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Abstract 21 
 22 
In recent years, LiDAR technology has provided accurate forest aboveground biomass (AGB) maps 23 

in several forest ecosystems, including tropical forests. However, its ability to accurately map forest 24 

AGB changes in high-biomass tropical forests has seldom been investigated. Here, we assess the 25 

ability of repeated LiDAR acquisitions to map AGB stocks and changes in an old-growth 26 

Neotropical forest of French Guiana. Using two similar aerial small-footprint LiDAR campaigns 27 

over a four year interval, spanning ca. 20 km2, and concomitant ground sampling, we constructed a 28 

model relating median canopy height and AGB at a 0.25-ha and 1-ha resolution. This model had an 29 

error of 13% at a 1-ha resolution (RSE=53.7 Mg ha-1) and of 23% at a 0.25-ha resolution 30 

(RSE=86.1 Mg ha-1). This uncertainty is comparable with values previously reported in other 31 

tropical forests and confirms that aerial LiDAR is an efficient technology for AGB mapping in 32 

high-biomass tropical forests. Our map predicts a mean AGB of 340 Mg ha-1 within the landscape. 33 

We also created an AGB change map, and compared it with ground-based AGB change estimates. 34 

The correlation was weak but significant only at the 0.25-ha resolution. One interpretation is that 35 

large natural tree-fall gaps that drive AGB changes in a naturally regenerating forest can be picked 36 

up at fine spatial scale but are veiled at coarser spatial resolution. Overall, both field-based and 37 

LiDAR-based estimates did not reveal a detectable increase in AGB stock over the study period, a 38 

trend observed in almost all forest types. Small footprint LiDAR is a powerful tool to dissect the 39 

fine-scale variability of AGB and to detect the main ecological controls underpinning forest 40 

biomass variability both in space and time. 41 

 42 

Keywords: LiDAR; Aboveground biomass; Forest carbon; Tropical forest; Forest dynamic. 43 
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1. Introduction 44 

Tropical forests play an important role in the terrestrial carbon cycle. Tropical deforestation and 45 

degradation are a large source of carbon (C) emissions into the atmosphere, contributing some 7-46 

15% to the total anthropogenic C emissions since the early 2000s (Pan et al. 2011; Harris et al. 47 

2012). This carbon loss from the terrestrial biosphere is thought to be approximately balanced by 48 

forest regrowth and by an increase in terrestrial ecosystem carbon storage ability through time 49 

related to global or regional forcings, such as CO2 fertilization, temperature increase, or rainfall 50 

fluctuations (Lewis et al. 2009; Pan et al. 2011). An effective strategy for mitigating anthropogenic 51 

CO2 emissions is to implement national and international governance agreements that will help curb 52 

deforestation and forest degradation (Agrawal et al. 2011). To meet this challenge, it is essential to 53 

implement robust techniques for the quantification of carbon stocks and changes in tropical forests 54 

(Chave et al. 2005; Saatchi et al. 2011; Le Toan et al. 2011; Clark & Kellner 2012). 55 

Light detection and ranging sensors (LiDAR), a technology dating back to the early 1980s (Arp 56 

& Tranarg 1982; Aldred & Bonner 1985), has now made impressive progress and is being routinely 57 

used to determine forest structural characteristics (Lefsky et al. 2002). The high spatial resolution of 58 

current airborne LiDAR systems and their ability to cover large remote areas make it an attractive 59 

option for conservation and/or management programs and for the implementation of landscape-60 

scale GHG emission mitigation strategies (Agrawal et al. 2011). In mixed-species, closed-canopy 61 

tropical forests, studies using a LiDAR system to infer forest structural parameters date back at least 62 

to the early 2000s (Drake et al. 2002, 2003), and they have since been applied broadly in the 63 

Neotropics (e.g. d’Oliveira et al. 2012; Vincent et al. 2012; Asner et al. 2013a; b), in South-East 64 

Asia (Englhart et al. 2013; Jubanski et al. 2013) and in Africa (Asner et al. 2012a; b; Vaglio Laurin 65 

et al. 2014). Zolkos et al. (2013) have conducted a meta-analysis including over 70 studies that used 66 

LiDAR for forest aboveground biomass (AGB) retrieval. Of these, 10 studies were conducted in 67 

forests with a mean AGB > 300 Mg ha-1, and only one of these studies was in the tropics (Hawaii; 68 

Asner et al. 2009). In light of the fast pace of publications on this research theme, two challenges 69 
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appear to be outstanding. 70 

First, it is important to document the errors associated with LiDAR-AGB models in the high-71 

biomass forested areas of the tropics, notably because the absolute errors associated with LiDAR-72 

AGB models are expected to be significantly higher in such high-biomass areas (Zolkos et al. 73 

2013). Second, the direct monitoring of changes in AGB in tropical forests is a crucial challenge in 74 

carbon accounting programs, and it appears to be now possible from remotely sensed instruments at 75 

least in areas undergoing deforestation and degradation (Asner et al. 2005). However, the ability of 76 

this technique to describe the natural dynamics of old-growth forests is still outstanding. 77 

Encouraging results have been obtained in temperate and in boreal forests (Hudak et al. 2012; 78 

Bollandsås et al. 2013; Næsset et al. 2013; Skowronski et al. 2014). However, tests in tropical 79 

forests have thus far been less conclusive. To our knowledge, only two published studies have 80 

sought to compare the performance of LiDAR and ground-based data to measure the AGB 81 

dynamics of tropical forests. The first study was conducted at La Selva, Costa Rica, and used large-82 

footprint airborne LiDAR data (Dubayah et al. 2010). The second study was conducted at Barro 83 

Colorado Island, Panama, and used a combination of small- and large-footprint LiDAR (Meyer et 84 

al. 2013). Both studies found a weak relationship between changes in LiDAR metrics and field-85 

measured AGB changes. One possible interpretation is that the signature of natural forest dynamics 86 

is too subtle to be detectable by change in LiDAR metrics (Dubayah et al. 2010). However, the use 87 

of large footprint sensors or systematic differences in accuracy across LiDAR sensors may also 88 

explain these results (Zolkos et al. 2013). 89 

Forests of the Guiana Shield hold the highest AGB values and the tallest forests of the 90 

Neotropics (Feldpausch et al. 2011, 2012; Saatchi et al. 2011). Their AGB stock is comparable to 91 

that reported in central Africa and in some forests of South-East Asia (Slik et al. 2013). Using two 92 

LiDAR campaigns conducted at four-year intervals combined with intensive and concomitant 93 

ground sampling (15,438 trees monitored over almost 30 ha), we infer the spatial and temporal 94 

variation of AGB in an old growth tropical forest landscape of French Guiana (Fig. 1). We 95 
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specifically ask the two following questions: i) Can the spatial variation in AGB be detected 96 

accurately using LiDAR in tall, high-biomass, tropical forests?; ii) How do LiDAR-derived 97 

temporal changes in AGB compare with field-derived estimates? 98 

 99 

2. Materials and methods 100 

2.1. Study area  101 

Our study was carried out in the lowland rain forest of French Guiana at the Nouragues Ecological 102 

Research Station (Fig. 1 and 2). The landscape corresponds to a succession of hills, ranging 103 

between 26-280 m asl, with a granitic outcrop (inselberg) reaching 430 m asl. Rainfall is 2861 mm 104 

y-1 (average 1992-2012), with a 2-mo dry season (< 100 mm month-1) during September and 105 

October, and a shorter dry season in March. Human activity is unlikely to have induced major 106 

disturbances in recent history: now extinct Nouragues Amerindians are reported to have inhabited 107 

this area during the eighteenth century, but departed further south some 200 years ago. The forest 108 

around the station harbours a diverse flora (Sabatier & Prévost 1990; van der Meer & Bongers 109 

1996), with over 1700 angiosperm species recorded in the Natural Reserve. 110 

 111 

2.2. LiDAR data acquisition 112 

Two acquisitions of small footprint discrete return LiDAR were conducted in the Nouragues 113 

research area. The first coverage was conducted in two steps, in November 2007 and November 114 

2008 for a total area of 1,900 ha (Fig. S1a). This first acquisition was based on a portable Riegl 115 

laser rangefinder (LMS6Q140i-60) positioned on a helicopter flying at about 30 m s-1 ca 150 m 116 

above the ground. This rangefinder system is a time-of-flight measurement of 30 kHz laser pulse in 117 

the infrared wavelength region (0.9 µm) with a footprint of 0.45 m and a scan angle of 60°. The 118 

average laser point density was ca. 4 imp/m2 and acquisitions were all conducted in last return mode 119 

to maximise penetration (the system used did not have multiple return registering capacity). The 120 

second acquisition occurred in March 2012 and covered an area of 2,400 ha (Fig. S1b).  Acquisition 121 
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was based on a portable Riegl laser rangefinder (LMS-Q560) embarked on a Falcon aircraft at a 122 

speed ca 45 m s-1 about 400 m above the ground. It used a 200 kHz laser pulse in the infrared 123 

wavelength region (1.5 µm) with a footprint of 0.25 m and a scan angle of 45°. The average laser 124 

point density was ca. 20 imp/m2 (the system had multiple returns registering capacity). This pulse 125 

density is much higher than most previous studies, ensuring a good canopy penetration rate and thus 126 

an accurate digital elevation model. In both acquisitions, the systems included two dual-frequency 127 

GPS receivers coupled to an inertial navigation system, ensuring that a sub-decimeter differential 128 

position can be calculated at the post-processing stage. The area of overlap of the two acquisitions 129 

was ca. 1,400 ha. The two LiDAR campaigns were contracted by a private company 130 

(http://www.altoa.fr/). 131 

 132 

2.3. LiDAR data processing 133 

A major challenge, especially in dense tropical forests, is to identify the LiDAR echoes that lie on 134 

the probable ground surface (i.e. bare-earth points). The number of bare-earth points directly affects 135 

the accuracy of the digital elevation model (DEM), which itself determines the precision of the 136 

canopy model (Dubayah et al. 2010). To maximize the accuracy of the DEM, we combined the 137 

cloud data of the two acquisitions. Bare-earth points were identified in the global cloud data using 138 

the TerraScan (TerraSolid, Helsinki) ‘ground’ routine, which classifies ground points by iteratively 139 

building a triangulated surface model. We manually checked the cloud of points to assess possible 140 

issues with this automatic procedure. This led to about 0.35 bare earth points/m² over the entire area 141 

(out of c.a. 24 imp/m² combining the two acquisitions). A DEM grid was subsequently generated at 142 

1-m resolution using the “GridSurfaceCreate” procedure implemented in FUSION v.3.2 143 

(McGaughey 2012). This procedure computes the elevation of each grid cell using the average 144 

elevation of all points within the cell (cells containing no bare-earth points are filled by the 145 

weighted average of the closest grid points). 146 

Two canopy elevation models were produced with the 2007/8 dataset and with the 2012 147 
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dataset. Canopy point outliers were removed automatically by the “FilterData” procedure 148 

implemented in FUSION (McGaughey 2012). The canopy model was then constructed at 1-m 149 

resolution using the 1-m resolution DEM and the “CanopyModel” procedure implemented in 150 

FUSION. This procedure subtracts the elevation model from the return elevation and then uses the 151 

highest return value to compute the canopy surface model. The last step consisted in applying a 3x3 152 

neighbour window median filter to smooth the surface and thus avoid local unrealistic maxima or 153 

minima. To construct the most recent canopy model, we only considered the last return points (12.5 154 

points/m²), so as to avoid systematic biases when comparing the two LiDAR datasets. Median 155 

canopy height (H50) constructed with LiDAR first returns correlated strongly with that constructed 156 

with the last returns (Pearson’s r>0.99), and the mean difference was 0.89 m (median of 0.83). 157 

The 2007/8 LiDAR dataset had a sparser and more heterogeneous coverage and a more 158 

heterogeneous point density in space than the 2012 dataset (Fig. S1). To analyse changes in forest 159 

structure and carbon stocks, we thus discarded all grid units in which more than 15% of the 1-m2 160 

pixels contained less than 2 points/m² in the 2007/8 dataset (i.e. about half of the mean point 161 

density). Exploratory analyses showed that this procedure removed all unrealistic grid values of 162 

AGB change while preserving most of the grid units (90.3% of the pixels were kept in the analysis). 163 

 164 

2.4. Field data 165 

Seven permanent sampling plots covering a total area of 29.75 ha were established at the Nouragues 166 

Ecological Research Station (Fig. 2). In these plots, all living trees ≥ 10 cm of diameter at breast 167 

height (DBH) were mapped, censused, and botanically identified by experts during the last decade 168 

(67.3% of the 15,438 individuals were identified to at least genus level). DBH was measured at 1.3 169 

m above the ground and to the nearest 0.1 cm. For trees with buttresses, stilt roots or irregularities, 170 

trunks were measured 30 cm above the highest irregularity, and the point of measurement was 171 

marked with permanent paint. The procedure implemented in the case of a change in the DBH point 172 

of measurement between two campaigns is fully described in the supplementary material 1. One 10-173 
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ha plot (called “grand plateau”) and one 12-ha plot (“petit plateau”) were remeasured at the end of 174 

2008, and then again at the end of 2012 (data available from forestplots.net; Lopez-Gonzalez et al. 175 

2009, 2011). These two plots are dominated by terra-firme forest, with small flooded forest patches 176 

and a ca. 1-ha patch of liana-infested forest (B. Tymen et al., in revision). In 2007, one 6-ha terra-177 

firme forest plot was inventoried ca. 7 km South (“Pararé”, Fig. 2). In 2012, smaller plots were 178 

established to encompass the range of forest type variability: one 1-ha plot in an occasionally 179 

flooded forest (“Ringler”), two 0.25-ha plots in swamp forest dominated by the palm Euterpe 180 

oleracea, and one 0.25-ha plot in a low forest on shallow granitic bedrock.  181 

In addition to DBH measurements, we measured the total height of all trees located in plots 182 

≤ 1 ha and in at least one 1-ha subplot in the three larger plots. For a few trees for which accurate 183 

measurements were impossible, total height was estimated. In total 2,212 trees had total tree height 184 

measured directly. Total tree height was measured by aiming at the tallest branches with a high-185 

resolution laser rangefinder (LaserAce 1000 rangefinder, Trimble, Sunnyvale CA). The built-in 186 

inclinometer of this rangefinder has an accuracy of 0.2°, and its distance-measuring device an 187 

accuracy of 10 cm at 75 m with a passive target, and a resolution of 1 cm. We targeted the top 188 

leaves or branches, moving 180 degrees around the tree in order to locate the highest point, and we 189 

also relied on the opinion of at least two trained operators. Total tree height was taken to be the 190 

maximum value of several distance measurements. Cross-controls by different operators were 191 

regularly conducted to assess the accuracy of our measurements, and these validation checks 192 

indicate that our tree height data were on average accurate to the nearest 0.5 m. To infer total tree 193 

height for the trees that were not directly measured, we defined plot-specific tree height-diameter 194 

allometries of the form: 195 

(1) ln#$% & ' ( ) * ln#+% ( , * ln#+%- ( ε 196 

where H and D are total tree height and dbh, respectively, and ε is the error term, assumed to be 197 

normally distributed with zero mean and residual standard error σlog-log model. Model (1) was trained 198 

using the tree height ground measurements. The height of all trees was subsequently estimated 199 
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using Eq (1) and accounting for a known bias by applying the Baskerville correction (see 200 

supplementary material 2; Baskerville 1972): 201 

(2)   $/ & exp	#456789:;<6=>5- 2⁄ ( ' ( ) ln#+% ( , ln#+%-% 202 

Model parameters are provided in the supplementary information (Fig. S2 and Table S1). 203 

 204 

Ground plots were carefully geo-located by averaging several GPS points at the corners of 205 

the plots. We selected one corner and calculated the location of the three other corners using the size 206 

and orientation of the plot on the field. A deviation of 18° from the magnetic North Pole to the 207 

geographic North Pole was assumed to account for the magnetic singularity over the Guiana Shield. 208 

We cross-validated the geolocation using the location of large tree crowns clearly visible in the 209 

LiDAR canopy model (Fig. S3).  210 

 211 

2.5. Ground AGB estimation 212 

In the recent literature, stand-scale AGB was often reported in carbon units and referred to as 213 

aboveground carbon density (or ACD). Here we prefer to report values in oven dry biomass units, 214 

but it should be borne in mind that 1 kg of dry biomass holds on average 0.48 kg of carbon (Thomas 215 

& Martin 2012).Tree aboveground biomass (ABCD) was estimated using the equation of Chave et al. 216 

(2014): 217 

(3)  ABCD & 0.0673 * #J * +- * $/%K.LMN 218 

where J is the wood density in g.cm−3 and where total height $/ was either measured directly or 219 

inferred from equation (2). Wood density ρ was inferred from the taxonomy using a global database 220 

(Chave et al. 2009). We assigned a ρ value to each individual tree that corresponded to the mean ρ 221 

for species found in the database. We considered only measures that were made in tropical region of 222 

South America (n=4,182) in order to limit the bias due to regional variation of wood density 223 

(Muller-Landau 2004; Chave et al. 2006). When no reliable species identification or no wood 224 

density information at the species level was available, the mean wood density at higher taxonomic 225 
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level (i.e. genus, family) or at the plot level was assigned to the tree. 226 

 The palm Euterpe oleracea was dominant in flooded areas. We thus constructed a specific 227 

biomass allometry from the destructive harvest data of Miranda et al. (2012) (See supplementary 228 

material 2 and Fig. S4 for details and for other error metrics): 229 

(4) ABCD & exp	#O3.863 ( 2.987 * ln#+%%          (n=13; σlog-log model=0.292) 230 

or 231 

(5) ABCD & exp	#O3.290 ( 0.879 * ln#+- * $%%    (n=13; σlog-log model=0.205) 232 

AGB was then summed across trees, and normalized by plot area to obtain AGB in Mg ha-1. To 233 

estimate AGB in patches of bamboo forest, we conducted a destructive sampling in one 0.125-ha 234 

plot of Guadua sp. bamboos. In one 10 m x 1 m subplot, we sampled all bamboos ≥ 0.8 cm 235 

diameter (36 individuals). The above ground part (stem and leaves) of 13 individuals was oven-236 

dried and weighted, the total dry mass being 4.27 kg. This estimate was then extrapolated to the 237 

0.125-ha plot and the AGB of an isolated tree of Cecropia obtusa was added to the estimate using 238 

Equation (3). 239 

 240 

2.6. Relating LiDAR metrics and stand-scale AGB estimates 241 

We carefully coregistered the LiDAR cloud of points and the ground plots by using several GPS 242 

datapoints per plot, and also by matching the ground position of emergent trees with the LiDAR 243 

canopy model (Fig. S2). LiDAR metrics were calculated within the limits of the calibration plots, 244 

ensuring the best spatial match between LiDAR and ground measurements. Stand-scale AGB 245 

estimate was fitted against several LiDAR metrics at two different spatial resolutions: 1 ha (100 m x 246 

100 m) and 0.25 ha (50 m x 50 m). To this end, we partitioned our large plots into subplots. We 247 

found that median height of the LiDAR canopy model ($RK) provided the best fit to ground-based 248 

AGB (Table S2). A model selection using H50 and any other of these additional LiDAR-based 249 

metrics did not provide significantly better model fits than the model including H50 alone (Table 250 

S3). At both spatial resolutions, we thus fitted independently a log-log linear ordinary least square 251 
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model of the form: 252 

(6)  ln#AGB% & ' ( ) * ln	#$RK% (ε 253 

where ε is an error term assumed to be normally distributed with zero mean. After the back-254 

transformation, accounting for the Baskerville correction, stand-scale AGB can thus be inferred 255 

from H50 using the following model: 256 

(7)  AGBVVVVVV & exp W' ( XYZ[
- ( ) * ln	#$RK%\ 257 

To facilitate the comparison with previous studies (e.g. Mascaro et al. 2011a; Asner et al. 2012b; 258 

Asner & Mascaro 2014), we also provide equation (7) in the equivalent form: 259 

(8)  AGBVVVVVV & A * $RK] 260 

where A & exp W' ( XYZ[
- \. Such a power-law model has been shown to predict well AGB from 261 

LiDAR metrics (Mascaro et al. 2011a). To fit this statistical model, stand-scale AGB was inferred 262 

from the 2012 ground data while H50 was calculated from the 2012 LiDAR canopy model, except 263 

for the “Pararé” plot where the field data were only available in 2007. In that special case, the 264 

2007/8 LiDAR canopy model was used. We also tested whether AGB model construction based on 265 

only the 2007/2008 data or based on only the 2012 data led to different results. We found that the 266 

two statistical models relating H50 and AGB were very close and thus interchangeable: the mean 267 

relative difference across model predictions was within 0.5% of the estimate, and both had the same 268 

uncertainty (Fig. S5). We henceforth use only the model based on the 2012 data, thought to be the 269 

more accurate. 270 

 271 

2.7. LiDAR AGB change 272 

To estimate AGB changes using multiple LiDAR acquisitions, we computed the difference of the 273 

two AGB stock layers as derived from the LiDAR metrics and divided the difference by the time 274 

elapsed between the two acquisitions, to obtain an annual change in AGB. This procedure was 275 

conducted at the 0.25-ha and 1-ha scales. This approach is similar to the “indirect approach” 276 
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described in Meyer et al. (2013) and Skowronski et al. (2014), excepted that we used the same 277 

LiDAR-AGB model to infer AGB from the two LiDAR datasets (see above; Fig. S5). To validate 278 

these products, we compared AGB change as inferred from LiDAR and as measured within the 279 

limits of the calibration plots at 0.25 and 1 ha scale using field plots that were surveyed both in 280 

2008 and 2012 (22 ha). The comparison was done with a reduced major axis (RMA) regression that 281 

minimizes the sum of squared distances both horizontally (accounting for the error in X) and 282 

vertically (accounting for the error in Y ) because neither the field-based nor the LiDAR-based 283 

AGB changes can be considered as true measurements. Significance was assessed with a test based 284 

on the Pearson's product moment correlation coefficient (function “cor.test” in the R statistical 285 

software). A second approach would have been to model AGB change directly from change in 286 

LiDAR metrics (Skowronski et al. 2014). However, because we used the same inversion model for 287 

the two datasets, our approach has exactly the same associated error (i.e., the same residual standard 288 

error, RSE). 289 

 290 

3. Results 291 

3.1. Landscape variation in canopy height 292 

Canopy height, as inferred by LiDAR, revealed a strong spatial structure at the landscape scale (Fig. 293 

2b, Table S4). The maximum registered canopy height was of 67 m and 1% of the 1x1 m pixels had 294 

a height > 50 m. A mosaic of low vegetation (<10 m), low forests (10-25 m) and tall forests (>25 m) 295 

occurred within the landscape (Fig. 2b and 2c; mean canopy height per vegetation type is given in 296 

Table S4). The large patches of low vegetation (2% of the surveyed scene) corresponded 297 

predominantly to bamboo thickets or occasionally to Marantaceae or Heliconiaceae patches; low 298 

forests correspond to liana forests (1%), flooded forests (13%) or hill-top forests (9%). Tall forests 299 

are typical terra firme forests (72%). 300 

 301 

3.2. Relation between LiDAR metrics and field AGB 302 
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Ground-based AGB was significantly predicted by H50 both at the 0.25-ha (ratio of the RSE to the 303 

prediction mean, RSErel, of 22.2%; P<0.001; Fig. 3) and the 1-ha scale (RSErel = 13.5%; P<0.001). 304 

Alternative models or alternative LiDAR-derived metrics did not display a better statistical 305 

performance (table S2). The residuals of this model were not explained by forest type at the 0.25-ha 306 

scale (Kruskall-Wallis test, Χ²=2.07, P=0.72), or by variation in wood density across plots 307 

(Pearson’s r=0.11, P=0.22) but were spatially autocorrelated (Moran’s I=0.31, P<0.001). The 308 

exponent b relating H50 to the AGB was close to 1 at the 1-ha scale, thus the relationship was found 309 

to be nearly linear. At the 0.25-ha resolution, a few plots were outliers, displaying a much higher 310 

ground-based AGB value than inferred using the LiDAR data (Fig. 3). These outlying plots were 311 

characterized by a disproportionate number of large-diameter trees. 312 

The AGB map revealed an important spatial structure (Fig. 4a), related to topographical 313 

variation (Supplementary material 3 ; Fig. S6). Over the study area, AGB showed a bimodal 314 

distribution (Fig. 4b). The first mode corresponded to about 7 % of the total area, and was 315 

characteristic of low-vegetation patches, bamboo thickets and of the bare ground of the Inselberg 316 

top. The second represented a continuum of closed-canopy forest types. At landscape-scale, mean 317 

AGB was estimated to be 344 Mg ha-1 (excluding the granitic outcrop). In comparison, mean AGB 318 

across plots was 388 Mg ha-1, hence permanent plots tend to be biased towards high-AGB forests 319 

(tall forests have a mean landscape AGB of 382 Mg ha-1; Table S4). Mean AGB per forest type 320 

within the scene is provided in Table S4. 321 

 322 

3.3. Relation between LiDAR metrics and field AGB change 323 

We first compared ground-based AGB change measures and LiDAR-derived ones in the survey 324 

plots. We found a significant correlation at 0.25-ha scale, but not at 1-ha scale (Fig. 5). In both 325 

cases, the relationship was poor. Across the study area, the LiDAR-derived AGB change map 326 

showed that the median change was slightly positive during the study period (median of +0.13 Mg 327 

ha-1 yr-1), indicating that most patches were accumulating carbon (Fig. 6). However mean AGB 328 
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change was slightly negative (mean of -0.79 Mg ha-1 yr-1). Together, these results suggest that the 329 

forest landscape has not increased in AGB during the study period due to some localized large 330 

losses of carbon (defined as losses of > 25 Mg ha-1 yr-1 in localized pixels). The slight negative 331 

trend was observed in all forest types with the exception of the granitic outcrop (Table S4). To 332 

verify that our results were not influenced by the difference in sensor type from one survey to the 333 

next, we constructed independent LiDAR-AGB models using the two LiDAR datasets and showed 334 

that they provided undistinguishable predictions (mean relative difference to within 0.5%) with the 335 

same associated error (Fig. S5). 336 

 337 

4. Discussion 338 

We used two small-footprint LiDAR campaigns to construct a detailed map of canopy structure in 339 

an old-growth, high-carbon stock, tropical forest of the Guiana Shield. The landscape was 340 

surprisingly heterogeneous, with frequent occurrences of low vegetation patches (liana-infested 341 

forests, palm-dominated swamps, bamboo-dominated patches) interspersed within the high-canopy 342 

forest matrix. We constructed and validated a statistical model to infer aboveground biomass (AGB) 343 

stocks from LiDAR data and we explored the potential of LiDAR data in inferring changes in AGB 344 

over a four-year period. 345 

 346 

4.1. Inferring AGB from LiDAR 347 

Small footprint LiDAR technology was able to detect the fine-grained spatial variation in AGB 348 

across a 2,400-ha landscape characterized by both high AGB values (344 Mg ha-1 on average in our 349 

study area, excluding the granitic outcrop) and a range of tropical forest types. The average AGB 350 

stock in permanent plots was 388 Mg ha-1, higher than the landscape-scale average inferred from 351 

LiDAR, suggesting that our permanent plots are predominantly established in the dominant high-352 

canopy vegetation type, which has a mean landscape AGB of 382 Mg ha-1. The presence of a 353 

mosaic of forest types has a direct bearing on carbon accounting programs. An accurate estimate of 354 
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carbon storage at the landscape scale critically depends on the representativeness of carbon 355 

sampling units. In our study area, topographical elevation was the main driver of forest carbon 356 

stocks variation (see also Réjou-Méchain et al. (2014) for a global cross-site analysis). Caution 357 

should be thus exercised when regional-scale carbon stocks are inferred from permanent sampling 358 

plots without assimilating any remote sensing observations or without explicitly taking into account 359 

topographical variations (e.g. Malhi et al. 2006). 360 

The potential of LiDAR for tropical forest AGB mapping is not novel but most published 361 

studies to date have been carried out in tropical forests with AGB typically < 300 Mg/ha (Zolkos et 362 

al. 2013). The relative error of our LiDAR-AGB model was 13.5% at the 1-ha scale, only slightly 363 

higher than previous studies (10-12%; Mascaro et al. 2011a; Meyer et al. 2013), and 22.2% at the 364 

0.25-ha scale. This confirms that small-footprint LiDAR can be used to infer AGB even in high-365 

biomass tropical forests. A common interpretation of the IPCC measuring reporting and verification 366 

(MRV) guidelines is that AGB uncertainty should be no more than 20% of the mean (Zolkos et al. 367 

2013). Even in our high-biomass forest landscape, the error at 1-ha scale meets these requirements 368 

with small footprint LiDAR. 369 

We also attempted to improve the predictive power of this model by exploring its 370 

dependence to plot-average wood density or to forest type. The residuals of our models were not 371 

explained by either of these factors. However, we found that these residuals were spatially 372 

autocorrelated, probably because trees strongly vary in their height-diameter allometric 373 

relationships from one area to another one at the landscape scale (Fig. S2). Such spatial 374 

autocorrelation in the residuals suggests that the subplots are not independent. Thus the error 375 

associated with our LiDAR-AGB model may have been underestimated and using several subplots 376 

from a larger field plots is not an optimal strategy from this standpoint. 377 

The performance of our power-law models were similar to that obtained by Mascaro et al. 378 

(2011a; b) and Asner et al. (2012b, 2013b), lending some credence to the view that universal 379 

features in the LiDAR-AGB allometry may exist, in spite of the substantial variation in the power 380 
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law exponent across forest types (Asner et al. 2012). To account for this cross-site variation of 381 

model exponents, Asner et al. (2012b) and Asner & Mascaro (2014) developed generic models 382 

where field data are used to account for cross-site variation in wood density and height-diameter 383 

relationships. Asner & Mascaro (2014) found that their model accounted for the variation in the 384 

LiDAR-AGB relationship across five contrasted tropical forests (Hawaii, Panama, Madagascar, 385 

Colombia and Peru). To further test their generic model, we tested whether it yielded correct results 386 

in our study site, and found that it underestimated the stand-scale AGB by 16% (Fig. S7). Because 387 

the generic model was originally calibrated with the AGB of trees ≥ 5 cm DBH, and validated in 388 

our study with the AGB of trees ≥ 10 cm DBH, the underestimation is probably closer to 20%. The 389 

strategy of seeking a universal predictive equation relating LiDAR metrics and AGB is an important 390 

step forward, so that Asner and Mascaro (2014)’s model would benefit from including more sites, 391 

such as our high-carbon stock forest site. The present study contributes one more study site to this 392 

endeavor (raw data are available in Table S5-6). 393 

 394 

4.2. Inferring AGB change from repeated LiDAR acquisitions 395 

We also compared the ability of repeated LiDAR coverages to detect AGB change due to natural 396 

vegetation turnover with ground-based estimate. In our old-growth tropical forest, characterized by 397 

a relatively slow dynamics, we showed that LiDAR was able to model, but with very large 398 

uncertainties, the fine-scale patterns of variation in AGB change as measured from the ground. 399 

Indeed, ground-based AGB change was significantly correlated to LiDAR AGB change at the 0.25-400 

ha scale, but not at the 1-ha scale. 401 

Our study was conducted in a remote forest landscape that is unlikely to have been exposed 402 

to significant localized anthropogenic forest disturbances in the past two centuries. Thus, most of 403 

the detected changes are likely related to the natural dynamics of the ecosystem. Scaling the 404 

estimated LiDAR-AGB change to the study area did not reveal a detectable increase in AGB stock 405 

over the study period. Most pixels increased in canopy height (median was positive) but the pixels 406 
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that lost height had larger losses than the gains. Thus, most forest types were predicted to be a slight 407 

source of atmospheric CO2 during the study period. We emphasize that our LiDAR-AGB change 408 

map is highly uncertain, and that given this uncertainty the null hypothesis of no net change cannot 409 

be rejected. That said, our result may still be contrasted with a previous study conducted in the same 410 

forest but based on tree plots only. Chave et al. (2008) found a modest forest carbon sink in the Petit 411 

Plateau plot for the period 1992-2000 (+ 0.40 Mg ha-1 yr-1), and a larger sink in the Grand Plateau 412 

plot (+2.29 Mg ha-1 yr-1), and this supported the hypothesis of an increase in AGB in tropical rain 413 

forests (Lewis et al. 2009). A reanalysis of the same field dataset for the period 2008-2012 gave a 414 

very modest sink of + 0.47 Mg ha-1 yr-1 (Fig. 6), confirming that the area has not significantly 415 

increased its AGB stock, as found with the LiDAR-based approach. A similar LiDAR-based 416 

approach has been done recently in the Barro Colorado Island (BCI, Panama) where the old growth 417 

part of the forest was found to have lost a significant amount of AGB between 1998 and 2009 418 

(Meyer et al. 2013). A recent field-based approach confirmed that the old growth forests from BCI 419 

have not significantly increased in AGB during the same period (Cushman et al. 2014). Together, 420 

these observations are in line with the recent findings of Brienen et al. (2015), who found a long-421 

term decreasing trend of carbon accumulation in 321 Amazonian field plots. 422 

The AGB changes estimated with repeated LiDAR acquisitions was poorly related to the 423 

changes estimated from the field. It suggests that ground-based and LiDAR-based measurements 424 

measure different components of forest dynamics and this may be due to several reasons. One 425 

interpretation is that natural canopy dynamics is typically dominated by many small-scale events at 426 

the top of the canopy, which are associated with branchfalls, rather than treefalls (Kellner & Asner 427 

2009). In our study area, van der Meer and Bongers (1996) previously conducted a careful survey of 428 

canopy openings and they found that only a third of natural canopy gaps were larger than 4 m², 429 

many such events being caused by branch-falls. A LiDAR sensor will probably pick up these 430 

changes in canopy structure but they cannot be detected in ground-based surveys, which generally 431 

focus on tree diameter. Such canopy dynamics thus probably contributes to increasing the 432 
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uncertainty in the comparison between field-based AGB change estimates and LiDAR-based AGB 433 

changes (Fig. 5). However, it is unlikely that this effect was the main driver of uncertainties 434 

because, contrary to our results, a larger mismatch between field- and LiDAR- AGB change 435 

estimates would have been expected at smaller scales, where branch-damage constitute a large 436 

fraction of AGB change, than at larger scales. Another source of possible mismatch between the 437 

field and LiDAR’s field of view is that canopy dynamics, sensed by LiDAR, does not correlate 438 

simply with AGB change because woody biomass regenerates more slowly than leaf biomass after a 439 

disturbance (Asner et al. 2006). Canopy closure following disturbance may also be faster in more 440 

disturbed areas (Asner, Keller & Silva 2004), blurring the effect of disturbance on AGB stocks from 441 

a canopy field of view. Further, those trees which fall but are alive have lost their canopy position 442 

but not their woody biomass, while stand-level wood density can change due to stochastic and 443 

deterministic shifts in species composition.  Such changes are generally accounted for by ground-444 

based tree-by-tree surveys but not by LiDAR measurements. Finally, even small errors in co-445 

registration between LiDAR maps and ground data or temporal mismatch between the LiDAR and 446 

the field campaigns, are likely to weaken the relationship between LiDAR and natural vegetation 447 

turnover. In our study, the temporal mismatch between the LiDAR and the field campaigns was of 448 

38% and thus probably increased the mismatch between field- and LiDAR- AGB change estimates. 449 

In natural forests, a major natural cause of AGB change is the large and infrequent gaps 450 

formed by multiple tree falls (> 100 m2 in area). Such rare events are accurately captured by LiDAR 451 

at the 0.25-ha resolution but are likely to be averaged out at the 1-ha resolution. In theory, any 452 

random change at the pixel scale that is lower than the LIDAR-AGB model RSErel (in our case 453 

13.5% at the 1-ha scale) cannot be detected. However, if changes are concerted across large spatial 454 

scales, as is often the case in anthropogenic forest degradation or regrowth, effects of smaller 455 

amplitude may be detected (Asner et al. 2005). Note also that the eastern and central Amazonia is 456 

characterized by a tree turnover that is about half as that measured in southern and western 457 

Amazonia (Phillips et al. 2004). In western Amazonia, large changes in AGB are thus more frequent 458 
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than in our study area and we therefore speculate that AGB change may thus be easier to detect by 459 

LiDAR in these areas. Finally, in forests exposed to logging activities and/or forest conversion, 460 

LiDAR technology is certainly able to map disturbances to a high accuracy (Englhart et al. 2013; 461 

Andersen et al. 2014).  462 

 463 

5. Conclusion 464 

Building on the outstanding advances of LiDAR-based technology, we were able to map forest 465 

types and estimate AGB stocks of an old-growth tropical forest of French Guiana. Our results show 466 

that AGB can be mapped even in a high biomass tropical forest. Given the continuous improvement 467 

in LiDAR technology, as well as the decay in the associated operational costs, LiDAR technology 468 

will soon provide highly accurate carbon maps over large areas in the tropics (Mascaro et al. 2014). 469 

This will considerably improve our ability to quantify the carbon stored in the biosphere and thus 470 

reduce the uncertainties in the global carbon budget. From an ecological point of view, these fine-471 

scale AGB maps may be used to detect the main ecological controls underpinning forest biomass 472 

variability both in space and time. We also showed that the dynamics of old-growth forests is seen 473 

differently from a ground or a LiDAR perspective but that the landscape estimate of those two 474 

approaches gave consistent conclusions about the overall forest carbon budget. Hence, forest 475 

dynamics monitoring would clearly benefit from combining the complementary strengths and 476 

insights gained from a top-down and bottom-up views. 477 
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Figure 1: Geographic location of the study area725 

(left). The study area of 2,400 ha (bottom right) is 726 
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 728 
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Figure 2: Study area. (a) LiDAR elevation model constructed from combining bare-earth points in 730 

the 2007/8 and 2012 LiDAR datasets. A scale bar is given within the panel. (b) LiDAR canopy 731 

height model (top of canopy height) constructed at a 5-m resolution from the 2012 LiDAR dataset. 732 

The dotted lines delineate the 2007/8 LiDAR campaign. (c) Vegetation map obtained by height 733 

segmentation of the 2012 canopy model and validated using aerial photography and ground 734 

truthing. All areas smaller than 1000 m² were eliminated by removing the longest boundary with an 735 

adjacent area (rmarea tool in the v.clean procedure of GRASS). Flooded areas were arbitrarily 736 

delimited by a wetness index > 14 and they include both temporary (even rarely) and permanently 737 

flooded areas (see Supplementary material 3).Permanent sampling tree plots are illustrated in red. 738 

  739 
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 740 

 741 

Figure 3: Relationship between the aboveground biomass density (AGB) and LiDAR H50 for 742 

(a) 119 plots of 0.25-ha and 1 plot of 0.125 ha (bamboo forest), and (b) 29 plots of 1 ha. The 743 

residual standard error (RSE) and the coefficients of the power-law model of equation (8) (see 744 

methods) are provided in the bottom-right insets.  745 
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 748 

 749 

Figure 4: Biomass stocks in the Nouragues forests. (a) Map and (b) histogram of the AGB 750 

inferred from the 2012 LiDAR-based model at 50-m resolution. The model used to convert LiDAR 751 

metrics is displayed in equation (8); for parameters, see figure 4. The landscape mean and standard 752 

deviation of AGB were of 339.7 ± 122.2 Mg. ha-1. Similar results were obtained at 100 m resolution 753 

(not shown). 754 
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 756 

 757 

 758 

Figure 5: Relationship between AGB change estimated from the field and from the LiDAR 759 

H50 including (a) 88 plots of 0.25-ha plots, and (b) 22 plots of 1 ha. The validations were based on 760 

72 0.25-ha plots and 19 1-ha plots, respectively (filled circles). Open circles represent the pixels 761 

with less than 2 points/m² in the 2007/8 dataset and discarded from the validations (see Methods for 762 

the details on data filtering). The slope of a reduced major axis (RMA) regression (solid black line), 763 

the residual standard error (RSE), the Pearson’s correlation and its corresponding p value are 764 

provided in insets. The 1:1 line is illustrated by grey dashed lines.  765 
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  767 

Figure 6: AGB change inferred from the LiDAR model at 50-m resolution. (a) Map over the 768 

study area, and (b) histogram of the AGB changes with the mean field based estimates (+ 0.47 Mg 769 

ha-1 yr-1; red slashed line). LiDAR AGB change was calculated as the difference between the AGB 770 

estimated from the two LiDAR datasets (2012 minus 2007 or 2008). Grid units containing more 771 

than 15% of 1-m2 pixels with less than 2 LiDAR points/m² in the 2007/8 dataset were discarded. 772 

Similar results were obtained at 100 m resolution (not shown). 773 
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