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Abstract:  10 

The performance evaluation of urban drainage systems is essentially based on accurate 11 

characterisation of rainfall events, where a particular challenge is development of the joint 12 

distributions of dependent rainfall variables such as duration and depth. In this study, the copula 13 

method is used to separate the dependence structure of rainfall variables from their marginal 14 

distributions. Three one-parameter Archimedean copulas, including Clayton, Gumbel, and Frank 15 

families, are fitted and compared for different combinations of marginal distributions that cannot 16 

be rejected by statistical tests. The fitted copulas are used, through the Monte Carlo simulation 17 

method, to generate synthetic rainfall events for system performance analysis in terms of sewer 18 

flooding and Combined Sewer Overflow (CSO) discharges. The copula method is demonstrated 19 

using an urban drainage system in the UK, and the cumulative probability distributions of 20 

maximum flood depth at critical nodes and CSO discharge volume are calculated. The results 21 

obtained in this study highlight the importance of taking into account the dependence structure of 22 

rainfall variables in the context of urban drainage system evaluation and also reveal the different 23 
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impacts of different dependence structures on the probabilities of sewer flooding and CSO 24 

volume.  25 

Keywords: Bivariate distribution, combined sewer overflow, copula, frequency analysis, sewer 26 

flooding, urban drainage system 27 

1. Introduction 28 

Urban drainage systems are used in urban areas for flood and pollution control through collection 29 

and conveyance of stormwater and dry weather flow (DWF) to receiving waters and wastewater 30 

treatment plants. Most systems in the UK and many other countries are combined sewer systems, 31 

in which both DWF and stormwater flow in a single pipe network. Such combined sewer 32 

systems have two common issues: sewer flooding and combined sewer overflow (CSO) 33 

discharges when the flow exceeds the available system capacity (Butler and Davies, 2011). Their 34 

economic, social and environmental impacts have been discussed in detail in the literature (e.g., 35 

Schmitt et al., 2004; Fu et al., 2009; Andres-Domenech et al., 2010). Most sewer systems in the 36 

developed countries were constructed many decades ago and designed using simple deterministic 37 

methods on the basis of design rainfall events, which are usually related to a specified return 38 

period and generated from intensity-duration-frequency curves (Hvitved-Jacobsen and Yousef, 39 

1988; Butler and Davies, 2011). System performance is affected by many factors that may have 40 

changed over time such as system characteristics, land use and climate change. Thus, there is a 41 

need to assess the performance of sewer systems regarding sewer flooding and CSO discharging 42 

in a changed situation (Korving et al., 2002; Schmitt et al., 2004; Thorndahl and Willems, 2008). 43 

This is also driven by strict regulations such as the Water Framework Directive in the member 44 

states of EU to improve receiving water quality through better utilization of the sewer system 45 

capacity. 46 



 

Many different approaches have been developed for frequency analysis of sewer flooding 47 

or CSO discharges in an urban drainage system, for example, analytical probability methods 48 

(Benoist and Lijklema, 1989; Adams and Papa, 2000), Bayesian methods (Korving et al., 2002), 49 

first-order reliability methods (Thorndahl and Willems, 2008), and imprecise probability 50 

methods (Fu et al., 2011). In these methods, the historical rainfall series available are separated 51 

into rainfall events, and probability distributions of some rainfall variables are then used to 52 

characterise the stochastic nature of rainfall. For example, rainfall depth and duration are often 53 

used in the literature (e.g., Vandenberghe et al., 2010; Zegpi and Fernández, 2010; Fu et al., 54 

2011).  55 

In many cases, rainfall variables are related, however, due to the difficulty and 56 

complexity in generating the joint probability distributions of rainfall variables, the dependence 57 

structure between rainfall variables is not explicitly considered in many studies (e.g., Adams and 58 

Papa, 2000; Thorndahl and Willems, 2008; Andres-Domenech et al., 2010). Research has shown 59 

that the assumption of independence can have a significant effect on the frequency distributions 60 

of flood or CSO discharges and may lead to erroneous results (Benoist and Lijklema, 1989). 61 

Thus many efforts have been made to consider the correlation relationships between rainfall 62 

variables (Córdova and Rodríguez-Iturbe, 1985; Yue, 2000) and to analyse the implications for 63 

hydrologic design (Kao and Govindaraju, 2007b). 64 

Most recently, there is increasing attention on the use of copulas as a flexible tool to 65 

quantify the dependence structure between correlated variables in the fields of hydrology and 66 

water engineering (e.g., De Michele and Salvadori, 2003; Kao and Govindaraju, 2007a; Zhang 67 

and Singh, 2007; Zegpi and Fernández, 2010; Vandenberghe et al., 2010 and 2011). The use of 68 

copulas enables to model the probabilistic dependence structure, independently of marginal 69 



 

distributions, and thus allows for multivariate random events to be described using different 70 

types of marginal distributions. This represents a significant advantage compared to conventional 71 

multivariate analysis as many variables from hydrological phenomena cannot be described using 72 

the same type of probability distributions. An important application of copulas is modelling the 73 

stochastic nature of rainfall and flood using historical data (Favre et al., 2004; Vandenberghe et 74 

al., 2010). Copulas also provide a convenient way to generate samples of correlated rainfall 75 

variables, thus they can be used for flood frequency analysis in conjunction with the Monte Carlo 76 

simulation method (e.g., Kao and Govindaraju, 2007a; Fontanazza et al., 2011).  77 

The primary aim of this paper is to investigate the use of copulas for assessing the 78 

hydraulic performance of a combined sewer system in an urban catchment, which explicitly 79 

capture the dependence structure between rainfall depth and duration. The hydraulic performance 80 

of the sewer system is represented by the maximum water level over the ground surface (flood 81 

depth) at critical manholes and the volume of CSO discharges during a rainfall event. The latter 82 

can be used as a performance indicator for receiving water quality as long as its limitations are 83 

understood (Lau et al., 2002), although recent research suggests the performance of a sewer 84 

system can be better considered in the context of integrated urban wastewater systems (Rauch et 85 

al., 2002; Fu et al., 2008; Fu et al., 2009). In this study, the dependence between rainfall depth 86 

and duration is represented using the Archimedean copulas, and the Monte Carlo simulation 87 

method is then used to generate synthetic rainfall events for system performance analysis. The 88 

copula method is demonstrated using an urban drainage system in the UK, and the cumulative 89 

probability functions (CDF) of flood depth at one critical node and CSO overflow volume are 90 

calculated. The results show the suitability and flexibility of the Archimedean copulas in 91 



 

simulating the dependence of rainfall depth and duration, and the impacts of dependence 92 

structure on the performance of urban drainage systems. 93 

2. Methodology 94 

2.1. Concept of copulas 95 

Copulas can be described as multivariate CDFs with standard uniform marginals and represents 96 

the dependence structure of random variables. For two random variables X and Y, their marginal 97 

cumulative distribution functions are represented by 98 

   yFvxFu YX = and =       (1) 99 

where u and v are uniformly distributed random variables and  0,1 , vu . The joint CDF  100 

   yYxXPyxH XY  ,,  describes the probability of two events: xX   and yY  . The 101 

bivariate CDF  yxH XY ,  can be represented as 102 

   vuCyxH XY ,,        (2) 103 

where  vuC ,  is called a copula and can be uniquely determined when u and v are continuous. 104 

Through Eq. (2), it is easy to see that the copula is actually a multivariate distribution function 105 

with uniform marginals (Nelsen, 2006). This provides two main advantages in determining 106 

 yxH XY , : (1) the marginals can be determined using different distributions, and (2) the 107 

dependence structure can be described separately from the marginals, which allows for building 108 

complex multivariate distributions to model stochastic phenomena such as rainfall without the 109 

knowledge of marginal distributions. 110 

There are many families of copulas that represent different dependence structures. The 111 

one-parameter Archimedean copulas are of special interest for hydrologic analyses, and the 112 

general expression of Archimedean copulas can be written as 113 



 

       vuvuC   1,      (3) 114 

where  , called a generator, is a convex decreasing function defined in [0, 1], satisfying   01   115 

and   


t
t


0

lim . Using different forms of the function  , different families of Archimedean 116 

copulas can be generated, for example, the Gumbel, Frank and Clayton families. These copulas 117 

can describe a wide range of dependence level, from negative to positive, and have been used to 118 

describe the rainfall characteristics in previous studies (e.g., Kao and Govindaraju, 2007b; Zhang 119 

and Singh, 2007) and thus are selected to describe the relationship between rainfall depth and 120 

duration for the case study catchment in this study. 121 

Only recently, use of copulas in hydrology has gained substantial attention with an intent 122 

of describing the probabilistic structures of random variables such as rainfall and flood. The 123 

work by De Michele and Salvadori (2003) was perhaps the first application in hydrology, and 124 

they used the Frank family of Archimedean copulas to describe the dependence between rainfall 125 

intensity and duration. Favre et al. (2004) used the Archimedean copulas to analyse the joint 126 

distribution of flood peak flow and volume in two Canadian river catchments. Zhang and Singh 127 

(2007) compared several different Archimedean copulas including Gumbel and Frank families to 128 

simulate the joint distributions between rainfall intensity, depth and duration. Vandenberghe et 129 

al. (2010) applied a number of copulas to investigate the dependence structure of storm variables 130 

on the basis of a 105-year rainfall series. There are few applications to urban drainage systems 131 

with one exception of the work by Fontanazza et al. (2011), which applied the copula approach 132 

to generate synthetic rainfall events for urban flood estimation but focused on analysing the 133 

impacts of hyetographs. The work described in this paper will look at the impacts of different 134 

copulas on the frequency of sewer flooding and CSO overflow in the urban drainage system. 135 

2.2. Copula fitting 136 



 

For Archimedean copulas, the simplest method to estimate the parameter    is through a 137 

concordance measurement - Kendall’s  - which is a rank correlation coefficient, defined to 138 

measure the orderings of two measured quantities. Kendall’s  is defined in the interval [-1, 1], 139 

where 1 represents total concordance, -1 represents total discordance, and 0 represents zero 140 

concordance. According to the work by Nelsen (2006), the relationship between parameter   141 

and Kendall’s   can be determined for the three Archimedean families. 142 

 Particularly, a closed-form expression can be derived for Clayton and Gumbel families.  143 

In addition to the non-parametric method describe above, there are some parametric 144 

methods available for parameter estimation, such as the conventional Maximum Likelihood 145 

(ML) method, Inference Function for Margins (IFM) method (Joe, 1997) and Canonical 146 

Maximum Likelihood (CML) method (Genest et al., 1995), and Minimum Distance Methods. 147 

For more information, the reader is referred to the following studies (e.g., Genest and Favre, 148 

2007; Chowdhary et al., 2011; Nazemi and Elshorbagy, 2012). The IFM method was used in this 149 

study as it has a better performance compared with others according to our preliminary tests. 150 

More importantly, it allows to explore the impacts of the choice of parametrically estimated 151 

marginal CDFs on copula fitting as prior research has shown that a number of marginal CDFs 152 

may not be rejected for rainfall variables under several statistical tests (Fu et al., 2005). The root 153 

mean square error is a good indicator of goodness of fit, and can be calculated as:  154 

    



n

i

iinii vuCvuC
n

RMSE
1

2
,,

1
     (4) 155 

where nC  is the empirical copula. For this measure, the smaller the values, the better the copula 156 

fits the data. Formal hypothetical tests are increasingly used to evaluate the goodness-of-fit of 157 

different copulas (e.g., Berg, 2009; Genest et al., 2009; Nazemi and Elshorbagy, 2012). The 158 



 

Cramér-von Mises statistic is chosen to compare an estimated copula C with the empirical copula 159 

nC :  160 

           



n

i

iiniinn vuCvuCvudCvuCvuCnT
1

2

]1,0[

2
,,,,,

2

     (5) 161 

The p-values for nT  are approximated using the bootstrapping method described by Berg (2009) 162 

and Genest et al. (2009). 10,000 random samples are used in this study according to Genest and 163 

Favre (2007). Higher p-values are desired as they represent higher suitability of the chosen 164 

copulas.  165 

In addition to the statistics, graphical methods can be used to verify the appropriateness 166 

of a fitted copula by comparison to the empirical distribution. The empirical distribution can be 167 

estimated using a nonparametric (empirical) approach (e.g., Genest and Rivest, 1993; Kao and 168 

Govindaraju, 2007a; Zhang and Singh, 2007): (1) assume an intermediate random variable z 169 

whose samples can be transformed from the n observations 170 

n
zi

1
 {number of  

jj yx ,  such that ij xx   and ij yy  }, i=1, 2, …, n  (6) 171 

(2) estimate the empirical distribution nK   using 172 

 
n

tKn

1
 {number of iz  such that tzi  }, i= 1, 2, …, n   (7) 173 

The theoretical distribution of Archimedean copulas, i.e.,     tvuCPtK  , , can be derived 174 

using the generating function 175 

 
 
 t
t

ttK
'


 ,  10  t       (8) 176 

The distribution functions  tK  and  tKn  transform the two dimension into one dimension, 177 

allowing for visual comparison of the empirical and theoretical copulas. The distribution plots or 178 



 

Q-Q plots can be plotted for examination. This can provide a good indication if the theoretical 179 

copula fits the data well.  180 

 Tail dependence analysis is critical to investigate the magnitude of dependence in the 181 

upper and lower tails of a bivariate distribution (e.g., Poulin et al., 2007). It also helps identify 182 

the most suitable copula by emphasising on the joint occurrence of extreme values (Nazemi and 183 

Elshorbagy, 2012). The tail dependence can be represented by a coefficient. For the Gumbel 184 

copula, the upper tail dependence coefficient is  185 

   /122 U         (9) 186 

Amongst several estimators of the coefficient, the following estimator was proposed by Frahm 187 

et al. (2005):     188 

  
























 



n

i iiii

U
VUVUn 1

2
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1
log

1
log

1
loglog

1
exp22̂   (10) 189 

where  ii VU ,  (i=1, 2, …, n) are random samples generated from a copula. This estimator has an 190 

advantage that no parameters (threshold values) are required for calculation and thus are used in 191 

this study. 192 

2.3. Monte Carlo sampling 193 

On the basis of the copula method, Monte Carlo simulations can be used to generate 194 

samples for correlated random variables. A general procedure is to generate correlated pairs  195 

 vu,  using a copula and then transform them to real values based on the inverse marginal CDFs. 196 

This is normally conducted using the following steps (Kao and Govindaraju, 2007a): (1) generate 197 

the independently uniformly distributed random pairs  tu, ; (2) solve v through a simplified 198 

expression with copulas    
t

u

vuC
uUvVP 






,
, and thus obtain correlated pairs  vu, ; (3) 199 



 

assume    uxFX   and solve x  using the inverse function of X, and similarly assume    vyFY   200 

and solve y . In this way, the correlated random samples  yx,  can be generated from their 201 

margins  vu, .  202 

3. Case study 203 

3.1. The catchment 204 

An urban drainage system in a Scotland town is used to demonstrate the copula methodology 205 

developed in this paper. The total catchment area is about 200 hectares, serving a population of 206 

4,000. A combined sewer system provides the infrastructure for draining the catchment runoff 207 

and routing the wastewater from the town to the treatment facilities. The sewer system consists 208 

of 265 nodes, 265 pipes, 2 outfalls and 1 weir, and has a total conduit length of 22,482 metres. 209 

The pipe gradients vary from 0.0001 to 0.0439. Flows are diverted downstream via two outfalls: 210 

one is connected to a wastewater treatment works and the other to a combined sewer overflow, 211 

and both flows are eventually discharged into a river. Fig. 1 shows a satellite image of the study 212 

area and provides the layout of the sewer system described. 213 

The storm water management model (SWMM), developed by the U.S. Environmental 214 

Protection Agency, was used for hydrologic simulation of rainfall-runoff in the urban catchment 215 

and for hydrodynamic simulation of in-sewer transport through the urban drainage system. The 216 

system model has been well calibrated for the purpose of flood evaluation in the work by 217 

Fullerton (2004), and has been used for system design and uncertainty analysis (Fu et al., 2011; 218 

Sun et al., in revision).  219 

 220 

3.2. Rainfall data 221 



 

A 10-year time series of 5-minute rainfall from one rain gauge station is used in this study. To 222 

analyse statistical characteristics of the actual rainfall events in the case study of urban 223 

catchment, independent rainfall events are separated from the time series using the concept of 224 

inter-event time (IETD) definition, i.e., the time interval between two consecutive events should 225 

be no less than a pre-determined IETD. According to the maximum concentration time of the 226 

catchment, IETD was set to 20 minutes such that the runoff response from an individual event is 227 

not affected by any other. A total of 3405 events were identified from the rainfall series. As the 228 

events with a total amount of 3mm cannot generate sewer flooding and CSO discharges, so they 229 

are not considered for analysis in this study, and the number of events is reduced to 570, with an 230 

average of 57 rainfall events per year.  231 

The general characteristics of rainfall events are described by rainfall depth and duration. 232 

Fig. 2 shows the scatter plots of the 570 events with marginal histograms of rainfall depth and 233 

duration. There is a high frequency of low rainfall depth, about 50% of the rainfall events have a 234 

very small depth less than 6 mm. The average rainfall depth is 7.4 mm, but  the maximum is up 235 

to 42 mm. Similarly, most events last a short period, although about 10 % have a duration over 236 

800 minutes. The average rainfall duration over the 570 events is 399 minutes with a maximum 237 

of 1725 minutes. The two variables are related to some extent, with a Kendall’s tau = 0.27. As 238 

can be seen from the marginal histograms, the two variables follow a rather different marginal 239 

distribution. This clearly demonstrates the need to separate the marginal distributions and 240 

dependence structure in the joint distribution of the two rainfall variables so that the marginal 241 

distributions can be simulated by different types of distribution. 242 

 243 



 

4. Results and discussion 244 

4.1. Marginal distributions 245 

The following commonly used distributions are used to fit the rainfall depth and duration 246 

data: Generalized Pareto (GP), Generalized Extreme Value (GEV), Log-Logistic (Log-log) and 247 

Gamma, according to previous studies (e.g., Kao and Govindaraju, 2007b; Vandenberghe et al., 248 

2011). The above functions are fitted using the maximum likelihood estimation method that 249 

maximises the log-likelihood function. In the calculation, the maximum number of iterations is 250 

specified as 100 and the accuracy of the estimation is set to 1.0×10
5
.  251 

Three goodness-of-fit tests, i.e., Kolmogorov Smirnov (K-S), Anderson Darling (A-D) 252 

and Chi-Square (χ
2
) tests, are used to determine if the data follow one of the specified 253 

distributions (the null hypothesis H0). The hypothesis is evaluated at the 5% significance level. 254 

The critical values at this level are 0.056 for K-S, 16.919 for χ
2
, and 2.502 for A-D, respectively. 255 

Smaller statistic values indicate better fit to the data. The hypothesis regarding a specific 256 

distribution is rejected at the significance level if the test statistic ( nK , 2

nA , or 2

n ) is greater than 257 

the relevant critical value given above. Appendix A provides the CDFs and goodness-of-fit tests 258 

used. 259 

The statistics of K-S ( nK ), A-D ( 2

nA ) and Chi-Square ( 2

n ) for rainfall duration and 260 

depth are provided in Tables 1 and 2, respectively. The p-values measure the amount of 261 

information that is against the null hypothesis H0, and are also provided here. The smaller the p-262 

values, the more evidence we have against H0. For rainfall duration, the three distributions, i.e., 263 

GEV, Log-log and Gamma, cannot be rejected with all of the three tests and have a decreasing 264 

ranking according to the statistics values. Similarly, for rainfall depth, the distribution GP best 265 

fits to the data, followed by Log-log and GEV. All of the three distributions cannot be rejected 266 



 

with all of the three tests. According to the A-D test, Gamma and GP are rejected for rainfall 267 

duration and depth, respectively. The A-D test is stricter than the K-S test possibly because it 268 

gives more weight to the distribution tails. The results confirm that in many cases it is not 269 

possible to determine one single best distribution particularly when a relatively short series of 270 

data is available (Korving et al., 2002; Kao and Govindaraju, 2007b; Fu et al., 2011). This study 271 

considers all the distributions that cannot be rejected to investigate the bivariate distribution 272 

using copulas.     273 

4.2. Dependence structure 274 

The selected marginal distributions for rainfall duration and depth are used to fit the 275 

Archimedean copulas using the CML method. The parametrically estimated values of parameter 276 

  are provided in Table 3, along with their 95% confidence intervals. Recall that parameter   277 

can also be derived according to the relationships between   and  , and the values for Gumbel, 278 

Frank and Clayton copulas are 1.371, 2.589 and 0.741, respectively. It can be seen that the 279 

parametric estimates for Gumbel and Frank copulas are in a good agreement with those from the 280 

non-parametric method, and are bracketed in the relevant 95% confidence intervals. For the 281 

Clayton copula, however, the non-parametric estimate is significantly bigger than the parametric 282 

estimates, and is out of the 95% confidence intervals. This is possibly because the rainfall data as 283 

shown in Fig. 2 illustrate greater dependence in the upper tail than in the lower tail. On the 284 

contrary, Clayton copula exhibits greater dependence in the lower tail than in the upper tail. The 285 

Gumbel copula is an asymmetric Archimedean copula with greater dependence in the upper tail 286 

than in the lower. The Frank copula is a symmetric Archimedean copula. Thus these two copulas 287 

are more appropriate for describing the dependence structure between rainfall duration and 288 

depth.  289 



 

Table 4 shows the resulting RMSE and  Cramér-von Mises statistic values. The  statistic 290 

confirms the inappropriateness of the Clayton copula as it has a lower p-value for most the 291 

marginal combinations. This statistic shows a more significant difference compared with 292 

RMSE.  Amongst the three marginal distributions of rainfall depth, GP has the worst 293 

performance in terms of copula fitting although this distribution is the best in the marginal 294 

distribution fitting according to the statistics. This implies that it is important to consider the 295 

goodness-of-fit of both marginal distributions and copulas in order to achieve the best overall 296 

performance in constructing a joint distribution of multi-variables. For the three distributions of 297 

rainfall duration, there is no significant difference in copula fitting. It can be seen that the 298 

Gumbel and Frank copulas are in good agreement. 299 

Table 5 shows the upper tail dependence coefficients for Gumbel copulas. It can be seen 300 

that the estimated coefficient values are very close to the theoretical ones. The estimator 301 

proposed by Frahm et al. (2005) has a high accuracy. More importantly, this implies that the 302 

choice of marginal distributions has no impacts on tail dependence, which is mainly controlled 303 

by copula selection as expected.   304 

Fig. 3 shows the Q-Q plots of Gumbel and empirical copulas for different marginal 305 

distribution combinations. The x-axis represents the cumulative probability of empirical copula 306 

and y-axis represents that of Gumbel copula. The diagonal straight line represents a perfect 307 

match between the parametrically estimated copula and empirical copula. Generally the Q-Q 308 

plots confirm the results revealed from the statistic values in Table 4. That is, the GP vs. GEV 309 

and GP vs. Gamma pairs provide the worst copula fitting results, while all the other distribution 310 

combinations provide a rather good fitting. The pair Log-log vs. GEV is chosen as the base case 311 



 

to analyse the frequency of flooding and CSO discharges and compare the impacts of marginal 312 

distributions and copulas. 313 

To understand the structure of dependence, Fig. 4 visualizes the CDF and probability 314 

distribution function (PDF) of the Gumbel copula on the basis of the Log-log vs. GEV 315 

combination. The variables u and v represent the transformed random variables X and Y 316 

(rainfall depth and duration) in the unit hypercube, respectively, and have the same ranks as X 317 

and Y. Fig. 4a shows the fitted copula (shaded surface) together with the empirical copula 318 

(points).  The strong dependence in the upper tail is clearly illustrated in Fig. 4b.  319 

Selection of the most suitable copula is a complex process and need to consider several 320 

different measures including statistics, graphical approaches, and comparison to empirical 321 

copulas and data regarding dependence types. A single measure may fail to identify the 322 

inappropriate copulas, leading to an overestimate or underestimate of the probability of sewer 323 

flood and CSO discharges as demonstrated below. 324 

4.3. Flood and overflow frequency 325 

The theoretically fitted Gumbel copula was used to generate a large set of 10,000 samples for 326 

rainfall depth and duration. The number of samples used here is very conservative compared to 327 

the previous study by Fu et al. (2011) and can provide very stable simulation results. The 328 

synthetic rainfall events were produced by applying a rectangular pulse with duration as the 329 

width and average rainfall intensity as the height, and they were then used as inputs to the sewer 330 

system model to calculate the flood depth at different nodes. We recognise the impact of 331 

different rainfall profiles on the frequency of flood and overflow (Fontanazza et al., 2011; Sun et 332 

al., 2012), but this is out of scope of this study. 333 



 

Fig. 5 shows the cumulative probabilities of flood depth at one critical node N126 and 334 

overflow volume at the CSO. For the copula results, the dependence structure is represented by 335 

the Gumbel copula and marginal distributions for rainfall depth and duration are represented by 336 

Log-Log and GEV, respectively. In Fig. 5a, the probability of no flooding occurring (flood 337 

depth=0) has a value of 0.43. In other words, the probability of flooding at this node is 0.57 and 338 

this is equivalent to the probability of system ‘failure’ in terms of sewer flooding. Note that this 339 

probability represents the probability for each rainfall event because the way of rainfall events is 340 

simulated in this study. This high number of ‘failures’ at this critical node is caused by the 341 

expansion of the network to the (left) upstream due to urban development (Fullerton, 2004). 342 

Similarly in Fig. 5b, the probability of no CSO discharges (CSO volume=0) is estimated at 0.92. 343 

For comparison, Fig. 5 also shows the results when rainfall depth and duration are 344 

assumed as independent. In this case, the probability of sewer flooding, having a value of 0.47, is 345 

lower than in the case of correlation. This implies that the flood depth is under-estimated without 346 

considering the correlation between rainfall depth and duration. This under-estimation has a 347 

more significant impact on flood depth when compared with the uncertainties in the fitted copula 348 

parameter, as demonstrated with the 95% confidence intervals as shown in Fig. 5. For CSO 349 

volume, the differences between correlation and independence are also significant, but mainly lie 350 

in the regions of high cumulative probabilities. This is because the probability of CSO discharge 351 

is much lower than sewer flooding, that is, CSO discharges can only results from more ‘extreme’ 352 

rainfall events.  353 

4.4. Impacts of copulas and marginal distributions 354 

Recall that different marginal distributions for rainfall variables cannot be rejected with the 355 

statistical tests in this case study. To investigate the impacts of different marginal distributions, 356 



 

Fig. 6 shows the CDFs of flood depth and CSO volume from three marginal distributions of 357 

rainfall duration, i.e., GEV, Log-log and Gamma, combined with the Log-log distribution of 358 

rainfall depth. For flood depth, the three CDFs are roughly the same, which implies that the 359 

impacts of the different marginals are negligible when compared with other uncertainties such as 360 

the copula parameter estimation, as shown in Fig. 5. For CSO volume, similarly the impacts of 361 

different marginals are small, although there are some differences in the upper tails, reflecting 362 

the importance of distribution tails in rainfall event simulation. 363 

  Different copulas were compared for the CDFs of flood depth and CSO volume and 364 

results are shown in Fig. 7. Note that according to the copula fitting results the Clayton copula is 365 

not appropriate to describe the dependence structure of rainfall depth and duration, but it is used 366 

here for the purpose of demonstration of its potential impacts. The Clayton copula overestimates 367 

the probability of sewer flooding and CSO discharge, i.e., the performance of the sewer system. 368 

This can be explained by the dependence structure of the Clayton copula: greater dependence in 369 

the lower tail than in the upper tail, which results in more small synthetic rainfall events. 370 

Conversely, the cumulative probabilities of sewer flooding and CSO discharges estimated by the 371 

Gumbel copula are smaller than those from Clayton and Frank copulas, because more extreme 372 

events are generated as a result of the greater dependence in the upper tails.  373 

Clearly the copulas have more significant impacts on the CDFs of sewer flooding and 374 

CSO volume than the marginal distributions, when comparing the results in Fig. 5 and Fig. 6. 375 

This implies the importance of considering the dependence structure of rainfall variables when 376 

evaluating the system performance of urban drainage systems through synthetic events based 377 

methods. 378 



 

The impact of dependence structure of rainfall variables on system performance can be 379 

illustrated by calculating the return periods of the sewer system. Fig. 8 shows the return periods 380 

of CSO volumes from the three copulas. The return periods of CSO volumes are derived using 381 

the cumulative probabilities in Fig. 7b, considering the average 57 rainfall events per year.  382 

5. Conclusions 383 

This paper highlights the importance of considering the dependence structure of rainfall 384 

variables in the context of system performance of urban drainage systems using copulas. The 385 

copula method is demonstrated using an urban drainage system in the UK to calculate the 386 

cumulative probability distributions of flood depth and CSO volume. The rainfall characteristics 387 

in the case study are represented by two variables: rainfall depth and duration. The marginal 388 

distributions of these variables are simulated using GP, GEV, Log-log and Gamma, and the 389 

dependence structure is represented by the following three one-parameter Archimedean copula 390 

families: Gumbel, Frank, and Clayton. On the basis of the copula approach, the Monte Carlo 391 

simulation is used to generate synthetic rainfall events to evaluate the probabilistic system 392 

performance, represented by the CDFs of flood depth and CSO volume. This new methodology 393 

is promising in that it provides a simpler way to construct the joint distribution for rainfall 394 

variables by separating the dependence from their marginal distributions, and thus provides a 395 

basis for performance evaluation of urban drainage systems. The following conclusions are 396 

presented on the basis of this study: 397 

1. It is necessary to consider all the marginal distributions that cannot be rejected by 398 

statistical tests for copula fitting using the IFM method, rather than choose the best 399 

ranked distributions. As revealed by the case of bivariate copulas, the pair of the best 400 



 

fitted marginal distributions of rainfall depth and duration cannot produce the best overall 401 

performance in constructing the joint distribution of rainfall depth and duration. 402 

2. Copula identification should be based on several different measures including statistics, 403 

graphical approaches, and comparison to empirical copulas and data regarding 404 

dependence types. A single measure may fail to identify the inappropriate copulas, 405 

leading to an overestimate or underestimate of the probability of sewer flood and CSO 406 

discharges.       407 

3. The results obtained show the copulas, i.e., the dependence structures, have more 408 

significant impacts on the CDFs of sewer flooding and CSO volume than the marginal 409 

distributions. Different copulas affect different parts of the CDFs of sewer flooding and 410 

CSO volume, i.e., those with higher or lower return periods.   411 

The copula method has the flexibility and advantage in building complex, bivariate 412 

probability distributions of rainfall depth and duration for system performance analysis. The 413 

results provide a more accurate probabilistic evaluation of sewer flooding and CSO discharges 414 

based on the characterization of the dependence structure of rainfall depth and duration. This 415 

provides crucial information for more accurate estimation of design storms and the associated 416 

risks. 417 

 418 

Appendix A: Cumulative distribution functions and test statistics 419 

The marginal distribution functions used in this paper are given in equations (A.1)-(A.4).  420 

Generalized Extreme Value Distribution (GEV) 421 

     
/1

/1exp


 xxF      (A.1) 422 

where ξ≠0, σ>0 and μ are shape, scale and location parameters, respectively. 423 



 

Generalized Pareto Distribution (GP)  424 

     


/1
/11


 xxF      (A.2) 425 

where ξ≠0, σ>0 and μ are shape, scale and location parameters, respectively. 426 

Log-Logistic Distribution (Log-log) 427 

     1

/1





 xxF       (A.3) 428 

where α>0 and β>0 are parameters. 429 

Gamma Distribution 430 

          //xxF      (A.4) 431 

where α>0, β>0 and γ are shape, scale and location parameters, respectively.   is the Gamma 432 

function 433 

  



0

1 dtet t  for (α>0)     (A.5) 434 

and z  is the incomplete Gamma function 435 

  


z

t

z dtet
0

1  for (α>0)     (A.6) 436 

The goodness of fit for the above distributions is considered using three different test statistics: 437 

Kolmogorov-Smirnov nK , Anderson-Darling 2

nA  and Chi-Square 2

n : 438 

   










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
ii

ni
n xF

n

i

n

i
xFK ,

1
max
1

     (A.7) 439 

       
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   (A.8) 440 

 
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ii
n
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EO

1

2

2      (A.9) 441 



 

where n is the number of data, ix  is the ith sample (i=1, 2, ... n), and F is the cumulative 442 

distribution being texted. As the Chi-Square test is based on binned data, the total number of bins 443 

k is determined using the following empirical equation:  444 

nk 2log1       (A.10) 445 

iO  is the observed frequency for bin i and iE  is the expected frequency for bin i calculated by  446 

   12 xFxFEi       (A.11) 447 

where 1x  and 2x  are the lower and upper limits for bin i.  448 
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Figure captions 532 



 

Fig. 1 - Layout of the case study network. 533 

Fig. 2 - Scatter plot of rainfall depth and duration with marginal histograms. 534 

Fig. 3 - Q-Q plots of Gumbel and empirical copulas for different marginal distribution 535 

combinations. 536 

Fig. 4 - Three dimensional plots for the theoretically fitted Gumbel copula. 537 

Fig. 5 - Cumulative probabilities of flood depth and CSO volume from Gumbel copula. 538 

Fig. 6 – Impacts of different marginal distributions on the cumulative probabilities of flood 539 

depth and CSO volume. 540 

Fig. 7 – Comparison of Gumbel and Frank copulas. 541 

Fig. 8 – Return periods of CSO discharge volumes. 542 
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Table 1 - Test Statistics of the fitted CDFs for rainfall duration
*
. 548 

Distribution Distribution Parameter 

K-S χ
2
 A-D 

nK  p-value 
2

n  p-value 
2

nA  

GEV ξ=0.105, σ=189.12, μ=267.9 0.026 0.832 3.126 0.959 0.433 

Gamma α=2.0653, β=193.05, γ=0 0.034 0.509 8.421 0.492 0.423 

Log-Log α=2.872, β=386.08; γ=-54.80 0.036 0.427 14.177 0.116 0.975 

GP
**

 ξ=-0.229, σ=399.22, μ=73.82 0.055 0.063 - - 107.39 

    
*
The CDFs are provided in Appendix A.  549 

      **
This distribution is rejected at the significant level of 5% with the A-D test. 550 

 551 

552 



 

 553 
Table 2 - Test statistics of the fitted CDFs for rainfall depth

*
. 554 

Distribution Distribution Parameter 

K-S χ
2
 A-D 

nK  p-value 
2

n  p-value 
2

nA  

GP ξ=0.190, σ=3.823, μ=1.941 0.020 0.910 5.393 0.80 0.496 

Log-Log α=1.375, β=2.413, γ=2.976 0.046 0.176 14.894 0.094 1.804 

GEV ξ=0.680, σ=1.746, μ=4.594 0.052 0.091 16.226 0.062 2.369 

Gamma
**

 α=5.813, β=5.263, γ=3.0 0.052 0.091 - - 5.813 

  
*
The CDFs are provided in Appendix A.  555 

  
**

This distribution is rejected at the significant level of 5% with the A-D test. 556 

 557 

 558 

Table 3 - Estimated parameters of copulas and their 95% confidence intervals. 559 

 560 

 561 

 562 

Depth  Duration Gumbel Frank Clayton 

 GEV 
1.375 [1.285 1.466] 2.472 [1.971  2.974] 0.443 [0.317  0.570] 

GEV Log-log 
1.399 [1.309 1.489] 2.412 [1.916  2.909] 0.393 [0.273  0.513] 

 Gamma 
1.372 [1.280 1.465] 2.546 [2.032  3.059] 0.413 [0.288  0.539] 

 GEV 
1.377 [1.280  1.465] 2.509 [1.997  3.021] 0.375 [0.257  0.494] 

Log-log Log-log 
1.403 [1.284  1.470] 2.447 [1.940  2.953] 0.340 [0.227  0.453] 

 Gamma 
1.375 [1.311  1.496] 2.591 [2.067  3.114] 0.354 [0.237  0.471] 

 GEV 
1.382 [1.281  1.470] 2.845 [2.290  3.400] 0.507 [0.344  0.671] 

GP  Log-log 
1.403 [1.288  1.476] 2.447 [1.940  2.953] 0.340 [0.227  0.453] 

 Gamma 
1.385 [1.311  1.496] 3.063 [2.502  3.623] 0.473 [0.323  0.623] 



 

Table 4 - Goodness-of-fit of copulas for different combinations of marginal distributions. 563 

Depth  Duration 

Gumbel  Frank  Clayton  

RMSE nT
 

p-value RMSE nT  p -value RMSE nT  p -value 

 GEV 0.016 0.139 0.372 0.014 0.110 0.534 0.016 0.146 0.388 

GEV Log-log 0.018 0.184 0.239 0.015 0.130 0.431 0.016 0.142 0.394 

 Gamma 0.017 0.173 0.268 0.019 0.196 0.229 0.020 0.237 0.162 

 GEV 0.012 0.078 0.726 0.013 0.095 0.622 0.020 0.240 0.152 

Log-log Log-log 0.014 0.114 0.491 0.014 0.118 0.488 0.021 0.241 0.150 

 Gamma 0.015 0.128 0.427 0.018 0.193 0.234 0.025 0.345 0.070 

 GEV 0.065 2.397 0 0.070 2.816 0 0.060 2.030 0 

GP  Log-log 0.014 0.114 0.488 0.014 0.118 0.488 0.021 0.241 0.156 

 Gamma 0.066 2.521 0 0.075 3.223 0 0.060 2.083 0 

 564 

 565 
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 570 
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 576 

Table 5 – The upper tail dependence coefficients for Gumbel copulas. 577 

Depth GEV  Log-log   GP  

Duration GEV Log-log Gamma  GEV Log-log Gamma  GEV Log-log Gamma  

U  
0.344 0.359 0.343 0.346 0.361 0.344 0.349 0.361 0.351 

U̂  
0.344 0.363 0.345 0.349 0.361 0.346 0.347 0.360 0.350 
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 586 

Fig. 1 - Layout of the case study network. 587 
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Fig. 2 - Scatter plot of rainfall depth and duration with marginal histograms. 589 
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Fig. 3 - Q-Q plots of Gumbel and empirical copulas for different marginal distribution 592 

combinations. 593 
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Fig. 4 - Three dimensional plots for the theoretically fitted Gumbel copula. 597 
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Fig. 5 - Cumulative probabilities of flood depth and CSO volume from Gumbel copula. 600 
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Fig. 6 – Impacts of different marginal distributions on the cumulative probabilities of flood 603 

depth and CSO volume. 604 
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Fig. 7 – Comparison of Gumbel and Frank copulas. 608 
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Fig. 8 – Return periods of CSO discharge volumes. 610 


