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Abstract: Nucleic acid aptamers are emerging as useful molecular recognition tools for 

food safety monitoring. However, practical and technical challenges limit the number and 

diversity of available aptamer probes that can be incorporated into novel sensing schemes. 

This work describes the selection of novel DNA aptamers that bind to the important food 

contaminant ochratoxin A (OTA). Following 15 rounds of in vitro selection, sequences 

were analyzed for OTA binding. Two of the isolated aptamers demonstrated high affinity 

binding and selectivity to this mycotoxin compared to similar food adulterants. These 

sequences, as well as a truncated aptamer (minimal sequence required for binding),  

were incorporated into a SYBR® Green I fluorescence-based OTA biosensing scheme.  

This label-free detection platform is capable of rapid, selective, and sensitive OTA 

quantification with a limit of detection of 9 nM and linear quantification up to 100 nM. 
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1. Introduction 

Ochratoxins are a group of mycotoxins produced by several fungal species of the genera 

Aspergillus and Penicillium [1]. Ochratoxin A (OTA), N-[(3R)-(5-chloro-8-hydroxy-3-methyl-1-oxo-

7-isochromanyl)carbonyl]-L-phenylalanine (Mw = 403.81 g/mol), is the most prevalent of this group and 

is considered one of the most important fungal toxic secondary metabolites in food safety regulation. 

While it has been widely studied since its discovery in 1965 [2], public awareness of this mycotoxin  

has recently increased [3]. Extensive toxicity studies suggest that OTA is immunosuppressive [4], 

teratogenic [5], impairs blood coagulation [6], and affects glucose metabolism [7]. In particular, OTA 

is known for its nephrotoxicity in all animal species tested [8], and has been classified as a possible 

human carcinogen [9]. Several food products, such as beer, wine, nuts, liquorice, coffee, cocoa, meat, 

and spices, are susceptible to OTA contamination [2]. However, the occurrence of OTA in cereals, 

such as wheat, barley, corn, oats, and rye, is of primary concern due to the importance of these cereals 

in our diet. Unlike crops contaminated with other mycotoxins, OTA contamination does not result in 

any observable physical damage. As a result, regulatory limits (2 to 15 µg/kg for solid matrices) have 

been established [10] and careful monitoring and testing of food and food products is essential. 

Typical OTA detection methods make use of chromatographic techniques. In particular high 

performance liquid chromatography-fluorescence detection (HPLC-FD) [11] has been adopted as an 

official method. However, significant resources and efforts have been dedicated towards modify  

these techniques and developing new detection methods for improved cost, speed, and detection  

sensitivity. Sensing platforms, such as capillary electrophoresis, solid-phase extraction–liquid  

chromatography–electrospray tandem mass spectrometry, and solid-phase microextraction–liquid 

chromatography–fluorescence detection, have been developed. Among many of these detection 

methods, a toxin-specific antibody is frequently applied as a molecular recognition agent [12]. 

Aptamers are single-stranded nucleic acid-based molecular recognition probes that can bind to a 

variety of target ligands with high affinity and selectivity. Selected via an in vitro selection procedure 

known as Systematic Evolution of Ligands by EXponential enrichment (SELEX) [13,14], aptamers  

offer several advantages over antibodies including long-term stability and low-cost of production. 

Additionally, aptamers can be readily modified with an assortment of reporter molecules and other 

chemical probes with minimal consequence to their binding properties. This has enabled their facile 

integration into a diverse set of biosensing and therapeutic platforms [15]. Despite the promise of 

aptamers as biosensors and the advantages they pose over antibodies, relatively little work has been done 

in aptamer-related food safety testing [16]. This is most likely due to the technical challenges implicated 

with aptamer selection and characterization, particularly with small molecules [17]. As a result, only a 

handful of aptamers exist for antibiotics, adulterants, toxic metals, and pesticides related to food [18]. 

Furthermore, the majority of these select aptamers have not been used for food-related testing. 
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One of the most promising demonstrations of food-safety related aptamers include the previously 

developed aptamers for the mycotoxin OTA. The first described OTA aptamer was selected using 

conventional SELEX strategies by Cruz-Aguado and Penner in 2008. The minimal aptamer sequence, 

1.12.2, is 36 nucleotides in length and binds to OTA with a reported dissociation constant of  

200 nM [19]. While only limited structural studies have been performed on this aptamer, the high 

guanine incidence (47%) suggests it folds into a G-quadruplex [20], a structure commonly observed 

with DNA aptamers [21]. In 2011, Barthelmebs et al. selected two additional novel OTA-binding 

aptamers that displayed nanomolar binding affinity to the toxin [22]. While these sequences shared two 

conserved sequences with aptamer 1.12.2, they were isolated under a completely different in vitro 

selection conditions. 

While there are numerous challenges associated with the selection and application of small-molecule 

aptamers [17], the restrictions posed by sequence, structure, and binding conditions associated with 

each selected aptamer may cause compatibility issues with a given sensing platform of choice. 

Therefore, having a diverse toolset of aptamer probes to choose from for a given target may be useful 

for the development of novel biosensing schemes. Since practical and technical considerations limit 

the number of random sequences that can be applied to a selection, the sequence space is substantially 

unrepresented. Typically, only one of every 108 possible sequences can be sampled in a typical SELEX 

experiment [23]. As a result, there is precedent for researchers to perform new selections on targets for 

which aptamers already exist, particularly using different selection conditions and strategies. 

To date, the OTA aptamers have proven their utility in a variety of OTA purification and sensing 

technologies. For purification purposes, there are several reports demonstrating the immobilization of 

OTA aptamers to agarose and sepharose resins for OTA clean-up from food samples [24,25]. These 

aptamer-based clean-up strategies perform similarly to the commonly-used immunoaffinity columns 

but have an improved shelf-life. For sensing purposes, OTA aptamers have been frequently integrated into 

optical-based biosensors for example fluorescent [20,26–30], colorimetric [31,32], and luminescent [33] 

platforms. High sensitivity OTA detection has also been achieved with many electrochemical-based 

aptasensors, with detection limits as low as pg/mL [34–42]. Regardless of their promise, many of these 

methods require direct labeling with fluorescent or electrochemical probes which results in increased 

cost of synthesis or possible interference with aptamer folding and target binding. 

Label-free strategies, such as those where there is an enhancement in the fluorescence intensity of  

a dye by intercalation with an aptamer, have been demonstrated several times with a variety of aptamer 

targets. For example, 4',6-diamidino-2-phenylindol (DAPI) [43], SYBR Green I (SG) [44], Malachite 

green [43,45], crystal violet [46], and OliGreen [47] have all been incorporated into aptasensors due  

to their ability to exhibit enhanced fluorescence after binding with aptamers. The majority of these 

biosensing applications exclusively use well-studied aptamers as proof-of-concept studies that bind to 

targets such as dyes and ATP. 

In this work, we investigated the possibility of selecting novel DNA aptamers for OTA. The 

successful selection strategy, aptamer candidate screening, binding characterization and initial aptamer 

truncation is described. We then investigated whether aptamers from this selection could be successfully 

incorporated into a novel OTA biosensing platform utilizing SG as a DNA intercalator dye. The 

sensitivity range and selectivity of this assay are reported. The results suggest that this sensing scheme 

may be valuable in the development of low cost, portable assays for future OTA testing. 
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2. Results and Discussion 

2.1. Selection of OTA Aptamers 

Though aptamers were first isolated over two decades ago, very few have been developed that bind 

to small molecule targets. Practically, SELEX is a laborious, low-throughput procedure with a low 

success rate. Many changes have been implemented to the original selection method to improve selection 

success and the resulting aptamers. This has been made particularly evident in re-selection experiments 

that have resulted in the discovery of novel high affinity aptamers for the same targets [48]. Performing 

new selections and developing multiple probes for the same target also offers a unique opportunity to 

investigate sequence consensus motifs, structure-function relationships, and selection strategy success 

rates. In particular, this has yet to be explored with small molecule aptamers as their selection is much 

less prevalent than for proteins and cells [17]. 

In this work, fifteen rounds of selection were performed while gradually increasing the stringency 

of selection conditions. While a specific correlation between the number of selection rounds performed 

and the binding affinity of the selected aptamers has not been demonstrated, studies have shown that 

using less target-modified resin, and, therefore, less target, drastically increases the success of the 

selection and often results in higher affinity aptamers [21,49]. Conventional cloning and sequencing 

after round 15 of the OTA selections yielded several G-rich sequences. Interestingly, the previously 

reported OTA selections were performed with 13 and 14 iterative rounds and also resulted in G-rich 

sequences. Although the high contents of G are common in DNA aptamers [21,50], the consistent 

enrichment of G-rich sequences suggests that the target OTA may have an affinity towards G-rich 

motifs. Future work may investigate the evolution of aptamer libraries to determine if number of 

selection rounds required is a property of the target on which the selection is performed. Aptamers A08 

and B08 (see Table 1) were present multiple times in the sequenced library, thus these aptamers were 

synthesized for further analysis. Despite the selection parallels (number of rounds and G-content 

present in the final library), these particular sequences did not show any sequence similarity with 

previously selected OTA aptamers H8 and H12 [22] or 1.12.2 [19] with the exception of a single 

GTGGG present in all sequences. 

The secondary structure predictions for the full-length aptamer sequences including, the primer 

binding regions of A08 and B08, were generated with RNA secondary structure analysis software [51]. 

The structures with the lowest minimum free energy are presented in Figure 1. Each predicted 

structure indicates two or three stem-loop motifs commonly found with in vitro selected aptamers [52]. 

The sequence and structure of these two clones are not similar, supporting that there are several 

possible aptamers that bind OTA. A high incidence of guanine residues is present in both. The high 

incidence of guanine residues is usually characteristic of G-quadruplexes, however, G-quadruplex 

structures cannot be predicted using this software. Furthermore, QGRS Mapper [53] does not predict 

high confidence quadruplexes with these sequences. While there is some limited sequence similarity 

with the 1.12.2 aptamer that is predicted to fold into a G-quadruplex, our preliminary melting 

temperature analysis of these sequences at 295 nm did not show the characteristic signature of a  

G-quadruplex structure [54] (see Figure S1). 
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Table 1. The putative aptamer sequences (of the random N40 region) selected following  

15 rounds of Systematic Evolution of Ligands by EXponential enrichment (SELEX). For 

clarity, guanine residues are italicized and the sequence motif GTGGG is underlined. 

Aptamer 5'-AGCCTCGTCTGTTCTCCC-N40-GGGAAGACAAGCAGACGT-3' 
A08 GGCAGTGTGGGCGAATCTATGCGTACCGTTCGATATCGTG 
B08 GGCGCATGATCATTCGGTGGGTAAGGTGGTGGTAACGTTG 

Figure 1. Secondary structure of OTA aptamers predicted by RNAstructure folding 

software [51] and rendered using VARNA software [55]. 

 

2.2. Measuring Aptamer Affinity with a Magnetic Beads-Based Isocratic Elution Assay 

Measuring aptamer binding affinity (KD), determining the minimal aptamer structure, assessing 

target selectivity, and performing structure determination are low-throughput processes. Due to the 

high failure rate of small molecule aptamer selection, performing an initial screen of the selected 
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putative aptamer clones to confirm successful binding to the target of interest is prudent. A screening 

step to further assess the relative target-binding properties of aptamers under various conditions is also 

a useful strategy for advancing the throughput of the aptamer selection workflow. We screened several 

aptamer candidates and binding conditions using a one-point equilibrium dialysis assay that was 

previously used with OTA aptamers [19]. While some information from this assay was valuable  

(see Supplementary Information), measured KD values resulted in large variation (see Table S1, 

standard deviations between 60% and 160% from the average KD calculated from three or more trials). 

As a result, better affinity methods were required to characterize these aptamers. 

Affinity measurements were next attempted using an isocratic elution method with OTA-modified 

magnetic beads as the solid support. Typically, affinity measurements whereby the target is 

immobilized can be problematic as non-specific attachment to the support can confound affinity 

measurements [56]. A magnetic bead support was therefore chosen for this work in order to minimize 

this possibility, as the selections for the aptamers were performed using a sepharose resin. This 

strategy has been successfully applied in a similar small molecule aptamer selection [57]. Furthermore, 

amino groups remaining on the magnetic bead surface after OTA immobilization were capped with 

acetate groups to minimize non-specific electrostatic binding.  

We first validated this method for measuring aptamer affinity, using the well-characterized OTA 

aptamer 1.12.2 [19] (see Figure S2). This aptamer is reported to bind OTA with a KD of 200 nM.  

A concentration series of 5'-labelled fluorescein aptamer was incubated with the OTA-derivatized 

beads. A KD of 370 ± 250 nM was determined, consistent with previous reports. 

The deviation of the affinity measurements obtained with this assay (standard deviations between 

45% to 68% from the average KD calculated using three trials) is not uncommon with this type of 

affinity method (see [21,56] for example) and is one of the weaknesses of this assay. This highlights 

one of the main challenges in small molecule aptamer development and supports the need for 

developing novel, rapid, and scalable methods for aptamer affinity characterization. While other 

reported techniques may produce more precise measurements, they are typically not broadly applicable 

to small molecule aptamers [17]. Other methods, such as SPR-based platforms, are scalable and 

accurate, but often require expensive equipment [58]. However, measuring affinity of the selected 

OTA aptamers with the magnetic beads assay was suitable for our needs and provided the necessary 

information required to incorporate these sequences into biosensing platforms. 

The average KD values from three trials, with the corresponding standard deviation values, can be 

found in Table 2 (binding isotherms are available as Supplementary Information, Figures S2–S4). 

Despite the differences in selection strategies, conditions, structure, and sequences, our newly selected 

A08 and B08 aptamers have binding affinities comparable to all previously selected OTA aptamers. 

This supports the hypothesis that aptamer binding is dependent on target features such as size and 

available functional groups [59]. Based on these results, both selected aptamers were further evaluated 

in the SG fluorescence assay. 
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Table 2. Dissociation constants for the magnetic beads assay were obtained using a simple 

ligand binding fit. Values are reported as the average of at least three trials +/− std. dev. 

Binding isotherms are available as Supplementary Information, Figures S2–S4. 

Aptamer KD (nM) 
1.12.2 370 ± 250 
A08 290 ± 150 
B08 110 ± 50 

2.3. SYBR Green I Assay 

2.3.1. Principle of Assay 

SYBR Green I (SG), N',N'-dimethyl-N-[4-[(E)-(3-methyl-1,3-benzothiazol-2-ylidene)methyl]-1-

phenylquinolin-1-ium-2-yl]-N-propylpropane-1,3-diamine interacts with double stranded DNA through 

intercalation and binding to the minor groove [60]. Upon binding, fluorescence is significantly 

enhanced. SG-based assays have been used successfully for the quantification of nucleic acids [61],  

for real-time PCR [62], in flow cytometry [63], and imaging [64]. More recently, the fluorescent 

properties of SG and the binding properties of aptamers have been coupled to develop label-free 

assays. In these proof-of-concept designs, the thrombin and ATP aptamers were employed [44,65–67]. 

Incubation of these aptamers with SG, as expected, resulted in enhanced emission of green light upon 

excitation with blue light. When the cognate targets of each aptamer were incubated with the aptamer-SG 

complexes, the target preferentially bound to the aptamer, competing for SG binding positions. As a 

result, SG emission decreased. We tested whether our newly selected aptamers would be suitable for 

this strategy and consequently allow label-free biosensing of OTA. A schematic of our OTA label-free 

sensing scheme is shown in Figure 2. 

Figure 2. SYBR Green I fluorescence-based OTA aptasensing scheme. In the presence of the 

aptamer, SG fluoresces at 520 nM, due to intercalation and other hydrophobic interactions 

with the DNA aptamer. Increasing concentrations of the aptamer target (OTA in this assay) 

causes a displacement of SG, and a concentration-dependent loss of emitted fluorescence. 

 

X

aptamer SYBR 
Green I

target

497 nM 520 nM



Toxins 2014, 6 2442 

 

 

2.3.2. Biosensing of OTA 

Figure 3 shows the results of the SG-based assay. OTA, SG, and DNA alone do not contribute to any 

fluorescence signal from 500 to 600 nm. Furthermore, combining OTA and SG or OTA and aptamer 

does not result in any measureable signal (panel A). Upon excitation at 497 nm, maximal fluorescence 

emission occurs only when DNA and SG are combined (panel B). Non-specific control DNA that 

displays no binding to OTA shows no response with increased concentrations of OTA (panel B). 

However, when the validated OTA-binding aptamers are used in the assay, a concentration dependent 

decrease in fluorescence is observed with the addition of incremental concentrations of OTA.  

Figure 3. The SG-based label-free assay (A) Aptamer A08, OTA, SG, and SG with OTA 

show no fluorescence from 500–600 nm; (B) Combining DNA and SG results in significant 

emission at 520 nm. A non-specific DNA control does not respond to the addition of OTA; 

(C–E) The A08, B08 and A08 minimer aptamers selected in this experiment display 

enhanced fluorescence when incubated with SG. Upon the addition of OTA, a concentration 

dependent loss of fluorescence is observed; (F) The A08 minimer-based sensor has a linear 

response between 9 and 100 nM (y = 4.89 × 106x; R2 = 0.991). 
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Both aptamers A08 and B08 demonstrated this concentration dependent decreases; however, A08 

resulted in a greater response to OTA (panel C and D). Therefore, we also tested a truncated version of 

the A08 aptamer (primer binding regions removed) in an effort to reduce the cost of the sensor.  

This A08- mini aptamer performed similarly to its full-length parent (panel E). 

When the fluorescent signal is normalized from the blank (i.e., no target added), a concentration 

dependent linear relationship can be plotted. The normalized linear plot for the minimal aptamer  

A08 with OTA is displayed in Figure 3 (panel F). The biosensor performance was assessed with the 

normalized fluorescence signal, which was determined at 520 nm using Equation 1 (in Experimental 

Section). The A08 minimer can thus be used to detect OTA up to 100 nM, with a limit of detection 

(LOD) [68] of 9 nM (3.6 ppb). 

We next assessed the selectivity of this assay against similar toxins. While the selected aptamers 

display high affinity for OTA, previous reports have demonstrated that affinity and selectivity are not 

necessarily related [69]. All aptamers were tested with OTB and warfarin. OTB in particular, differs 

from OTA by only a single chloro group. All aptamers displayed preferred recognition towards OTA 

at both low (30 nM) and high (100 nM) concentrations of target. However, B08 resulted in only 

modest selective detection of OTA (2–3 fold signal compared to OTB and warfarin). Both A08 and its 

minimer resulted in 6–10 fold enhanced signal of OTA compared to OTB and 30–40 fold improvement 

compared to warfarin (Figure 4). Comparing the structures of these compounds, it is not surprising that 

this biosensor shows modest response to OTB but negligible response to warfarin. OTB differs from 

OTA by a single chloro group but warfarin replaces the phenylalanine group of OTA with a simple 

phenyl. While antibodies may not necessarily distinguish between these subtle differences in structure, 

there are numerous examples of aptamers being able to recognize such variation. The selectivity trend 

we observed is very similar to that found with the original OTA aptamer [19]. 

Figure 4. Selectivity of the SG aptamer biosensor at 30 and 100 nM concentrations of  

targets. The sensor is more sensitive to the target OTA compared to similar compounds. 

All the fluorescence spectra for the aptamers with these three targets are available as 

Supplementary Information (Figures S5–S7). 
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Using the magnetic beads assay, the B08 aptamer sequence displayed higher affinity towards OTA 

compared to A08, however, B08 performed relatively poorly in the SG biosensor platform. One 

possibility is that this particular aptamer is not well suited for this sensing scheme. The B08 binding 

kinetics may not be sufficient to compete with SG. Alternatively, the OTA binding pocket may not 

undergo conformational change, and, thus, does not affect SG intercalation and binding. The other 

possibility is that B08 interacts non-specifically with the magnetic beads or prefers a linker-modified 

OTA molecule. 

The SG-based biosensor platform presents several advantages compared to other mycotoxin detection 

methods. This assay was rapid, quantitative, inexpensive, and label-free. In particular, the implementation 

of a DNA sensor component as opposed to antibody-based detection, reduces the costs, and improves 

the shelf-life of this assay compared to most current mycotoxin clean-up and analytical methods. 

Development of this assay was an important step towards the realization of inexpensive, robust, and 

innovative detection technology and may be the solution to the limitations of the existing mycotoxin 

detection techniques.  

3. Experimental Section 

3.1. Materials 

Buffers were prepared with Millipore Milli-Q deionized water at 18 MΩ. Buffering agents, salts,  

N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), OTA from Petromyces 

albertensis ≥98% (TLC), warfarin, and SG (10,000×) were purchased from Sigma-Aldrich (St. Louis, 

MO, USA). OTB was purchased from Santa Cruz Biotechnology (Dallas, TX, USA). All molecular 

biology grade electrophoresis chemicals were purchased from BioShop Canada (Burlington, ON, 

Canada). EAH sepharose 4B was obtained from GE-Healthcare (Uppsala, Sweden). The streptavidin 

coated high-binding capacity plate was purchased from Thermo Fisher Scientific (Rockford, IL, USA). 

The DNA Taq polymerase, PCR components, and Dynabeads® M-270 Amine were purchased from 

Life Technologies (Carlsbad, CA, USA). A p-GEM-T-easy vector by T/A cloning kit was received 

from Promega (Madison, WI, USA). Phosphoramidites, modifiers, activator, deblock, capping, and 

oxidizing reagents were obtained from Glen Research (Sterling, VA, USA). Standard support columns 

and acetonitrile were purchased from BioAutomation (Plano, TX, USA). Ultra High Purity 5.0 argon 

was purchased from Praxair Canada (Mississauga, ON, Canada). Sulfo-NHS acetate, Amicon-Ultra  

0.5 mL 3 kDa centrifuge units were purchased from Fisher Scientific Canada (Ottawa, ON, Canada). 

UV/Vis absorption spectra were obtained using a Cary 300 Bio UV-Visible spectrophotometer 

(Varian, Palo Alto, CA, USA) and fluorescence was measured with Fluorolog Fluorescence 

Spectrophotometer with a SpectrAcq controller (Horiba Jobin Yvon, Edison, NJ, USA). 

3.2. OTA SELEX Experiments 

3.2.1. Preparation of OTA Resin 

OTA was coupled to EAH Sepharose 4B according to manufacturer’s protocol. Briefly, a 5 mM 

solution of OTA in deionized water was prepared and adjusted to a pH of 4.5. The OTA solution was 
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mixed with sepharose at a 1:1 v/v ratio. 0.1 M of EDC was prepared in water with the pH adjusted  

to 4.5 and added to the OTA and sepharose mixture. The reaction was incubated at room temperature 

for 4 h with gentle shaking. After the first three hours, the pH was again adjusted to 4.5. After the 

incubation period, the gel matrix was washed with three cycles of alternating washes consisting of  

0.1 M acetate buffer pH 4.0 containing 0.5 M NaCl and 0.1 M Tris-HCl buffer pH 8 containing  

0.5 M NaCl. The OTA resin was stored at 4 °C until use. 

3.2.2. SELEX Library 

The oligonucleotide library was synthesized at 1 µmol scale and purified using RP-HPLC 

(Metabion, Martinsried, Germany). This library was composed of 40 random nucleotides flanked  

by two fixed regions. 5'-AGCCTCGTCTGTTCTCCC-N40-GGGAAGACAAGCAGACGT-3'.  

The forward primer, SELF, 5'-AGCCTCGTCTGTTCTCCC-3', and reverse primer, SELR, 5'-BIOTIN-

ACGTCTGCTTGTCTTCCC-3', were also synthesized and prepared for the selection procedure. 

3.2.3. In Vitro Selection 

SELEX was performed as described by Murphy et al. with a few modifications [70]. The SELEX 

library (1 nmol) was dissolved in and 0.05% Triton-X and selection buffer (SB) containing 10 mM 

Na2HPO4, 2 mM KH2PO4, 2.7 mM KCl, 137 mM NaCl, pH 7.4. This library was incubated with 10 µL 

of the prepared OTA resin at room temperature for one hour. The resin was washed three times with 

the SB to eliminate non-specifically bound sequences. The putative aptamers were then eluted using  

10 µL of 50 mM NaOH and purified using a phosphate buffered saline (PBS)-equilibrated desalting 

column then transferred directly to the PCR reaction.  

The 100 µL PCR reaction mixture contained 10 µL of 10× reaction buffer, 1.5 units of Taq polymerase, 

1 µM of the two primers (SELF and biotinylated SELR), 0.8 mM of each deoxyribonucleotides (dNTPs) 

and 1.5 mM MgCl2. Amplification was performed by heating to 95 °C for two minutes followed by  

18 cycles of 30 s at 95 °C, 30 s at 56 °C and 30 s at 68 °C, followed by a final extension at 68 °C for 

two minutes. After checking the PCR product quality on 2.5% agarose gel, 23 µL of 5 M NaCl was 

added to the remaining 90 µL PCR mixture. This solution was divided into two parts and incubated 

with a Reacti-Bind streptavidin coated high-binding capacity plate and washed three times with 1 mL 

of PBS-Tween. The nonbiotinylated strands were separated from the immobilized complementary 

strand by incubating with a 30 µL of fresh 100 mM NaOH for five minutes. The ssDNA was removed, 

diluted using SB, pH adjusted, and heated to 95 °C for five minutes and immediately placed on ice 

until the next round of SELEX. 

10 µL of the OTA resin was used in cycles one through seven. To increase the stringency of 

selections, only 5 µL of OTA resin was used in cycles 8 through 11, and 2.5 µL in cycles 12 through 15. 

Negative selections were performed using unmodified EAH Sephadex 4B prior to cycles 4, 8, and 12. 

Following cycle 15, the final PCR of the selected ssDNA sequences was performed using the  

SELF and nonbiotinylated SELR primers. A fraction (4 µL) of this PCR mixture was ligated into  

p-GEM-T-easy vector by T/A cloning and transformed into DH5α Escherichia coli competent cells. 

Twenty-one colonies were selected and tested for the presence of the correct inserts using colony PCR 



Toxins 2014, 6 2446 

 

 

with M13 forward and reverse primers. The PCR products were purified by polyethylene glycol 

precipitation and sequenced using the M13 promoter primer [71].  

3.3. Oligonucleotides 

The following table lists the DNA sequences used in the aptamer characterization and biosensor assays. 

3.4. Characterization of OTA Aptamers 

3.4.1. Aptamer Synthesis 

Aptamer sequences A08, B08, A08 minimer, 1.12.2, and the non-specific control DNA (see Table 3) 

were synthesized unmodified or 5'-fluorescein labelled (6-FAM, Glen Research, Sterling, VA, USA) 

using standard phosphoramidite chemistry on a MerMade 6 (Bioautomation, Plano, TX, USA). DNA 

was purified with a denaturing polyacrylamide gel electrophoresis (12%) followed by clean-up with 

Amicon YM-3 Centrifugal Filter Devices (Fisher Scientific Canada, Ottawa, Canada). Sequence 

synthesis was verified through molecular weight verification using electrospray ionization (ESI) mass 

spectrometry (Novatia LLC, Monmouth Junction, NJ, USA). 

Table 3. DNA oligonucleotides used in the aptamer characterization and biosensor study. 

Aptamer Sequence 5' to 3' 

A08 
AGCCTCGTCTGTTCTCCCGGCAGTGTGGGCGAATCTATGCGTAC

CGTTCGATATCGTGGGGAAGACAAGCAGACGT 

B08 
AGCCTCGTCTGTTCTCCCGGCGCATGATCATTCGGTGGGTAAG

GTGGTGGTAACGTTGGGGAAGACAAGCAGACGT 

A08 minimer GGCAGTGTGGGCGAATCTATGCGTACCGTTCGATATCGTG 

1.12.2 GATCGGGTGTGGGTGGCGTAAAGGGAGCATCGGACA 

Non-specific control AGCACGTTGGTAGGTCGGTTTGGGTTTCGTGC 

3.4.2. Magnetic Beads Binding Assay 

3.4.2.1. Conjugating OTA to Magnetic Beads 

1 mL aliquots of amino-modified magnetic beads were magnetically separated using a DynaMag-2 

magnet with approximately 10 min of incubation before the supernatant was removed and discarded. 

The beads were then washed three times using 0.1 M MES buffer (pH 4.5). Freshly prepared 1 M EDC 

(0.5 mL) and 1 mL of 60 µM OTA were added to the beads and incubated for 2 h at room temperature. 

The solution was magnetically separated from the beads and the amount of unbound OTA was 

measured using fluorescence to confirm successful conjugation. The beads were then washed twice 

with 0.1 M sodium bicarbonate buffer (pH 8.5). A 1 mL aliquot of freshly-prepared solution of  

sulfo-NHS acetate (0.05 M) was then reacted with the beads for 2 h to block any unreacted amine 

groups. Before storage, the beads were washed three times with 1.0 M tris buffer (pH 7.4) and three 

times with selection buffer.  
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3.4.2.2. Determining Dissociation Constants with a Magnetic Beads-Based Isocratic Elution Method 

A series of 5' fluorescein modified aptamer concentrations ranging from 8 nM to 1 µM were heated 

to 90 °C for five minutes then cooled on ice. 90uL aliquots of OTA derivatized beads were separated 

on the DynaMag-2 and washed three times with SB. 90 µL of each aptamer dilution were incubated 

with the beads for 1 h. The supernatant was discarded and unbound aptamer was removed with  

four washes with SB. Bound DNA was then eluted with SB and heating at 90 °C for ten minutes.  

The supernatant was collected and filtered to remove any remaining beads that often impair the 

fluorescence background measurements. The elution step was repeated to ensure complete recovery of 

bound DNA and pooled. The fluorescence of eluted DNA for each aptamer dilution was measured 

(excitation λ = 490 nm; emission λ = 520 nm) using the Fluorolog Fluorescence Spectrophotometer 

(Horiba Jobin Yvon, Edison, NJ, USA). The average fluorescence was plotted against aptamer 

concentration in Sigma Plot (Version 12.5; Systat, San Jose, CA, USA) and fit using a simple ligand 

binding equation to determine the KD. The experiment was performed three times.  

3.5. Biosensing of OTA with the SG Assay 

Each aptamer, SG and OTA dilutions were prepared in SB. First, aptamer was heated to 90 °C for five 

minutes and cooled to room temperature before use. 4 µL of SG (1×) and 4 µL of aptamer (10 µM)  

were mixed together. A range of OTA, OTB or warfarin concentrations varying from 0 to 0.18 µM 

were prepared in SB and added directly to the SG-aptamer mixture to a final volume of 125 µL. The 

fluorescence emission spectra were recorded from 500 to 650 nm using an excitation wavelength of 

497 nm. The fluorescence at 520 nm was used to calculate the biosensor signal using Equation (1), 

where Fθ is the fluorescence intensity in the absence of OTA and F is the fluorescence intensity at  

a given concentration of OTA. 

݁ݏ݊ݏܴ݁ ൌ
ܨ െ ܨ
ܨ

 (1)

4. Conclusions  

A new selection, using slightly more stringent conditions, was performed against OTA to isolate 

improved binding motifs for this target. Several unique sequences were elucidated from this selection 

revealing one short consensus sequence and a clear relationship between G-rich motifs and OTA 

affinity. Characterization revealed that the sequences bind to OTA with an apparent KD in the 

nanomolar range, displaying similar binding properties with all other reported OTA aptamers. Finally, 

the aptamers were successfully incorporated into the first SG-based biosensing platform allowing 

label-free OTA quantification. This method was efficient, sensitive and displayed excellent selectivity 

against OTB and warfarin. This scheme may be exploited in the development of portable assays, which 

would allow rapid OTA detection in food samples directly in the field. 
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