V Vi)
x(e'*“R/R), which runs aR~(""1) where €'“R?/R) can be
identified with i xkh{"(xR), a spherical Bessel function of
the third kind** Similarly, coupling tensors associated with
the E-M cross terms have the general form’liz,,,in

= (4meg) '[Vi Vi, -V, V) (k€ RIR)].

(& i i
n—-3 n—-2'n—1'n

V. i(k,R)= ——
aﬁ(Kv )_47760

Vaﬁy(K1R) = 4

Vaﬁ‘yﬁ(K'R): 4_ 0,

its distance-dependence,

HE]

1
Baph’ (KR) = —= 8ogh” (R)

+R,Rsh5M(xR) |, (253

i 4

. 1
SupRMNT(KR) — —=

TEQ

X (84pR,+ 80 Rp+ 85, RNV (kR)

+R,RsR,NP(KR) |, (25b)

1
aﬁ5y5h(11)(KR) ~7R2 (8ap0ys

+ 84y 0p5F 84505,)N5" (KR)
s RRAD(KR)+ = (5,RR
aB N yIRsti2 xR aB M yIRg

+ 8y ReRs+ 80sReR,+ 85,RuRs

+855R.R,+ 8,5R,Rp)NY (kR)

~R,RsRRNP(KR) |, (250
, s ~ )
Vaﬁ(K,R)= FGO EaﬁyRyhl (KR), (26@
IK (1)
(K R) 4776 R GQB5575h1 (KR)
— €apsR RND(KR) . (26b)
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Equations(25)—(26) proves a more amenable basis for deri- 1 A -

vation of the higher order coupling than the algebraically *tg h§”(kR) |(8,,Re+ 35,R,), (283
equivalent linear combination of spherical Bessel functions

employed in previous work These higher order coupling 3) it 1 A aoa 1 ~
tensors may be used to obtain improved estimates of the Vapy (K, R)= 47e, h3"(«R) RaRBRy_g (8apRy
distance and orientation dependence of energy transfer, as

discussed in Sec. IV. " 5ay§[3+ 537&)} (280)

The evident absence of weight 2 contributions reflects the
B. Irreducible tensor formulation paired effect of thew,8 symmetry ensuing from the index
symmetry of theV,; of Eqg. (253, from which theV .z, is

It is instructive to consider the coupling between donorderived and the quite separaey symmetry arising because
and acceptor transition multipoles in terms of irreducible ten-, ' q pargiey sy y 9

: . ; the coupling tensor contracts with the index symmetric quad-
sors. Consider the coupling between a donor electric or mag- - .
; I : upole transition moment in E@22).
netic transition multipole momenEp or Mp (p=1 denot-

: . _ . ; The irreducible tensor decomposition of the coupling
ing dipole, p=2 quadrupole, etg.written for generality as

. . tensorV,, shows that for evem the R-dependence of the
Di1.ip,» and an acceptor multipoleq or Mq, written as

Ai1_iq- Each multipole as given explicitly by Eqel?) is in Wer']gh.t OI pBart WT'fCh tf;en a;lfﬁs til.\’\zjaf’ [jurlrs::_éjs}(KR)b, a

general expressible as a sum of ireducible tensdf8, | P orc8 BESSE! fUNClion Of te FITE Kind. This can be seen
: . . o i*p  from the fact that the weight O contribution can be obtained

and Ai(Jl)...iq1 characterized by integer weights=0---p(a).  py tracing the product of nabla operators, necessarily leading

These are tensors which have the transformation properties a product of (/2) Laplacians, ¥2)"2. Since the Laplac-

of angular momenta under the symmetry operations of the jan can here be written & 1(9%/9R?)R, its successive op-

full rotation-inversion group S@). When a donor multipole eration on €'“R/R) simply introduces the multiplicative fac-

of rank p couples with an acceptor multipole of ragk the  tor (i«)" into the same function.

coupling tensor has rang+q and in principle accommo- For electric—electric or magnetic—magnetic interactions,

dates weights running frop—q| up top+g. each contribution to the matrix element for the coupling is

Not all weights j=0---p(q) are manifest however. clearly expressible in the form

First, because each multipole is fully symmetric with respect

to mFerchange_ of any of its |n_d|c6es, those wglghts for v_vhlch Dp/-\qu+q=2 2 2 D(p”quJ )er)+q, (29

(p—j) or (g—j) are odd, vanish® Second, thg =0 contri- g

butions, which need therefore only be considered for eveqsing the single subscript on each tensor to represent its full

E(Q)’ necessanrll):rvaglsnh \]:\(/)itrha :c:]urnexdlI;erent. .rfeét_son.l'l'ms 'set of indices. The produd{’AJ", for the reasons out-
ecause on contractio » 07 exa p‘é,l Tp-1"1p’ lined above, is a tensor of rank+ g which contains even

the even rank weight 0 tensors, constructed from a product QX/eightsj”’ running from O up top+q if the latter sum is
Kronecker deltas, lead to a factdt-d“. This divergence eyen, or odd weightg” from 1 up top+q if the sum is odd.
term is zero, the electric displacement field in the multipolan, coupling this resultant tensor Wity , 4 only the products
gauge being explicitly transverse. The same argument aRgith j”=j” can contribute since the result is necessarily a
plies for the magnetic multipoles, as the magnetic field ofscgjar, This has a significant bearing on the form of result
electromagnetic radiation is intrinsically divergence-free.tnat ensues on rotational averaging, as will be shown in Sec.
Thus the weights run frortat least 1 up top(q) if the rank ) c.

is odd, and from(at least 2 up top(q) if the rank is even. Hence, not only additional physical insight but also a
Notice that weights different from the rank arise f0fq)  sjgnificant degree of simplification of E(2) is achieved by
>2, so that the higher multipoles are not natural tensorsiepresenting the donor and acceptor transition multipole mo-
This is a feature that has only recently been signaled in conyents as sums of their nonvanishing irreducible components
nection with electric octopole couplifgwhere the weight 1 [ie., weights 1,.p(q) for a multipole of odd rank or
part ofsthe rank 3 tensor has often in the past escapefeights 2,..p(q) for a multipole of even rark then consid-
notice’® For exampleV 4, carries only weights 1 and 3, as ering the nonvanishing terms in the multipole product ten-

calr: ibe defrnltlnnvitrfa\ted by explicit decomposftioi—the re- sors DAY, and the coupling tensor¥,,. 4, as discussed
sult is as follows: above.

Vg (k,R) =V (k,R)+ V) (k,R) (27)

with C. Rotational averages

In systems that exhibit resonance energy transfer be-
tween structurally uncorrelated centres, the theory as devel-
oped above stands in need of further refinement before its
results can be related to experiment. In such systems, includ-
ing microscopically disordered solids, glasses and fluids, it is

o4
VO (R =~ R (kR = = hP(xR)
apyt ™ Ameg | * kR 2

N e
5aﬁR7+ K_Rh2 (kR)

1
+g h$Y(«R)
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necessary to relate theory to measurement by performing ravhich is the familiar excitation transfer function f&l —-E1
tational averages to account for the distribution of donor andtoupling’® The wave-zone dependence of the rate is thus
acceptor orientations. For simplicity we shall proceed on thestablished aR 2, a result which necessarily holds for all
assumption of an isotropic orientational distribution, inmultipolar couplings. This ensures radiative energy
which the donor and acceptor are orientationally uncorreconservation—the net energy flux through a shell at a wave-
lated, though partially ordered systems can properly be adzone distanc®= «~* from the donor must be imperceptibly
dressed by application of a related procedure also based aependent on the distance from the source.
irreducible tensors?52

Through application of a procedure described in detalil
elsewherg the implementation of such an averagenoted

below by angular bracketson the rate equation whose root  The QED framework affords a general and lucid formu-

IV. DISCUSSION

is Eq.(29), gives a result expressible as lation for examining the mechanism of energy
o o transfer3-?%*Host dynamics have been incorporated into
(IDPANp+g D=2 2 2 (Dg)Dg)xAgj')Ag')) the QED model in Sec. Il of the present work, properly al-

J J" j”

lowing us to identify the partitioning between the near and
X(\/J—H VK ) (30 far zone mechanisms for transfer of energy between chro-
p+a¥p+a/ mophores dispersed in condensed phagaid or solid) host
wherej, j’, andj” satisfy the rules of angular momentum Media. It has been shown that the form of the phase factor
coupling as outlined in the previous section. For our pur-2ssociated with the coupling acquires a complex character in
dissipative media, tending to moderate the long-range dis-
tance dependencypically donor—acceptor separations of
We takeE1-E1 coupling as an example. The form of greater th_an 100 nmA prev_ious studs” has associated this
the spherical Bessel functions which comprise the couplinqe)(ponem.'alI decgy_factor with a guenching of bath p_olantons
nvolved in mediating the EET. Such a subsystem is neces-

tensorV,s(x,R) given in Eq.(25) dictates the form of the ﬁ_‘grily dissipative because of the dense excitation spectrum of

poses the key feature {y{,’;qv_{)’;q>, which carries identifi-
able contributions.

rate expression. The second rank coupling tensor can be r .
: e : e medium.
duced into two nonvanishing irreducible components suc . e
Coherent and “population” Liouville space pathways

that, have been investigated in Sec. Il B. It was shown that, in the
Vaﬁ(K1R):Vgog(KvR)+ngﬁ)(K1R)1 (31  fast modulation(homogeneous broadeningmit, spectral
overlap integrals representative of each pathway may be
with identified. They may be compared to thér§ter expression,
- which essentially represents the limit of a “trivial(photon
—ik 1 . . . . .
V(aoﬁ)(K'R) = [hgl)(KR)— — hY(kR) emission-absorptigrmechanism. At close separatiofigpi-
4meg xR cally less than 100 njmthe near zone, the exponential phase
and damping factors identified in E¢L5) vanish, and the
Saps (329 influence of the host medium enters only via the spectral
overlap integral. Screening contributions and local field ef-
—ik3 a1 fects owing to the dielectric properties of the host medium
VEEB)(K,R)=4— hgl)(KR)(RaRB—— 5aﬁ). (32  may be considered also, as was shown recéffi.For
TE 3 : .
small interchromophore separatiofs.g., less than about
The form of the spherical Bessel functions dictates that th@0—30 A, typical of model bichromophores, aromatic poly-
former contribution is only significant in the wave zone. In mers, or photosynthetic light harvesting complexes, the host

the fully averaged rate equations the following factors arisemedium refractive index does not feature in the rate equa-
tion, although the rate expression may be modified my mi-

1
+3 h$Y(«R)

4 .
(0) 00 _ @ croscopic solvent effec.When the donor—acceptor sepa-
Vap(k:RIVop(k.R) 1272€5c*R?’ (333 ration greatly exceeds the host molecule “radiugke., a
large number of host/solvent molecules may be accommo-
4
VO k RV R) = dated between donor and acceptor chromophpthen the
ap(K RV (K, R) = 2472€3c? refractive index factofl/n* in the Faster expressiorshould
, A be included®>’
% i+ 3c N 9c (33b) A general QED treatment of higher multipole contribu-
R? " w’R*  o*R%/ tions to the coupling between transition moments has been

presented in Sec. lll, whence interactions involving electric
dipole, quadrupole, and octopole as well as magnetic dipole
and quadrupole interactions were examined. The utility and

The rotational average given by the final factor in Eq.
(31) is then expressible as

A(K,R):VEYOE(K,R)V_(;)‘;(K,R)+V£12[§(K,R)V_EXZ[;(K,R) need for theT establishmen§ of _such a physical picture in the
QED formalism has been highlighted by a recent study of the
=2(4megR%) [3+ (kR)%+ (kR)*], (34)  coupling between the carotendi state and chlorophylf&
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A new formulation has been presented wherein expres- B

7
sions for the multipolar coupling tensors are constructed in B Y 8 5
terms of spherical Bessel functions, providing a clear, com-
pact representation of the retarded coupling interaction and

its distance-dependengef. Egs.(22), (25), and(26)]. It has
been shown that, starting from Eq25a8 and (264, higher
coupling tensors are obtained easily by successive applica-
tion of Eq. (244d). FIG. 3. lllustration of the directions of multipolar transition moment tensor
The most common regime for which higher multipole c0mPenents; dipole, quadrupole, and octopté to righd.
interactions may require consideration in a study of elec-
tronic energy transfer is the near zofie., at close separa-
tions, wherexR<1). In this limit, the interaction tensors of moments. However, all multipole transition moments con-
Egs. (25) and (26) reduce to those of Eq¢35 and (36)  tribute to the coupling whenevet, and 6, (see Ref. Hare
below: different from 90°.
The relative weight of the transition multipole moments
may be estimated by recourse to the approximate relations,

~ _ 3
Vap™ e, (Pap™ SRaR)IRY, @53 nic~lula, [6]~|ll, |Q]~|u|1? etc., witha=1/137 and
| the length of the transition dipole. From such consider-
1 A A A - - ations one would expect that at the interchromophore sepa-
Vagy™ m [15R.RgR, = 3(845Ry+ 50y Ry ration R=1, all Ep—Eq interactions should contribute
. equally, which is congruent with the dipole approximation
+385,R,)1IRY, (350 being considered valid foR>1. This was investigated re-

cently for various model dimer separatidhs.
1 A A aoa Examination of the form for the coupling tensors for the
Vapys™ Keo [—10RRsR,R5=3(8apdyst 6ayOps electric-magnetic cross ternisp—Mgq, V', shows that the
o o interaction depends always upap even in the near zone.
+ 04508y) +15(0,5R,R5+ 84, RpRs Thus these constitute examples of “entirely retarded”
A~ ~ oA ~ A couplings®® Similarly, contributions to the coupling outside
+0asReRyF g, RaRs+ GpsRR, the wave zone also involve an expligitdependence. Con-
+575|§2a|§2ﬁ)]/R5, (350 sideration of Sec. Il Qwhich leads to the sub_stitution qf
Zynrtype terms forx) suggests the damping owing to a dis-
1 . sipative host medium should be enhanced for these interac-
V;lg%m GaByR.yK/RZ, (36g  tions. In general, the interactions involving magnetic multi-
0 pole transition moments will be significantly smaller than
1 those involving electric multipole moments owing to this
b _ap F 3 x-dependence of the coupling, which is typically equivalent
“Pr - 4meg €apal 05~ 3R Rs) IR (360 to a factor of 1/(5000 A).
Using the theory developed in the present work, a de-
In the spherical Bessel function representation, thesgyjled study has been undertaken of the convergence of the
equations are found by taking the limiting values of themyltipolar expansion of the near zone coupling between
h{P(«R) for small arguments. The near zone interaction hasarious chromophores, including bacteriochloroplaylias a
a form reminiscent of the interaction between two static di-function of separation and orientati8hlt was found that
poles, although the irreducible tensor formulation of the coutorrections to the dipole approximation from higher multi-
pling discussed in Sec. Ill B signals features that have oftemole couplings are significant to fairly high order at separa-
in the past escaped notice. At very large donor—acceptaions typical of those in biological light-harvesting aggre-
separationsi.e., in the wave zone, witkR>1) all multipo-  gates. The reason for this is simply that the transition
lar couplings assume /R distance dependence, consistentmoments do not behave as ideal dipoles. A feel for the prob-
with Poynting vector calculations. lem is obtained by considering the axial components of the
Orientation factors for the multipolar coupling are ob- dipole, quadrupole, and octopole transition moments calcu-
tained by making the substitution,;—a«-B andR,—a  lated for the bacteriochlorophyla Q, transition; u,
‘R, wherea denotes a unit vector in the direction of tensor ~14 D, ®,,~-9D A, andQ,,,~225 D A>® It is clear
componenta of the transition moment anB specifies the that interactions involving the quadrupole transition moment
direction of the center-to-center vector. Directions of thewill be relatively small compared to those involving the di-
transition moment tensor components are depicted in Fig. Jole and octopoléas expected for an allowed transittdh
When the dipole transition moments of donor and acceptoBy using these transition multipole moments together with
are normal tdR, we obtain cosp, 0 and— (3/2)cose for the  Egs.(22) and (35 we can easily determine the ratio of, for
orientation factors for Eq9.359, (35b), and (350, respec- example, the dipole—dipole coupling to the dipole—octopole
tively, where¢ is the angle between these dipole transitioncoupling (i.e., M9MY). By using the orientation depicted
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FIG. 4. Comparison of orientation factors for the dipole—dipole and dipole—
octopole couplings between bacteriochloroplayl, transitions, calculated ~ FIG. 5. Distance-dependence of the ratio of the dipole—octopole to dipole—

using Eqs(35), for the orientation depicted in the inset. dipole couplings between bacteriochlorophgllQ, transitions, calculated
using Egs.(22) and (35), for the orientation depicted in Fig. 4 with
=65°.

in Fig. 4, with 6=65° (such that the orientation factor for
dipole—dipole coupling is 0.46 and that for dipole—octopole

coupling is 3.73 we obtainM /MY as a function of sepa- was examined as an example; illustrating the real sig-
ration (Fig. 5. This shows that, for bacteriochlorophyl nificance of higher multipolar couplings for separa-
the higher multipole couplings are very significant and the tions less than 20 A.

expansion should be taken to fairly high order to calculate
couplings with reasonable accuracy. This is not so surprisin

given the size of these chromophores. A more detailed anal ACKNOWLEDGMENTS

sis is provided in Ref. 60. The success of this work owes much to the following
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tween chromophores was examined in the context of d "USt:
guantum electrodynamic&@QED) model, allowing us

to identify the partitioning between the near and far AppENDIX A
zone mechanisms for transfer of energy between chro-

mophores dispersed in condensed phéipid or For convenience, the relevant spherical Bessel functions
solid) host media. The long-range distance- are collected here. They are obtained from E2§):
dependence of the coupling was shown_ to be modified hf)l)(KR) = —iel*R/kR, (A1)
by a phase factor, through which damping effect were
manifest. hO(R) = — e/ L 4 i A2

(i) A general QED treatment of higher multipole contri- 1 («kR)=—e <R K2RZ2)’ (A2)
butions to the coupling between transition moments . )
was derived. A new formulation was presented h(l)(KR)=e"‘R<I—_ 3 B 3i ) (A3)
wherein expressions for the multipolar coupling ten- 2 kR «k’R? «°R3)

sors were obtained in terms of spherical Bessel func-
tions, providing a clear, compact representation of the = h(l(xR)=g/R
retarded coupling interaction and its distance-

(A4)

1 N 2i 15 15
kR k?’R? K°R® KRY)

dependence for multipolar couplings of arbitrary or- o 10 45 105 105
der. The irreducible tensor formulation of the cou-  h{¥(kR)=¢'*R =T Rt IR AR 5R5)'
pling was discussed, highlighting features concerning koK K K K (A5)

the exact form of the orientation factors that have of-

teq in the pas.t escaped potlce, and the detailed methoEPPENDlx B

of implementing a rotational averaging of the result-

ant interaction tensors was demonstrated. The cou- Equations(7) may be obtained explicitly in the impact
pling between bacteriochlorophyh chromophores limit by using
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— k _ 1
V,u.( )_ k_ZV,uv
_T _1
G, (k)= T (B1)
v
with czIMEwWﬂLQJriFW, and the relations summarized
as
1 wxill
w*xil  w?+0?
li =P Lo o B2
FLTJr w*il a)+MT (@), (B2)

which serves as a double-check of E¢#), and compares
with Ref. 59.
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