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Clinical Relevance of Biomarkers of Oxidative Stress
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Abstract

Significance: Oxidative stress is considered to be an important component of various diseases. A vast number of
methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress,
ranging from oxidation of DNA to proteins, lipids, and free amino acids. Recent Advances: An increased un-
derstanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure
oxidative stress markers, which are very diverse and sometimes very low in abundance. Critical Issues: The
literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative
stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and
different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using
nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use.
Future Directions: Several markers of oxidative stress still represent a viable biomarker opportunity for clinical
use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and
compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that
oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily
better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into
account when selecting the most appropriate biomarker. Antioxid. Redox Signal. 23, 1144–1170.
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Introduction

Redox signaling operates through discrete, reversible,
and site-specific modifications of certain proteins

(184). Reversible modifications of cysteine residues include
S-nitrosylation/S-nitrosation, sulfenylation, disulfide bonds,
and S-glutathionylation (83, 87). These redox signaling-
induced changes, performed by reactive oxygen and nitrogen
species (ROS and RNS), target protein activities within
complex networks of kinases, phosphatases, ion channels, and
apoptotic cascades and can cause changes in transcriptional
activity (50, 53, 74, 83). Oxidative stress, characterized by an
imbalance between oxidants and antioxidants in favor of ox-
idants, leads to disruption of redox signaling and physiolog-
ical function (157, 158). Oxidative stress might also lead to
irreversible chemical modifications (152, 164). One of the
weaknesses of the underpinning science is the lack of vali-
dated oxidative stress biomarkers. Analytical issues sur-
rounding the validation of oxidative stress biomarkers have
received substantial attention recently (33, 100). However,
there remains increasing interest in exploring their potential
clinical applications. While the current review will touch
upon analytical issues, its focus will be on synthesizing the
status—and future potential—of oxidative stress biomarkers
as clinical diagnostics from available literature.

The World Health Organization has defined a biomarker as
any substance, structure, or process that can be measured in
the body or its products and influence or predict the incidence
of outcome or disease (192). Markers of oxidative stress often
fulfill the first part of the criteria (i.e., they can be measured)
and many studies suggest oxidative stress can influence the
disease, but to be a clinically relevant biomarker, some ad-
ditional issues must also be addressed. In summary, a clini-
cally useful biomarker must be able to meet one of the
following criteria: (i) show specificity for a certain disease
(diagnostic), (ii) have prognostic value, and (iii) correlate
with disease activity. This then allows treatment efficacy to
be assessed. To be clinically useful, a biomarker must also be
reasonably stable, present in an easily accessible tissue, and
cost-effective to measure reproducibly on a large scale.

An increasing number of studies are published on
markers of oxidative stress in a whole range of human
diseases (Fig. 1). While a plethora of markers and methods
are used, many of these do not correlate well with each
other, do not reflect a state of oxidative stress, or are not
specific. In this study, we critically review the current state
of oxidative stress biomarkers that are used to assess the
redox state of the body or specific tissues and cells in health
and disease, with a focus on those that can be realistically
applied to the clinic (Fig. 2). This approach excludes by
definition several commonly used preclinical and in vitro
methods. Visualization of biomarkers measured in various
diseases by cluster analysis (Fig. 3) shows that the majority
of studies have used ROS-induced modifications as markers
of oxidative stress, which will be discussed first. We
then focus on biomarkers assessing two important compo-
nents whose deregulation can result in oxidative stress,
ROS generation, and antioxidant defense. We conclude
with two functional markers that are downstream of
oxidative stress. From a clinical perspective, what matters
is which marker is predictive with respect to risk and
therapeutic outcome.

ROS-Induced Modifications

This category includes biomarkers measuring evidence of
direct chemical impact of ROS in biological systems. One of
the ROS subsets is also described as RNS, for example, �NO
and ONOO-. Besides causing post-translational modifica-
tions of proteins, these species may also cause nitrative stress
and RNS-induced modifications, such as tyrosine nitration.

Protein carbonyls and advanced glycation
end products

Protein carbonyls are formed through oxidative cleavage of
protein backbones. Oxidative deamination of lysine and glu-
tamic acid also results in protein carbonyls (34). Since carbonyls
can arise from different mechanisms, their concentration is
commonly higher than that of other biomarkers (40).

Carbonyl groups may also be introduced by binding of
aldehydic lipid oxidation products to lysine, cysteine, and
histidine residues—a reaction termed Michael addition—
resulting in advanced lipoxidation end products. Reactions

FIG. 1. Publications on oxidative stress biomarkers in
different diseases. Searches were performed using oxida-
tive stress biomarkers patients and the specific disease
MeSH term using Web of Science. (A) Indicates the number
of hits of all diseases combined per 10,000, normalized to a
search with patients and the diseases in question. (B) Shows
the number of hits per disease, which is proportional to the
circle size, for the years 2005–2015.
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between lysine and arginine residues and carbohydrates—a
reaction called glycoxidation—result in advanced glycation
end products (AGEs).

AGEs are a group of heterogeneous molecules that arise
from the nonenzymatic reaction of reducing sugars with
amino groups of lipids, DNA, and especially long-lived
proteins. This process occurs during normal metabolism, but
is even more pronounced under hyperglycemic, hyperlipi-
demic, and oxidative stress conditions.

The glycation reaction can be accompanied by an oxida-
tion leading to glycoxidation products. Carboxymethyl va-
line and pentosidine are among the most prominent AGEs
resulting from glycoxidation. Glyoxal, generated from metal-
catalyzed oxidation of polyunsaturated fatty acids (PUFAs),
forms adducts with lysine (resulting in carboxymethyl lysine
[CML]), an advanced lipoxidation product (55). About 90%
of CML and pentosidine in blood are bound to proteins (116).
Due to their relationship to sugars, AGEs have been linked to
diabetes mellitus and other diseases, such as obesity (20),
atherosclerosis, renal failure (193), and Alzheimer’s disease
(172). Due to the different possible formation mechanisms
and heterogeneity, numerous glycation products exist, of
which only some have been characterized so far.

Protein carbonyls (i.e., having aldehyde and ketone
moieties) are usually detected after derivatization with

2,4-dinitrophenylhydrazine (DNP). The resulting carbonyl-
2,4-dinitrophenylhydrazine adduct (101) can be detected
spectrophotometrically or by specific anti-DNP antibodies
with ELISA (24), Western blot (91), immunohisto- and
cytochemistry, or by high-performance liquid chromatog-
raphy (HPLC). The results of the ELISA correlate well with
the colorimetric assay (24), whereby the ELISA is more
convenient to analyze a larger number of samples within
one run and requires significantly less sample volume.
Concerning clinical settings, the only methods that seem to
be applicable are ELISA (kits are available) and HPLC
as they enable high throughput, involve internal/external
standards, and comparison of samples under constant
conditions.

A number of methods have been reported to measure AGEs
based on the use of antibodies for immunohistochemistry,
immunoblot, and commercial ELISA, as well as special AGE
readers that utilize the autofluorescence properties of AGEs in
human skin to assess AGE concentrations. Spectrofluorometry
can be applied to diluted plasma or serum samples and a fruc-
tosamine assay to detect ketoamines (9). HPLC allows the
identification and measurement of specific AGEs such as pen-
tosidine (169) and CML (52). Creatinine glycation products can
be measured with stable isotope dilution analysis and liquid
chromatography (LC)-MS/MS (97). Due to the structural het-
erogeneity of AGEs, there is no method that can be especially
recommended for measuring specific AGEs in a clinical setting.
Noninvasive spectrographic autofluorescence readers can be
applied in a clinical setting; however, this should be standard-
ized in terms of using the average of three readings, the same
body region, avoiding surrounding light and skin areas
with tattoos. Elevated skin autofluorescence has been demon-
strated in diabetes, kidney disease, and in patients with arterial
stiffness.

In humans, elevated protein carbonyl levels have been
reported in numerous conditions, including aging (61),
neurodegenerative diseases (62), obesity, diabetes mellitus,
age-related macular degeneration (174), human immunode-
ficiency virus (HIV), anemia, sickle cell disease, newborn
bronchopulmonary dysplasia, and hepatocellular carcinoma
(Table 1).

Protein carbonyls increase with age in healthy women and
men (61, 122). With age, AGEs accumulate in the skin and
correlate with the glucose exposure dose in patients on
peritoneal dialysis (25). In diabetes, ROS are generated
through several pathways, and elevated AGE concentrations
have been reported. Ischemia/reperfusion is clearly associ-
ated with oxidative stress. Following coronary surgery in the
reperfused human heart, a 2–3-fold increase in protein car-
bonyls, as measured by ELISA, was observed in plasma
isolated from the venous coronary sinus (130). Protein car-
bonyls remained increased in blood for up to 18 h and
therefore meet one important criterion for being a marker of
oxidative stress, which is their stability.

Most methods detect protein carbonyls after derivatization
and therefore do not provide a direct measure of these oxi-
dative modifications. While commercial ELISA kits for AGE
measurement provide ease of use, many of these do not
specify the antibody used, which is just described as poly-
clonal anti-AGE antibody. This may lead to differences be-
tween commercial kits. Nevertheless, protein carbonyls and
AGEs have been among the most successful markers of

FIG. 2. Redox pathways associated with putative bio-
markers of oxidative stress. The processes that lead to oxi-
dative modifications of proteins, lipids, and nucleotides are
highly complex. Enzymes, such as XO, NOX, and NOS, can
produce ROS and RNS. These ROS can furthermore serve as
substrates for other enzymes to generate additional types of
ROS, such as the generation of HOCl from H2O2 by MPO.
Cellular systems and enzymes, including the GSH and thior-
edoxin system, together with peroxiredoxins (T/Prx), counter-
balance the production of ROS. In addition, increased levels of
ROS activate Nrf2 to transcribe genes that are involved in
counteracting these ROS. Oxidative stress affects cGMP sig-
naling through its effects on nitric oxide (�NO) production,
scavenging, and on the �NO receptor sGC. cGMP, cyclic
guanosine monophosphate; GSH, glutathione; H2O2, hydrogen
peroxide; HOCl, hypochlorous acid; MPO, myeloperoxidase;
NOS, nitric oxide synthase; NOX, NADPH oxidase; RNS,
reactive nitrogen species; ROS, reactive oxygen species; sGC,
soluble guanylate cyclase; XO, xanthine oxidase.
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oxidative stress and are associated with disease state and
treatment in multiple diseases (Tables 1 and 2).

Oxidized low-density lipoprotein

The measurement of oxidized low-density lipoprotein
(oxLDL) as a biomarker of oxidative stress has its origin in

the oxidative modification hypothesis of atherosclerosis
(165). However, oxLDL does not chemically define a specific
form of modified LDL, molecule, or family of molecules
(166). As the potential of oxLDL as a biomarker for cardio-
vascular disease (CVD) has been the subject of previous re-
views (175, 177), we will critically assess the clinical utility
of oxLDL as a biomarker.

Table 1. Selected Clinical Studies of Protein Carbonyl Levels in Different Diseases

Disease/Condition Sample Method Observation Referencea

HIV-associated cognitive
impairment

Cerebrospinal
fluid

Commercial
Oxyblot kit

No significant differences in PC
between treatment and placebo
after selegiline transdermal
system versus placebo.

(85)

Chronic heart failure,
secondary to ischemic or
idiopathic cardiomyopathy

Plasma Spectrophotometry Significantly decreased PC after
treatment with darbepoetin alfa
(placebo: no effect).

(75)

Sickle cell disease Plasma Spectrophotometry a-Lipoic acid treatment in healthy
subjects reduced PC (P < 0.05),
no effect in sickle cell disease.

(64)

Newborns (low birth weight),
without bronchopulmonary
dysplasia

Plasma ELISA No significant difference in PC
between newborns and controls
treated with inhaled nitric oxide.
Positive correlation between PC
and respiratory severity score.

(8)

Hepatocellular carcinoma Plasma ELISA Significantly higher PC in subjects
with hepatocellular carcinoma
compared with subjects with or
without Hepatitis B virus.

(61)

aReferences are provided as supplementary material (Supplementary Data are available online at www.liebertpub.com/ars).
HIV, human immunodeficiency virus; PC, protein carbonyl.

FIG. 3. Cluster analysis of
ROS biomarkers in disease.
Different diseases were clus-
tered according to described
ROS biomarkers in Refs. (33,
100, 181) and studies described
in this review. Some disease
conditions cluster as might be
expected, such as ischemia/re-
perfusion and heart failure, and
amyotrophic lateral sclerosis
and multiple sclerosis. A com-
prehensive analysis of ROS
markers and pattern analysis in
diseases might uncover com-
mon disease mechanisms or
new measures of disease pro-
gression or treatment outcome.
Cluster analysis was performed
using Genesis software (https://
genome.tugraz.at/genesisclient/
genesisclient_description.shtml)
as described in Mengozzi et al.
(111).
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Table 2. Selected Clinical Studies of AGE Levels in Different Diseases

Disease/
Condition Sample Method Observation Referencea

T2D Urine, plasma Stable isotope dilution
analysis and LC-MS/MS

Higher basal level in
diabetics.

(57)

T2D Skin SAF Short-term therapy with
benfotiamine did not
significantly influence
SAF.

(97)

T1D, T2D Skin SAF Comparable SAF between
children with type I
diabetes and nondiabetic
adults, indicating
chronological aging of the
skin.

(88a)

Diabetes EDTA plasma,
carotid plaque
tissue

ELISA,
immunohistochemistry

Plasma sRAGE
concentrations higher in
symptomatic patients.

(10)

Acute coronary
syndrome

Serum Competitive ELISA AGE decreased significantly
with statin treatment, AGE
levels correlated with
plaque progression
independently of diabetes.

(43)

Chronic kidney
disease

Skin SAF (AGE Reader) Significantly higher SAF in
children with kidney
disease in comparison with
controls; positive linear
correlation between SAF
and dialysis treatment
duration.

(62)

Dialysis Skin SAF (AGE Reader) Accumulation of tissue AGEs
is correlated with glucose
exposure dose and
independently associated
with cardiovascular
morbidity in patients on
peritoneal dialysis.

(50)

Pancreatic cancer
(EPIC study)

Serum ELISA Elevated CML was associated
with reduced pancreatic
cancer risk (the association
disappeared after
adjustment for HbA1c,
BMI, smoking status, and
endogenous secreted
RAGE).

(45)

Pancreatic cancer
(ATBC study)

Serum AGE CML-ELISA Higher levels of CML-AGE
were not associated with a
higher risk of pancreatic
cancer.

(51)

PCOS Serum Competitive AGE-ELISA AGEs are elevated in women
with PCOS and strongly
positively correlated with
androgen levels in women
with PCOS.

(37)

aReferences are provided as supplementary material.
AGE, advanced glycation end product; BMI, body–mass index; CML, carboxymethyl lysine; LC, liquid chromatography; MS, mass

spectrometry; PCOS, polycystic ovary syndrome; SAF, skin autofluorescence; sRAGE, secreted receptor for AGE; T1D, type 1 diabetes;
T2D, type 2 diabetes.
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OxLDL is most commonly measured in plasma or iso-
lated LDL by immunological methods using one of three
different antibodies that appear most frequently in the lit-
erature: 4E6, DLH3, and E06. The monoclonal antibody,
4E6, binds to aldehyde-modified lysine residues on LDL
(73) and is the basis of a commercial method. The mono-
clonal antibodies, DLH3 and E06, recognize oxidized
phosphatidylcholine (82) and phosphorylcholine contain-
ing short oxidized or nonoxidized side chains, respectively.
Plasma oxLDL has been consistently found elevated in
patients with CVD, independent of the assay used. How-
ever, conflicting results have been reported in studies on
the association of oxLDL with atherosclerosis severity
and the usefulness of oxLDL for CVD prediction. Con-
trasting results, depending on the assay, have been reported
for plasma oxLDL following pharmacological intervention
with statins (175, 177). In addition to CVD, plasma oxLDLs
are increased in patients with insulin resistance, diabetes,
and obesity (175).

A general limitation of the single most commonly used
4E6-based assay is that native LDL is also detected. As a
result, the concentrations of oxLDLs determined closely
reflect the concentrations of LDL cholesterol, and the
predictive value of the assays is dependent on the levels of
apoB (194). This casts serious doubt over the usefulness of
oxLDL as a measure of oxidative stress and its clinical
utility to predict cardiovascular and associated diseases
above that of LDL cholesterol. Another general problem is
that results obtained with different antibodies/methods
cannot be compared and often do not correlate with each
other, which is inconsistent with oxLDL being a quanti-
tative measure of oxidative stress or representing a
meaningful tool to predict CVD. The DLH13-based
method was developed for isolated LDL, which limits its
clinical utility because LDL isolation is time-consuming
and isolated LDL is prone to ex vivo oxidation when
stored at 4�C or after coating on plates. An extension of
this assay to plasma has been developed commercially, but
its utility is questionable because plasma and isolated LDL
data do not match (81). A major problem with E06-based
methods to determine oxLDL is that contrary to the
common notion (175, 177), the monoclonal antibody is not
specific for oxidized (phospho)lipids (51) and most of the
recognized antigens in plasma reside in lipoproteins other
than LDLs (178).

Given the limitations summarized above, oxLDL is un-
likely a specific measure of oxidative stress. This is con-
sistent with the majority of human plasma F2-isoprostanes
(135a) and cholesterylester hydroperoxides (16) being
associated with high-density lipoproteins (HDLs) rather
than LDLs.

Lipid oxidation products

PUFAs, in particular linoleic and arachidonic acid (AA),
are important targets of lipid peroxidation. Reaction of
ROS, in particular hydroxyl and peroxyl radicals, with
bisallylic hydrogen of PUFAs initiates the autocatalytic
chain reaction of lipid peroxidation (Reactions 1–3) during
which lipid peroxyl radicals act as chain-carrying radicals
and lipid hydroperoxides are formed as the primary end
products.

Initiation LHþR�/L� þRH (1)

Propagation L� þO2/LOO� (2)

LOO� þLH/LOOHþL� (3)

Termination LOO� þ a - TOH/LOOHþ a-TO� (4a)

LOO� þ a-TO�/NRP (4b)

The chain reaction of lipid peroxidation can be termi-
nated by tocopherols, such as a-tocopherol (a-TOH), via
reaction with the chain-propagating lipid peroxyl radical
(LOO�) (Reaction 4a). The resulting a-tocopherol radical
(a-TO�) can be reduced back to a-TOH by certain reducing
agents (e.g., ascorbate) (not shown) or react with a second
molecule of LOO� to form a nonradical product (NRP)
(Reaction 4b).

LOOHþFe3þ/LOO� þ Fe2þ þHþ (5)

LOOHþ Fe2þ/LO� þFe3þ þ �OH (6)

Degradation LOO� /// reactive aldehydes
(e.g., MDA, HNE, acrolein) (7)

In the presence of transition metals, lipid hydroperoxides
(LOOHs) give rise to LOO� (Reaction 5) or lipid alkoxyl
radicals (LO�) (Reaction 6) that are further cyclized and/or
degraded into several different reactive aldehydes (Reaction 7)
that participate in various biological processes and signal
transduction pathways (200). Depending on the type of PUFAs
undergoing lipid oxidation, these include trans-4-hydroxy-2-
nonenal (4-HNE), malondialdehyde (MDA), and others.
Aldehydes derived from lipids are very reactive and therefore
readily react with proteins to form Michael adducts, often
denoted as advanced lipoxidation end products (49).

Isoprostanes (IsoPs) are formed during free radical-
catalyzed oxidation of AA (119). Radical-mediated oxidation
of AA occurs independently of whether it is esterified (as in
phospholipids, triacylglycerols, or cholesterylesters). The
types of IsoPs that will be formed and in what ratio depend on
oxygen tension and glutathione concentration (120).

4-HNE and MDA

Different methods are available for the detection of both
MDA and 4-HNE. Antibodies against MDA and 4-HNE bound
to different amino acids have been developed (179, 186) and
used in qualitative and semiquantitative immunocyto- and
immunohistochemistry, where their presence and relative
abundance are detected in cells and tissues in parallel with
evaluation of morphological changes (126). Since Spiteller
(163) reviewed the involvement of lipid peroxidation in a va-
riety of chronic diseases, lipid oxidation end products emerged
as oxidative stress markers, with 4-HNE and MDA being
among the most investigated (126, 200) (Table 3).
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Despite their widespread use, all methods that detect both
MDA and 4-HNE have their pitfalls (162). In the thio-
barbituric acid reactive substances (TBARS) assay, up to
98% of the measured MDA can be formed by the high-
temperature conditions during the procedure itself (117).
When combined with HPLC, MDA-TBA adducts in in vitro
oxidized human plasma can be determined reproducibly and
reliably, although this method requires individual sample
processing and its validity as a marker of in vivo oxidative
stress remains uncertain, making it less applicable for rou-
tine clinical use (19). The numerous commercial easy-to-
use kits lack specificity and their significance for clinical
research is questionable.

In general, direct MDA and 4-HNE measurement is in-
sensitive as the vast majority of these reactive products are
bound to proteins and other biomolecules and remain unde-
tected unless released before the assay (49). To measure the
presence of 4-HNE in biological samples, including protein-
bound aldehydes, protein immunodetection is preferred, ei-
ther applied as immunohistochemistry or as HNE-His ELISA
(187). The specificity of the monoclonal antibodies against
HNE-His adducts allows their use in human and animal tis-
sues, tissue homogenates, and in plasma and serum samples
(63, 126, 162).

F2-isoprostanes

Several thorough reviews of the biochemistry and utility
of F2-isoprostanes (F2-IsoPs) as biomarkers have been re-
cently published (39, 113, 114), so only the most seminal
points will be summarized here. Oxidation of AA forms a
family of 64 bicyclic endoperoxide regio- and stereoisomers
collectively termed H2-isoprostanes (140). Nonenzymatic
rearrangement of these H2-isoprostanes forms both stable
F2-IsoPs and highly reactive c-ketoaldehydes termed iso-
levuglandins (IsoLGs, also known as isoketals) (115). Be-
cause of their chemical stability and sensitivity to changes
in oxidative stress, F2-IsoPs are often considered the most
reliable markers for monitoring oxidative stress in vivo (89).
Elevated concentrations of F2-IsoPs are found in CVD,
correlate with extent of disease, and predict the outcome
(39). Elevated F2-IsoPs are also found in a wide range of
human clinical conditions (113).

Despite strong evidence for their utility as biomarkers
(Table 3), one challenge to widespread adaptation of F2-IsoPs
in clinical trials is that the most reliable methods for their
quantitation, gas chromatography–mass spectrometry (GC-
MS) and LC-MS/MS, are labor-intensive and require spe-
cialized and expensive instrumentation (7, 114). While
commercial immunoassays have been developed as a cheaper
and easier alternative to mass spectrometry (MS), the results
obtained with these immunoassays often do not correlate well
with those obtained with GC-MS (78, 136). Thus, the results
from immunoassays, particularly for individual patients,
must be used with extreme caution, only with appropriate
sample cleanup, and validated by MS whenever possible.

Isolevuglandins

Similar to F2-IsoPs, IsoLGs are products derived from the
oxidation of AA and are sensitive to changes in oxidative
stress. While F2-IsoPs are stable products of lipid oxidation,

IsoLGs (Fig. 4) react rapidly and irreversibly with primary
amines (e.g., protein lysyl residues and phosphatidyletha-
nolamine) in the cell to form pyrrole (lactam) and oxidized
pyrrole (hydroxylactam) adducts (18, 115, 146). Thus, only
IsoLG adducts, and not unreacted IsoLGs, are detected in
cells and tissues.

IsoLG adducts may eventually prove to have greater utility
as disease biomarkers than more generalized measures of
oxidative stress status because they appear to directly par-
ticipate in pathological processes. The biological effects of
exogenous IsoLGs on cultured cells include induction of
inflammatory pathways, immune responses, and cell death,
as well as inhibiting ion channel function (17, 36, 56, 65, 95).
These results, along with the therapeutic effects of adminis-
tering small-molecule IsoLG scavengers in animal models,
suggest that IsoLGs could contribute to disease processes,
including inflammation, hypertension, arrhythmia, athero-
sclerosis, and neurodegeneration (38, 41, 95, 146).

Quantitative immunoassays using polyclonal antibodies
against IsoLG-protein adducts detected increased IsoLG-
protein adduct formation in plasma from patients with ath-
erosclerosis, in plasma from patients with end-stage renal
disease, and in the glaucomatous trabecular meshwork (146).
Immunohistochemical staining with the single-chain anti-
body D11ScFv that selectively recognized IsoLG-protein
adducts showed increased adducts in the epicardial border
zone of myocardial infarcts (56), in the hippocampus of
Alzheimer’s disease patients (38), and in heart, aorta, and
dendritic cells during hypertension (64).

Mass spectrometric methods have demonstrated increased
IsoLG-protein adducts compared with controls in the epicardial
border zone of myocardial infarcts (56), in the hippocampus of
Alzheimer’s patients (38), and dendritic cells during hyper-
tension (64). Using MS, IsoLG-phosphatidylethanolamine ad-
ducts have been found to be increased in plasma from patients
with macular degeneration (102).

Currently, there are no published studies demonstrating that
increased levels of IsoLG adducts predict onset or severity of
subsequent disease. Therefore, the utility of measuring IsoLG
adducts in urine or plasma as clinical biomarkers remains to be
established. Nevertheless, current findings provide strong ra-
tionale for further investigation of the potential use of IsoLG
adducts as clinical biomarkers, both to identify persons at risk
and to determine the efficacy of treatments targeting IsoLGs
such as dicarbonyl scavengers.

3-Nitrotyrosine

Nitrotyrosine (Tyr-NO2) is often described as a stable
marker of oxidative/nitrative stress in inflammatory diseases
(71). Tyrosine nitration involves the replacement of C3 hy-
drogen atom of the tyrosine aromatic ring with a nitro group
(R-NO2) (11) (Fig. 5). This modification can occur within a
polypeptide sequence (protein-associated Tyr-NO2) or to free
tyrosine amino acids (free Tyr-NO2). Nitration can occur by
several pathways in vivo, but always involves RNS and is
usually a two-step process (161), in which (i) tyrosine is ox-
idized resulting in a tyrosine radical and (ii) a radical–radical
reaction occurs between the tyrosine radical and nitrogen di-
oxide (�NO2). It is possible for the tyrosine radical to react
with nitric oxide (�NO), followed by further oxidation to yield
Tyr-NO2, but this pathway has not been well studied (11).
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One widely studied pathway for nitration is the produc-
tion of the RNS peroxynitrite (ONOO-) (Fig. 6, pathway 1)
(132). Initially, Tyr-NO2 was believed to be a specific marker
of peroxynitrite-mediated damage, but this has since been
disproved, with the most-cited alternate pathway involving
myeloperoxidase (MPO), as proposed in 1997 (183) (Fig. 6,
pathway 2). When solely measuring Tyr-NO2 in complex
biological samples, it is not possible to tell which of the
mechanisms is responsible for any nitration detected in vivo.
The effect of nitration on protein activity varies with the
protein being studied and can be a gain of function (180) or
loss of function (195).

The issue of which method to employ for the determination
of Tyr-NO2 in the high-throughput analysis of clinical sam-
ples needs be addressed as MS, while considered the gold
standard (176), is not yet feasible for high-throughput anal-
ysis and other methods suffer from methodological flaws or
cannot be properly assessed due to a lack of detailed meth-
odological information (45, 197). In addition, some authors

fail to clearly state whether free Tyr-NO2, protein-associated
Tyr-NO2, or total Tyr-NO2 is measured, the concentrations of
which may be different. While evidence does suggest that
nitration of certain proteins enhances proteolytic degradation
(160), a fall in protein-associated Tyr-NO2 concentration will
only be measurable if the nitrated protein is degraded in
parallel with a decrease in disease activity.

There is still much work to do in assessing the utility of Tyr-
NO2 as a clinical biomarker, but findings so far are encour-
aging, with some studies showing that plasma Tyr-NO2 levels
correlate with disease activity and decrease following suc-
cessful therapeutic interventions. Yet, it is still unclear whe-
ther Tyr-NO2 is any more informative, in clinical terms, than
other already available markers, for example, C-reactive
protein (CRP). CRP is an acute phase protein synthesized by
the liver in response to signaling by upregulated inflammatory
cytokines (e.g., IL-6). Serum CRP is widely used clinically as
a marker of acute inflammation, but of course an increase in
serum CRP concentration is delayed until some hours after the

FIG. 4. Regioisomers of isolevuglandins. Specific IsoLG regioisomers differ by the relative orientation of their keto- and
aldehyde moieties (D2-IsoLG vs. E2-IsoLG) and the position of the double bonds and hydroxyl group on the side chains (5-,
8-, 12-, or 15-IsoLG) (37, 141, 147, 148). Theoretical considerations from peroxidation chemistry suggest that the 5- and
15-IsoLG series should predominate over the 8- and 12-IsoLG series (198). It is important to recognize that one of the eight
stereoisomers of both 15-D2-IsoLG and 15-E2-IsoLG is chemically identical to levuglandin D2 and E2, respectively, which
are generated nonenzymatically from prostaglandin H2 (149, 150). IsoLG, isolevuglandins.
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initial inflammatory insult because liver synthesis of CRP
protein is required. In contrast, chemical modifications to pre-
existing cellular or extracellular proteins may occur more
swiftly within an inflammatory environment. One application
where the measurement of Tyr-NO2 might provide a signifi-
cant enhancement is in the monitoring of clinical responses to
therapy in the assessment of the current pipeline of novel
drugs targeted at enzymes involved in ROS generation, for
example, NADPH oxidase and MPO inhibitors.

Tyr-NO2 can be detected in tissues by various methods.
Among the quantitative approaches, both ELISAs and LC/
GC have been described; however, it is important to note that
quantification by ELISAs is limited by several factors: (i)
antibodies employed in ELISAs will have different affinities
for different nitrated proteins (94), although this is addressed
by methods that measure a single nitrated protein (188); (ii)
some Tyr-NO2 ELISAs may be prone to interference; and
(iii) the sensitivity of some Tyr-NO2 ELISAs may be too low
to detect Tyr-NO2 in healthy human plasma. LC/GC has been
coupled to various detection systems, for example, UV de-
tection, thermal energy analysis, electrochemical detection,
and MS. One explanation for the lack of agreement between
reported plasma ELISA- and MS-based Tyr-NO2 plasma
concentrations is that the reported ELISA results are based on
a nitrated bovine serum albumin standard, in which the actual
concentration of nitrated tyrosine residues is unknown.

The National Institute of Environmental Health Bio-
markers of Oxidative Stress Study concluded that oxidized

proteins (of which Tyr-NO2 was one of the measured bio-
markers) are not suitable biomarkers of free radical damage
caused by carbon tetrachloride treatment in rats (89).
Nevertheless, many studies have investigated Tyr-NO2 under
inflammatory conditions as a marker of oxidative stress and
have found plasma Tyr-NO2 concentrations to be higher in
patients in a variety of diseases (summarized in Table 4).
Some of the clinically relevant findings include the associa-
tion of higher Tyr-NO2 levels with higher mortality in sepsis
and a fall in plasma Tyr-NO2 concentration, as well as a
correlation with other markers following treatment with
various anti-inflammatory drugs. In addition, two studies
using different methodologies reported a lowering of plasma
protein-associated Tyr-NO2 concentrations upon drug treat-
ment (statins in coronary artery disease and rosuvastatin in
hypercholesterolemia). Tyr-NO2 may not only be a potential
biomarker of oxidative stress in diabetes patients (28, 29) but
may also be a biomarker of disease progression/risk for CVD
(111a). In asthmatic patients, Tyr-NO2 staining in bronchial
biopsies and measurement of Tyr-NO2 by ELISA in exhaled
breath condensates both showed a decrease of Tyr-NO2 upon
corticosteroid treatment. Conflicting results were obtained in
neurodegenerative disorders; although Tyr-NO2 has been
reported at increased levels within brain tissue from Parkin-
son’s (60) and Alzheimer’s disease patients (167), free Tyr-
NO2 is not increased in the cerebrospinal fluid of Alzheimer’s
disease patients (143). Likewise, protein-bound Tyr-NO2 is
not increased in plasma of patients with dementia (44). In
contrast, nitrated a-synuclein was detected in peripheral
blood mononuclear cells from Parkinson’s disease patients,
the concentrations of which were inversely correlated with
the daily dosage of levodopa (Table 4).

FIG. 6. Formation of nitrotyrosine. In pathway 1, per-
oxynitrite is formed by the reaction of �NO with the super-
oxide anion radical (O2

�2). The enzymatic generation of both
these radicals is increased during inflammation. Radical–rad-
ical combination of the two species occurs exceedingly fast
(rate constant 1 · 1010 M-1s-1), meaning that �NO can out-
compete the dismutation of O2

�- by SODs (138). Under
physiological conditions in which CO2 is present, nitration via
peroxynitrite is increased (3) due to the formation of the ad-
duct ONOOCO2

-. This adduct undergoes homolysis to the
secondary free radicals, nitrogen dioxide (�NO2) and carbon-
ate anion radical (CO3

�-) (132). CO3
�2 is able to perform step

1 of the nitration process by oxidizing tyrosine to tyrosine
radical, which then reacts with the �NO2. In pathway 2, MPO
catalyzes, in the presence of H2O2 and nitrite (NO2

2), the
production of both the tyrosine radical and �NO2 (11, 132).
CO2, carbon dioxide; ONOOCO2, nitrosoperoxocarbonate;
SODs, superoxide dismutases.

FIG. 5. Structure of 3-nitrotyrosine. Tyrosine nitration
involves the replacement of the C3 hydrogen atom of the
tyrosine aromatic ring with a nitro group (R-NO2). The 3-
nitrotyrosine is depicted as part of a polypeptide/protein.
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Thiols

The main thiol compound in the body is the amino acid
cysteine, which is susceptible to oxidation. Oxidation of a
cysteine residue can change a protein’s function. Thus, mea-
suring the thiol status may represent a mechanism-based bio-
marker. Biologically occurring thiols include low-molecular-
weight thiols (cysteine, GSH) and protein thiols.

The use of thiols as biomarkers is affected by a number of
factors. In addition to specific limitations for those thiols
that are only present intracellularly, a general problem is
that oxidation products of protein cysteine residues are
unstable. They can be easily reduced by other thiols and
thus require immediate treatment with an alkylating agent
to prevent further redox changes. A change in GSH levels
might not be due to oxidative stress, but might reflect a
nutritional/metabolic imbalance. Plasma GSH levels may
also be affected by GSH transporters, while cellular
mechanisms, such as nuclear factor (erythroid-derived 2)-
like 2 (NRF2), counteract oxidative stress by increasing
GSH synthesis. Finally, oxidized glutathione (GSSG) con-
centrations are very low and difficult to measure unless
sensitive HPLC methods are used.

Glutathione

The main nonprotein thiol is the tripeptide GSH. Since
intracellular concentrations of GSH are high, in the milli-
molar range, it is an important component of antioxidant
defense systems to scavenge ROS, which leads to GSSG.
Oxidation of GSH is reversible as GSSG reductase and
NADPH reduce GSSG back to two molecules of GSH.

In general, any condition associated with excessive ROS
will decrease GSH levels or decrease the GSH/GSSG ratio.
Within cells, GSH is present at millimolar concentrations,
resulting in high GSH/GSSG ratios (>30) (76). The GSH/
GSSG ratio in serum is substantially lower (*3). Whether
this meaningfully reflects a cellular redox state is question-
able (90) and it may not be a good indicator of oxidative stress
(86). Thus, most studies measure erythrocyte GSH where
GSH concentrations are high, but not necessarily a good in-
dicator of oxidative stress across tissues. Furthermore, lower
GSH levels may not necessarily be due to oxidation, but
rather due to a consequence of lower cysteine levels (cysteine
is the rate-limiting GSH precursor) due to nutritional defi-
ciency. Nevertheless, many studies have measured plasma
GSH/GSSG. Three meta-analyses confirmed a decrease in
plasma GSH and an increase in plasma GSSG in patients with
autism spectrum disorders (54) and lower plasma GSH levels
in polycystic ovary syndrome (121), two conditions in which
oxidative stress has been implicated (127, 144). It should be
noted that these meta-analyses are based on studies where
GSH/GSSG are measured by a variety of techniques, in-
cluding enzymatic methods, HPLC with fluorometric, UV, or
electrochemical detectors, and LC-MS/MS.

Several pathological conditions are associated with
decreased GSH levels (6). In particular, studies on GSH in
acquired immunodeficiency syndrome (AIDS) and other
conditions have shown very clearly that rather than in plasma,
GSH should be measured within cells by fluorescence acti-
vated cell sorting (72). GSH measurement is important to
identify patients who may benefit from GSH repletion by GSH
derivatives or precursors, for example, in clinical trials (6).

Cysteine

Free cysteine is the main nonprotein thiol in plasma (86,
118). Studies have measured plasma cysteine (*10 lM) and
its disulfide, cystine (*40–50 lM), in CVDs with varying
results (43, 112). Cysteine is a semiessential amino acid and
its requirement may increase following oxidative stress due
to the consumption of GSH (6). Historically, one important
condition associated with lower plasma cysteine is AIDS,
originally reported by the group of Droge (46).

Protein thiols and mixed disulfides

Protein cysteine residues can exist in many oxidation states
(Fig. 7). Protein glutathionylation (mixed disulfides with
GSH) received particular attention. Significant amounts of
glutathionylated proteins are detected under normal condi-
tions or following exposure to oxidants (58, 156). Most of the
glutathionylated proteins are intracellular because GSH is
predominantly present in the cytoplasm and intracellular
proteins have cysteine residues predominantly in the chem-
ically reduced state and thus are available to form mixed
disulfides, in contrast to extracellular proteins where most
cysteine residues are engaged in disulfide bridges.

The only plasma protein identified as glutathionylated is
transthyretin (58). Many studies propose glutathionylated
hemoglobin, measured in red blood cells by MS, as a bio-
marker of oxidative stress in diabetes, hyperlipidemia, he-
modialysis, and chronic renal failure (31, 58). An increase in
plasma cysteinylated albumin, measured by MS, has also
been reported in chronic liver and kidney diseases and dia-
betes (124).

Surface thiols

The plasma membrane is the interface between the re-
ducing intracellular and the oxidizing extracellular environ-
ments. While one might expect the extracellular (exofacial)
membrane thiols to be oxidized, they are in fact not, and

FIG. 7. Protein cysteine oxidation states. Cysteine resi-
dues in proteins can exist in different oxidation states,
ranging from reduced free thiols to reversible oxidized
forms (disulfides, S-nitrosothiols, sulfenic acids, and sulfinic
acids) to irreversible sulfonic acids. *Reversibility of pro-
tein cysteine sulfinic acids has so far been demonstrated
only for some sulfinylated peroxiredoxins and requires the
enzymatic activity of sulfiredoxin.
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active mechanisms maintain specific surface thiols (98), with
surface thiols lower in rheumatoid arthritis (RA) (131). Their
measurement may provide additional information on the re-
dox state of a patient (145).

Methionine sulfoxide

Methionine is the other sulfur-containing amino acid be-
side cysteine (Fig. 8). Sulfur in methionine can be reversibly
oxidized by ROS to a sulfoxide. Oxidation of an essential
methionine in the abundant serum protein a-1-proteinase
inhibitor leads to its inactivation (85). Elevated levels of this
sulfoxidized form have been detected in the bronchoalveolar
lavage of smokers, contributing to the pathogenesis of em-
physema (27). The presence of methionine sulfoxide in
plasma proteins and in HDL is increased in sepsis and dia-
betes (5, 21). Although not as widely studied as a form of
thiol oxidation, methionine sulfoxide has potential advan-
tages as a biomarker: it is easily measured with a conven-
tional amino acid analyzer and is more stable than thiol
oxidation products.

DNA/RNA oxidation

Oxidative stress induces oxidation of DNA and RNA (Fig.
9), particularly in the guanine moiety. The oxidized nucleo-
sides are excreted into the urine and their measurement can be
interpreted as the cumulative total body oxidative stress, that
is, number of hits to the nucleic acids in a defined time period,
meaning the global rate of DNA and RNA oxidation. There-
fore, as urinary biomarkers, they are most relevant to condi-
tions where oxidative stress occurs in all tissues in the
body and less to high oxidative stress in minor organs without
assumed systemic oxidative stress. Several commercial
assays are available to measure 7,8-dihydro-8-oxo-2¢-

deoxyguanosine (8oxodG) with ELISA. However, the clinical
significance of these methods has been questioned (10). While
chromatography coupled to MS may not be readily available
clinically, biomarkers for oxidative stress measured by
oxidation of nucleic acids are among—if not the best—
biomarkers that have been examined. Nucleic acid oxidation
products have also been demonstrated to be predictive of the
development of disease (22, 23).

The oxidative modification in DNA can cause mispair and
thereby lead to mutations, particularly GC-TA transversion
mutations, and therefore relates to cancer (104, 134). Oxi-
dative lesions in DNA are recognized by repair enzymes; the
nucleotide pool can be oxidized, but is sanitized by other
enzyme systems (133). There is some debate as to whether
the lesions in DNA relate to incorporation from the nucleo-
tide pool or direct oxidation in DNA (70). Chronically high
oxidation of DNA, measured as urinary excretion of the nu-
cleoside 8oxodG, is associated with risk of lung and breast
cancer (103, 105).

Recently, RNA oxidation, measured as 7,8-dihydro-8-oxo-
guanosine (8oxoGuo), has been introduced as a marker in
relation to diseases, particularly neurodegenerative diseases
and diabetes (22, 23, 88). Because of the single strand nature
of RNA, repair is not possible. Remarkably, relatively little is
known about how RNA integrity is maintained, but it is as-
sumed to rely on quality control and degradation (133). The
cellular effects of RNA oxidation also remain largely ob-
scure, although formation of truncated or mutated proteins
has been suggested (133, 135). There are indications of for-
mation of mutated proteins (170) and of microsomal stalling
induced by oxidized RNAs (159). Very recently, advanced
methodology has demonstrated that the effects of RNA le-
sions fall into two categories, one that includes ribosomal
stalling and one that leads to a mixture of full length and
truncated translational products (26). It thus appears that
nucleic acid oxidation/modification has much more diverse
and multifaceted biological effects, exemplified both with
different effects on translation stalling and also in the target
molecule, for example, in diabetes where RNA oxidation is
not only more pronounced than DNA oxidation but also has a
very different prognostic value.

Extensive DNA oxidation is predictive for the risk of
breast and lung cancer (103, 105). Elevated RNA oxidation is
predictive for development of complications and death in
type 2 diabetes, and there are indications that high RNA
oxidation is associated with breast cancer development in
type 2 diabetic females (22). Thus, screening for urinary
DNA/RNA oxidation could help to identify such people and
patients at risk and help to implement a treatment plan to
minimize it.

For measurement of 8oxodG and 8oxoGuo in urine, the
most reliable methodology is chromatography coupled with
MS (189–191). 8oxodG can also be measured by HPLC-
electrochemical detection, which is rarely used presently.

Markers of ROS Generation

Some ROS-forming enzymes that are normally present
intracellularly can also be found in the circulation, inde-
pendently of the mechanism responsible for their release.
For this reason, we will only describe xanthine oxidase
(XO) and MPO. Higher circulating levels of XO and MPO

FIG. 8. Structure of methionine sulfoxide. Methionine
contains a sulfur atom that is also susceptible to oxidation
and can give rise to methionine sulfoxide. The methionine
sulfoxide is depicted as part of a polypeptide/protein.

FIG. 9. Structure of 8-oxo-2¢-deoxyguanosine and 8-
oxo-guanosine. Oxidation of DNA and RNA commonly
occurs in the guanosine moiety, leading to 8-oxo-2¢-
deoxyguanosine and 8-oxo-guanosine, respectively.
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could potentially result in increased ROS production, al-
though this depends on other factors such as availability of
the substrate (xanthine for XO and H2O2 for MPO) and
whether ROS produced by these enzymes overcome the
antioxidant defense. In some cases, a better indicator of the
enzyme activity in vivo is the formation of the metabolite or
reaction product.

Xanthine oxidase

XO catalyzes the oxidation of xanthine to uric acid. While
the product is a known antioxidant (4), the enzyme is also a
well-known source of O2c- (109). Inflammatory agents and
interferon increase XO activity and its plasma levels (59).
However, the most important translational breakthrough was
the hypothesis of the role of XO in ischemia–reperfusion
injury (108). This led to several, ongoing clinical trials with
XO inhibitors in CVD and prompted many studies to measure
circulating XO (12). It should be mentioned that XO inhibi-
tion has other effects than inhibiting ROS production. In
particular, by decreasing uric acid, it may improve CVD by
lowering hyperuricemia (14), and uric acid is not only an
antioxidant (4) but also proinflammatory through activation
of the NALP3 inflammasome (107).

While we list XO among the ROS-generating enzymes, it
could also be an indicator of oxidative stress. In fact, the
protein exists in two forms, an oxidase (that oxidizes xanthine
to uric acid using oxygen as the electron acceptor and pro-
duces H2O2) and a dehydrogenase (that carries out the same
reaction, but uses NAD+ and generates NADH). The dehy-
drogenase form can be converted into XO by, among other
things, thiol oxidation (48). Thus, oxidative stress will in-
crease XO activity by increasing dehydrogenase-to-oxidase
conversion.

Myeloperoxidase

MPO is a heme peroxidase that catalyzes the reaction be-
tween H2O2 and chloride ions to produce HOCl as the pri-
mary oxidant. These are not only important in the innate
immune system’s antimicrobial activities but also contribute
to inflammatory diseases, such as atherosclerosis and related
vascular diseases (35) and Parkinson’s and Alzheimer’s
disease (32, 123, 139), via multiple mechanisms (166).

The suitability of MPO as a potential independent prog-
nostic biomarker of inflammation is summarized in Table 5.
A limitation of MPO as a biomarker is that current methods
are not standardized between laboratories and do not provide
direct information on MPO activity. The methods used to
directly measure MPO activity as well as biomarkers specific
for MPO have been reviewed recently (92). MPO-derived
oxidants generate a footprint of specific and nonspecific ox-
idation products. 3-Chlorotyrosine (3-Cl-Tyr) and chlori-
nated lipids, as well as glutathione sulfonamide, are specific
products for MPO/HOCl (92). Nonspecific oxidation prod-
ucts include protein carbonyls and 3-nitrotyrosine modifica-
tions. Of the specific biomarkers, 3-Cl-Tyr has received the
most attention and has been detected in a wide variety of
diseases (Table 6).

Chlorinated lipids have been detected in human athero-
sclerotic plaque (173). 2-Chloradipic acid (185) is excreted in
urine and hence offers the potential as a biomarker. Glu-
tathione sulfonamide is present in the airways of preterm

infants with respiratory disease as well as in children suf-
fering from cystic fibrosis (93).

A general limitation of the specific biomarkers of MPO
activity is the requirement for expensive equipment and time-
consuming sample workup and analysis. Often, concentra-
tion of these biomarkers in biological samples is low, which
complicates accurate measurement. As a result, investigators
have fractionated plasma and observed that HDL can be the
major carrier of 3-Cl-Tyr in CVD (15). However, the ex-
tensive preparation procedures for HDL analysis limit its
clinical use. Glutathione sulfonamide is a relatively minor
oxidation product derived from the reaction of reduced glu-
tathione (GSH) with HOCl. This limits its application to bi-
ological samples that contain significant amounts of GSH.
Plasma, which has very little GSH, is therefore not a suitable
source to analyze glutathione sulfonamide.

Within these limitations, the determination of MPO pro-
tein is a reasonable approach to at least initially assess a
potential contribution of MPO-mediated oxidative damage to
a disease, and in most studies, MPO and specific MPO ac-
tivity biomarkers with different specificities provide similar
results (Tables 5 and 6).

Markers of Antioxidant Defense

In principle, oxidative stress can also derive from an im-
paired antioxidant defense. We focus here not only on protein
thiol-disulfide oxidoreductases that can be measured in serum
or plasma but also the transcription factor NRF2 that drives
the transcription of several antioxidant genes. NRF2 is acti-
vated in response to oxidative stress and its activation could
therefore be used as an indicator of ROS generation that
exceeded the existing antioxidant defense systems.

Protein thiol-disulfide oxidoreductases

These enzymes include, among others, thioredoxin (Trx)
and peroxiredoxins (Prxs; Fig. 10). Trx main function is to
keep protein thiols in the reduced state. For this reason, Trx is
often regarded as an antioxidant enzyme. Secretion of Trx was
originally discovered in leukemia cells by virologist Junji
Yodoi, who initially thought he had identified interleukin-1-c
(199). While it cannot be excluded that Trx secretion may be
induced by other factors, it is thought that its secretion is
induced by oxidative stress. Its secretion is inhibited by an-
tioxidants in vitro (96) and its plasma levels are elevated in
cancer patients (8) and AIDS patients, where it negatively
correlates with survival (125). Various reports have suggested
that plasma/serum Trx concentrations are diagnostically rel-
evant in a range of diseases. For instance, Qi et al. found that
serum Trx concentrations reflected disease severity in acute
ischemic stroke (137), and the addition of Trx to an estab-
lished disease severity score provided a significant improve-
ment in diagnostic capacity.

The Prx family has a key role in the elimination of H2O2

because it is highly abundant and reacts with H2O2 at high
rates. Prxs are often identified in proteomics studies and
several studies identified Prxs in the secretome under various
disease conditions (80). In particular, oxidized Prx6 in the
cerebrospinal fluid has been proposed as a biomarker of ox-
idative stress in brain injury, where it is a good predictor of
the outcome (106). The importance of the redox state of Prxs
as biomarkers is also demonstrated by studies showing that
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Table 5. Selected Clinical Studies on MPO Levels in Different Diseases

Disease/Condition Sample Method Observation Referencea

Cardiovascular disease Serum High-sensitivity
sandwich ELISA

MPO independently predicted endothelial
dysfunction better than CRP.

(103)

Acute coronary
syndrome

Serum ELISA Increased risk for future cardiac events in
patients with elevated serum MPO.MPO,
soluble CD40 ligand, and TnT are
independent predictors of adverse
outcome.

(7)

Acute chest pain,
incident MACE

Plasma Commercial
immuno-based
assay

MPO higher in MACE patients at
hospitalization. MPO predictive for
MACE in patients with normal cardiac
TnT.

(71)

Cardiovascular disease
(LURIC study)

Plasma ELISA (MPO) and
PCR (MPO
polymorphisms)

High MPO predicted mortality independent
of established cardiovascular risk
factors.Five of eight MPO
polymorphisms associated with
increased MPO. No association of MPO
genotype with mortality.

(84)

Major adverse cardiac
events

Plasma Commercial
immuno-based
assay

MPO included in CBS used to predict
future MACEs. High CBS predicted
increased risk of MACEs at 3 years.

(98)

Major adverse cardiac
events

Plasma Commercial
immuno-based
assay

Patient with MPO >322 pmol/L had
increased risk of developing future
MACE.

(100)

Chest pain Plasma ELISA MPO elevated at baseline and 2 h after
onset of symptoms, correlated with TnT
concentration, and is an independent
predictor of MI and CVD risk.

(16)

Myocardial infarction Plasma ELISA MPO increased and independently
predicted development of myocardial
infarction in the ensuing 24 months.

(21)

Myocardial infarction Plasma ELISA MPO higher in patients than controls and a
predictor of death or nonfatal MI.

(56)

Heart failure Plasma Cardio MPO test High plasma MPO independently predicted
the development of heart failure in
apparently healthy elderly subjects.

(99)

Peripheral artery
disease

Serum Solid-phase
sandwich ELISA

High MPO associated with low ankle-
brachial index and PAD independent of
CRP.

(6)

Obesity, cardiovascular
disease

Plasma Particle-enhanced
turbidimetric
immunoassay

MPO, IL-6, and TNF-a were higher in
obese than control children and
associated with higher cardiovascular
risk compared with control.

(74)

Chronic obstructive
pulmonary disease

Serum ELISA MPO increased in patients during acute
exacerbations and persisted for months
following acute illness.

(67)

Alzheimer’s disease Plasma Sandwich ELISA MPO positively associated with the
presence of Alzheimer’s disease,
correlated with Ab1-42/1-40 ratio, and may
potentially be an ideal biomarker for
Alzheimer’s disease.

(101)

Cognitive decline Plasma Sandwich ELISA Biomarkers of low-grade inflammation,
including MPO, and endothelial
dysfunction correlated with increased
vascular risk and reduced cognitive
ability in an older population.

(48)

aReferences are provided as supplementary information.
CBS, cardiac biomarker score; CVD, cardiovascular disease; IL-6, interleukin-6; MACE, major adverse cardiac event; MI, myocardial

infarct; MPO, myeloperoxidase; PAD, peripheral artery disease; PCR, polymerase chain reaction; TnT, troponin T.
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Prx2 is secreted via a nonclassical pathway by inflammatory
cells (151) independently of cell death (30) and is present in
the serum and synovial fluid of RA patients (168). Bayer et al.
(13) have shown in vivo that erythrocyte Prx2 undergoes a
transient overoxidation following lipopolysaccharide expo-
sure, and released Prx1/2 is present in the oxidized form (30,
151), suggesting that its redox state, not just its levels, can be
an early marker of oxidative stress.

Human serum Prx4 has also been proposed as a diagnostic
marker of oxidative stress in diabetes (1).

Nuclear factor (erythroid-derived 2)-like 2

The transcription factor NRF2 is considered a prognostic
biomarker in cancer. It is found constitutively and at very
high levels in biopsies of malignant tumors with high pro-
liferation rates and poor response to anticancer drugs. NRF2
is a master regulator of the antioxidant response that controls
the expression of about 250 genes. Some of these genes en-
code antioxidant enzymes, including those involved in syn-
thesis and use of GSH and Trx, or participate in metabolic
reactions that generate reductive power in the form of
NADPH. Others participate in phase II biotransformation
reactions and phase III external transport of toxins. Thus,
high and constitutive activity of NRF2 provides transformed
cells with a defense against the ROS that are generated during
active proliferation, while at the same time reducing the ef-
fective dose of certain anticancer drugs. To date, a prognostic

FIG. 10. Protein thiol-disulfide oxidoreductases regu-
late the redox state of protein thiols. Different thiol
compounds can be present under different redox states,
depending on the overall redox state of the cell, from the
more reduced (left) to more oxidized (right), and the sig-
nificance of a specific biomarker will depend on its intra-
cellular localization, tissue expression, and redox potential.

Table 6. Selected Clinical Studies on Specific Markers of MPO Activity in Different Diseases

Disease/
Condition Sample Method Observation Referencea

Acute myocardial
infarction

Plasma ELISA (MPO), HPLC
(3-Cl-Tyr)

Plasma MPO and 3 Cl-Tyr increased in
AMI, and AMI incidence increased
with higher MPO and 3-Cl-Tyr.

(26)

Coronary artery
disease, Acute
coronary
syndrome

Plasma, HDL Turbidimetric
immunoassay (MPO)
LC-MS/MS
(3 Cl-Tyr)

No difference in plasma MPO, but
increased 3-Cl-Tyr in HDL of subjects
with CAD/ACS. HDL-associated
3-Cl-Tyr may be a better biomarker of
CAD/ACS than plasma MPO.

(89)

CVD apoB-100 LC-MS/MS Different apoB-100-derived peptides with
modifications characteristic of active
MPO are present in humans with
increased risk for CVD.

(35)

Rheumatoid
arthritis

Synovial fluid ELISA (MPO),
LC-MS/MS
(3 Cl-Tyr)

MPO higher in patients than controls.
MPO protein 20-fold higher in synovial
fluid compared with plasma in RA.
3-Cl-Tyr detected in synovial fluid of
patients with rheumatoid arthritis.

(95)

Rheumatoid
arthritis

HDL MS/MS Subjects with RA have increased 3-Cl-Tyr
and Tyr-NO2 in HDL. MPO-mediated
HDL oxidation is regiospecific in RA
and further exacerbated with
cardiovascular disease.

(104)

Rheumatoid
arthritis,
Osteoarthritis

Synovial fluid Spectrophotometer
(a2M) and GC-MS
(3 Cl-Tyr)

a2M more oxidized and inactivated in RA,
and 3-Cl-Tyr elevated in RA compared
with OA.

(111)

Preterm infants Tracheal aspirate LC-MS/MS 3-Cl-Tyr concentration was elevated in
infants who developed chronic lung
disease or had lung infection.

(19)

aReferences are provided as supplementary material.
AMI, acute myocardial infarction; ACS, acute coronary syndrome; HDL, high-density lipoprotein.
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value of NRF2 has been reported for adenocarcinoma (79),
squamous cell carcinoma (75), colon (84), lung (196), and
breast cancer (129), among many others. NRF2 does not
initiate carcinogenesis, but potentiates tumor promotion or
metastasis. Somatic mutations in the NRF2 gene and in its
repressor, KEAP1, have been found in a large percentage of
human tumors, leading to constitutively increased NRF2
levels (68). Moreover, malignant transformation elicited by
some oncogenes such as KRAS (42) or loss of tumor sup-
pressor PTEN (142) leads to abnormally high levels of NRF2
protein and activity. Thus, analysis of NRF2 levels by either
immunoblot or qRT-PCR in tumor biopsies is becoming a
tool to clinically assess tumor malignancy.

NRF2 activity declines with age as well as in degenerative
disorders. Considering that NRF2 is being validated as an
antioxidant and immunomodulator target for diseases with an
autoimmune component or with low-grade chronic inflam-
mation, it will be necessary to develop reliable predictive
markers that help to monitor effective targeting. The most
significant advancement in development of these prospective
biomarkers has been in patients with chronic obstructive
pulmonary disorder. In a small cohort of these patients, it was
reported that dietary administration of sulforaphane-rich
broccoli sprout extract for two weeks enhanced the mRNA
levels of several NRF2-regulated genes in peripheral blood
mononuclear cells (67).

Downstream Functional Markers
of ROS-Induced Damage

The biomarkers described above are indicative of in-
creased ROS levels, either by increased formation or de-
creased removal. An alternative would be markers that reflect
oxidative stress downstream of the ROS-induced damage.
Ideally, this marker would be a direct risk factor so that its
modulation by therapeutic interventions would predict a
positive outcome. Two markers appear to qualify for this,
asymmetric dimethyl L-arginine (ADMA) and phosphory-
lated vasodilator-stimulated phosphoprotein (P-VASP).

Asymmetric dimethyl L-arginine

ADMA is a ubiquitous metabolite derived from protein
modification and degradation. Upon accumulation, it can in-
terfere with arginine metabolism and �NO formation by en-
dothelial �NO synthase (NOS) eNOS/NOS3 (182), and plasma
ADMA concentrations correlate with endothelial, kidney, and
erectile dysfunction (100), as well as heart failure (66). Plasma
ADMA concentrations are significantly associated with every
disease of the cardiovascular system, showing an independent,
strong prognostic value for mortality and future cardiovascular
events. However, non-CVDs with a possible deregulation of
NOS have not been studied in great detail. ADMA is either
excreted by cationic amino acid transporters that supply intra-
cellular NOS with its substrate, L-arginine, and then eliminated
by the kidney or metabolized to L-citrulline by NG-NG-
dimethylarginine dimethylaminohydrolase (DDAH) (171).
DDAH has an active site cysteine residue that can be a direct
target of oxidative or nitrosative modification (99), resulting in
the inhibition of ADMA degradation. Increased intracellular
ADMA levels may be the reason for the observed therapeutic
effects of L-arginine (153, 154) (see the accompanying ARS
FORUM review on Therapeutics).

Phosphorylated vasodilator-stimulated phosphoprotein

The best-established marker for physiological cyclic gua-
nosine monophosphate (cGMP) signaling is probably P-VASP.
It is phosphorylated mainly by cGMP-dependent protein ki-
nases (25), and lowered P-VASP levels are indicative of
pathological signaling (77, 110). This pathological signaling
can be brought about by oxidative stress, for example, through
scavenging of �NO by superoxide or direct oxidation of soluble
guanylate cyclase (sGC), both of which limit the level of sGC
activation and cGMP production (Fig. 2). However, in human
blood samples, for example, in platelets, P-VASP levels can be
utilized to establish the efficacy of (or detect nonresponders to)
antiplatelet drugs (57), to detect physiological responses to NO
donors and hence the presence of sGC (155), or to identify
pathological responses to sGC activators as an indirect assay of
increased oxidized/apo-sGC levels (2) (see the accompanying
ARS Forum review on Targets).

Conclusion

The markers discussed here have been studied in different
disease settings and with different rigor, ranging from meta-
analyses of several clinical studies to promising evidence in
preclinical studies (Table 7). However, even when the highest
evidence level is available, their specificity as a biomarker of
oxidative stress could be questionable, as in the case of oxLDL.
Oxidative stress likely plays a role in several diseases, yet very
few oxidative stress markers have made it into routine clinical
use, which may have several reasons. The properties of the ox-
idative modifications, such as the labile nature of cysteine
modifications, or their low abundance poses significant chal-
lenges to translate them into a high-throughput, cost-effective
clinical diagnostic. Stable oxidative modifications, such as pro-
tein carbonyls, certain lipid oxidation products, DNA/RNA ox-
idation, and 3-nitrotyrosine, certainly circumvent the first issue,
which likely contributes to some of their positive clinical find-
ings. Another limitation is methodology. While MS provides
sensitivity and specificity and has become more accessible,
antibody-based methods remain, for now, the clinical standard.
However, as we have seen, some of these methods fall short on
specificity, such as antibodies specific for oxLDL, and any new
antibody-based marker requires rigorous testing for specificity
and sensitivity. Other antibody-based methods, such as immu-
nohistochemistry, require tissues that are not commonly acces-
sible. Circulating cell harvesting methods may provide a future
solution to this. For a new biomarker to be established for clinical
use, it would also require additional benefit over established
clinical markers. Paradoxically, this additional value of oxidative
stress biomarkers may come from being indicators of a disease
mechanism common to several pathologies rather than diag-
nostic for a specific disease. Oxidative stress biomarkers may
help in identifying patient populations that benefit from certain
treatments, allowing patient stratification based on pathogenic
mechanisms rather than just disease severity, thus responding to
a specific request from regulatory agencies (47). On the other
hand, protein-specific modifications such as nitrotyrosine could
be disease-specific biomarkers of oxidative stress (Table 4).

Outlook

One way forward may be the analysis of oxidative stress
markers for specific proteins. Such markers might better
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represent an underlying specific disease mechanism and a
means for therapeutic monitoring and outcome prediction. In
addition, as many of the markers have been measured in
similar diseases, a combination of them in large-scale panels
and pattern analysis could provide an additional approach to
measure disease progression or therapeutic outcome (Fig. 3).
This will help overcome the problem of the fragmentation of
the literature in the field as different markers of oxidative
stress are measured in different diseases. Measurement of
larger panels of biomarkers in key conditions will help give a
more comprehensive picture of their significance. In parallel
with the exciting developments on ROS-validated targets and
clinical indications, those markers and patterns that correlate
best with treatment efficacy or mortality will eventually ad-
vance the field of ROS biomarkers, for example, in the form
of theranostic couples of a new drug comarketed with a di-
agnostic marker.
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3-Cl-Tyr¼ 3-chlorotyrosine
4-HNE¼ trans-4-hydroxy-2-nonenal

8oxodG¼ 7,8-dihydro-8-oxo-2¢-deoxyguanosine
8oxoGuo¼ 7,8-dihydro-8-oxo-guanosine

AA¼ arachidonic acid
ACS¼ acute coronary syndrome

AD¼Alzheimer’s disease
ADMA¼ asymmetric dimethyl L-arginine

AGEs¼ advanced glycation end products
AIDS¼ acquired immunodeficiency syndrome
AMI¼ acute myocardial infarction
ASD¼ autism spectrum disorders

AT1R¼ angiotensin receptor 1
BMI¼ body–mass index
CAD¼ coronary artery disease
CBS¼ cardiac biomarker score
CPB¼ cardiopulmonary bypass

cGMP¼ cyclic guanosine monophosphate
CHD¼ coronary heart disease
CKD¼ chronic kidney disease;
CML¼ carboxymethyl lysine
CO2¼ carbon dioxide
CRF¼ chronic renal failure
CRP¼C-reactive protein
CSF¼ cerebrospinal fluid

CVD¼ cardiovascular disease
DDAH¼NG-NG-dimethylarginine

dimethylaminohydrolase
DNP¼ 2,4-dinitrophenylhydrazine

eNOS¼ endothelial NOS
FC¼flow cytometry
GC¼ gas chromatography
Grx¼ glutaredoxin

GSH¼ glutathione
GSSG¼ oxidized glutathione
H2O2¼ hydrogen peroxide
HCC¼ hepatocellular carcinoma
HDL¼ high-density lipoprotein
HIV¼ human immunodeficiency virus

HOCl¼ hypochlorous acid
HPLC¼ high-performance liquid chromatography

IHC¼ immunohistochemistry
IL-6¼ interleukin-6

IS¼ ischemic stroke
IsoLG¼ isolevuglandins
IsoPs¼ isoprostanes

LC¼ liquid chromatography
LDL¼ low-density lipoprotein

MACE¼major adverse cardiac events
MCI¼myocardial infarction

MDA¼malondialdehyde
MI¼myocardial infarct

MPO¼myeloperoxidase
MS¼mass spectrometry
NO¼ nitric oxide

NOS¼NO synthase
NOX¼NADPH oxidase

NRF2¼ nuclear factor (erythroid-derived
2)-like 2

NRP¼ nonradical product
OA¼ osteoarthritis

ONOOCO2¼ nitrosoperoxocarbonate
oxLDL¼ oxidized LDL
OxRed¼ oxidoreductases

PAD¼ peripheral artery disease
PC¼ protein carbonyls

PCI¼ percutaneous coronary intervention
PCOS¼ polycystic ovary syndrome

PCR¼ polymerase chain reaction
PDGF¼ platelet-derived growth factor

PSE¼ post-stroke epilepsy
P-VASP¼ phosphorylated vasodilator-stimulated

phosphoprotein
Pr-SS-G¼ protein mixed disulfide

PrCarb¼ protein carbonyls
Prx¼ peroxiredoxin

PUFA¼ polyunsaturated fatty acids
qRT-PCR¼ quantitative real time polymerase

chain reaction
RA¼ rheumatoid arthritis

RBC¼ red blood cell
RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species
SAF¼ skin autofluorescence
sGC¼ soluble guanylate cyclase
SLE¼ systemic lupus erythematosus

SODs¼ superoxide dismutases
sRAGE¼ secreted receptor for AGE

T1D¼ type 1 diabetes
T2D¼ type 2 diabetes

TBARS¼ thiobarbituric acid reactive substances
TNF¼ tumor necrosis factor
TnT¼ troponin T
Trx¼ thioredoxin

Tyr-NO2¼ nitrotyrosine
u-eNOS¼ uncoupled eNOS

UPLC¼ ultra performance LC
XDH¼ xanthine dehydrogenase

XO¼ xanthine oxidase
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