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A Multifamily GLRT for Oil Spill Detection
Antonio De Maio, Fellow, IEEE, Danilo Orlando, Senior Member, IEEE,

Luca Pallotta, Member, IEEE, and Carmine Clemente, Member, IEEE

Abstract—This paper deals with detection of oil spills from
multipolarization synthetic aperture radar images. The problem
is cast in terms of a composite hypothesis test aimed at dis-
criminating between the polarimetric covariance matrix (PCM)
equality (absence of oil spills in the tested region) and the situation
where the region under test exhibits a PCM with at least an
ordered eigenvalue smaller than that of a reference covariance.
This last setup reflects the physical condition where the backscat-
tering associated with the oil spills leads to a signal, in some
eigendirections, weaker than the one gathered from a reference
area where the absence of any oil slicks is a priori known. A
multifamily generalized likelihood ratio test approach is pursued
to come up with an adaptive detector ensuring the constant false
alarm rate property. At the analysis stage, the behavior of the
new architecture is investigated in comparison with a benchmark
(but nonimplementable) structure and some other suboptimum
adaptive detectors available in the open literature. This study,
which is conducted in the presence of both simulated and real data,
confirms the practical effectiveness of the new approach.

Index Terms—Constant false alarm rate (CFAR), covariance
matrix equality, invariance, multifamily generalized likelihood
ratio test (MGLRT), oil spill detection, one-sided generalized
likelihood ratio test (GLRT).

I. INTRODUCTION

O IL spills represent a threat to the environment, wildlife,
and to human life through the food chain. Natural phe-

nomena, oil pipeline breakages, and illegal human activities are
the causes of the presence of oil spills in the sea. In particular,
illegal washing activities of oil tankers contribute 70% to sea
pollution with oil [1]. As this kind of activity is difficult to
prevent, monitoring and detection of the phenomenon is vital
to be able to act timely and avoid natural disasters. Oil spills
have peculiar characteristics that make them visible in synthetic
aperture radar (SAR) images. Oil smooths the sea surface,
reducing its roughness, thus appearing darker in SAR images.
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For this reason, at least in principle, SAR represents a powerful
tool for oil spill detection and sizing [2]. Improved reliability
in such detection process has been demonstrated, exploiting
the additional information residing in the polarimetric returns
[3]. Recently, the topic of oil spill detection in polarimetric
SAR has been investigated with different approaches. In [4],
a feature extraction and maximum entropy segmentation ap-
proach has been proposed. The capabilities of hybrid/compact
dual-polarization (dual-pol) modes have been assessed in [5],
with experimental results suggesting that hybrid/compact and
(HH, VV) dual-pol modes deliver better detection performance
compared with conventional dual-pol modes, i.e., (HH, HV)
and (VH, VV). The potential of circular polarization coherence
and polarimetric anisotropy has been assessed in [6], showing
that the anisotropy is always higher within the slick area both in
L- and C-bands. Decision schemes ensuring the constant false
alarm rate (CFAR) property and the target decomposition theo-
rem have been jointly used in [7] to detect and classify oil spills,
highlighting that entropy plays a key role in the classification
process. Three techniques based on the generalized likelihood
ratio test (GLRT) and the maximum-likelihood estimate have
been proposed in [8], providing near-optimal performance in
real environment. Compact polarimetric (CP) mode has been
proposed in [9] as an alternative transmission mode providing
enhanced discriminating capabilities due to a specific X-Bragg
scattering model. In [10], the CP mode has been also exploited;
in particular, a quad-polarization representation of the data has
been obtained from a circular transmit linear receive configu-
ration and has been used for statistical detection of oil spills.
Finally, future perspectives in oil slicks detection, including
multisensor integration, have been suggested in [11].

In this paper, the problem of oil spill detection is formulated
in terms of a binary hypothesis test aimed at discriminating
between the presence and the absence of variations in the
polarimetric covariance matrix (PCM) of the radar returns.
The idea is to compare the region under test, which possibly
contains oil spills, to a reference area where only echoes from
the sea are present. As already stated, the presence of oil
damps short gravity-capillary waves down and decreases the
backscattering of sea surface. Thus, it is reasonable to assume
that the PCM of data containing oil slicks shares eigenvalues
smaller than or equal to the PCM of the sea returns. The
decision problem is solved applying the GLRT, and the devised
architecture is referred to as positive definite difference GLRT
(PDD-GLRT). At the design stage, it is assumed that the
rank difference between the two covariance matrices is known.
However, this assumption might not be met in practical sce-
narios, since such a priori information is not available at the
receiver. In order to circumvent this drawback, the previous
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results are extended to come up with a decision rule capable of
properly estimating the rank difference. This goal is achieved
exploiting the multifamily GLRT (MGLRT) [12], and the de-
vised decision rule is referred to as the multifamily PDD-GLRT
(M-PDD-GLRT). In addition, a discussion on the invariance
properties of the PDD-GLRT (and, hence, of the M-PDD-
GLRT) is provided. More precisely, the invariance principle is
invoked to express the decision statistic in terms of a maximal
invariant [13], [14]. Finally, numerical examples are provided
to prove the effectiveness of the proposed approach also in
comparison with existing strategies for oil spill detection.

The remainder of this paper is organized as follows.
Section II is devoted to the problem formulation. The deriva-
tions of the PDD-GLRT and its multifamily modification are
reported in Section III, including details on the invariance
and CFAR property. Section IV analyzes the performance in
terms of detection probability on simulated and real data. Some
concluding remarks and future research tracks are given in
Section V. Finally, proofs and derivations are confined to the
Appendixes.

Notation: Vectors and matrices are denoted by boldface
lowercase and uppercase letters, respectively. Symbols det(·)
and Tr(·) denote the determinant and the trace of a square
matrix, respectively. Symbol HN is used to represent the set
of N ×N Hermitian matrices, whereas I and 0 represent
the identity matrix and the null vector or matrix, respectively,
both of suitable dimensions. The curled inequality symbol �
(and its strict form ≻) is used to denote generalized matrix
inequality: for any A ∈ H

N , A � 0 means that A is a positive
semidefinite matrix (A ≻ 0 for positive definiteness). As to the
numerical sets, R is the set of real numbers, RN×M is the set of
(N ×M)-dimensional real matrices (or vectors if M = 1),C is
the set of complex numbers, and CN×M is the set of (N ×M)-
dimensional complex matrices (or vectors if M = 1). Symbols
(·)T and (·)† stand for transpose and conjugate transpose,
respectively. Finally, the acronym i.i.d. means independent and
identically distributed, whereas symbol E[·] denotes statistical
expectation.

II. PROBLEM FORMULATION

A multipolarization SAR sensor, for each pixel of the image
under test, collects N0 = 4 complex returns from four differ-
ent polarimetric channels (namely, HH, HV, VH, and VV).
However, in the monostatic configuration, when both the scat-
tering reciprocity and backscatter alignment convention hold,
then the returns from channel HV coincide with those from
channel VH [15]. For the aforementioned reason, in the sequel,
returns from N = 3 polarimetric channels are considered.

The returns associated with the same pixel are organized
in the specific order HH, HV, and VV to form the vector
x(l1, l2), l1 = 1, . . . , L1 and l2 = 1, . . . , L2 (L1 and L2 repre-
sent the vertical and horizontal sizes of the image, respectively).
Therefore, the sensor provides a 3-D data stack X of size
L1 × L2 ×N , which is referred to as a data cube in the
following, whose pictorial representation is given in Fig. 1.

Starting from the data cube X of the scene illuminated by
the radar, for each pixel under test, we extract a rectangular

Fig. 1. Pictorial representation of the construction of the data cube for polari-
metric images.

neighborhood A of size K = W1 ×W2 ≥ N . We denote by
Z = [z1 . . . zK ] ∈ CN×K the matrix whose columns are the
vectors of the polarimetric returns from the pixels of X which
fall in the region A. The matrix Z is modeled as a random ma-
trix, whose columns are assumed i.i.d. random vectors drawn
from a complex circular zero-mean Gaussian distribution with
positive definite covariance matrix R.

Our goal is to identify those regions of X that exhibit varia-
tions of the covariance matrix R with respect to a preassigned
reference region. Specifically, the presence of specific objects in
the observed scene yields signal echoes with spectral properties
different from those associated with the background. For in-
stance, consider an oil spill on the sea surface, whose reflectiv-
ity coefficient reduces the intensity of the backscattering signal.
Thus, if we denote by RA1

and RA2
the PCMs of a region A1

containing sea returns and of a region A2 associated with an oil
spill, respectively, physical argumentations on backscattering
lead to the condition RA1

−RA2
� 0.

Based on the aforementioned observations, the detection
problem addressed in this paper can be written in terms of the
following hypothesis test:
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H0 :

{
zk ∼ CN (0,R), k = 1, . . . ,K
ym ∼ CN (0,R), m = 1, . . . ,M

H1 :

{
zk ∼ CN (0,R1), k = 1, . . . ,K
ym ∼ CN (0,R1 +R2), m = 1, . . . ,M

(1)

where zk, k = 1, . . . ,K , and ym, m = 1, . . . ,M , are statis-
tically independent random vectors1; specifically, ym contains
the echoes from the reference area (namely, the clean sea in
the context of oil spill detection) which has a size of M pixels,
whereas zk are the K pixels under test (possibly containing
oil spills). Matrices R and R1 are full rank, i.e., Rank(R) =
Rank(R1) = N . The data covariance matrix for the case of
active sensing cannot be singular due to the presence of filtered
thermal noise (due to electronic devices composing the system

1For the sake of simplicity, in the following, we neglect the possible low
correlation level between adjacent pixels.
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Fig. 2. Block scheme of the PDD-GLRT detector.

chain) whose power puts a positive lower bound to the covari-
ance matrix eigenvalues. Moreover, as shown in [16, Ch. 4], the
circular Gaussian assumption (and, hence, full-rank PCM) has
been experimentally shown to be valid for polarimetric SAR
data. The rank of R2, p, for example, is assumed to be known
and within the interval (0, N ].

It is clear that, in the context of oil spill detection, the null
hypothesis H0 represents the clean sea situation, whereas the
alternative one refers to the presence of oil spills. Finally, we
assume that K ≥ N and M ≥ N to ensure that the sample
PCMs

G =

K∑

k=1

zkz
†
k H =

M∑

m=1

ymy†
m (2)

are full rank with probability 1. As already stated, the esti-
mated covariance matrices (i.e., sample covariance matrices)
are nonsingular with probability 1 [17] provided that K ≥ 3 for
three polarimetric channels (or K ≥ 2 for two polarizations).
Moreover, if the sample covariance matrix would be close to
singularity, a diagonal loading procedure could be applied to
regularize it. The proposed procedure can be thus applied after
regularization.

III. DETECTOR DESIGN

Here, an adaptive decision rule is devised resorting to the
GLRT design criterion. To this end, let us define ZK =
[z1 . . . zK ] and Y M = [y1 . . . yM ], and then the likelihood
functions of ZK and Y M under H0 and H1 are given by

f(ZK ,Y M ;R, H0)

=

[
1

πN det(R)

]K+M

exp
{
− tr

[
R−1(G+H)

]}
(3)

f(ZK ,Y M ;R1,R2, H1)

=

[
1

πN

]K+M exp
{
− tr

[
R−1

1 G
]
− tr

[
(R1 +R2)

−1H
]}

[det(R1)]K [det(R1 +R2)]M

(4)

respectively. Now, observe that the GLRT for the problem at
hand is

max
R1

max
R2

f(ZK ,Y M ;R1,R2, H1)

max
R

f(ZK ,Y M ;R, H0)

H1

≷
H0

η. (5)

The following proposition provides closed-form expression for
a test statistically equivalent to (5).

Proposition 3.1: The generalized likelihood ratio (5) is sta-
tistically equivalent to

Λp(ZK ,Y M )
H1

≷
H0

η (6)

where

Λp(ZK ,Y M ) =

⎧

⎪⎨

⎪⎩

1, if p∗ < p
p∗

∏

i=1

(1+δi)
K+M

δM
i

, otherwise
(7)

δi, i = 1, . . . , p∗, are p∗ eigenvalues of G−1H , with p∗ being
the minimum between the number of eigenvalues of G−1H

greater than M/K and p.
Proof: See Appendix I. �

The preceding architecture will be referred to in the fol-
lowing as the PDD-GLRT. In Fig. 2, a block scheme of the
PDD-GLRT is depicted. Specifically, the first step consists in
the computation of the sample covariance matrices G and H

using data ZK and Y M , respectively. Then, the eigenvalue
decomposition (EVD) of the product G−1H is evaluated, as
well as p∗. Finally, the statistic Λp(ZK ,Y M ) is constructed
and compared with a threshold to perform the decision.

In the next subsection, we apply the exponential embedded
family (EEF) framework [12], [18] to devise an architecture
based upon the PDD-GLRT that does not use any a priori

information on the rank of R2.

A. M-PDD-GLRT

In practical situations, the exact knowledge about the rank of
R2 could not be available, and hence, it has to be somehow
estimated. To this end, here, we introduce a variant of the
PDD-GLRT which does not need the aforementioned a priori

information. Specifically, the binary hypotheses considered be-
fore become multiple nested instances, each tied up to a rank
value of R2, which is denoted by r(i) = i, i = 1, . . . , N . In
this scenario, the classical GLRT cannot be used, and hence,
we resort to the MGLRT [12], [18] that allows the PDD-GLRT
to be employed also in the case where the rank is not known.
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Fig. 3. Block scheme of the M-PDD-GLRT detector.

Specifically, the MGLRT can be written in terms of the EEF
computed for a given model order2 i, i = 1, . . . , N , [18], i.e.,

max
i∈{1,...,N}

EEF(i)
H1

≷
H0

η (8)

where

EEF(i)=

(

ζGi
(ZK ,Y M )−r(i)

[

log

(
ζGi

(ZK ,Y M )

r(i)

)

+1

])

× u

(
ζGi

(ZK ,Y M )

r(i)
−1

)

, i = 1, . . . , N. (9)

In the last equation, ζGi
(ZK ,Y M ) is two times the natural

logarithm of the ratio between the compressed likelihood func-
tions, i.e.,

ζGi
(ZK ,Y M ) = 2 log

f(ZK ,Y M ; R̂1, R̂2, H1)

f(ZK ,Y M ; R̂, H0)
(10)

where, under the assumption that p = i, the numerator of the
logarithm argument is given by (54), whereas the denominator
is defined by (55); finally, u(·) is the Heaviside step function.
Thus, when there are multiple nested alternative hypotheses, the
MGLRT first computes the PDD-GLRT for each hypothesis;
ζGi

(·), for example, applies the transformation (9) to construct
the EEF(i) and chooses the hypothesis attaining the maximum.
For the sake of completeness, we provide in the following
the explicit expression of ζGi

(ZK ,Y M ), which contains the
constants which have been incorporated into the threshold of
the PDD-GLRT, i.e., ζGi

(ZK ,Y M ) = 0 if p∗ < p and

ζGi
(ZK ,Y M ) = − 2(K +M)r(i) log(K +M)

+ 2Kr(i) log(K) + 2Mr(i) log(M)

− 2M

r(i)
∑

n=1

log δi+2(K+M)

r(i)
∑

n=1

log(1+δi)

(11)

otherwise.
Decision scheme (8) will be referred to in the following

as the M-PDD-GLRT. A pictorial description of this receiver
is given in Fig. 3. As shown for the PDD-GLRT, the first
steps consist in computing the sample covariance matrices G

and H from data and in performing the EVD of G−1H .

2The model order is represented by the rank of R2.

Then, ∀ i = 1, . . . , N , p∗ is used to construct ζGi
(ZK ,Y M ).

Finally, the M-PDD-GLRT performs the decision, choosing the
maximum of ζGi

(ZK ,Y M ), i = 1, . . . , N , and comparing it
to a threshold.

B. Invariance

Before concluding this section, some interesting properties of
the obtained decision statistics relying on the invariance prin-
ciple [13], [14] are given. More precisely, consider the group
of transformations (D, ·), where D is the set of nonsingular
N -dimensional matrices, and · is the matrix product, acting on
G and H (which represent a sufficient statistic) as follows:

G → DGD†, H → DHD†, D ∈ D. (12)

Then, a maximal invariant statistic for problem (1) and with
respect to the aforementioned group of transformations is the
N -dimensional vector whose entries are the eigenvalues of

G−1H (13)

which are denoted by δ1, . . . , δN [19]. It follows that both the
PDD-GLRT and the M-PDD-GLRT are invariant to the afore-
mentioned group of transformations. This invariance allows
claiming that both detectors possess the CFAR property with
respect to the covariance matrix R under the H0 hypothesis.

Remarkably, data transformation induces parameter transfor-
mation, and as a consequence, it is possible to derive a maximal
invariant statistic in the parameter space, which reduces the
dimensionality of the latter. Following the lead of [19], an
induced maximal invariant statistic would be an N -dimensional
vector whose entries are the eigenvalues of

R−1
1 (R1 +R2). (14)

However, given the rank of R2, N − p eigenvalues of the
matrix (14) are equal to 1 and can be neglected. As a con-
sequence, in the current case, an induced maximal invariant
statistic is a p-dimensional vector composed of the eigenvalues
of (14) which are greater than 1, i.e., λ1, . . . , λp.

It is clear that the induced maximal invariant reduces the
dimensionality of the parameter space and measures in what ex-
tent the difference between the covariance matrices is positive
definite. Thus, it can be used to evaluate the performances of
the proposed algorithm. To gain additional insights, it is worth
deriving its explicit expressions for the cases p = 1 and p = 2.
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In particular, when p = 1, it can be shown that an induced
maximal invariant is given by

|α|2p†R−1
1 p (15)

where α ∈ C, α 
= 0, and p ∈ CN×1, p 
= 0. Equation (15) can
be interpreted as a measure of the level of positive definiteness
of R1 +R2 or, generally speaking, as a measure of the signal-
to-noise ratio (SNR). In the case p = 2, an induced maximal
invariant is a 2-D statistic composed of the eigenvalues of

P †R−1
1 P (16)

where P = [αp1 βp2], with α, β ∈ C, α 
= 0 
= β, and p1 ∈
C

N×1 linearly independent of p2 ∈ C
N×1, p1 
= 0 
= p2.

Again, such eigenvalues measure the level of positive definite-
ness and, hence, the SNR along two directions. The proofs of
the preceding statements are provided in Appendix II.

IV. RESULTS

Here, we investigate the performances of the proposed de-
tectors in terms of the probability of detection PD . For com-
parison purposes, we also plot the performance curves of other
approaches available in the open literature. More precisely,
we consider the GLRT devised in [8], [20], and [21], whose
expression is

ΛGLRT =
[det(G+H)](K+M)

[det(G)]K [det(H)]M

H1

≷
H0

η (17)

the maximum-likelihood detector (MLD) proposed in [8],
which is given by

ΛMLD =
det(H)

det(G)

H1

≷
H0

η (18)

and the single likelihood detector (SLD) proposed in [8], whose
decision statistic is

ΛSLD = tr(G−1H). (19)

In order to better analyze the behavior of all these detec-
tors, the comparisons also include the clairvoyant counterparts,
namely, the likelihood ratio test (LRT) and the clairvoyant SLD
(C-SLD).

More precisely, the former is statistically equivalent to

ΛLRT = tr
[
R−1(G+H)−R−1

1 G− (R1 +R2)
−1H

]H1

≷
H0

η

(20)

whereas the latter has the following expression:

ΛC−SLD = tr(R−1
1 H). (21)

The analysis is conducted on both simulated and real SAR
data. In the latter case, we prove the effectiveness of the newly
proposed detectors in terms of the capability to detect oil spills
over the sea surface.

Fig. 4. PD versus SNR for (blue solid curve marked with +) PDD-GLRT,
(red dot–dashed curve marked with ◦) GLRT, (red dashed curve) LRT, (green
dot–dashed curve marked with �) MLD, (magenta dot–dashed curve marked
with ⊲) SLD, and (magenta dashed curve) C-SLD, for a nominal PFA = 10−4.
The other simulation parameters are K = 9, M = 9, N = 3, and p = 1.

A. Detection Capability on Simulated Data

This subsection is devoted to the performance analysis using
computer-simulated data for a preassigned value of probability
of false alarm PFA. Specifically, the numerical examples are ob-
tained by means of standard Monte Carlo counting techniques.
The detection thresholds and the PD values are evaluated
resorting to 100/PFA and 103 independent trials, respectively.
The nominal PFA is set to 10−4. As to the vector size, it is
chosen equal to 3, as stated at the beginning of Section II,
whereas two values of parameter p are considered, namely,
p = 1 and p = 2. Recall that the performance parameter is
represented by the induced maximal invariant which has been
previously evaluated for the aforementioned cases and can be
interpreted as the SNR.

The simulated data zk, k = 1, . . . ,K , and ym, m =
1, . . . ,M , are modeled as N -dimensional zero-mean complex
circular Gaussian vectors with covariance matrices R = R1 =
I and R1 +R2, respectively. Matrix R2 is rank deficient and
is defined as in (58) and (61) for the cases p = 1 and p = 2,
respectively, where the N -dimensional steering vectors p, p1,
and p2 have been chosen as

p = [1, 0, . . . , 0]T

p1 = [1, 0, . . . , 0]T

p2 = [0, 1, 0, . . . , 0]T . (22)

Finally, |α|2 = |β|2.
Let us start from the case p = 1 and recall that the SNR is

given by (15). In Fig. 4, we plot the PD versus SNR, assuming
K = M = 9. Notice that the PDD-GLRT and the SLD achieve
the best performance, overcoming all the other nonclairvoyant
receivers. In fact, the PDD-GLRT reaches the value PD = 0.9
for an SNR approximately equal to 13 dB, whereas the GLRT
achieves the same PD value when the SNR is about equal to
16 dB. The MLD attains the worst performance; in fact, it
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Fig. 5. PD versus SNR for (blue solid curve marked with +) PDD-GLRT,
(red dot–dashed curve marked with ◦) GLRT, (red dashed curve) LRT, (green
dot–dashed curve marked with �) MLD, (magenta dot–dashed curve marked
with ⊲) SLD, and (magenta dashed curve) C-SLD, for a nominal PFA = 10−4.
The other simulation parameters are K = 9, M = 4, N = 3, and p = 1.

achieves the PD value of 0.9 at SNR greater than 19 dB. This
figure does not contain the curve related to the M-PDD-GLRT
because it shares exactly the same performance as the PDD-
GLRT since the rank is set to 1. As expected, the clairvoyant
decision schemes are superior to the respective adaptive coun-
terparts. Specifically, at PD = 0.9 the PDD-GLRT suffers a loss
of about 8.5 and 7 dB with respect to the LRT and the C-SLD,
respectively.

In Fig. 5, we suppose that the number of test data ym,
m = 1, . . . ,M , is decreased, i.e., M = 4, leaving K = 9. In-
spection of the figure highlights a performance degradation of
all the receivers, due to the smaller amount of test data used
for covariance estimation. The hierarchy observed in Fig. 4
is confirmed here. Again, the PDD-GLRT and the SLD share
similar performances; their losses with respect to the LRT and
to the C-SLD are kept within 7.5 and 6 dB, respectively.

Finally, Fig. 6 assumes K = 4 and M = 9, i.e., we reduce
the number of the training data. In this figure, we can observe
the same trend as in Fig. 4, except for a significant performance
degradation of all the considered architectures. Again, note that
also for this parameter setting, the PDD-GLRT and the SLD
show similar performances. The comparisons in Figs. 4–6 high-
light that the performance degradation due to the scarce number
of training samples is more significant than that introduced by
a limited number of test samples.

Summarizing, the advantage of the PDD-GLRT with respect
to the GLRT and the MLD seems clear. Moreover, when the
number of test data M is low (due, for instance, to the presence
of strong heterogeneity in the data), we observe a severe loss in
the MLD performance. Finally, we have also seen that, in the
case of a rank-1 scenario, the PDD-GLRT has a behavior quite
similar to that of the SLD with a slight gain over it.

The second part of the present analysis focuses on the case
p = 2, i.e., when the covariance R2 is a rank-2 matrix. The
SNR is defined as

SNR = |α|2p†1R
−1
1 p1 + |β|2p†

2R
−1
1 p2 = 2|α|2. (23)

Fig. 6. PD versus SNR for (blue solid curve marked with +) PDD-GLRT,
(red dot–dashed curve marked with ◦) GLRT, (red dashed curve) LRT, (green
dot–dashed curve marked with �) MLD, (magenta dot–dashed curve marked
with ⊲) SLD, and (magenta dashed curve) C-SLD, for a nominal PFA = 10−4 .
The other simulation parameters are K = 4, M = 9, N = 3, and p = 1.

Fig. 7. PD versus SNR for (blue solid curve marked with +) PDD-GLRT,
(blue dotted curve marked with +) M-PDD-GLRT, (red dot–dashed curve
marked with ◦) GLRT, (red dashed curve) LRT, (green dot–dashed curve
marked with �) MLD, (magenta dot–dashed curve marked with ⊲) SLD,
and (magenta dashed curve) C-SLD, for a nominal PFA = 10−4. The other
simulation parameters are K = 9, M = 9, N = 3, and p = 2.

In Fig. 7, we plot the PD versus SNR assuming K = M = 9. It
turns out that the PDD-GLRT and the MLD perform better than
all the other adaptive architectures. In addition, the M-PDD-
GLRT exhibits some losses with respect to the PDD-GLRT,
although both detectors outperform the GLRT and the SLD
with a gain of about 1 dB at PD = 0.9. As a final remark, note
that the PDD-GLRT suffers a detection loss of about 6.5 dB
with respect to the LRT (and 5.5 dB with respect to the C-SLD).

In Fig. 8, we focus on a smaller number of test data, i.e.,
M = 4, leaving the same value of K as in Fig. 7. As observed
for p = 1, as well as for p = 2, there is a general worsening
in the receivers’ performance. The figure highlights also that
the PDD-GLRT and the M-PDD-GLRT achieve the best per-
formances, with the former performing better than the latter.
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Fig. 8. PD versus SNR for (blue solid curve marked with +) PDD-GLRT,
(blue dotted curve marked with +) M-PDD-GLRT, (red dot–dashed curve
marked with ◦) GLRT, (red dashed curve) LRT, (green dot–dashed curve
marked with �) MLD, (magenta dot–dashed curve) SLD, and (magenta
dashed curve marked with ⊲) C-SLD, for a nominal PFA = 10−4. The other
simulation parameters are K = 9, M = 4, N = 3, and p = 2.

Fig. 9. PD versus SNR for (blue solid curve marked with +) PDD-GLRT,
(blue dotted curve marked with +) M-PDD-GLRT, (red dot–dashed curve
marked with ◦) GLRT, (red dashed curve) LRT, (green dot–dashed curve
marked with �) MLD, (magenta dot–dashed curve marked with ⊲) SLD,
and (magenta dashed curve) C-SLD, for a nominal PFA = 10−4. The other
simulation parameters are K = 4, M = 9, N = 3, and p = 2.

Finally, the GLRT is the worst, with a loss higher than 3 dB, if
compared with the PDD-GLRT and its multifamily version.

To conclude this analysis, in Fig. 9, we plot the performance
curves for K = 4 and M = 9. Under this simulation setup, the
best detector is the MLD, followed by the PDD-GLRT, the M-
PDD-GLRT, and the GLRT, whereas the SLD exhibits very
poor performance.

Summarizing, the PDD-GLRT seems a reasonable choice
since it exhibits a more robust behavior than the counter-
parts, being the one less sensitive to parameter variations
and providing in all the analyzed situations acceptable perfor-
mances. In other words, the PDD-GLRT represents a kind of an
“all-season” architecture.

B. Sensitivity Analysis to Variations of the Two-Dimensional

Induced Maximal Invariant

Here, we evaluate the sensitivity of the considered adap-
tive detectors to the eigenvalues of the matrix R−1

1 R2, when
p = 2. In other words, we investigate the detection performance
varying the aforementioned eigenvalues from very low to very
high values. When one of them is very low, it is reasonable
to consider the matrix R2 as a rank-1 matrix instead of a
rank-2 one. In other words, this simulation setup encompasses
the case p = 1 or p = 2 according to the pair of eigenvalues.
Thus, we consider here only the M-PDD-GLRT since the PDD-
GLRT assumes the knowledge of the rank of R2.

All the illustrative examples contain curves of PD versus the
aforementioned eigenvalues, whereas the thresholds are set to
ensure PFA = 10−4. Data vectors are generated as zero-mean
complex circular Gaussian vectors with the covarianceR1 = I ,
whereas the covariance R2 has been defined as a rank-2 matrix
with a pair of eigenvalues given by l1 and l2. Since the induced
maximal invariant is a bidimensional vector,3 [l1, l2]

T , it is
clear that a complete analysis has to consider a bidimensional
figure of merit. Moreover, for the sake of readability, we choose
to represent the PD in terms of contour plots in place of a
surf. Thus, given a pair of values l̄1 and l̄2, we can read the
corresponding value of PD = PD(l̄1, l̄2) for a given value of
PFA. Again, we resort to Monte Carlo trials to set the detection
thresholds through 100/PFA independent runs, whereas the PD

is estimated over 1000 independent runs.
In Fig. 10, we show the contour plots for the M-PDD-GLRT

[see Fig. 10(a)], the GLRT [see Fig. 10(b)], the MLD [see
Fig. 10(c)], and the SLD [see Fig. 10(d)]. The figure highlights
that, for all the considered decision rules, the PD is lower
than 0.1 where both l1 and l2 are less than 0 dB. However,
the detection capability becomes acceptable, increasing at least
l1 or l2. Comparing the aforementioned subplots, it is also
clear that the M-PDD-GLRT outperforms the GLRT and the
MLD, particularly in areas where a specific eigenvalue is low,
and exhibits an overall slightly superior performance than the
SLD. Finally, it is worth noting that these curves agree with the
behaviors emphasized in the previous analyses; for instance, if
we consider the diagonal of the plane (l1, l2), we can see that
the PD values are the same as those shown in Fig. 7.

Now, we analyze the performance of the proposed detector
when there is a mismatch between the numbers of training
and test data. This is of paramount importance since, in real
environments, the availability of homogeneous data can be very
limited. In Fig. 11, we assume that M = 4 and K = 9. The
trend observed in this figure is quite similar to that in Fig. 10; in
fact, the M-PDD-GLRT achieves better detection performances
than the GLRT and the MLD for almost all the pairs (l1, l2),
whereas the SLD shares approximately the same PD values as
the M-PDD-GLRT.

Finally, we consider the case opposite to the previous one,
i.e., the number of training data is less than that of the testing
data, i.e., K = 4 and M = 9. The corresponding curves are
shown in Fig. 12. The M-PDD-GLRT clearly overcomes the

3Note that R1 = I.
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Fig. 10. PD contours versus l1 and l2 expressed in decibels for K = 9, M = 9, and N = 3, for PFA = 10−4. (a) M-PDD-GLRT. (b) GLRT. (c) MLD. (d) SLD.

Fig. 11. PD contours versus l1 and l2 expressed in decibels for K = 9, M = 4, and N = 3, for PFA = 10−4. (a) M-PDD-GLRT. (b) GLRT. (c) MLD. (d) SLD.
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Fig. 12. PD contours versus l1 and l2 expressed in decibels for K = 4, M = 9, and N = 3, for PFA = 10−4. (a) M-PDD-GLRT. (b) GLRT. (c) MLD. (d) SLD.

GLRT and the SLD. In particular, the gain over the SLD is
much greater in the areas where both the eigenvalues are high.
Moreover, comparing the M-PDD-GLRT and the MLD, it is
clear that the former is much better in the regions where one
eigenvalue is high and the other is low, whereas it exhibits
some losses when both eigenvalues are high. For instance,
if we consider the pair l1 = −10 dB and l2 = 30 dB, the
M-PDD-GLRT exhibits a PD of 0.9, whereas the MLD
achieves that value only when l2 is greater than 33 dB. On the
contrary, considering the case l1 = 10 dB and l2 = 20 dB, we
observe that the M-PDD-GLRT reaches the value PD = 0.5,
whereas the MLD ensures a PD of 0.8.

In a nutshell, this study confirms that the M-PDD-GLRT is
less sensitive to parameter variations, ensuring high PD values
in all the considered scenarios. Last but not the least, it is able
to almost always outperform its counterparts, with acceptable
losses when this is not true.

C. Test on Real Radar Data

As a final part of the performance analysis, here, we eval-
uate the effectiveness of the new detectors on real SAR
data. More precisely, we use two different data sets concern-
ing the same area obtained from the GOMoil_07601_10052_

101_100622_L090_CX_02 and GOMoil_07601_10052_102_

100622_L090_CX_02 SAR images which are composed of
sea data containing an oil spill on them. The images have

Fig. 13. Three-polarization color overlay of the SAR image GOMoil_07601_

10052_101_100622_L090_CX_02.

been acquired on June 22, 2010, during the British Petroleum
oil spill incident in the Gulf of Mexico (known also as the
Deepwater Horizon Oil Spill), and contain a scene acquired
with a sensor exploiting all the polarizations. The correspond-
ing polarimetric overlays are reported in Figs. 13 and 14,
respectively.

The first data set is a subimage of 3000 × 2000 pixels
extracted from acquisition GOMoil_07601_10052_101_

100622_L090_CX_02, whose span (i.e., |HH|2 + |VV|2 +
2|HV|2) [16], which is expressed in decibel values, is also
displayed in Fig. 15. Fig. 16 shows the detection results
applying detector (8) over the described SAR image, where
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Fig. 14. Three-polarization color overlay of the SAR image GOMoil_07601_10052_102_100622_L090_CX_02.

Fig. 15. Real SAR L-band data image GOMoil_07601_10052_101_100622_

L090_CX_02. Span (in decibels) of the reference image of size 3000 ×

2000 pixels.

the test is performed assuming the following parameter setting
(notice that N = 3 since we have three polarization images).
A sea data pixel is chosen as a reference to compute the sample
covariance H from a 3 × 3 (i.e., M = 9) window centered in
that pixel and from a 4 × 1 slice of pixels (i.e., M = 4) with the
considered pixel in position (2,1), respectively. Then, a window
of size 3 × 3 (i.e., K = 9) is slided over the SAR image to
test all the pixels and to compute the sample matrix G. Finally,
the threshold is chosen to ensure a nominal PFA of 10−3 (and
10−4), extracting a cluster of only sea data composed of 105

(and 106) pixels and choosing the 100th value in the decreasing
ordered statistics. The result is a detection map where the
white pixels are those associated to oil spill detections,
whereas the black pixels are representative of the sea data
(no detections).

For comparison purposes, Fig. 17 contains the detection
performances that come from the application of a threshold to
the span image. Again, PFA is set to 10−3.

The results show that the multifamily PDD is able to ensure
reliable detection of oil spills over the sea with less false alarms
than those produced by thresholding the span image.

Additionally, in Fig. 16, it can be observed that the exploita-
tion of a great number of testing data ensures better detection
performance, even if, in real environment, this number has
to be chosen to manage the tradeoff between the accuracy of
covariance estimation and the amount of heterogeneity.

Finally, in Fig. 18, the receiver operating characteristic
(ROC) curves for the M-PDD-GLRT and the SLD are plotted

using the real SAR image. The latter architecture has been
chosen as a basis for comparison because its performances are
close to those of the M-PDD-GLRT in simulated scenarios.
The curves are obtained setting the thresholds that ensure the
nominal PFA through the rule 100/PFA, exploiting data from
sea-only pixels, and the corresponding PD are then evaluated,
focusing on a zone containing the oil spills.

It turns out that the M-PDD-GLRT exhibits a detection gain
over the SLD greater than or equal to 0.1 for PFA ≤ 10−2.

The second data set is obtained from the acquisition GO-

Moil_07601_10052_102_100622_L090_CX_02. Specifically,
a subimage of 9749 × 9898 pixels is considered, whose span
(expressed in decibels) is displayed in Fig. 19. Fig. 20 shows
the detection results of the M-PDD-GLRT over this second
subimage, whereas Fig. 21 is analogous to Fig. 17, i.e., it
contains the detection map obtained thresholding the span
image. The parameter setting and the procedure to compute
the detection threshold are the same as in Fig. 16. Again, the
white pixels are associated to the detections of oil spills over the
sea, whereas the black pixels are representative of the sea data
(no detections).

As already shown for the first data set, the results confirm the
ability of the M-PDD-GLRT to correctly detect the oil spills
over the sea with a lower number of false alarms than the
heuristic method based on the span image thresholding. Finally,
the ROC curves for the M-PDD-GLRT and the SLD are plotted
in Fig. 22. The hierarchy observed in the previous illustrative
examples is confirmed, except for Fig. 22(a), where the consid-
ered architectures share almost the same performance.

V. CONCLUSION

Multipolarization SAR detection of oil spills has been con-
sidered in this paper to test the equality of two polarimetric
sample covariance matrices constructed from a reference area
(where the absence of oil slicks is known) and a test region
(where it is necessary to establish the spot presence), respec-
tively. The alternative hypothesis is represented by the instance
where the PCM within the reference area exhibits at least an
ordered eigenvalue greater than the corresponding one extracted
from the PCM of the area under test. First of all, assuming
the exact knowledge about the number of different eigenvalues
between the reference and tested PCMs, the PDD-GLRT is
devised. Then, to come up with a fully adaptive detector without
any a priori assumption about the aforementioned number,
the M-PDD-GLRT is introduced discussing invariance and
CFAR properties.
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Fig. 16. Real SAR L-band data SAR GOMoil_07601_10052_101_100622_L090_CX_02 detection map for the M-PDD-GLRT with K = 9 and N = 3. The
detection map has been obtained with a nominal (a) and (b) PFA = 10−3 and (c) and (d) PFA = 10−4. The white pixels are the detections. Subplots (a) and (c)
refer to M = 9, whereas (b) and (d) refer to M = 4. (a) K = 9, M = 9, PFA = 10−3. (b) K = 9, M = 4, PFA = 10−3. (c) K = 9, M = 9, PFA = 10−4.
(d) K = 9, M = 4, PFA = 10−4 .

Fig. 17. Real SAR L-band data SAR GOMoil_07601_10052_101_100622_

L090_CX_02 detection map resulting from the application of a threshold
to the span image. The detection map has been obtained with a nominal
PFA = 10−3. The white pixels are the detections.

At the analysis stage, examples have been provided to prove
the effectiveness of the proposed approach also in comparison
with existing strategies for oil spill detection. To this end,
both simulated and real multipolarization SAR data have been
used. Possible future research track might concern the extension

of the approach to the case of a joint multifrequency and
multipolarization processing and to consider the presence of
non-Gaussian backscattering due to the sea.

APPENDIX I
DERIVATION OF THE PDD-GLRT

Let us begin focusing on the maximization problem underH1

and consider the log likelihood, which, neglecting constants, is

log [f(ZK ,Y M ;R1,R2, H1)]

≈ −K log [det(R1)]−M log [det(R1 +R2)]

−
K∑

i=1

z
†
iR

−1
1 zi −

M∑

j=1

y
†
j(R1 +R2)

−1yj . (24)

Now, denote by λ1 ≥ λ2 ≥ · · · ≥ λp > λp+1 = · · · = λN = 1
the roots of

det [(R1 +R2)− λR1] = 0 (25)

where we recall that p is the rank of R2, and define

A = R
1
2

1 U (26)
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Fig. 18. PD versus PFA for the M-PDD-GLRT and the SLD. Real SAR
L-band data GOMoil_07601_10052_101_100622_L090_CX_02. (a) K = 9,
M = 4, PFA = 10−3. (b) K = 4, M = 9, PFA = 10−3 . (c) K = 9, M =
9, PFA = 10−4.

where U ∈ C
N×N is a unitary matrix obtained by means of the

eigendecomposition of

C = R
−1/2
1 (R1 +R2)R

−1/2
1 (27)

Fig. 19. Real SAR L-band data GOMoil_07601_10052_102_100622_L090_

CX_02. Span (in decibels) of the reference image of size 9749 × 9898 pixels.

that is

C = UΛU † (28)

with Λ being a diagonal matrix whose entries are the eigenval-
ues4 of C , i.e.,

Λ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1 0 · · · 0

0
. . .

λp
. . .

...
...

. . . 1
. . . 0

0 · · · 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (29)

It follows that

R1 = AA† (R1 +R2) = AΛA† (30)

and the right-hand side of (24) can be recast as

(24) = − 2K log det(A)− 2M log det(A)−M log det(Λ)

− tr
{

(AA†)
−1
G− (AΛA†)

−1
H

}

= − a log det(A)−M log det(Λ)

− tr
{

(A†)
−1
A−1G

}

− tr
{

(A†)
−1
Λ

−1A−1H
}

(31)

where a = 2K + 2M .
Now, denote by δ1 > δ2 > · · · > δN > 0 the roots of

det(H − δG) = 0 (32)

which are the eigenvalues of G−1/2HG−1/2, whose eigen-
decomposition is given by

U∆∆U
†
∆ (33)

4Note that C and (I +R
−1
1 R2) share the same eigenvalues.
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Fig. 20. Real SAR L-band data GOMoil_07601_10052_102_100622_L090_CX_02 detection map for the M-PDD-GLRT with K = 9 and N = 3. The detection
map has been obtained with a nominal (a) and (b) PFA = 10−3 and (c) and (d) PFA = 10−4 . The white pixels are the detections. Subplots (a) and (c) refer
to M = 9, whereas (b) and (d) refer to M = 4. (a) K = 9, M = 9, PFA = 10−3, (b) K = 9, M = 4, PFA = 10−3. (c) K = 9, M = 9, PFA = 10−4.
(d) K = 9, M = 4, PFA = 10−4 .

Fig. 21. Real SAR L-band data GOMoil_07601_10052_102_100622_L090_

CX_02 detection map resulting from the application of a threshold to the span
image. The detection map has been obtained with a nominal PFA = 10−3.
The white pixels are the detections.

where

∆ =

⎡

⎢
⎣

δ1 0
. . .

0 δN

⎤

⎥
⎦ (34)

and U∆ is the matrix whose columns are the corresponding
normalized eigenvectors, i.e., U∆U

†
∆ = U

†
∆U∆ = I . Again,

define a further matrix B = G1/2U∆ and observe that

G =BB†

H =B∆B†. (35)

As a consequence, (31) can be written as

(31) = − a log det(A)−M log det(Λ)

− tr
{

(A†)
−1
A−1BB†

}

− tr
{

(A†)
−1
Λ

−1A−1B∆B†
}

= − a log det(A)−M log det(Λ)

− tr
{

A−1B∆
1
2∆

−1
∆

1
2B†(A−1)

†
}

− tr
{

Λ
−1A−1B∆

1
2∆

1
2B†(A−1)

†
}

. (36)

Now, observe that problem

max
R1

max
R2

f(ZK ,Y M ;R1,R2, H1) (37)
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Fig. 22. PD versus PFA for the M-PDD-GLRT and the SLD. Real SAR
L-band data GOMoil_07601_10052_102_100622_L090_CX_02. (a) K = 9,
M = 4, PFA = 10−3. (b) K = 4, M = 9, PFA = 10−3 . (c) K = 9, M =
9, PFA = 10−4.

is tantamount to maximizing (31) over Λ, ∆, and A. To this
end, we exploit the singular value decomposition of matrix
A−1B∆

1/2, i.e.,

A−1B∆
1
2 = PDrQ (38)

where P , Q ∈ CN×N are unitary matrices, and

∆r =

⎡

⎢
⎣

r1 0
. . .

0 rN

⎤

⎥
⎦ (39)

with r1 ≥ · · · ≥ rN > 0. From (38), it is possible to write A−1

and its determinant as follows:

A−1 =PDrQ∆
−1/2B−1 (40)

det(A−1) = det(A)−1 = det(Dr) det(∆)−1/2 det(B)−1

= det(Dr) det(B)−1 det(∆)−1/2. (41)

The latter equations can be exploited to recast (36) as

(36) = a
[

log det(Dr) + log det(B)−1 + log det(∆)−1/2
]

−M log det(Λ)− tr
{

PDrQ∆
−1 (PDrQ)†

}

− tr
{
Λ

−1PDrQ(PDrQ)†
}

= a log det(Dr)− a log det(B)−
a

2
log det(∆)

−M log det(Λ)− tr
{
D2

rQ∆
−1Q†

}

− tr
{
Λ

−1PD2
rP

†
}
.

It is clear that problem (37) can be solved maximizing (42) with
respect to Λ, P , Q, and Dr. Thus, let us focus on the following
function:

g(Dr,Λ,P ,Q) = a log det(Dr)−M log det(Λ)

− tr
{
D2

rQ∆
−1Q†

}

− tr
{
Λ

−1PD2
rP

†
}
. (42)

Maximization over P and Q can be performed exploiting
Theorem 1 of5 [22]. More precisely, it is not difficult to show
that

max
P

max
Q

g(Dr,Λ,P ,Q)

= a log det(Dr)−M log det(Λ)

− tr
{
D2

r∆
−1

}
− tr

{
Λ

−1D2
r

}

= a
N∑

i=1

log ri −M
N∑

i=1

logλi −
N∑

i=1

r2i
δi

−
N∑

i=1

r2i
λi

=

N∑

i=1

{
a

2
log r2i −M logλi − r2i

(
1

δi
+

1

λi

)}

= g(Dr,Λ, P̂ , Q̂) (44)

5For the reader’ convenience, we provide here the theorem statement. More
precisely, if K and L are Hermitian N -dimensional matrices with eigenvalues
x1 ≥ · · · ,≥ xN and λ1 ≥ · · · ,≥ λN , respectively, then

N∑

r=1

xrλN−r+1 ≤ Tr[KL] ≤
N∑

r=1

xrλr . (43)
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where

P̂ = argmax
P

g(Dr,Λ,P ,Q) = Q̂

= argmax
Q

g(Dr,Λ,P ,Q) = I. (45)

As to the optimization over Dr, it can be accomplished solving
the following system of equations6:

∂

∂yi
g(Dr,Λ, P̂ , Q̂) = 0, i = 0, . . . , N (46)

where yi = r2i . It is not difficult to show that the solution of the
preceding system is

ŷi =
a

2

1
(

1
δi

+ 1
λi

) , i = 1, . . . , N. (47)

Substituting the right-hand side of (47) in place of r2i , i =
1, . . . , N , in (44) leads to

g(D̂r,Λ, P̂ , Q̂) =

N∑

i=1

{
a

2
log

a

2
−

a

2
log

(
1

δi
+

1

λi

)

−
a

2
−M logλi

}

. (48)

Finally, it still remains to maximize g(D̂r,Λ, P̂ , Q̂) with re-
spect to Λ. To this end, we set to zero the first derivative of
g(D̂r,Λ, P̂ , Q̂) with respect to λi, i = 1, . . . , N , to obtain the
following system of equations:

∂

∂λi
g(D̂r,Λ, P̂ , Q̂)

=
∂

∂λi

{
a

2
log

a

2
−

a

2
−

a

2
log

(
1

δi
+

1

λi

)

−M logλi

}

=
∂

∂λi

{

a1 −
a

2
log

(
1

δi
+

1

λi

)

−M logλi

}

=
a

2

1
1
δi

+ 1
λi

1

λ2
i

−
M

λi
= 0, i = 1, . . . , N. (49)

Its solution is

λ̂i = δi

( a
2 −M

M

)

= δi
K

M
, i = 1, . . . , N (50)

if δi > (M/K); when the latter condition is not satisfied, then
λ̂i = 1.

Now, let m∗ be the number of δi > M/K , which represents
an estimate of the rank of R2, and define

p∗ = min{p,m∗}. (51)

Since the rank of R2 is known, if p∗ < p, then we set
Λ(ZK ,Y M ) = 1; on the other hand, we can continue the

6Recall that ri > 0, ∀ i.

derivation of the GLRT evaluating function g(·, ·, ·, ·) at the ML
estimates of the arguments, i.e.,

g(D̂r, Λ̂, P̂ , Q̂)

=

p∗

∑

i=1

{
a

2
log

a

2
−

a

2
log

(
1

δi
+

1

λ̂i

)

−
a

2
−M log λ̂i

}

+
N∑

i=p∗+1

{
a

2
log

a

2
−

a

2
log

(
1

δi
+

1

λ̂i

)

−
a

2

}

=

c
︷ ︸︸ ︷

N∑

i=1

(a

2
log

a

2
−

a

2

)

−

p∗

∑

i=1

a

2
log

(
1

δi
+

M

Kδi

)

−M

p∗

∑

i=1

log

(

δi
K

M

)

−
a

2

N∑

i=p∗+1

log

(
1 + δi
δi

)

= c−
a

2

p∗

∑

i=1

log

(
K +M

Kδi

)

−M

p∗

∑

i=1

(

log δi + log
K

M

)

−
a

2

N∑

i=p∗+1

log(1 + δi) +
a

2

N∑

i=p∗+1

log δi

= c1 +
a

2

p∗

∑

i=1

log δi −M

p∗

∑

i=1

log δi +
a

2

N∑

i=p∗+1

log δi

−
a

2

N∑

i=p∗+1

log(1 + δi)

= c1+K

p∗

∑

i=1

log δi+
a

2

N∑

i=p∗+1

log δi−
a

2

N∑

i=p∗+1

log(1+δi)

where

c1 = c−
a

2

p∗

∑

i=1

log(K +M) +
a

2

p∗

∑

i=1

logK −M

p∗

∑

i=1

log
K

M
.

(52)

Summarizing, the compressed log-likelihood function is
given by

− a log det(B)−
a

2

N∑

i=1

log δi + c1 +K

p∗

∑

i=1

log(δi)

+
a

2

N∑

i=p∗+1

log δi −
a

2

N∑

i=p∗+1

log(1 + δi) (53)

whereas the compressed likelihood is

1

[det(B)]a
1

p∗

∏

i=1

δMi

ec1
1

N∏

i=p∗+1

(1 + δi)
a

2

. (54)
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As for the optimization problem under H0, it is not difficult to
show that [23]

max
R

f(ZK ,Y M ;R, H0)

= max
R

[
1

det(R)

]K+M

exp
{
− tr

[
R−1(G+H)

]}

=

[
(K +M)N

det(G +H)

]K+M

exp {−N(K +M)}

=
[
(K +M)e−1

]N(K+M) 1

[det(G+H)]K+M

=
[
(K+M)e−1

]N(K+M)
[

1

[det(B)]2 det(I+∆)

]K+M

.

(55)

Gathering the preceding results, (5) is statistically equivalent to

Λp(ZK ,Y M )
H1

≷
H0

η (56)

where

Λp(ZK ,Y M ) =

⎧

⎪⎨

⎪⎩

1, if p∗ < p
p∗

∏

i=1

(1+δi)
K+M

δM
i

, otherwise.
(57)

APPENDIX II
DERIVATION OF AN INDUCED MAXIMAL

INVARIANT FOR p = 1 AND p = 2

Let us focus on the case p = 1, and then matrix R2 can be
recast as

R2 = |α|2pp† (58)

where p ∈ CN×1, p 
= 0, andα ∈ C, α 
= 0. As a consequence,
the maximum eigenvalue of R−1

1 (R1 +R2) can be written as

λ1

{
R−1

1 (R1 +R2)
}
=λ1

{

I + |α|2R
−1/2
1 pp†R

−1/2
1

}

=1 + |α|2λp

{

R
−1/2
1 pp†R

−1/2
1

}

=1 + |α|2p†R−1
1 p (59)

where λp{·} is the maximum eigenvalue of R−1/2
1 pp†R

−1/2
1 .

It follows that an induced maximal invariant is

|α|2p†R−1
1 p. (60)

On the other hand, when p = 2, the induced maximal invariant
is 2-D since, in this case, R2 can be written as

R2 = |α|2p1p
†
1 + |β|2p2p

†
2 = PP †. (61)

Thus, following the preceding line of reasoning, it is possible
to show that an induced maximal invariant is a 2-D vector
composed of the eigenvalues of P †R−1

1 P .
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