

This is a peer-reviewed, post-print (final draft post-refereeing) version of the following published document and is licensed under All Rights Reserved license:

Loisel, J. and Yu, Z. and Beilman, D. W. and Camill, P. and Alm, J. and Amesbury, M. J. and Anderson, D. and Andersson, S. and Bochicchio, C. and Barber, K. and Belyea, L. R. and Bunbury, J. and Chambers, Frank M and Charman, D. J. and De Vleeschouwer, F. and Fia kiewicz-Kozie, B. and Finkelstein, S. A. and Ga ka, M. and Garneau, M. and Hammarlund, D. and Hinchcliffe, W. and Holmquist, J. and Hughes, P. and Jones, M. C. and Klein, E. S. and Kokfelt, U. and Korhola, A. and Kuhry, P. and Lamarre, A. and Lamentowicz, M. and Large, D. and Lavoie, M. and MacDonald, G. and Magnan, G. and Makila, M. and Mallon, G. and Mathijssen, P. and Mauguoy, D. and McCarroll, Julia and Moore, T. R. and Nichols, J. and O'Reilly, B. and Oksanen, P. and Packalen, M. and Peteet, D. and Richard, P. J. and Robinson, S. and Ronkainen, T. and Rundgren, M. and Sannel, A. B. K. and Tarnocai, C. and Thom, T. and Tuittila, E.-S. and Turetsky, M. and Valiranta, M. and van der Linden, M. and van Geel, B. and van Bellen, S. and Vitt, D. and Zhao, Y. and Zhou, W. (2014) A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene, 24 (9). pp. 1028-1042. ISSN 0959-6836

Official URL: http://dx.doi.org/10.1177/0959683614538073 DOI: http://dx.doi.org/10.1177/0959683614538073 EPrint URI: http://eprints.glos.ac.uk/id/eprint/2504

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

This is a for peer-review, pre-print version of the following published document:

Loisel, J. and Yu, Z. and Beilman, D. W. and Camill, P. and Alm, J. and Amesbury, M. J. and Anderson, D.and Andersson, S. and Bochicchio, C. and Barber, K. and Belyea, L. R. and Bunbury, J. and Chambers, Frank M and Charman, D. J. and De Vleeschouwer, F. and Fia kiewicz-Kozie, B. and Finkelstein, S. A.and Ga ka, M. and Garneau, M. and Hammarlund, D. and Hinchcliffe, W. and Holmquist, J. and Hughes, P. and Jones, M. C. and Klein, E. S. and Kokfelt, U. and Korhola, A. and Kuhry, P. and Lamarre, A. and Lamentowicz, M. and Large, D. and Lavoie, M. and MacDonald, G. and Magnan, G. and Makila, M. and Mallon, G. and Mathijssen, P. and Mauquoy, D. and McCarroll, J. and Moore, T. R. and Nichols, J. and O'Reilly, B. and Oksanen, P. and Packalen, M. and Peteet, D. and Richard, P. J. and Robinson, S. and Ronkainen, T. and Rundgren, M. and Sannel, A. B. K. and Tarnocai, C. and Thom, T. and Tuittila, E.-S.and Turetsky, M. and Valiranta, M. and van der Linden, M. and van Geel, B. and van Bellen, S. and Vitt, D.and Zhao, Y. and Zhou, W. (2014). A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene, 24 (9), 1028-1042. ISSN 0959-6836

Published in The Holocene, and available online at: <u>http://hol.sagepub.com/content/24/9/1028</u>

We recommend you cite the published (post-print) version.

The URL for the published version is http://dx.doi.org/10.1177/0959683614538073

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

The Holocene

A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation

Journal:	The Holocene
Manuscript ID:	HOL-13-0128.R1
Manuscript Type:	Paper
Date Submitted by the Author:	20-Dec-2013
Complete List of Authors:	Loisel, Julie; Lehigh University, Earth and Environmental Sciences Yu, Zicheng; Lehigh University, Deparment of Earth and Environmental Sciences; Beilman, David; University of Hawaii at Manoa, Camill, Philip; Bowdoin, Environmental Studies Program and Department of Biology Carbon Network, Holocene; Lehigh University, Earth and Environmental Sciences
Keywords:	Northern peatlands, Data synthesis, Climate change, Soil carbon and nitrogen, Biogeochemical cycles, Long-term ecosystem dynamics
Abstract:	Here we present results from the most comprehensive compilation of Holocene peat soil properties with associated carbon and nitrogen accumulation rates for northern peatlands. Our database consists of 268 peat cores from 215 sites located north of 45°N. It encompasses regions within which peat carbon data have only recently become available, such as the West Siberia Lowlands, the Hudson Bay Lowlands, Kamchatka in Far East Russia, and the Tibetan Plateau. For all northern peatlands, carbon content in organic matter was estimated at $42 \pm 3\%$ (S.D.) for Sphagnum peat, $51 \pm 2\%$ for non-Sphagnum peat, and at $49 \pm 2\%$ overall. Dry bulk density averaged 0.12 ± 0.07 g cm-3, organic matter bulk density averaged 0.11 ± 0.05 g cm-3, and total carbon content in peat averaged $47 \pm 6\%$. In general, large differences were found between Sphagnum and non-Sphagnum peat types in terms of peat properties. Time-weighted peat carbon accumulation rates averaged 23 ± 2 (S.E.M.) g C m-2 yr-1 during the Holocene on the basis of 151 peat cores from 127 sites, with the highest rates of carbon accumulation (25-28 g C m-2 yr-1) recorded during the early Holocene when the climate was warmer than the present. Furthermore, we estimate the northern peatland carbon and nitrogen pools at 436 and 10 gigatons, respectively. The database is publicly available at https://peatlands.lehigh.edu.

SCHOLARONE[™] Manuscripts

http://mc.manuscriptcentral.com/holocene

2	
3	
4	
5	
6	
7	
8	
ă	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22 22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
ΔΔ	
44	
40	
46	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
55	
00 77	
5/	
58	
59	
60	

1 A database and synthesis of northern peatland soil properties and Holocene carbon

- 2 and nitrogen accumulation
- 3

1

4 <u>Running title</u>

- 5 Northern peatland database and synthesis
- 6

7 <u>Authors</u>

Julie Loisel^{1*}, Zicheng Yu^{1*}, David W. Beilman², Philip Camill³, Jukka Alm⁴, Matthew J. 8 Amesbury⁵, David Anderson⁶, Sofia Andersson⁷, Christopher Bochicchio¹, Keith Barber⁸, 9 Lisa R. Belyea⁹, Joan Bunbury¹⁰, Frank M. Chambers¹¹, Daniel J. Charman⁵, François De 10 Vleeschouwer¹², Barbara Fiałkiewicz-Kozieł¹³, Sarah A. Finkelstein¹⁴, Mariusz Gałka¹³, 11 Michelle Garneau¹⁵, Dan Hammarlund¹⁶, William Hinchcliffe⁵, James Holmquist¹⁷, Paul 12 Hughes⁸, Miriam C. Jones¹⁸, Eric S. Klein¹, Ulla Kokfelt¹⁹, Atte Korhola²⁰, Peter Kuhry⁷, 13 Alexandre Lamarre¹⁵, Mariusz Lamentowicz¹³, David Large²¹, Martin Lavoie²², Glen 14 MacDonald¹⁷, Gabriel Magnan¹⁵, Markku Mäkilä²³, Gunnar Mallon⁸, Paul Mathijssen²⁰, 15 Dmitri Mauquoy²⁴, Julia McCarroll¹¹, Tim R. Moore²⁵, Jonathan Nichols²⁶, Benjamin 16 O'Reilly¹⁴, Pirita Oksanen²⁷, Maara Packalen²⁸, Dorothy Peteet²⁶, Pierre J.H. Richard²⁹, 17 Stephen Robinson³⁰, Tiina Ronkainen²⁰, Mats Rundgren¹⁶, A. Britta K. Sannel⁷, Charles 18 Tarnocai³¹, Tim Thom³², Eeva-Stiina Tuittila⁴, Merritt Turetsky³³, Minna Väliranta²⁰, 19 Marjolein van der Linden³⁴, Bas van Geel³⁵, Simon van Bellen²³, Dale Vitt³⁶, Yan Zhao³⁷, 20 Weijian Zhou³⁸ 21

2		
3 4 5	23	Revised manuscript submitted on 19 December 2013 as a Research Paper for the special
5 6 7	24	issue Holocene Peatland Carbon Dynamics in the Circum-Arctic Region.
8 9	25	
10 11	26	Affiliations
12	27	¹ Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA
14	28	18015, USA
15	29	
16	30	² Department of Geography, University of Hawaii – Manoa, Honolulu, HI 96822, USA
17	31	
18	32	³ Department of Earth and Oceanographic Sciences Bowdoin College Brunswick ME
19	32	04011 USA
20 21	33 24	04011, USA
21	34	
23	35	School of Forest Sciences, University of Eastern Finland, Joensuu, FI 80101, Finland
24	36	5
25	37	³ Department of Geography, University of Exeter, Exeter, EX4 4RJ, UK
26	38	
27	39	⁶ Department of Geography, Eton College, Windsor, Berkshire SL4 6DW, UK
28	40	
29	41	⁷ Department of Physical Geography and Ouaternary Geology. Stockholm University.
30	42	Stockholm 106 91 Sweden
31	43	
১∠ 33	13	⁸ Geography and Environment University of Southampton, Southampton, SO17 1BL UK
34	77 15	Geography and Environment, Oniversity of Southampton, Sou
35	45	⁹ School of Congraphy Queen Mary University of London London E1 (NS LIV
36	40	School of Geography, Queen Mary University of London, London, ET 4NS, UK
37	4/	
38	48	^a Department of Geography and Earth Science, University of Wisconsin – La Crosse, La
39	49	Crosse, WI 54601, USA
40	50	
41	51	¹¹ Centre for Environmental Change and Quaternary Research, University of
42	52	Gloucestershire, Cheltenham, GL50 4AZ, UK
43 11	53	
44	54	¹² CNRS and Université de Toulouse. Castanet Tolosan. 31326. France
46	55	
47	56	¹³ Department of Biogeography and Paleoecology Adam Mickiewicz University Poznan
48	50	61 620 Doland
49	57	01-000, 1 01and
50	50	
51	59	Department of Earth Sciences, University of Toronto, Toronto, ON M5S 3B1, Canada
52	60	15
53	61	¹³ Departement de Géographie and GEOTOP, Université du Québec – Montréal,
54 55	62	Montréal, QC H3C 3P8, Canada
50 56	63	
57	64	¹⁶ Department of Geology, Lund University, Lund, SE-223 62, Sweden
58		
59		
60		

3	65	
4	66	¹⁷ Department of Geography University of California – Los Angeles Los Angeles CA
5	67	00005 LIGA
6	07	90093, USA
1	68	
8	69	¹⁶ U.S. Geological Survey, Reston, VA 20192, USA
9	70	
10	71	¹⁹ Department of Geosciences and Natural Resource Management, University of
11	72	Copenhagen, Copenhagen, DK-1350, Denmark
12	73	
14	74	²⁰ Department of Environmental Sciences, University of Helsinki, Helsinki, EIN 00014
15	74	Einland
16	75	Finiand
17	76	21
18	77	²¹ Department of Chemical and Environmental Engineering, University of Nottingham,
19	78	Nottingham, NG7 2RD, UK
20	79	
21	80	²² Département de Géographie and Centre d'études nordiques Université Laval Ouébec
22	Q1	OC GIV 0A6 Canada
23	01	QC 01 V 0A0, Canada
24	02	²³ C 1 : 1C CE: 1 1 D C D OC E 02151 E: 1 1
25	83	Geological Survey of Finland, P.O. Box 96, Espoo, 02151, Finland
26	84	
27	85	²⁴ School of Geosciences, University of Aberdeen, Aberdeen, AB24 3UF, UK
28	86	
29	87	²⁵ Department of Geography and Global Environmental and Climate Change Centre.
30	88	McGill University Montreal OC H3A 0B9 Canada
31	00	Weenin eniversity, wontreat, ee 1157 ob), eanada
32	09	
33	90	Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
34	91	
30	92	²⁷ Centre for Economic Development, Transport and the Environment, Vaasa, 65101,
30 27	93	Finland
38 38	94	
30	95	²⁸ Department of Geography University of Toronto, Toronto, ON M5S 3G3, Canada
40	96	Department of Geography, entrensity of Toronto, Toronto, Ortinos 505, Canada
41	07	²⁹ Département de Cégaranhie Université de Montréel Montréel OC U2V 2D9 Conside
42	97	Departement de Geographie, Université de Montreal, Montreal, QC H2 v 2B8, Canada
43	98	30
44	99	³⁰ Champlain College – Dublin Campus, Dublin, Ireland
45	100	
46	101	³¹ Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
47	102	
48	103	³² Yorkshire Peat Partnership, Yorkshire Wildlife Trust, York, YO24 1GN, UK
49	104	
50	105	³³ Department of Integrative Dialogy University of Cyclinh, Cyclinh, ON N1C 2W1
51	105	Department of integrative Biology, University of Guerph, Guerph, ON NTG 2 w 1,
52	106	Canada
53	107	24
54 55	108	³⁴ BIAX Consult, Zaandam, 1506 AL, The Netherlands
55 56	109	
00 57		
57		
59		
60		

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	110 111 112 113 114 115 116 117 118 119 120	 ³⁵Institute for Bic Amsterdam, 1098 ³⁶Department of I ³⁷Institute of Geo Sciences, Beijing ³⁸Institute of Eart China 	odiversity and Ecosystem Dynamics, U 8 XH, The Netherlands Plant Biology, Southern Illinois Unive graphic Sciences and Natural Resource , 100101, China h Environment, Chinese Academy of	University of Amsterdam, ersity, Carbondale, IL 62901, USA ces Research, Chinese Academy of Sciences, Xi'an, 710075 Shaanxi,
17 18	121	Corresponding at	<u>uthors</u>	
19 20 21	122	Julie Loisel	email: jul208@lehigh.edu	phone: 610-758-3660
22 23	123	Zicheng Yu	email: <u>ziy2@lehigh.edu</u>	phone: 610-758-6751
24 25	124			
26 27	125	Abstract		
28 29 30	126	Here we present	results from the most comprehensive	compilation of Holocene peat soil
31 32	127	properties with as	ssociated carbon and nitrogen accumu	lation rates for northern peatlands.
33 34 35	128	Our database con	sists of 268 peat cores from 215 sites	located north of 45°N. It
36 37	129	encompasses regi	ions within which peat carbon data ha	ve only recently become available,
38 39	130	such as the West	Siberia Lowlands, the Hudson Bay Lo	owlands, Kamchatka in Far East
40 41 42	131	Russia, and the T	ibetan Plateau. For all northern peatla	nds, carbon content in organic
43 44	132	matter was estimated	ated at $42 \pm 3\%$ (S.D.) for <i>Sphagnum</i>	peat, $51 \pm 2\%$ for non- <i>Sphagnum</i>
45 46	133	peat, and at $49 \pm$	2% overall. Dry bulk density average	$d 0.12 \pm 0.07 \text{ g cm}^{-3}$, organic
47 48 49	134	matter bulk densi	ty averaged 0.11 ± 0.05 g cm ⁻³ , and to	otal carbon content in peat
50 51	135	averaged $47 \pm 6\%$	6. In general, large differences were for	ound between Sphagnum and non-
52 53 54	136	Sphagnum peat ty	ypes in terms of peat properties. Time	-weighted peat carbon
55 56 57 58 59 60	137	accumulation rate	es averaged 23 \pm 2 (S.E.M.) g C m ⁻² y	r ⁻¹ during the Holocene on the

138	basis of 151 peat cores from 127 sites, with the highest rates of carbon accumulation (25-
139	28 g C m ⁻² yr ⁻¹) recorded during the early Holocene when the climate was warmer than
140	the present. Furthermore, we estimate the northern peatland carbon and nitrogen pools at
141	436 and 10 gigatons, respectively. The database is publicly available at
142	https://peatlands.lehigh.edu.
143	
144	Keywords
145	Northern peatlands, Data synthesis, Climate change, Soil carbon and nitrogen,
146	Biogeochemical cycles, Long-term ecosystem dynamics
147	
148	Introduction
149	Of all terrestrial ecosystems, peatlands are arguably the most efficient at sequestering
150	carbon (C) over long time scales. Northern peatlands cover approximately 4,000,000 km ²
151	or 3% of the global land area (Maltby and Immirzi, 1993) and have accumulated about
152	500 gigatons of C (GtC) mostly during the Holocene, equivalent to \sim 30% of the present-
153	day global soil organic carbon (SOC) pool (Gorham, 1991; Bridgham et al., 2006; Yu et
154	al., 2010). These ecosystems have also played a dynamic role in the Holocene global C
155	cycle as important sinks of carbon dioxide (CO ₂) and major sources of methane (CH ₄) to
156	the atmosphere (Frolking and Roulet, 2007; Korhola et al., 2010; Yu, 2011). As climate
157	warming positively affects both plant growth and organic matter decomposition, recent
158	and projected climate change could shift the balance between peat production and organic
159	matter decomposition, potentially affecting the peatland C-sink capacity and modifying
160	peat C fluxes to the atmosphere (Frolking et al., 2011; Yu, 2012). This prediction

1	
2	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
∠ I 00	
22	
23	
24	
25	
26	
27	
28	
20	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
<u>7</u> 2	
40	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

161	particularly holds true for the northern high-latitude regions, where the intensity of
162	climate change is expected to be greatest (McGuire et al., 2009). The peatland C cycle –
163	climate feedback remains difficult to assess, however, because of (1) limited
164	understanding of peatland responses to climate change (Frolking et al., 2011), (2) data
165	gaps and large uncertainties in regional peatland C stocks (Yu, 2012), and (3) non-linear
166	peatland responses to external forcing (Belyea, 2009).
167	
168	Very little is known about the nitrogen (N) budget that accompanies C accumulation in
169	northern peatlands (but see Limpens et al., 2006 for a review). Assuming a net C
170	sequestration of ~270 GtC (Yu, 2012) and a C/N ratio of 20-30 for fen peat (Bergner et
171	al., 1990; Rydin and Jeglum, 2013; results therein) during the early Holocene (11-7 ka),
172	about 10-13 GtN would have been required to build such peat deposits. It is therefore
173	possible that northern peatlands have been playing an undocumented, dynamic role in the
174	Holocene global N cycle as important sinks of N, potentially limiting the amount of N
175	available for other ecosystems at the global scale (McLauchlan et al., 2013).
176	Alternatively, if the main N input to peatlands was through N ₂ fixation by cyanobacteria,
177	these microorganisms might have been more important in driving the C cycle in
178	peatlands than previously thought. Overall, studying the coupling between N and C
179	cycling in northern peatlands is essential for a better understanding of how key
180	biogeochemical processes interact in these systems and for predicting the future of peat C
181	stocks.
182	

Here we present the most comprehensive compilation of Holocene C and N data for northern peatlands. This synthesis encompasses regions within which peat C and N data have only recently become available, such as the West Siberian Lowlands in Asian Russia, the Hudson Bay Lowlands in Canada, Kamchatka in the Russian Far East, and the Tibetan Plateau. In addition, we present the most comprehensive synthesis of peat soil properties (such as bulk density, organic matter content, C and N content) from the northern hemisphere. Also, this new database and synthesis work represent a major expansion from Yu et al.'s (2009) synthesis on Holocene peat C dynamics, which was based on 33 sites (vs. 127 sites as reported in this paper). Finally, it constitutes a natural continuation of Charman et al.'s (2013) recent study on peat C accumulation in northern peatlands during the last millennium. In addition to filling regional data and knowledge gaps, the main objectives of this paper are to (1) describe a database of peat soil properties and synthesize this information for

197 different peat types, time intervals, and geographic regions, and (2) produce time series of

198 Holocene peat C and N accumulation rates in 500-yr bins for comparison with climate

199 history. Key differences in Holocene peat properties between different regions and

200 peatland types are also discussed in light of their implications for long-term peat C

stocks. Of particular importance and relevance are the differences between *Sphagnum*

and non-Sphagnum peat types. Finally, we present new estimates for northern peat C and

203 N stocks for northern peatlands on the basis of the expanded database.

205 Database and analysis

<u>Database</u>

1

HOLOCENE

2
3
4
5
6
7
8
0
9 10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
20
24
20
26
27
28
29
30
31
32
33
34
35
36
27
20
30
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
55
34 55
55
56
57
58
59
60

207	We compiled a dataset of 268 published and unpublished Holocene peat records from
208	215 sites located in North America and Eurasia (Figure 1, Supplementary Table 1). The
209	difference in the number of peat cores and peatland sites is due to the fact that, in a few
210	instances, multiple cores were collected from a single peatland. As these multiple cores
211	were not designed as true replicates in the original publications, each of these cores was
212	considered as an independent record of peat properties in the present study. However,
213	only the oldest core for each site was used for estimating peat inception age. Finally,
214	when calculating peat C accumulation rates, multiple cores from a single site were each
215	attributed an equal fraction of the weight for that site. For example, for a site with three
216	cores, the peat C accumulation history of each core only accounted for 1/3 of the site's
217	record.
218	
219	The latitude of most peatland sites ranges from 45 to 69 °N. The cutoff at 45 °N
220	represents the southern limit for defining what is considered to be the area contributing to
221	the C cycle of the Arctic region (McGuire et al., 2009). Four high-elevation sites found in
222	China (the Tibetan Plateau) and Japan were also included, as they developed under
223	similar 'northern' climatic conditions. The name and coordinates of these four sites are as
224	follows: Zoige (33.5 °N, 102.6 °E), Hongyuan (32.8 °N, 102.5 °E), Hani (42.2 °N, 126.5

°E), and Utasai (42.4 °N, 140.2 °E). A total of 155 cores originate from Eurasia,

226 including 112 cores from Russia. The remaining 113 cores come from North America.

227 Approximately 40% of all cores were collected from ombrotrophic bogs (n = 110 cores)

and 20% were extracted from minerotrophic fens (n = 50 cores). The remainder (40%)

http://mc.manuscriptcentral.com/holocene

229	was collected in peatlands currently affected by permafrost ($n = 108$ cores). Note that
230	peatland type was identified independently for each site by the original investigators.
231	From an ecosystem functioning perspective, distinguishing bogs from fens and
232	permafrost peatlands is important, as these peatland types are characterized by different
233	hydrological regimes, vegetation communities, and peat-growth trajectories, all of which
234	impact long-term rates of peat C sequestration (Rydin and Jeglum, 2013). Bogs are
235	mineral-poor, rain-fed peatland ecosystems with relatively low plant net primary
236	production (NPP) and slow peat decomposition rates. In contrast, fens are hydrologically
237	connected to surface or ground water, thereby receiving more mineral nutrients.
238	Generally speaking, fens have greater NPP but also faster peat decay rates than bogs
239	(Blodau, 2002). Finally, in the sub-Arctic and Arctic regions, peatland hydrology,
240	structure, and peat C balance are sensitive to the underlying permafrost aggradation and
241	degradation dynamics (Camill, 1999; Turetsky et al., 2007). For the analysis, peat
242	plateaus (87 out of 108 cores), permafrost bogs (18 out of 108 cores), and collapse scars
243	(3 out of 108 cores) were grouped under the peatland type 'permafrost peatlands'.
244	Original peatland categories can be found in Supplementary Table 1.
245	
246	The database was built to include as many peat records as possible. Therefore, we
247	included any peat core that was extracted north of 45 $^{\circ}N$ (or at high elevation) and for
248	which bulk density or organic matter bulk density data were available. Information
249	related to peat-core location, peatland type, peat properties, age, and data source can be
250	found in Supplementary Table 1. Additional information related to the type of coring
251	device used and the year of coring can be found in the original publications. Data used in

HOLOCENE

1	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
28	
29	
30	
31	
22	
3Z 20	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
10	
- 1 3 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
59	

60

this synthesis are readily accessible from the Holocene Peatland Carbon Network website
(https://peatlands.lehigh.edu). This database will be useful in future studies of ecosystem
- C cycle – climate interactions and for modeling long-term peatland dynamics.

256 In the following sub-sections, we present the criteria for site selection and the protocols 257 used to develop the database. In an effort to only analyze and synthesize *peat* samples, 258 inorganic-rich horizons often found at the base of the peat cores were removed from the 259 database. When available, stratigraphic information was used to distinguish peat vs. non-260 peat material. For example, gyttja (organic-rich lake sediments) was excluded from the 261 dataset, as well as marshy, clayey, and silty sediments. When stratigraphic information was not available, a bulk density value of 0.5 g cm⁻³ was used as a cut-off between peat 262 263 and non-peat material. This value was chosen on the basis of stratigraphic information from peatland records where peaty sediments with bulk density values up to 0.5 g cm^{-3} 264 265 were identified. We acknowledge that this cut-off value is arbitrary, and that our dataset 266 likely contains some non-peat samples. Inorganic horizons (e.g., tephra layers) were also 267 excluded from the database.

268

269 <u>Peat properties</u>

A total of 232 peat cores (181 sites) were used for characterizing peat properties, though
not all cores have all types of peat properties available (Figure 2a). This dataset contains
139 cores from Eurasia (including 109 cores from Russia) and 93 cores from North
America (Figure 1). While approximately half of these cores were sampled and analyzed
at high resolution (1-5 cm increments), the remainder was sampled at lower resolution,

1 2	
3 4 5	
5 6 7	
8 9	
10 11	
12 13	
14 15	
17 18	
19 20	
21 22	
23 24	
25 26 27	
28 29	
30 31	
32 33	
34 35 36	
37 38	
39 40	
41 42	
43 44 45	
46 47	
48 49	
50 51 52	
53 54	
55 56	
57 58	
60	

275	typically at 10 cm increments. Dry bulk density (BD; g cm ⁻³), organic matter content
276	(OM%; gravimetric %), as well as elemental C and N concentration values were
277	compiled and synthesized. On the basis of these raw datasets, C/N mass ratio and organic
278	matter bulk density (OMBD; g OM cm ⁻³) were calculated. These peat geochemical values
279	are examined in light of peat stratigraphy, peat ages, and geographic regions. The
280	following paragraphs briefly describe the protocols used to obtain these values.
281	
282	Peat stratigraphic information was obtained for 83 peat cores ('peat types' in Figure 2a)
283	for which plant macrofossil analysis or detailed peat description had been performed
284	following standard techniques (e.g., Troels-Smith, 1955; Mauquoy and van Geel, 2007).
285	This peat stratigraphic information was condensed into the following five peat types:
286	Sphagnum, herbaceous, woody, brown moss, and humified peat. In a few cases, the
287	investigators only ascribed a general peat type to the samples (e.g., 'bog' vs. 'fen' peat, or
288	'Sphagnum' vs. 'herbaceous' peat). In these cases, the uncertainty associated with
289	classifying peat samples mostly relates to the uniformity of naming convention used
290	among the investigators. For example, a peat sample that contains sizable fractions of
291	brown moss and humified peat may be classified by an investigator as 'brown moss peat'
292	and by another one as 'humified peat'. We recognize that, due to their nature, brown
293	moss and humified peat types might be less uniform than Sphagnum or herbaceous peat
294	types. We included as much stratigraphic information as possible in the database, though
295	ambiguous or imprecise descriptions were left out to avoid further confusions.
296	

Page 13 of 117

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
30	
30	
31	
38	
39	
4U ⊿4	
41	
אב ⊿?	
4 <u>4</u>	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

297	Dry bulk density and organic matter content were determined following standard
298	procedures (Dean, 1974; Chambers et al., 2011). Peat samples of a known fresh volume
299	were either freeze-dried or oven-dried at ca. 100 °C until constant weight was reached
300	and weighed to determine bulk density, then burned at 500-600 °C for one to four hours
301	and weighed again to determine organic matter content. The accuracy of these
302	measurements mostly depends on sample handling (care must be taken to prevent peat
303	compaction in the field and in the laboratory) and the analytical error associated with
304	weighing. The product of bulk density (BD; g cm ⁻³) and organic matter content (OM%)
305	of each peat sample was used to calculate organic matter bulk density (OMBD; g OM
306	cm ⁻³), also referred to as ash-free bulk density (AFBD) or organic bulk density (OBD) in
307	the literature (Yu et al., 2003; Björck and Clemmensen, 2004). We compiled a total of
308	21,220 bulk density measurements, 18,973 organic matter content values, and computed
309	18,544 organic matter bulk density values (Figure 2a).
310	
311	Total peat C and N content were directly measured by combustion and elemental analysis
312	of dry peat samples (Chambers et al., 2011). We compiled 3741 C and 3365 N
313	measurements (Figure 2a). We also computed a total of 3362 C/N mass ratio values.
314	
315	Finally, the regression between peat C content (C%) and peat organic matter content
316	(OM%) for each peat type is presented as an estimate for C content in organic matter
317	(OC%). A total of 995 samples were used in this analysis. The slope of each one of these
318	regressions is interpreted as the 'conversion factor' from OM% to OC%, such that it

319	provides an indirect way for estimating the C% content of ash-free peat for investigators
320	who do not perform elemental C measurements directly.
321	
322	Peat-core chronology
323	Peat-core chronologies were almost exclusively based on radiocarbon (¹⁴ C) dates that
324	were determined mostly by accelerator mass spectrometry (AMS) on terrestrial plant
325	macrofossils or bulk peat (Piotrowska et al., 2011). A few older chronologies were based
326	on conventional ¹⁴ C dating of bulk samples. Because no systematic offset has been
327	observed in the ¹⁴ C age of bulk vs. non-woody plant macrofossils (G.M. MacDonald,
328	pers. comm. 2013), the use of bulk dates is justifiable. For the purpose of this study, all
329	¹⁴ C dates were calibrated to calendar years before present (cal. BP) using the program
330	CALIB 6.1.0 (Stuiver and Reimer, 1993) with the IntCal09 calibration dataset (Reimer et
331	al., 2009). In this paper, ages are reported in thousands of calibrated years before present
332	(ka).
333	
334	Age-depth relationships were established for all continuous peat cores for which at least
335	five age determinations were available ($n = 151$ cores). Except for a few
336	palynostratigraphic and tephrochronologic markers, nearly all records have chronologies
337	exclusively based on ¹⁴ C ages (Supplementary Table 1). Chronologies were obtained
338	through linear interpolation of calibrated ages between dated horizons. Single-age
339	estimates were taken from the mid-point of each calibrated 2σ probability distribution.
340	This parsimonious approach captures general patterns of temporal changes in peat
341	accumulation and allows for analysis of peat C accumulation trajectories (e.g., Telford et

HOLOCENE

al., 2004). Although more sophisticated approaches are possible (e.g., Charman et al., 2013), we seek to make the fewest or simplest assumptions for this analysis because the temporal resolution target for peat C accumulation rate calculations is relatively low (at 500 years). In the cases where the original investigator identified hiatuses (e.g., peat loss caused by erosion or fire) or depositional anomalies (e.g., thick tephra layers that interrupted peat accumulation) along their peat records, these gaps were taken into consideration when building age-depth relationships (Glaser et al., 2012). Otherwise, peat records were assumed to be continuous. In an effort to assess the representativeness of our samples in terms of peatland inception timing, peat basal ages were compiled and compared to results from large datasets (MacDonald et al., 2006; Gorham et al., 2007; Korhola et al., 2010). Peat inception ages from 199 sites (Supplementary Table 1) were summed and binned in 500-year intervals. Long-term rates of carbon and nitrogen accumulation A total of 151 peat cores from 127 sites were used for estimating rates of peat C accumulation. This dataset contains 96 cores from 78 North American sites and 55 cores from 49 Eurasian sites (Figure 1). Of the 33 sites presented in Yu et al.'s (2009) study, 25 were used in the present study (Supplementary Table 1). The remaining 8 sites did not fulfill our dating quality criterion (presented below). The dating quality of each record was determined by the quotient of the calibrated peat basal age and the number of age determinations. For example, a 10,000-year-old peat core with a chronology constrained

by 10¹⁴C dates was attributed a dating quality of one date per 1000 years. About 58% of

http://mc.manuscriptcentral.com/holocene

our 151 cores were characterized by an acceptable dating quality of one to two ¹⁴C dates per 1000 years (Figure 2b). These resolutions are well suited to capture millennial-scale variations in C accumulation. Several peat cores with more than two ¹⁴C dates per 1000 years (n = 35 cores) were available from North America and Europe. The lower dating quality cores (<1 date per 1000 years,) were unevenly distributed and comprise 44% of the North American records and 40% of the Eurasian records.

The long-term rate of peat C accumulation was calculated for each core following one of the following five approaches (Supplementary Table 1): (1) whenever possible, peat core chronology was combined with bulk density and C% for each depth increment (n = 47cores); (2) in the cases where direct C measurements were lacking, peat core chronology was combined with organic matter bulk density measurements and a mean organic C value of 49% in organic matter (n = 57 cores); (3) for cores that lacked organic matter bulk density and direct C%, peat core chronology was combined with bulk density measurements and a mean C content of 47% in total peat (n = 3 cores); (4) whenever neither bulk density nor C% was directly available from the cores, long-term rate of peat C accumulation was calculated for each core by combining time-dependent bulk densities $(0.08 \text{ g cm}^{-3} \text{ at } 0.05 \text{ ka}; 0.12 \text{ g cm}^{-3} \text{ at } 0.5-6 \text{ ka}; 0.14 \text{ g cm}^{-3} \text{ at } 6-12 \text{ ka})$ with a mean C content of 47% in total peat for each dated interval (n = 32 cores), and (5) peat C accumulation rates for the remaining 12 cores were directly obtained from published figures and tables. For all the cores, time-weighted peat C accumulation rates were summed and binned in 500-year intervals. It is important to note that such reconstructions are 'apparent rates' that are different from true rates of C accumulation in peatlands,

Page 17 of 117

HOLOCENE

2		
3 4	388	because decomposition processes have been affecting old peat layers for thousands of
5 6	389	years (Turunen et al., 2002). Finally, the long-term rate of peat N accumulation was
7 8 9	390	calculated by combining our binned peat-C accumulation rates with time-dependent C/N
10 11	391	values (65 at 0-6 ka, and 40 at 6-10 ka).
12 13	392	
14 15 16	393	Results
17 18	394	Peat Properties
19 20 21	395	Descriptive statistics of dataset
22 23	396	The frequency distribution of each peat property is shown in Figure 3. Mean values and
24 25	397	standard deviations for all peat properties are presented by peat type in Table 1, and by
26 27 28	398	region in Table 2.
29 30	399	
31 32 22	400	Bulk density values (n = 21,220) ranges from 0.003 to 0.498 g cm ⁻³ , with a mean value of
33 34 35	401	0.118 ± 0.069 g cm ⁻³ (1 standard deviation (S.D.)). A one-way analysis of variance
36 37	402	(ANOVA) reveals an effect of peat type on bulk density ($F(10709) = 941, p < 0.0001$),
38 39 40	403	with all peat types significantly different from each other on the basis of post-hoc
40 41 42	404	Tukey's LSD tests ($p < 0.0001$). In increasing order, mean bulk density of the peat types
43 44	405	is <i>Sphagnum</i> < Woody < Herbaceous < Brown Moss < Humified (Table 1).
45 46 47	406	
48 49	407	Organic matter content (n = 18,973) has a mean value of $90.7 \pm 13\%$ (1 S.D.) and a
50 51	408	median of 95.7%. The ANOVA reveals an effect of peat type on organic matter content
52 53 54	409	($F(9512) = 349, p < 0.0001$), with all peat types significantly different from each other
55 56		
57 58		

http://mc.manuscriptcentral.com/holocene

2		
3 4	410	(Tukey's LSD: $p < 0.0001$). In decreasing order, mean organic matter content of the peat
5	111	t_{max} is C_{nh} across Weady > Uarbaccous > Drown Mass > Upmified (Table 1)
6 7	411	types is <i>Sphagnum</i> > woody > Herbaceous > Brown Moss > Hummed (Table 1).
8	412	
9 10	440	
11	413	Organic matter bulk density ($n = 18,544$) ranges from 0.003 to 0.452 g OM cm ⁻ , with a
12 13	414	mean value of 0.105 ± 0.051 g OM cm ⁻³ (1 S.D.). The ANOVA reveals an effect of peat
14 15	41 F	true on anomia matter density $(E(0.021) - 0.42)$ $\pi < 0.0001$ with all next trues
16	415	type on organic matter density ($F(9081) - 942$, $p < 0.0001$), with all peat types
17 18	416	significantly different from each other (Tukey's LSD: $p < 0.0001$). In increasing order,
19 20	417	mean organic matter density of the peat types is <i>Sphagnum</i> < Herbaceous < Woody <
21 22	110	Drown Mass < Humified (Table 1)
23	410	Blown Moss < Hummed (Table 1).
24 25	419	
26		
27 28	420	C content in total peat (n = 3741) ranges from 30 to 60%, with a mean value of 46.8 ±
29 30	421	6.1% (1 S.D.) and a median of 47.8%. While the lowest values (< 35%) are almost
31	400	
32 33	422	exclusively associated with samples from Alaska, western Canada, Fennoscandia, and
34 35	423	eastern Russia, the highest values (> 55%) are characteristic of sites located in the
36	171	wastern European Islands and Fennessandia. The ANOVA reveals an effect of post type
37	424	western European Islands and Fennoscandia. The ANOVA reveals an effect of peat type
39	425	on C% ($F(2494) = 161$, $p < 0.0001$), with Sphagnum samples significantly different from
40 41	4.2.6	
42	426	other peat types (Tukey's LSD: $p < 0.0001$). Herbaceous and woody peats are distinct
43 44	427	from other types, but indistinguishable from one another (Tukey's LSD: $p = 0.238$).
45		
46 47	428	Likewise, humified and brown moss peats are distinct from other types, but
48	429	indistinguishable from each other (Tukey's LSD: $p = 0.448$). In increasing order, mean
49 50	400	
51 52	430	C% of the peat types is <i>Sphagnum</i> < Humified = Brown Moss < Herbaceous = woody
53 54	431	(Table 1). The frequency distribution of C% in peat is also characterized by a second,
55 56 57	432	though minor, mode at 40% (Figure 3d). The latter is mostly associated with Sphagnum
57 58		

Page 19 of 117

HOLOCENE

1
2
3
1
4 E
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
10
20
20
Z1
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
26
30
37
38
39
40
41
42
43
11
44 45
45
46
47
48
49
50
51
50
52
53
54
55
56
57
58
50
29
υU

433 peat samples, as their average C% is significantly lower than those for other peat types 434 (Table 1). This difference is likely caused by the high content of complex and recalcitrant 435 compounds found in *Sphagnum* tissues such as lipids and waxes, which have lower C% 436 than more labile biopolymers such as cellulose (Cagnon et al., 2009). 437 438 On the basis of 995 samples for which both OM% and C% were quantified, we 439 developed conversion factors (slopes of linear regressions) for several peat types to 440 estimate OC% (Figure 4). There is a noticeable difference between the slope of 441 Sphagnum peat $(0.423 \pm 0.030; n = 454)$ and that of non-Sphagnum peat $(0.514 \pm 0.024;$ 442 n = 308). The C content in organic matter (OC%) for *Sphagnum* peat is smaller than 443 expected at $42.3 \pm 3.0\%$ (e.g., Bauer et al., 2006; Beilman et al., 2009; Table 3). As the 444 majority of our Sphagnum samples for this specific analysis are younger than 0.5 ka (304 445 out of 454 samples) and extracted from raised bogs, it is very likely that our estimated 446 OC% biases towards young and undecomposed *Sphagnum*. This 'young *Sphagnum* peat 447 effect' heavily influenced the slope of the overall relation between C% and OM% (0.467 448 ± 0.045) due to the overrepresentation of *Sphagnum* samples in the dataset (454 out of 449 995 samples). To minimize this bias when estimating mean OC% in peat, all 304 young 450 Sphagnum samples were removed from the dataset, yielding an overall conversion factor 451 of 0.492 ± 0.024 . 452

N content in peat (n = 3365) ranges from 0.04 to 3.39%, with a mean value of $1.2 \pm 0.7\%$ (1 S.D.). The frequency distribution is asymmetric and characterized by a mode at 0.65% (Figure 3e). The latter is largely due to the overrepresentation of *Sphagnum* peat samples

2	
3	
1	
-	
5	
6	
7	
8	
à	
10	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
22	
<u>2</u> 2	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
41	
42	
43	
11	
44	
40	
46	
47	
48	
49	
50	
51	
50	
52	
53	
54	
55	
56	
57	
58	
50	
59	
60	

456	(having low N content) in our database. The ANOVA reveals an effect of peat type on N
457	content ($F(2504) = 666, p < 0.0001$) with <i>Sphagnum</i> and herbaceous peat types
458	significantly different from each other and from all other types (Tukey's LSD: $p <$
459	0.0001). Humified and brown moss peats are distinct from other types, but
460	indistinguishable from each other (Tukey's LSD: $p = 0.113$). Likewise, woody and brown
461	moss peats are indistinguishable from one another (Tukey's LSD: $p = 0.240$). In
462	increasing order, mean N% of the peat types is <i>Sphagnum</i> < Woody = Brown Moss =
463	Humified < Herbaceous (Table 1).
464	
465	C/N mass ratio (n = 3362) ranges from 12 to 217, with a mean value of 55 ± 33 (1 S.D.).
466	The frequency distribution is asymmetric and characterized by a mode at 25 (Figure 3f).
467	While the distribution mode (25) is associated with non-Sphagnum peat types, the
468	distribution mean (55) is skewed towards Sphagnum peat samples owing to their
469	overrepresentation in our database (Figures 3f). The ANOVA reveals an effect of peat
470	type on C/N ratio ($F(2501) = 174$, $p < 0.0001$) with <i>Sphagnum</i> peat significantly
471	different from all other types (Tukey's LSD: $p < 0.0001$). Woody peat is distinguishable
472	from all peat types except for brown moss peat (Tukey's LSD: $p = 0.665$). Herbaceous
473	and humified peat types are indistinguishable from one another (Tukey's LSD: $p =$
474	0.721). In decreasing order, the mean C/N ratio of peat types is <i>Sphagnum</i> > Woody =
475	Brown Moss > Humified = Herbaceous (Table 1).
476	
477	Temporal changes in peat properties

Page 21 of 117

1	
2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
33 24	
25	
20	
30	
31	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
03	
00	

478	We find a decreasing trend in bulk density over the Holocene (Figure 5a), with the
479	densest peat characterizing the oldest samples (8-10 ka) and the least-dense peat
480	characterizing the youngest samples (0-2 ka). This trend is most likely attributable to the
481	progressive decomposition and subsequent compaction of peat over time, as well as to
482	higher ash content in early-stage peat (likely from fens). Conversely, a clear increasing
483	trend in organic matter content (OM%) is found over the Holocene (Figure 5b), with the
484	greatest OM% characterizing the youngest samples (0-2 ka) and the least OM%
485	characterizing the oldest samples (8-10 ka). This trend is most likely attributable to
486	higher inorganic material inputs during early-stage peatland development as well as to a
487	greater loss of OM in the deeper portions of peat profiles. Organic matter bulk density
488	(OMBD) remains relatively constant over the Holocene (Figure 5c) because of the
489	opposite trends exhibited by BD and OM% (Figures 5a, 5b). The only exceptions are the
490	low OMBD values characterizing the youngest samples (< 0.5 ka), probably due to the
491	large proportion of young, undecomposed Sphagnum peat samples.
492	
493	C content in peat remains uniform over the Holocene (Figure 5d), except for slightly
494	lower C% during the late Holocene. We find a decreasing trend in N% over the
495	Holocene, such that young peat deposits are associated with low N% (Figure 5e). Peat
496	deposits older than 6 ka are mostly associated with low C/N ratios, whereas peat samples
497	younger than 6 ka are characterized by high C/N values (Figure 5f).
498	
499	In general, Sphagnum peat is characterized by lower BD, OMBD, C%, N%, and C/N
500	ratio than samples composed of non-Sphagnum peat (Figure 6). Therefore, peatland

development could explain much of the aforementioned temporal trends (Figure 5), as early-stage rich fens are typically characterized by non-Sphagnum peat, whereas late-stage poor fens and bogs are Sphagnum-dominated (Figure 6h). *Spatial differences in peat properties* Significant differences in bulk density are found at the regional scale (Table 2). The densest peat is observed in Alaska (mean = 0.168 ± 0.087 g cm⁻³) and western Canada (mean = 0.166 ± 0.076 g cm⁻³), whereas the least dense peat is found from the western European Islands (mean = 0.055 ± 0.027 g cm⁻³). Organic matter bulk density values follow a similar pattern across these regions (Table 2). These differences are strongly correlated with peat types and sample ages, with the Alaskan and western Canadian samples largely constituted of herbaceous, humified, and brown moss peat types. OM% does not vary much between regions (> 90% in all regions), with the notable exception of Alaskan and eastern Russian/Asian peatlands that exhibit mean values of $76.6 \pm 18.8\%$ and $80.3 \pm 16.7\%$, respectively (Table 2). Aeolian dust and tephra ash inputs to some peatlands in Alaska, Kamchatka, and Japan might partly explain such low OM% values. Peat inception ages and long-term rates of carbon and nitrogen accumulation Calibrated ages (mid-point) for peat inception range from 0.6 to 15 ka and the frequency distribution is characterized by a mode at 11-9 ka (Figure 2c). The latter corresponds with peat inception peaks in the West Siberian Lowlands and in Alaska. In general, our samples are in agreement with much larger networks of peat basal ages (Smith et al.,

523 2004; MacDonald et al., 2006; Gorham et al., 2007; Korhola et al., 2010; Ruppel et al.,
524 2013; Yu et al., 2013).

The time-weighted long-term rate of C accumulation averages 22.9 ± 2.0 g C m⁻² yr⁻¹ (standard error of mean (S.E.M.); Figure 7b). Values exhibit an increasing trend that initially peaks during the early Holocene between 10 and 7.5 ka at 27.0 ± 2.6 g C m⁻² yr⁻¹. This peak is largely caused by rapid peat accumulation in Alaska, the Western Siberia Lowlands, and southeastern Canada. The remainder of the Holocene is characterized by a decreasing trend in C accumulation rates from 24 to 18 g C m⁻² yr⁻¹ and a time-weighted mean at 22.0 \pm 1.9 g C m⁻² yr⁻¹ (Figure 7b). There is a notable minimum value between 3 and 1.5 ka at 18-19 g C m⁻² yr⁻¹. Lack of decomposition probably explains most of the apparent increase in accumulation over the past millennium (24-32 g C m⁻² yr⁻¹), as young peat appears to be accumulating more quickly than old peat simply because the former has undergone less decomposition than the latter (Clymo, 1984).

The time-weighted long-term rate of N accumulation averages 0.5 ± 0.04 g N m⁻² yr⁻¹ (S.E.M.; Figure 7c). While the mid and late Holocene (6-0 ka) are characterized by the lowest rates of N accumulation at 0.34 g N m⁻² yr⁻¹, the highest rates (0.61 g N m⁻² yr⁻¹) occur between 12 and 6 ka (Figure 7c). This trend mirrors that of C accumulation (Figure 7b), as C and N sequestration rates are both mainly influenced by peat density and its accumulation rate. The low rates of N accumulation over the past 6 ka might also relate to the increasing presence and persistence of *Sphagnum* (having high C/N ratio and low N concentration) in northern peatlands (Figures 6 and 7).

546	
547	Discussion
548	Representativeness of the database for northern peatlands
549	The present database contains the most comprehensive compilation of peat properties and
550	C accumulation records for northern peatlands. The previous large-scale synthesis (Yu et
551	al., 2009) only contained 33 sites and lacked records from the Hudson Bay lowlands and
552	the Russian Far East, and had limited sites from West Siberia and the western European
553	Islands. The present database fills gaps from these regions.
554	
555	However, European Russia, East Siberia, and the Russian Far East clearly remain poorly
556	studied regions in terms of northern peat C stocks and accumulation histories (Figure 1).
557	A wetland map by Stolbovoi and McCallum (2002) suggests that shallow peaty deposits
558	(<50 cm) interspersed with few deeper peat bogs (>50 cm) dominate the Far East Russian
559	landscape. Most of these deeper peatlands are presumably found in Kamchatka and
560	Sakhalin (Stolbovoi, 2002). This broad portrait is, however, based on fewer than 30 soil
561	profiles from across East Siberia and Far East Russia (Stolbovoi et al., 2001), making it
562	difficult to evaluate the importance of this region in the northern peatland C cycle. In
563	general, peat C stocks in Eastern Russia may not be as massive as those from West
564	Siberia or European Russia (Stolbovoi and McCallum, 2002). Therefore, understanding
565	how these shallow peatlands in East Siberia and the Russian Far East have developed
566	during the Holocene would provide useful end-members of climate controls of peat C
567	accumulation, but these peatlands do not seem to represent a large missing C stock.
568	

HOLOCENE

569 Northern peatland soil properties: key findings and uncertainties

570 <u>Peat-carbon stocks</u>

571	Several studies have quantified the soil C density and total C pool of peatlands using
572	different approaches (e.g., Armentano and Menges, 1986; Gorham, 1991; Yu et al.,
573	2010). These methods have led to total C pool estimates for northern peatlands that vary
574	by at least a factor of two, from 234 to 547 GtC (Lappalainen, 1996; Yu et al., 2010; see
575	Yu, 2012 for a review). Many of these studies have combined mean peat depth, modern
576	peatland area, and a single mean C density value (BD x C% or OMBD x OC%) in their
577	calculations (e.g., Gorham, 1991). Applying Gorham's (1991) mean peat depth and
578	peatland area estimates to the mean BD and C% results from our database yields a C pool
579	estimate of 436 GtC (2.3 m x 3.42 Mkm^2 x 0.118 g cm ⁻³ x 47% C). However, it is well
580	documented that most peatlands undergo a shift from herbaceous to Sphagnum peat
581	during their developmental history (Hughes, 2000; Figure 6h) and that different BD, C%,
582	and rates of peat accumulation are associated with fen and bog peats (e.g., Vitt et al.,
583	2000; Figure 6). We also know that peat-C accumulation rates have varied
584	asynchronously between regions throughout the Holocene as a result of regional changes
585	in hydroclimatic conditions (e.g., Yu et al., 2009; Charman et al., 2013). Therefore, we
586	argue that reconstructing Holocene changes in peat C accumulation on the basis of
587	measured peat C density and reliable peat-core chronologies constitutes a step forward in
588	providing the best possible peat C stock estimates (see Yu et al., 2010 for an example). It
589	also allows for quantifying spatial and temporal differences in rates of peat C
590	accumulation, as well as the temporal trajectories of peat C fluxes to the atmosphere

2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
10
10
1/
18
19
20
21
22
23
24
24
25
26
27
28
29
30
31
32
22
22
34
35
36
37
38
39
40
41
40
+2 10
43
44
45
46
47
48
49
50
51
52
52
53
54
55
56
57
58
59
60
00

1

(MacDonald et al., 2006; Yu et al., 2013). However, better maps of the present peatland
area (and its change over time) are still needed to improve current peat C stock estimates.

594 <u>Carbon content in organic matter</u>

595 For each peat layer, peat C density can be estimated by the product of either (1) bulk 596 density and C content in total peat (BD x C%), or (2) ash-free bulk density and C content 597 in organic matter (OMBD x OC%). It could be argued that the first option is preferable 598 when estimating peat C stocks, as it produces values that are directly comparable to 599 routine soil C measurements from other terrestrial ecosystems. However, the present 600 database clearly indicates that the majority of peatland scientists routinely analyze 601 organic matter content (OM%; n = 18,973 samples) rather than C% (n = 3741 samples) 602 along peat cores. To provide a way to estimate OC% from OM%, we developed the 603 following conversion factors: $42.3 \pm 3.0\%$ for Sphagnum peat, $51.4 \pm 2.4\%$ for non-604 Sphagnum peat, and $49.2 \pm 2.4\%$ overall (Figure 4, Table 1). 605

606 While the overall peat and the non-*Sphagnum* peat conversion factors are in line with 607 those from previous studies (e.g., Gorham, 1991; Vitt et al., 2000; Turunen et al., 2002; 608 Beilman et al., 2009), the *Sphagnum* peat factor is lower than other estimates (e.g., Bauer 609 et al., 2006; Beilman et al., 2009; Table 3). Indeed, our mean OC% Sphagnum value at 610 42.3% is close to that of surface Sphagnum tissues, suggesting that it constitutes a valid 611 estimate for ash-free and poorly decomposed *Sphagnum* peat. As previously mentioned, 612 this bias towards low OC% is due to a large number of *Sphagnum* samples younger than 613 0.5 ka (304 out of 454 Sphagnum samples).

2		
3 4	614	
5 6 7	615	Although each one of the three conversion factor slopes was significant ($p < 0.0001$),
7 8 9	616	there is a noticeable scatter in the data (Figure 4) that cannot solely be explained by the \sim
10 11	617	1% analytical error associated with the loss-on-ignition procedure (Heiri et al., 2001).
12 13 14	618	The progressive accumulation of recalcitrant C in old samples (lignin $\sim 60\%$ C vs.
15 16	619	cellulose ~ 42% C), assuming it occurs at a greater rate than the loss of OM in the deeper
17 18	620	portions of peat profiles, could explain why C% appears higher than our OC% conversion
19 20 21	621	factors (Cagnon et al., 2009). The presence of inorganic C, particularly for the humified
22 23	622	and brown moss peat types, could also explain these results.
24 25	623	
26 27 28	624	Oligotrophication and the fen-to-bog transition in northern peatlands
29 30	625	Sphagnum and non-Sphagnum peat types were characterized by very different peat
31 32 33	626	properties, with Sphagnum peat having lower BD, OMBD, C%, N%, and C/N ratio than
34 35	627	non-Sphagnum peat (Figure 6). These differences become important when estimating
36 37	628	Holocene peat C fluxes, as the proportion of Sphagnum-dominated peat records increases
38 39 40	629	during the late Holocene due to the fen-to-bog transition (Figure 6h). For example, much
41 42	630	stronger CH_4 emissions are associated with fens than bogs (e.g., Pelletier et al., 2007). In
43 44	631	terms of C sequestration rates, the systematically higher organic C density of non-
45 46 47	632	Sphagnum peat suggests that higher accumulation rates are possible in fens than in bogs
48 49	633	(Figure 6g), assuming optimal hydroclimatic conditions leading to rapid peat burial. In
50 51 52	634	addition, as non-Sphagnum samples contain twice the N mass of Sphagnum peat (Figure
52 53 54	635	6e), early-stage fens have the ability to stock more N than late-stage bogs. Overall,
55 56 57	636	further studies on the timing of the fen-to-bog transition across the northern peatland
58 59		

domain are needed to better our understanding of its impact on C sequestration and CH_4 emissions. Holocene pattern of carbon accumulation in northern peatlands The overall trajectory and shape of our Holocene peat C accumulation curve is similar to the synthesis from a much smaller dataset (n = 33; Yu et al., 2009). As such, an early Holocene peak during the Holocene Thermal Maximum (HTM) and an overall slowdown of C accumulation during the mid- and late-Holocene, particularly after 4 ka during the Neoglacial period and associated permafrost development, were found in both syntheses (Figure 7). However, the mean Holocene value of 22.9 ± 2.0 g C m⁻² yr⁻¹ (1 S.E.) presented here is approximately 24% higher than the estimate in Yu et al.'s 2009 study (18.6 g C m^{-2} yr⁻¹). Our larger dataset likely better represents the northern peatland C accumulation rates. These results imply that current peat C stocks might be underestimated.

While the peak value at 27 g C m^{-2} yr⁻¹ is about 23% higher than the time-weighted mean peat-C accumulation rate for the remainder of the Holocene at 22 g C m⁻² yr⁻¹, we only found a 2% difference in organic C density values between young $(0.053 \pm 0.02 \text{ g C cm}^{-1})$ ³) and old $(0.057 \pm 0.03 \text{ g C cm}^{-3})$ peat samples. These results clearly show that the peak value during the early Holocene cannot be mainly attributed to presumably dense peat deposits that would be rich in recalcitrant C due to long-term decomposition and compaction. Instead, factors influencing the rate of peat burial such as peat type (Sphagnum vs. non-Sphagnum peat; Figure 6), growing season length, and other

660 environmental variables, must have been responsible for such high rates of C661 sequestration during the early Holocene.

The Holocene Thermal Maximum (HTM) is a well-documented period of orbitally-induced warm climate in the northern high-latitude region (Kaufman et al., 2004; Renssen et al., 2012; Marcott et al., 2013) that reaches its maximum around 11 ka (Berger and Loutre, 1991; Figure 7a). The peak in warm climatic conditions shows a transgressional pattern across northern North America that moved eastward with the waning Laurentide Ice Sheet during the early and mid Holocene (Kaufman et al., 2004). This progressive increase in land availability coupled with warming summer conditions have been proposed as the main controls on peatland inception and rapid C accumulation across northern North America (Harden et al., 1992; Gorham et al., 2007, 2012; Yu et al., 2009; Jones and Yu, 2010). In general, our results support the hypothesis that warm summers could promote peat formation and C sequestration (Beilman et al., 2009; Yu et al., 2009; Charman et al., 2013), as the highest rates of C accumulation broadly coincide with the peak in summer insolation from 11 to 7 ka (Figure 7). We acknowledge that sufficient water input was necessary to allow for peatland development. Furthermore, the observed temporal asymmetry in peatland inception age and peaks in C accumulation rates between Alaska, western Canada, and the Hudson Bay Lowlands follows the transgressional pattern of the HTM. For example, peat inception and highest peat C accumulation rates occur at 11-9 ka in Alaska, whereas they are delayed in western Canada with peak values around 9-7 ka. These findings have important implications for projecting the fate of peat-C stocks in a future warmer world.

683	
684	The Neoglacial period is characterized by generally cooler and wetter conditions than the
685	HTM (Figure 7a; Marcott et al., 2013). Particularly low C accumulation rates coincide
686	with this time period across the northern peatland domain (Figure 7; Vitt et al., 2000;
687	Jones and Yu, 2010). Peat accumulation processes might even have stopped in some
688	regions (e.g., Peteet et al., 1998). The onset of permafrost aggradation in many peatlands
689	also occurred during the Neoglacial period (Zoltai, 1971, 1995; Vitt et al., 2000; Oksanen
690	et al., 2003; Sannel and Kuhry, 2008), reducing the peat C-sink capacity. In addition to
691	shorter and cooler growing seasons, lower C accumulation rates in permafrost sites likely
692	relates to a slower peat burial due to (1) more intense peat decomposition in the acrotelm
693	due to drier surface conditions, and (2) a slower rate of peat formation and associated C
694	inputs to soil because many peat plateaus are not Sphagnum-dominated. Overall, our
695	results support the notion that climatic changes such as the HTM and the Neoglacial
696	cooling impact C sequestration rates in peatlands.
697	
698	Role of northern peatlands in the global nitrogen cycle
699	As relatively few downcore peat N concentrations have been reported in the literature, it
700	was difficult to compare our mean value of 1.2% to previous estimates. Bragazza et al.
701	(2012) reported N content values of 0.7% for Sphagnum fuscum litter and 1.48% for
702	Eriophorum vaginatum (herbaceous) litter, in line with our results (Table 1). Similarly,
703	Turunen et al. (2004) documented peat N concentrations ranging from 0.35 to 2.25%
704	(mean value of 0.8%) for the uppermost sections of 23 Sphagnum bogs across

HOLOCENE

northeastern Canada. Overall, these values closely match our findings for *Sphagnum*(0.7%) and herbaceous (1.7%) peat types (Table 1).

Using our peat C pool estimate of 436 Gt and assuming a mean C/N ratio of 45 yields a peat N pool of 9.7 Gt, roughly equivalent to 10% of the global soil N pool at 95 Gt (Post et al., 1985). This estimate is within the range proposed by Limpens et al. (2006) at 8-15 GtN. The Holocene time-weighted peat N accumulation rate of 0.5 ± 0.04 g N m⁻² yr⁻¹ (S.E.; Figure 7) is also in line with a previous estimate of 0.19-0.48 g N m⁻² yr⁻¹ (Limpens et al., 2006). While the mid and late Holocene (6-0 ka) are characterized by the lowest rates of peat-N accumulation at 0.34 g N m⁻² yr⁻¹, the highest rates (0.61 g N m⁻² yr⁻¹) occurr between 12 and 6 ka (Figure 7c). The low rates of N accumulation over the past 6 ka might also relate to the increasing presence and persistence of *Sphagnum* peat (having high C/N ratio and low N concentration) across the northern peatlands (Figures 6 and 7). Overall, given the bias toward Sphagnum-dominated sites in our database, N pools and N accumulation rates are probably underestimated.

Rapid N sequestration in peatlands during the early Holocene might have contributed to
the global decline in reactive N availability for terrestrial ecosystems (McLauchlan et al.,
2013), pointing to a potentially important and undocumented role of northern peatlands in
the global N cycle. These results also raise the important question of N provenance: in the
absence of large rates of atmospheric N deposition during the early Holocene, the only
process that could account for such a large N pool in peatlands is N fixation, either
through symbiotic or asymbiotic processes (Limpens et al., 2006).

728	
729	The fate of these large peat N stocks remains largely unknown under recent and projected
730	warming. Indeed, the importance of peatlands as sources of nitrous oxide (N ₂ O) is just
731	emerging (e.g., Repo et al., 2009; Marushchak et al., 2011; Palmer et al., 2012), and
732	studies have suggested that reduced surface moisture or increasing temperatures might
733	significantly promote the production, transformation, and transport of dissolved N, and
734	N ₂ O emissions to the atmosphere through denitrification (e.g., Kane et al., 2010). On the
735	contrary, some authors have speculated that the potential increase in peatland-N2O
736	emissions from climate change may not be significant relative to the global N ₂ O budget
737	(e.g., Martikainen et al., 1993; Frolking et al., 2011). Overall, additional peat N cycling
738	studies are needed to address these remaining questions.
739	
740	Future directions
741	Peat core analysis has been extensively used over the past 20 years for estimating rates of
742	peat C accumulation at local, regional, and continental scales (e.g., Mäkilä, 1997; Clymo
743	et al., 1998; Vitt et al., 2000; Turunen et al., 2002; Mäkilä and Saarnisto, 2008; Yu et al.,
744	2010; van Bellen et al., 2011; Gorham et al., 2012). The present study analyzed a new
745	database that comprises 268 peat records from 215 northern peatland sites. This
746	systematic analysis of peat properties and Holocene C accumulation rates is essential for
747	accurately addressing the following general research topics in the future: (1) describing
748	and quantifying spatial and temporal patterns of Holocene peatland C and N
749	accumulation; (2) assessing the sensitivity of C and N accumulation to climate change;
750	(3) estimating peatland soil organic carbon (SOC) and soil organic nitrogen (SON) pools

http://mc.manuscriptcentral.com/holocene

2		
3 4	751	at regional and hemispheric scales, (4) furthering our understanding of peatland C cycle –
5	752	climate linkages and (5) providing the scientific community with a large dataset for
6 7	752	ennute mixages, and (5) providing the scientific community with a farge dataset for
8 9	753	developing and testing earth system and ecological models.
10 11	754	
12		
13 14	/55	Acknowledgements
15 16	756	We acknowledge the peatland research community for sharing their datasets. The U.S.
17 18	757	NSF supported the synthesis work through grant ARC-1107981 to Lehigh University.
19 20 21	758	The collection and analysis of unpublished records used in this synthesis were supported
22 23	759	by the following funding agencies and research grants: Alaska (NSF ARC-1107981,
24 25 26	760	AGS-0628455, and EAR-0819717; USGS Climate Research and Development Program),
20 27 28	761	Canada (NSF ARC-1107981, EAR-0223271, EAR-0843685, and AGS-0628598; NSERC
29 30	762	CRDPJ-305605, CRDPJ-365867; Hydro-Québec), Fennoscandia and Western Siberia
31 32 33	763	(NSF OPP-9818496; Academy of Finland 201321 and 1133515; University of Helsinki),
34 35	764	Kamchatka (NSF ARC-1107981, ARC-1108116), and the United Kingdom (Yorkshire
36 37	765	Peat Partnership). Lehigh University's Library and Technology Services staff is
38 39 40	766	acknowledged for its support in building the web interface for the peatland database.
41 42	767	Finally, comments from Paul Glaser and two other journal reviewers improved the
43 44	768	overall quality of the manuscript.
45 46 47	769	
48 49	770	References
50 51	771	Armentano TV and Menges ES (1986) Patterns of change in the carbon balance of
52	772	organic soil-wetlands of the temperate zone. Journal of Ecology 74: 755-774.
53	773	
54	774	Bauer IE, Bhatti JS, Cash KJ, Tarnocai, C and Robinson SD (2006) Developing statistical
55	775	models to estimate the carbon density of organic soils. Canadian Journal of Soil Science
56 57	776	86: 295-304.
58	-	
59		
1		
----------	-------------	---
2		
3	777	
4	778	Beilman DW, MacDonald GM, Smith LC and Reimer PJ (2009) Carbon accumulation in
с 6	779	peatlands of West Siberia over the last 2000 years. <i>Global Biogeochemical cycles</i> 23.
7	780	GB1012 doi: 10.1029/2007GB003112
8	781	GD1012. uon. 10.102//2007 GD000112.
9	782	Relves I.R. (2000) Non-linear dynamics of neatlands and notantial feedbacks on the
10	702	alimete system In: Daird A Dalyan I. Comes V. Davia A and Slater I. (Eds.) Northern
11	703	chillate System. III. Dalid A, Delyea L, Collias A, Reeve A. and Statel L (Eds.), Northern
12	/04 705	Weshington D.C. LISA, un 5, 19
13	/85	wasnington D.C., USA, pp. 5-18.
14	/86	
10	787	Berger A and Loutre M-F (1991) Insolation values for the climate of the last 10 million
17	788	years. Quaternary Science Reviews 10: 297-317.
18	789	
19	790	Bergner K, Albano Å and Bohlin E (1990) The content of peat: a compilation of
20	791	botanical, physical and chemical data of peat. Department of Agricultural Research,
21	792	Northern Sweden, Swedish University of Agricultural Sciences.
22	793	
23	794	Biörck S and Clemmensen LB (2004) Aeolian sediment in raised bog deposits Halland
24	795	SW Sweden: a new proxy record of Holocene winter storminess in southern Scandinavia?
20 26	796	The Holocene 14: 677-688
20	707	The Holocene 14. 077-000.
28	700	Pladay C (2002) Carbon avaling in postlands. A raviaw of processos and controls
29	790	Environmental Deviews 10: 111 124
30	799	Environmenial Reviews 10. 111-134.
31	800	
32	801	Bragazza L, Buttler A, Habermacher J, Brancaleoni L, Gerdol R, Fritze H, Hanajik P,
33	802	Laiho R and Johnson D (2012) High nitrogen deposition alters the decomposition of bog
34	803	plant litter and reduces carbon accumulation. <i>Global Change Biology</i> 18: 1163-1172.
36	804	
37	805	Bridgham SC, Megonigal JP, Keller JK, Bliss, NB and Trettin C (2006) The carbon
38	806	balance of North American wetlands. <i>Wetlands</i> 26: 889-916.
39	807	
40	808	Buffam I, Carpenter SR, Yeck W, Hanson PC and Turner MG (2010) Filling holes in
41	809	regional carbon budgets: Predicting peat depth in a north temperate lake district. <i>Journal</i>
42	810	of Geophysical Research – Biogeosciences 115, G01005, doi:10.1029/2009JG001034.
43	811	
44 45	812	Cagnon B. Py X. Guillot A. Stoeckli F and Chambat G (2009) Contributions of
45	813	hemicellulose cellulose and lignin to the mass and the norous properties of chars and
40	81 <i>1</i>	steam activated carbons from various lignocellulosic procursors. <i>Biorasourca Tachnology</i>
48	014	100. 202 209
49	015	100. 292-298.
50	017	
51	δ1/ 010	Camili P (1999) Peat accumulation and succession following permatrost thaw in the
52	818	boreal peatlands of Manitoba, Canada. Ecoscience 6: 592-602.
53	819	
54 55	820	Chambers FM, Beilman DW and Yu Z (2011) Methods for determining peat
56	821	humification and for quantifying peat bulk density, organic matter and carbon content for
57	822	palaeostudies of climate and peatland carbon dynamics. <i>Mires and Peat</i> 7, article 7, 10 p.
58		
59		
60		

2		
3	823	
4	824	Charman D Beilman D Blaauw M Booth RK Brewer S Chambers F Christen IA
5	825	Gallego-Sala AV Harrison SP Hughes PDM Jackson S Korhola A Mauguov D
0 7	826	Mitchell E Prantice IC van der Linden M. De Vleeschouwer E. Vu Z. Alm I. Bauer IE
8	020	MaCarish V. Carnaau M. Hahl V. Huang V. Karafald E. La Daux G. Laisal I. Masahan
9	027	D. Nichele JE, Nieminen TM, MerDeneld CM, Dhetters ND, Deveck N, Sillerer Ü
10	828	R, Nichols JE, Nieminen TM, MacDonald GM, Phadtare NR, Rausch N, Sillasoo U,
11	829	Swindles GT, Tuittila E-S, Ukonmaanaho L, Valiranta M, van Bellen S, van Geel B, Vitt
12	830	D and Zhao Y (2013) Climate-related changes in peatland carbon accumulation during
13	831	the last millennium. <i>Biogeosciences</i> 10: 929-944. doi: 10.5194/bg-10-929-2013.
14	832	
15	833	Clymo RS (1984) The limits to peat growth. Philosophical Transactions of the Royal
16	834	Society of London, Series B, Biological Sciences 303: 605-654.
17	835	
10	836	Clymo RS, Turunen J and Tolonen K (1998) Carbon accumulation in peatlands. <i>Oikos</i>
20	837	81: 368-388
21	838	
22	830	Dean Ir WF (1974) Determination of carbonate and organic matter in calcareous
23	840	sediments and sedimentary rocks by loss on ignition: comparison with other methods
24	040	Lowmal of Sodimentary Detvology 14: 242 248
25	041	Journal of Seatmentary Petrology 44. 242-248.
26	842	
21	843	Frolking S and Roulet N1 (2007) Holocene radiative forcing impact of northern peatland
20 20	844	carbon accumulation and methane emissions. <i>Global Change Biology</i> 13: 1-10.
30	845	
31	846	Frolking S, Talbot J, Jones MC, Treat CC, Kauffman JB, Tuittila E-S and Roulet N
32	847	(2011) Peatlands in the Earth's 21 st century coupled climate-carbon system.
33	848	Environmental Reviews 19: 371-396.
34	849	
35	850	Glaser PH, Volin JC, Givnish TJ, Hansen BCS and Stricker CA (2012) Carbon and
36	851	sediment accumulation in the Everglades (USA) during the past 4000 years: rates.
3/	852	drivers and sources of error <i>Journal of Geophysical Research-Biogeosciences</i> 117
30 30	853	G03026 doi:10.1029/20111G001821
40	854	
41	855	Gorham E (1000) Riotic impoverishment in northern peatlands. In: Woodwell CM (Ed.)
42	055	The Earth in tugnition. Datterna and measured of high innervenishment Combridge
43	050	The Earth in transition. Patterns and processes of blotic impoverishment. Californige
44	857	University Press, New York, USA, pp. 65-98.
45	858	
46	859	Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to
47	860	climatic warming. Ecological Applications 1: 182-195.
40 /0	861	
- -50	862	Gorham E, Lehman C, Dyke A, Janssens J and Dyke L (2007) Temporal and spatial
51	863	aspects of peatland initiation following deglaciation in North America. Quaternary
52	864	Science Reviews 26: 300-311.
53	865	
54	866	Gorham E. Lehman C. Dyke A. Clymo D and Janssens J. (2012) Long-term carbon
55	867	sequestration in North American peatlands. <i>Quaternary Science Reviews</i> 58: 77-82
56	868	
5/ 59	000	
50 59		
60		

Harden JW, Sundquist ET, Stallard RF and Mark RK (1992) Dynamics of soil carbon during deglaciation of the Laurentide ice sheet. Science 258: 1921-1924. Heiri O, Lotter AF and Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101-110. Hughes PDM (2000) A reappraisal of the mechanisms leading to ombrotrophy in British raised mires. Ecology Letters 3: 7-9. Ireland AW, Booth RK, Hotchkiss SC and Schmitz JE (2013) A comparative study of within-basin and regional peatland development: implications for peatland carbon dynamics. *Quaternary Science Reviews* 61: 85-95. Jones MC and Yu Z (2010) Rapid deglacial and early Holocene expansion of peatlands in Alaska. Proceedings of the National Academy of Sciences 107: 7347-7352. Kane ES, Turetsky MR, Harden JW, McGuire AD and Waddington JM (2010) Seasonal ice and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a boreal-rich fen. Journal of Geophysical Research – Biogeosciences 115, G04012. doi: 10.1029/2010JG001366. Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML, Dyke AS, Edwards ME, Eisner WR, Gajewski K, Geirsdottir A, Hu FS, Jennings AE, Kaplan MR, Kerwin MW, Lozhkin AV, MacDonald GM, Miller GH, Mock CJ, Oswald WW, Otto-Bliesner BL, Porinchu DF, Ruhland KR, Smol JP, Steig EJ, Wolfey BB (2004) Holocene thermal maximum in the western Arctic (0-180 °W). Quaternary Science Reviews 23: 529-560. Korhola A, Ruppel M, Seppä H, Väliranta M, Virtanen T and Weckström J (2010) The importance of northern peatland expansion to the late-Holocene rise of atmospheric methane. *Ouaternary Science Reviews* 29: 611-617. Lappalainen E (1996) General review on world peatlands and peat resources. In: Lappalainen E (Ed.), Global Peat Resources. International Peat Society, Jyska, pp. 53-56. Limpens J, Heijmans MPD and Berendse F (2006) The nitrogen cycle in boreal peatlands. In: Wieder RK and Vitt DH (Eds.), Boreal Peatland Ecosystems. Ecological Studies Vol. 188, Springer-Verlag, Berlin Heidelberg, Germany, pp. 195-230. MacDonald GM, Beilman DW, Kremenetski KV, Sheng Y, Smith LC and Valichko AA (2006) Rapid early development of circum-arctic peatlands and atmospheric CH₄ and CO₂ variations. Science 314: 285-288.

1		
2 3	010	
4	913	Mäkilä M (1997) Holocene lateral expansion, peat growth and carbon accumulation on
5	914	Haukkasuo, a raised bog in southeastern Finland. <i>Boreas</i> 26: 1-14. doi:10.1111/j.1502-
6	915	3885.1997.tb00647.x.
1	916	
8	917	Mäkilä M and Saarnisto M (2008) Carbon accumulation in boreal peatlands during the
9 10	918	Holocene – impacts of climate variations. In: Strack, M. (Ed.), <i>Peatlands and climate</i>
11	919	change. International Peat Society, Jyväskylä, Finland, pp. 24-43.
12	920	
13	921	Maltby E and Immirzi P (1993) Carbon dynamics in peatlands and other wetland soils,
14	922	regional and global perspectives. Chemosphere 27: 999-1023.
15	923	
10	924	Marcott SA, Shakun JD, Clark PU and Mix AC (2013) A reconstruction of regional and
18	925	global temperature for the past 11,300 years. Science 339: 1198-1201.
19	926	
20	927	Martikainen PJ, Nykänen H, Crill P and Silvola J (1993) Effect of a lowered water-table
21	928	on nitrous-oxide fluxes from northern peatlands. <i>Nature</i> 366: 51-53.
22	929	
23	930	Marushchak ME, Pitkämäki A, Koponen H, Biasi C, Seppälä M and Martikainen PJ
24 25	931	(2011) Hot spots for nitrous oxide emissions found in different types of permafrost
26	932	peatlands. Global Change Biology 17: 2601-2614.
27	933	
28	934	Mauguov D and van Geel B (2007) Mire and Peat Macros. In: Elias S.A. (Ed.).
29	935	Encyclopedia of Ouaternary Science, vol. 3. Elsevier, Amsterdam, The Netherlands, pp.
30	936	2315-2336
31	937	
33	938	McGuire AD Anderson LG Christensen TR Dallimore S Guo L Haves DJ Heimann
34	939	M Lorenson TD MacDonald RW and Roulet N (2009) Sensitivity of the carbon cycle in
35	940	the Arctic to climate change Ecological Monographs 79: 523-555
36	941	the metre to eminate enunge. Deological monographs (), 025 555.
37	942	McLaughlan KK, Williams II, Craine IM and Jeffers FS (2013) Changes in global
38	943	nitrogen cycling during the Holocene enoch <i>Nature</i> 495: 352-357
39 40	943 944	introgen eyening during the Holocene epoen. Nature 475. 552-557.
41	945	Oksapen PO, Kuhry P and Alekseeva RN (2003) Holocene development and permafrost
42	946	history of the Usingk Mire northeast European Russia. Géographia Physique et
43	940 947	Ousternaire 57: 160-187
44	047	Quiternaire 57. 109-107.
45 46	040	Delmar V. Dissi C and Harn MA (2012) Contracting denitrifier communities relate to
40 47	949	contracting N O emission petterne from acidic part soils in arotic tundre. The ISME
48	950 0E1	Lowreal 6: 1059, 1077
49	951	Journal 6. 1038-1077.
50	952	Delletion I. Maana TD. Develot NT. Compared Mand Develing Acids V (2007) Mothema
51	953	Pelletier L, Moore TR, Roulet NT, Garneau M and Beaulieu-Audy V (2007) Methane
52 52	954	fluxes from three peatiands in the La Grande Riviere watershed, James Bay lowland,
53 54	955	Canada. Journal of Geophysical Research – Biogeosciences 112, G01018. doi:
55	956	10.1029/2000JG000216.
56	957	
57		
58		
59 60		
00		

1		
2		
3	958	Peteet D, Andreev A, Bardeen W and Mistretta F (1998) Long-term Arctic peatland
4	959	dynamics, vegetation and climate history of the Pur-Taz region, Western Siberia, Boreas
5	960	27: 115-126.
7	961	
8	962	Piotrowska N. Blaauw M. Mauguov D and Chambers FM (2011) Constructing deposition
9	062	abranalagias for past deposits using redicearbon defing Mixes and Dest 7, article 10, 14
10	903	chronologies for pear deposits using radiocarbon dating. <i>Mires and Pear 7</i> , article 10, 14
11	964	p.
12	965	
13	966	Post WM, Pastor J, Zinke PJ and Stangenberger AG (1985) Global patterns of soil
14	967	nitrogen storage. Nature 317: 613-616.
15	968	
16	969	Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand C, Blackwell PG, Buck
17	970	CE, Burr G, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson
10	971	TM Hughen KA Kromer B McCormac FG Manning S Bronk Ramsey C Reimer RW
20	972	Remmele S. Southon IR. Stuiver M. Talamo S. Taylor FW, van der Plicht I
21	073	Weyhenmeyer CE (2000) IntCal00 and Marine00 radiocarbon age calibration curves 0
22	074	50 000 years on DD. <i>Badiographics</i> 51: 1111-1150
23	974	50,000 years cal BP. <i>Radiocarbon</i> 51: 1111-1150.
24	975	
25	976	Renssen H, Seppa H, Crosta X, Goose H and Roche DM (2012) Global characterization
26	977	of the Holocene Thermal Maximum. <i>Quaternary Science Reviews</i> 48: 7-19.
27	978	
28	979	Repo ME, Susiluoto S, Lind SE, Jokinen S, Elsakov V, Biasi C, Virtanen T, Martikainen
29	980	PJ (2009) Large N ₂ O emissions from cryoturbated peat soil in tundra. <i>Nature Geoscience</i>
30	981	2: 189-192.
32	982	
33	983	Ruppel M. Väliranta M. Virtanen T and Korhola A (2013) Postglacial spatiotemporal
34	981	neatland initiation and lateral expansion dynamics in North America and northern
35	085	Europe The Holocene, doi:10.1177/0050683613400053
36	905	Europe. The Holocene. doi.10.1177/0939083013499033.
37	980	
38	987	Rydin H and Jegium J (2013). The biology of peatlands. 2 edition, Oxford University
39	988	Press, Oxford, UK, 382 p.
40	989	
41	990	Sannel ABK and Kuhry P (2008) Long-term stability of permafrost in subarctic peat
4Z 43	991	plateaus, west-central Canada. <i>The Holocene</i> 18: 589-601.
43	992	
45	993	Sheng Y, Smith LC, MacDonald GM, Kremenetski KV, Frey KE, Velichko AA, Lee M,
46	994	Beilman DW and Dubinin P (2004) A high-resolution GIS-based inventory of the West
47	995	Siberian peat carbon pool <i>Global Biogeochemical Cycles</i> 18 GB3004 doi:
48	996	10 1029/2003GB002190
49	997	10.102)/2005/GD0021/0.
50	000	Smith I.C. MacDonald G.M. Valiahka A.A. Pailman D.W. Parisova O.K. Fray
51	770 000	V E Vromonotoli V V Shong V 2004 Siborian nostlanda a not contain a sinte and stated
52	999	K.E., Kremenetski, K.V., Sneng, Y. 2004. Siberian peatiands a net carbon sink and global
53 54	1000	memane source since the Early Holocene. Science, 303, 353–356.
55	1001	
56	1002	Stolbovol V (2002) Carbon in Russian soils. <i>Climatic Change</i> 55: 131-156.
57	1003	
58		
59		
60		

1		
2	1004	
4	1004	Stolbovoi V and McCallum I (2002) Land resources of Russia. International Institute for
5	1005	Applied Systems Analysis. www.iiasa.ac.at/Research/FOR/russia_cd/download.htm.
6	1006	
7	1007	Stolbovol V, Montanarella L, Medvedev V, Smeyan N, Shishov L, Ungureanu V,
8	1008	Dobrovolski G, Jamagne M, King D, Rozhkov V and Savin I (2001) Integration of data
10	1009	on the soils of Russia, Byelorus, Moldova and Ukraine into the Soil Geographic Database
11	1010	of the European Community. <i>Eurasian Soil Science</i> 34: 687-703.
12	1011	
13	1012	Stuiver M and Reimer PJ (1993) Extended ¹⁴ C database and revised CALIB radiocarbon
14	1013	calibration program. <i>Radiocarbon</i> 35: 215-230.
15 16	1014	
17	1015	Telford RJ, Heegaard E and Birks HJB (2004) All age-depth models are wrong: but how
18	1016	badly? Quaternary Science Reviews 23: 1-5.
19	1017	
20	1018	Troels-Smith J (1955) Characterization of unconsolidated sediments. Danmarks
21	1019	Geologiske Undersøgelse Series 4: 1-73.
22	1020	
23 24	1021	Turetsky MR, Wieder RK, Vitt DH, Evans RJ and Scott KD (2007) The disappearance of
25	1022	relict permafrost in boreal North America: effects on peatland carbon storage and fluxes.
26	1023	Global Change Biology 13: 1922-1934.
27	1024	
28	1025	Turunen J, Tomppo E, Tolonen K and Reinikainen A (2002) Estimating carbon
29	1026	accumulation rates of undrained mires in Finland – application to boreal and subarctic
30 31	1027	regions. The Holocene 12: 69-80.
32	1028	
33	1029	Turunen J, Roulet NT, Moore TR and Richard PJH (2004) Nitrogen deposition and
34	1030	increased carbon accumulation in ombrotrophic peatlands in eastern Canada. <i>Global</i>
35	1031	Biogeochemical Cycles, 18, GB3002. doi: 10.1029/2003GB002154.
36	1032	
37 38	1033	van Bellen S, Dallaire P-L, Garneau M and Bergeron Y (2011) Quantifying spatial and
39	1034	temporal Holocene carbon accumulation in ombrotrophic peatlands of the Eastmain
40	1035	region, Quebec, Canada. Global Biogeochemical Cycles 25, GB2016.
41	1036	doi:10.1029/2010GB003877.
42	1037	
43	1038	Vitt DH, Halsey LA, Bauer IE and Campbell C (2000) Spatial and temporal trends in
44 45	1039	carbon storage of peatlands of continental western Canada through the Holocene.
46	1040	Canadian Journal of Earth Sciences 37: 683-693
47	1041	
48	1042	Yu Z (2011) Holocene carbon flux histories of the world's peatlands: global carbon-cycle
49	1043	implications The Holocene 21: 761-774
50 51	1044	
51 52	1045	Yu Z (2012) Northern neatland carbon stocks and dynamics: a review <i>Biogeosciences</i> 9.
53	1046	4071-4085
54	1047	
55	1017	
56		
5/ 52		
59		
60		
		20

1		
2		
3	1048	Yu Z, Campbell ID, Campbell C, Vitt DH, Bond GC and Apps MJ (2003) Carbon
4 5	1049	sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate
6	1050	cycles at millennial timescales. The Holocene 13: 801-808.
7	1051	
8	1052	Yu Z, Beilman DW and Jones MC (2009) Sensitivity of northern peatland carbon
9	1053	dynamics to Holocene climate change. In: Baird A. Belvea L. Comas X. Reeve A. Slater
10	1054	L (Eds.) Northern peatlands and carbon cycling American Geophysical Union
11	1055	Monograph Series Washington D.C. USA pp. 55-69
12 13	1056	
14	1057	Yu Z. Loisel I. Brosseau DP. Beilman DW and Hunt SI (2010) Global neatland dynamics
15	1058	since the Last Glacial Maximum Geonhysical Research Letters 37 L 13402 doi:10.1029/
16	1050	2010GI 0/358/
17	1055	201001043504.
18	1061	Vu 7 Loisel I. Turately MP. Cai S. Zhao V. Freiking S. MacDonald CM and Publice II
19	1001	(2012) Evidence for elevated emissions from high latitude wetlands contributing to high
20	1062	(2013) Evidence for elevated emissions from high-fatilude wetlands contributing to high
21	1063	atmospheric CH ₄ concentration in the early Holocene. <i>Global Biogeochemical Cycles 21</i> :
23	1064	131-140. doi:10.1002/GBC.20025.
24	1065	
25	1066	Zoltai SC (19/1) Southern limit of permatrost features in peat landforms, Manitoba and
26	1067	Saskatchewan. Geological Association of Canada, Special Paper 9, 305-310.
27	1068	
28 20	1069	Zoltai SC (1995) Permafrost distribution in peatlands of west-central Canada during the
30	1070	Holocene warm period 6000 years B.P. <i>Géographie Physique et Quaternaire</i> 49: 45-54.
31	1071	
32		
33	1072	Figure and Table Captions
34		
30 36	1073	Figure 1. Location of study sites. Map showing the distribution of northern peatlands
37		
38	1074	(green area from Yu et al., 2010) and peatland sites included in this study ($n = 215$ sites,
39		
40	1075	including 268 peat cores). Long-term rate of peat-carbon accumulation was estimated
41		
4Z /3	1076	from 127 sites (151 peat cores; red and blue dots). The yellow dots represent cores for
43		
45	1077	
46	10//	which only peat properties (bulk density, organic matter content, etc.) were available and
47	10//	which only peat properties (bulk density, organic matter content, etc.) were available and
	1077	synthesized. Refer to Supplementary Table 1 for details.
48	1077	synthesized. Refer to Supplementary Table 1 for details.
48 49	1077 1078 1079	synthesized. Refer to Supplementary Table 1 for details.
48 49 50 51	1077 1078 1079	synthesized. Refer to Supplementary Table 1 for details.
48 49 50 51 52	1077 1078 1079 1080	which only peat properties (bulk density, organic matter content, etc.) were available and synthesized. Refer to Supplementary Table 1 for details.Figure 2. Overview of data availability for North America (black bars) and Eurasia
48 49 50 51 52 53	1077 1078 1079 1080	which only peat properties (bulk density, organic matter content, etc.) were available and synthesized. Refer to Supplementary Table 1 for details.Figure 2. Overview of data availability for North America (black bars) and Eurasia
48 49 50 51 52 53 54	1077 1078 1079 1080 1081	 which only peat properties (bulk density, organic matter content, etc.) were available and synthesized. Refer to Supplementary Table 1 for details. Figure 2. Overview of data availability for North America (black bars) and Eurasia (white bars). (A) Number of cores (total = 238) containing information on
48 49 50 51 52 53 54 55	1077 1078 1079 1080 1081	 which only peat properties (bulk density, organic matter content, etc.) were available and synthesized. Refer to Supplementary Table 1 for details. Figure 2. Overview of data availability for North America (black bars) and Eurasia (white bars). (A) Number of cores (total = 238) containing information on
48 49 50 51 52 53 54 55 56 57	1077 1078 1079 1080 1081 1082	which only peat properties (bulk density, organic matter content, etc.) were available and synthesized. Refer to Supplementary Table 1 for details. Figure 2. Overview of data availability for North America (black bars) and Eurasia (white bars). (A) Number of cores (total = 238) containing information on carbon/nitrogen ratio (n = 40), nitrogen content (n = 40), carbon content (n = 56) peat
48 49 50 51 52 53 54 55 56 57 58	1077 1078 1079 1080 1081 1082	which only peat properties (bulk density, organic matter content, etc.) were available and synthesized. Refer to Supplementary Table 1 for details. Figure 2. Overview of data availability for North America (black bars) and Eurasia (white bars). (A) Number of cores (total = 238) containing information on carbon/nitrogen ratio (n = 40), nitrogen content (n = 40), carbon content (n = 56), peat
48 49 50 51 52 53 54 55 56 57 58 59	1077 1078 1079 1080 1081 1082	which only peat properties (bulk density, organic matter content, etc.) were available and synthesized. Refer to Supplementary Table 1 for details. Figure 2. Overview of data availability for North America (black bars) and Eurasia (white bars). (A) Number of cores (total = 238) containing information on carbon/nitrogen ratio (n = 40), nitrogen content (n = 40), carbon content (n = 56), peat

39 http://mc.manuscriptcentral.com/holocene

3 4	1083	types (n = 83), organic matter bulk density (n = 184), organic matter content (n = 190),
5 6	1084	and bulk density ($n = 214$). (B) Number of cores (total = 151) with a dating quality better
7 8 9	1085	than two dates per 1000 years (n = 35), one to two dates per 1000 years (n = 52), and less
10 11	1086	than one date per 1000 years ($n = 64$). (C) Number of calibrated basal peat ages (median)
12 13	1087	in 500-year bins from the database ($n = 199$) compared to all northern hemisphere basal
14 15 16	1088	peat ages (median) in 200-year bins (n = 2559, MGK data from MacDonald et al., 2006,
17 18	1089	<u>G</u> orham et al., 2007, <u>K</u> orhola et al., 2010).
19 20	1090	
21 22 23	1091	Figure 3. Distribution histograms of peat properties in northern peatlands. (A) Frequency
24 25	1092	distribution of bulk density for unidentified peat type samples (white bars) and different
26 27 28	1093	peat types (color bars). (B) Frequency distribution of organic matter content for different
28 29 30	1094	peat types. (C) Frequency distribution of organic matter bulk density for different peat
31 32	1095	types. (D) Frequency distribution of carbon content for different peat types. (E)
33 34 35	1096	Frequency distribution of nitrogen content for different peat types. (F) Frequency
36 37	1097	distribution of carbon/nitrogen mass ratio for different peat types.
38 39	1098	
40 41 42	1099	Figure 4. Relation between carbon content and organic matter content in northern
43 44	1100	peatlands. The slope of each regression line is used as a conversion factor for estimating
45 46 47	1101	carbon content from organic matter content.
48 49	1102	
50 51	1103	Figure 5. Temporal patterns of peat properties (mean, standard deviation, and number of
52 53 54	1104	samples). (A) Bulk density. (B) Organic matter content. (C) Organic matter bulk density.
55 56		
ว <i>า</i> 58 59		
60		40
		http://mc.manuscriptcentral.com/holocene

3 4	1105	(D) Carbon content. (E) Nitrogen content. (F) Carbon/Nitrogen mass ratio. White bars
5 6	1106	represent values that were based on a limited number of samples and peat records.
7 8 9	1107	
10 11	1108	Figure 6. Main differences between <i>Sphagnum</i> and non- <i>Sphagnum</i> peat samples. (A)
12 13	1109	Bulk density. (B) Organic matter bulk density. (C) Organic carbon bulk density. (D)
14 15 16	1110	Carbon content. (E) Nitrogen content. (F) Carbon/Nitrogen mass ratio. (G) Temporal
17 18	1111	pattern of organic C bulk density. (H) Proportional change in the number of peat records
19 20 21	1112	that are Sphagnum-dominated, presented as a percentage of the total number of records.
22 23	1113	
24 25	1114	Figure 7. Long-term apparent rate of carbon and nitrogen accumulation from northern
26 27 28	1115	peatlands (n = 127 sites). (A) Summer insolation at 60°N (data from Berger and Loutre,
29 30	1116	1991) and temperature anomaly from an 11,300-year reconstruction for the northern
31 32 33	1117	extra-polar region from 30 to 90°N (data from Marcott et al., 2013). Temperature
33 34 35	1118	anomaly was calculated based on the 1961-1990 temperature averages. (B) Mean peat-
36 37	1119	carbon accumulation rates (PCAR) and standard error in 500-year bins. The number of
38 39 40	1120	sites per 500-year bins is also presented. (C) Mean peat-nitrogen accumulation rates
41 42	1121	(PNAR) and standard error in 500-year bins. These values were obtained using different
43 44	1122	C/N values over time, as indicated by the line.
45 46 47	1123	
48 49	1124	Table 1. Peat properties in northern peatlands. Means and standard deviations are
50 51	1125	presented, along with the number of samples (n).
52 53 54	1126	
55 56		
57 58 59		
60		41

1		
2 3 4	1127	Table 2. Northern peatland peat properties by regions. Means and standard deviations are
5 6 7	1128	presented, along with the number of samples (n).
8 9	1129	
10 11	1130	Table 3. Comparison of northern peatland peat properties estimates with other published
12 13 14	1131	values. Means and standard deviations are presented, along with the number of samples
15 16	1132	(n) when available.
17 18	1133	
19 20 21	1134	Supplementary Material
22 23	1135	Table S1. Summary information for the study sites included in the database.
24 25 26		
26 27 28		
20 29 20		
30 31 22		
32 33		
34 35		
36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48		
49 50		
51 52		
53		
54 55		
56		
57 58		
59 60		
		42

A eircum-Arctic-database and synthesis of <u>northern</u> peatland soil properties and

Holocene carbon and nitrogen accumulation

4 <u>Running title</u>

Circum Arctic Northern peatland database and synthesis

7 Authors

Julie Loisel^{1*}, Zicheng Yu^{1*}, David W. Beilman², Philip Camill³, Jukka Alm⁴, Matthew J. Amesbury⁵, David Anderson⁶, Sofia Andersson⁷, Christopher Bochicchio¹, Keith Barber⁸, Lisa R. Belyea⁹, Joan Bunbury¹⁰, Frank M. Chambers¹¹, Daniel J. Charman⁵, François De Vleeschouwer¹², Barbara Fiałkiewicz-Kozieł¹³, Sarah A. Finkelstein¹⁴, Mariusz Gałka¹³, Michelle Garneau¹⁵, Dan Hammarlund¹⁶, William Hinchcliffe⁵, James Holmquist¹⁷, Paul Hughes⁸, Miriam C. Jones¹⁸, Eric S. Klein¹, Ulla Kokfelt¹⁹, Atte Korhola²⁰, Peter Kuhry⁷, Alexandre Lamarre¹⁵, Mariusz Lamentowicz¹³, David Large²¹, Martin Lavoie²², Glen MacDonald¹⁷, Gabriel Magnan¹⁵, Markku Mäkilä²³, Gunnar Mallon⁸, Paul Mathijssen²⁰, Dmitri Mauquoy²⁴, Julia McCarroll¹¹, Tim R. Moore²⁵, Jonathan Nichols²⁶, Benjamin O'Reilly¹⁴, Pirita Oksanen²⁷, Maara Packalen²⁸, Dorothy Peteet²⁶, Pierre J.H. Richard²⁹, Stephen Robinson³⁰, Tiina Ronkaninen²⁰, Mats Rundgren¹⁶, A. Britta K. Sannel⁷, Charles Tarnocai³¹, Tim Thom³², Eeva-Stiina Tuittila⁴, Merritt Turetsky³³, Minna Väliranta²⁰, Marjolein van der Linden³⁴, Bas van Geel³⁵, Simon van Bellen²³, Dale Vitt³⁶, Yan Zhao³⁷, Weijian Zhou³⁸

4		
5		
6		
7		
8 9	23	Revised manuscript submitted on 19 December 2013 as a Research Paper for the special
10 11	24	issue Holocene Peatland Carbon Dynamics in the Circum-Arctic Region.
12 13	25	
13 14 15	26	Affiliations
16	27	¹ Department of Farth and Environmental Sciences, Labigh University, Bathlaham, BA
17	27	Department of Earth and Environmental Sciences, Eeringh Oniversity, Beuneneni, FA
10	20	18013, USA
10	29	
19	30	Department of Geography, University of Hawaii – Manoa, Honolulu, HI 96822, USA
20	31	
21	32	³ Department of Earth and Oceanographic Sciences, Bowdoin College, Brunswick, ME
22	33	04011, USA
23	34	
24	35	⁴ School of Forest Sciences, University of Eastern Finland, Joensuu, FI 80101, Finland
27	36	
20	37	⁵ Department of Geography University of Exeter, Exeter, EX4.4R1 UK
26	38	Department of Geography, Oniversity of Exectly, Execut, Execut, Ox
27	20	Department of Cooperative Eter College Window Depleting SL4 (DW LW
28	39	Department of Geography, Eton College, windsor, Berksnire SL4 6Dw, UK
29	40	
30	41	Department of Physical Geography and Quaternary Geology, Stockholm University,
31	42	Stockholm, 106 91, Sweden
22	43	
32	44	⁸ Geography and Environment, University of Southampton, Southampton, SO17 1BJ, UK
33	45	
34	46	⁹ School of Geography Queen Mary University of London London E1 4NS UK
35	47	Senser of Geography, Queen many Cantelong of Denaon, Denaon, Di 110, Ort
36	1.9	¹⁰ Department of Geography and Earth Science, University of Wisconsin, La Crosse, La
37	40	Department of Geography and Earth Science, University of Wisconsin – Ea Crosse, Ea
38	49	Closse, w1 34001, USA
30	50	
40	51	"Centre for Environmental Change and Quaternary Research, University of
40	52	Gloucestershire, Cheltenham, GL50 4AZ, UK
41	53	
42	54	¹² CNRS and Université de Toulouse, Castanet Tolosan, 31326, France
43	55	
44	56	¹³ Department of Biogeography and Paleoecology, Adam Mickiewicz University, Poznan,
45	57	61-680 Poland
46	58	
40 17	50	¹⁴ Department of Earth Sciences, University of Toronto, Toronto, ON M5S 3B1, Canada
40 10	60	Department of Latin Sciences, Oniversity of Toronto, Toronto, OV 1955 5D1, Canada
40	00	¹⁵ Description of the Characteristic of the
49	61	Departement de Geographie and GEOTOP, Universite du Quebec – Montreal,
50	62	Montreal, QC H3C 3P8, Canada
51	63	
52	64	¹⁶ Department of Geology, Lund University, Lund, SE-223 62, Sweden
53		
54		
54		
55		2
30		
57		
58		
59		
60		

3		
4		
5		
6		
7		
/ 0		
8	65	
9	66	¹⁷ Department of Geography, University of California – Los Angeles, Los Angeles, CA
10	67	90095, USA
11	68	
12	69	¹⁸ U.S. Geological Survey, Reston, VA 20192, USA
13	70	
14	71	¹⁹ Department of Geosciences and Natural Resource Management University of
15	72	Conenhagen Conenhagen DK-1350 Denmark
16	73	Copennagen, Copennagen, Dir 1990, Dennark
17	73	²⁰ Department of Environmental Sciences, University of Helsinki, Helsinki, EIN 00014
18	75	Einland
10	75	r inidite
19	70	²¹ Density of Chaminal and Engineering Incidential Engineering University of National and
20	//	Department of Chemical and Environmental Engineering, University of Nottingham,
21	/8	Nottingnam, NG/2RD, UK
22	79	
23	80	Département de Géographie and Centre d'études nordiques, Université Laval, Quèbec,
24	81	QC GIV 0A6, Canada
25	82	
26	83	²³ Geological Survey of Finland, P.O. Box 96, Espoo, 02151, Finland
27	84	
28	85	²⁴ School of Geosciences, University of Aberdeen, Aberdeen, AB24 3UF, UK
20	86	
20	87	²⁵ Department of Geography and Global Environmental and Climate Change Centre,
30	88	McGill University, Montreal, OC H3A 0B9, Canada
31	89	
32	90	²⁶ Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
33	91	
34	92	²⁷ Centre for Economic Development, Transport and the Environment Vaasa 65101
35	93	Finland
36	94	
37	95	²⁸ Department of Geography University of Toronto, Toronto, ON M58 3G3, Canada
38	06	Department of Geography, Oniversity of Toronto, Toronto, ON 1055 305, Canada
39	90	²⁹ Département de Géographie Université de Montréel Montréel OC H2V 2P8 Canada
40	97	Departement de Geographie, Oniversité de Montreal, Montreal, QC H2 v 208, Canada
41	90	³⁰ Champlein Callege Dublin Commun Dublin Indend
/2	99	Champiain College – Dublin Campus, Dublin, Ireland
42 //3	100	31 A stick was a 1 A sti Test Const. Otto a ONIK1A OCC Const.
43	101	- <u>Agriculture and Agri-Food Canada, Ottawa, ON KTA 006, Canada</u>
44	102	
45	103	²² Yorkshire Peat Partnership, Yorkshire Wildlife Trust, York, YO24 IGN, UK
46	104	
47	105	³⁵ Department of Integrative Biology, University of Guelph, Guelph, O <u>N</u> NIG 2W1,
48	106	Canada
49	107	34
50	108	"BIAX Consult, Zaandam, 1506 AL, The Netherlands
51	109	
52		
53		
54		
55		
56		3
57		
50		
50		
59		

HOLOCENE

3 4		
5		
7		
8 9	110	³⁵ Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam,
10	111 112	Amsterdam, 1098 XH, The Netherlands
11	112	³⁶ Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901, USA
12	114	37
13	115 116	³⁷ Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Paijing, 100101, Chine
15	117	Sciences, Beijing, 100101, China
16	118	³⁸ Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710075 Shaanxi,
17	119	China
18 10	120	
20	121	Corresponding authors
21		
22	122	Julie Loisel email: <u>jul208@lehigh.edu</u> phone: 610-758-3660
23	123	Zicheng Yu email: ziv2@lehigh edu phone: 610-758-6751
24 25	120	
26	124	
27	125	Abstract
28	125	Abstract
29 30	126	Here we present results from the most comprehensive compilation of <u>Holocene</u> peat soil
31 32	127	properties withand associated Holocene carbon and nitrogen accumulation rates for
33 34	128	northern peatlands. Our database consists of 268 peat cores from 215 sites located north
35 36	129	of 45°N. It encompasses regions within which peat carbon data have only recently
37 38	130	become available, such as the West Siberia Lowlands, and the Hudson Bay Lowlands,
39 40	131	Kamchatka in Far East Russia, and the Tibetan Plateau. For all northern peatlands, carbon
41 42	132	content in organic matter was estimated at $42.3 \pm 3\%$ (S.D.) for <i>Sphagnum</i> peat, $51.3 \pm 3\%$
43	133	2% for non- <i>Sphagnum</i> peat, and at 49 .2 \pm 2% overall. <u>Dry bulk</u> Bulk density averaged
45	134	0.12 ± 0.07 g cm ⁻³ , organic matter bulk density averaged 0.11 ± 0.05 g cm ⁻³ , and total
40	135	carbon content <u>in peat</u> averaged $46.847 \pm 6.1\%$ <u>In general</u> , large differences were found
48 49	136	between Sphagnum and non-Sphagnum peat types in terms of peat properties. Time-
50 51	137	weighted peatcarbon accumulation rates averaged $2\frac{32.9}{2} \pm 2$ (S.E.M.) g C m ⁻² yr ⁻¹
52		
53 54		

138	during the Holocene on the basis of 151 peat cores from 127 sites, with the highest rates
139	of carbon accumulation (25-28 g C m ⁻² yr ⁻¹) recorded during the warmer than today early
140	Holocene when the climate was warmer than the present. Furthermore, Finally, we
141	provide the first e stimate for the northern peatland carbon and nitrogen pools at 436 and
142	<u>109.7</u> gigatons, respectively equivalent to 10% of the world's soil nitrogen. The database
143	is publicly available at http <u>s</u> :///www.peatlands.lehigh.edu.
144	
145	<u>Keywords</u>
146	Northern peatlands, Data synthesis, Climate change, Soil carbon and nitrogen,
147	Biogeochemical cycles, Long-term ecosystem dynamics
148	
149	Introduction
150	Of all terrestrial ecosystems, peatlands are arguably the most efficient at sequestering
151	carbon (C) over long time scales. Northern peatlands cover approximately 4,000,000 km ²
152	or 3% of the global land area (Maltby and Immirzi, 1993) and have accumulated about
153	500 gigatons of C (GtC) mostly during the Holocene, equivalent to \sim 30% of <u>the present-</u>
154	daythe global soil organic carbon (SOC) pool (Gorham, 1991; Bridgham et al., 2006; Yu
155	et al., 2010). These ecosystems have also been playingplayed a dynamic role in the
156	Holocene global C cycle as important sinks of carbon dioxide (CO ₂) and major sources of
157	methane (CH ₄) to the atmosphere (Frolking and Roulet, 2007; Korhola et al., 2010; Yu,
158	2011). As climate warming positively affects both plant growth and organic matter
159	decomposition, rRecent and projected climate change could shift the balance between
160	peat production and organic matter decomposition, potentially affecting the peatland C-

1
2
2
3
4
5
6
7
2 2
0
9
10
11
12
13
1/
14
10
16
17
18
19
20
20 21
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
55
36
37
38
39
40
/1
12
42
43
44
45
46
47
48
49
50
50
51
52
53
54
55
56
50
ວ <i>1</i>
58
59

161	sink capacity and modifying peatC fluxes to the atmosphere (Frolking et al., 2011; Yu,
162	2012). This prediction is particularly the case inholds true for the northern high-latitude
163	regions, where the intensity of climate change is expected to be greatest (McGuire et al.,
164	2009). The peatland <u>C cycle-carbon</u> climate feedback remains difficult to assess,
165	however, because of (1) limited understanding of peatland responses to climate change
166	(Frolking et al., 2011), (2) data gaps and large uncertainties in regional peatland C stocks
167	(Yu, 2012), and (3) non-linear peatland responses to external forcing (Belyea, 2009).
168	
169	Very little is known about the nitrogen (N) budget that accompanies C accumulation in
170	northern peatlands (but see Limpens et al., 2006 for a review). Assuming a net C
171	sequestration of ~270 GtC (Yu, 2012) and a C/N ratio of 20-30 for fen peat (Bergner et
172	al., 1990; Rydin and Jeglum, 2013; results therein) during the early Holocene (11-7 ka),
173	about 10-13 GtN would have been required to build such peat deposits. It is therefore
174	possible that northern peatlands have been playing an undocumented, dynamic role in the
175	Holocene global N cycle as important sinks of N, potentially limiting the amount of N
176	available for other ecosystems at the global scale (McLauchlan et al., 2013).
177	Alternatively, if the main N input to peatlands was through N ₂ fixation by cyanobacteria,
178	these microorganisms might have been more important in driving the C cycle in
179	peatlands than previously thought. Overall, studying the coupling between N and C
180	cycling in northern peatlands is essential for a better understanding of how key
181	biogeochemical processes interact in these systems and for predicting the future of peat C
182	stocks.
183	
	6
	0

Page 50 of 117

HOLOCENE

184	Here we present the most comprehensive compilation of Holocene C <u> and N</u> data for
185	northern peatlands. Our database consists of 268 peat cores from 215 sites located north
186	of 45 °N or at high elevations (e.g., Tibetan Plateau). This synthesis encompasses regions
187	within which peatC_and N data have only recently become available, such as the West
188	Siberian Lowlands in Asian Russia <u>, a and</u> the Hudson Bay Lowlands in Canada.
189	Kamchatka in the Russian Far East, and the Tibetan Plateau. In addition, we present the
190	most comprehensive synthesis of peat soil properties (such as bulk density, organic
191	matter content, and carbon \underline{C} and mitrogen \underline{N} content) from the northern hemisphere.
192	Also, this new database and synthesis work represent a major expansion from Yu et al.'s
193	(2009) synthesis on Holocene peat C dynamics, which was based on 33 sites (vs. 127
194	sites as reported in this paper). Finally, it constitutes a natural continuation of Charman et
195	al.'s (2013) recent study on peat C accumulation in northern peatlands during the last
196	<u>millennium.</u>
197	
198	In addition to filling regional data and knowledge gaps, t ^T he main objectives of this
199	paper are to (1) describe a database of peat soil properties and synthesize this information
200	for different peat types, time intervals, and geographic regions, and (2) produce a-time
201	series of Holocene peatC <u>and N</u> accumulation rates in 500-yr increments-bins for
202	comparison with climate history. Key differences in Holocene peat properties between
203	different regions and peatland types are also discussed in light of their implications for
204	long-term peat C stocks. Of particular importance and relevance are the differences
205	between Sphagnum and non-Sphagnum peat types. Finally, we present new estimates for
I	

2
3
Δ
- -
5
6
7
8
õ
9
10
11
12
12
13
14
15
16
17
10
18
19
20
21
20
22
23
24
25
20
20
27
28
29
20
30
31
32
33
24
34
35
36
37
20
30
39
40
41
12
40
43
44
45
46
40
47
48
49
50
51
51
52
53
54
55
00
56
57
58
50
29
60

206	northern peat C and N stocks for northern peatlands on the basis of the expanded
207	database.
208	
209	Database and Database and analytical methodsanalysis
210	Databasebase
211	We compiled a dataset of 268 published and unpublished Holocene peat records from
212	215 sites located in North America and Eurasia (Figure 1, Supplementary Table 1). The
213	difference in the number of peat cores and peatland sites is due to the fact that, in a few
214	instances, multiple cores were collected from a single peatland. As these multiple cores
215	were not designed as true replicates in the original publications, each of these cores was
216	considered as an independent record of peat properties in the present study. However,
217	only the oldest core for each site was accounted used for when estimating peat inception
218	age. Finally, when calculating peatCearbon accumulation rates, estimates, multiple
219	cores from a single site were each attributed a <u>n equal</u> fraction of the weight for that site.
220	For example, fFor a site with three cores, the peatC accumulation history of each core
221	only accounted for 1/3 of a record the site's record.
222	
223	<u>The l</u> Latitude of <u>most</u> peatland sites range <u>s</u> from 45 to 69 °N <u>. The cutoff at 45 °N</u>
224	represents the southern limit for defining what is considered to be the area contributing to
225	the C cycle of the Arctic region (McGuire et al., 2009)., with the exception of Four high-
226	elevationthree high elevation sites found in China (the Tibetan Plateau) and Japan were
227	also included, as they developed under similar 'northern' climatic conditionsThe name
228	and coordinates of these four sites are as follows: Zoige (33.5 °N, 102.6 °E), Hongyuan

Page 52 of 117

HOLOCENE

2		
4		
6		
7 8 9	229	<u>(32.8</u>
10	230	155 c
11 12 13	231	rema
14	232	Appr
15 16 17	233	cores
18	234	(40%
19 20	235	cores
21	236	origi
23 24	237	from
25 26	238	by di
27 28	239	all of
29 30	240	<u>2013</u>
31 32	241	low p
33 34	242	fens
35 36	243	nutrie
37 38	244	great
39 40	245	<u>A</u> arc
41	246	sensi
42 43 44	247	1999
45	248	cores
46 47	249	were
48 49	250	categ
50 51	251	
52 53		
54		
55 56		
57 58		
58 59		
60		

9	(32.8 °N, 102.5 °E), Hani (42.2 °N, 126.5 °E), and Utasai (42.4 °N, 140.2 °E)A total of
0	155 cores originate from Eurasia, comprising-including 112 cores from Russia. The
1	remaining 113 cores come from North America, including 12 cores from Alaska.
2	Approximately 40% of all cores were collected <u>from</u> ombrotrophic bogs (n = $1\frac{10}{10}$
3	<u>cores</u> 08) and 20% were extracted from minerotrophic fens (n = 50 <u>cores</u>). The remainder
4	(40%) was collected in permafrost peatlands currently affected by permafrost ($n = 108$)
5	cores10). Note that peatland type was identified independently for each site by the
6	original investigators. From an ecosystem functioning perspective, distinguishing bogs
7	from fens and permafrost peatlands is important, as these peatland types are characterized
8	by different hydrological regimes, vegetation communities, and peat-growth trajectories,
9	all of which impact long-term rates of peatC sequestration (Rydin and Jeglum,
0	<u>2013</u> 2006). Bogs are nutrientmineral-poor, rain-fed peatland ecosystems with relatively
1	low plant net primary production (NPP) and slow peat decomposition rates. In contrast,
2	fens are hydrologically connected to surface or ground water, thereby receiving more
3	nutrients-mineral nutrientsfrom the groundwater. Generally speaking, they fens have
4	greater NPP but also faster peat decay rates than bogs (Blodau, 2002). Finally, in the sub-
5	<u>Aarctic and Aarctic regions, peatland hydrology, structure, and peat-C balance are</u>
6	sensitive to the underlying permafrost aggradation and degradation dynamics (Camill,
7	1999; Turetsky et al., 2007). For the analysis, frozen peat plateaus (879 out of 10810
8	cores), permafrost bogs (18 out of $1\underline{0810}$ cores), and collapse scars (3 out of $1\underline{0810}$ cores)
9	were grouped under the peatland type 'permafrost peatlands'. Original peatland
0	categories can be found in Supplementary Table 1.
1	

HOLOCENE

252	The database was built to include as many peat records as possible. Therefore, we
253	included any peat core that was extracted north of 45 °N (or at high elevation) and for
254	which bulk density or organic matter bulk density data were available. Information
255	related to peat-core location, peatland type, peat properties, age, and data source can be
256	found in Supplementary Table 1. Additional information related to the type of coring
257	device used and the year of coring can be found in the original publications. Data and
258	age depth relationships used in this synthesis are readily accessible from the Holocene
259	Peatland Carbon Network website (http <u>s</u> ://www.peatlands.lehigh.edu). The website
260	includes all published records and will be updated as new records included in this
261	synthesis are eventually published. This database should will be useful in future studies
262	of ecosystem – earbon <u>C cycle</u> – climate interactions and for modeling long-term
263	peatland dynamics.
264	
265	In the following sub-sections, we present the criteria for site selection and the protocols
266	used to develop the databaseset. In an effort to only analyze and synthesize peat samples,
267	inorganic-rich horizons often found at the base of the peat cores were removed from the
268	database. When available, stratigraphic information was used to distinguish peat vs. non-
269	peat material. For example, gyttja (organic-rich lake sediments) was excluded from the
270	dataset, as well as marshy, clayey, and silty sediments. When stratigraphic information
271	was not available, a bulk density value of 0.5 g cm ⁻³ was used as a cut-off between peat

and non-peat material. This value was chosen on the basis of stratigraphic information
from peatland records where peaty sediments with bulk density values up to 0.5 g cm⁻³

274 were identified. We do-acknowledge that this <u>cut-off</u> value is arbitrary, and that our

dataset likely contains some non-peat samples. Inorganic horizons (e.g., tephra layers)
were also excluded from the peat records<u>database</u>.

278 <u>Peat properties</u>

A subset total of 232 peat cores (181 sites) were-was used for characterizing peat properties, though not all cores have all types of peat properties available (Figure 2a). This dataset contains 139 cores from Eurasia (including 109 cores from Russia) and 93 cores from North America (Figure 1). While approximately half of these cores wereas sampled and analyzed at high resolution (1-5 cm increments), the remainder wremainder wasas sampled at lower resolution, typically at 10 cm increments. Dry bBulk density (BD; g cm⁻³), organic matter content (OM%; gravimetric %), as well as elemental C and N concentration values were compiled and synthesized. On the basis of these raw datasets, earbon-to-nitrogen ratio (C/N mass ratio) and organic matter bulk density (OMBD; g OM cm⁻³) were calculated. These peat geochemical values are examined in light of peat stratigraphy, peat ages, and geographic regions. The following paragraphs briefly describe the protocols used to obtain these values.

Peat stratigraphic information was obtained for 83 peat cores (<u>'peat types' in</u> Figure 2a)
for which plant macrofossil analysis or detailed peat description had been performed
following standard techniques (e.g., Troels-Smith, 1955; Mauquoy and van Geel, 2007).
This peat stratigraphic information was condensed into the following five peat types: *Sphagnum*, herbaceous, woody, brown moss, and humified peat. In a few cases, the
investigators only ascribed a general peat type to the samples (e.g., 'bog' vs. 'fen' peat, or

HOLOCENE

2		
3 4		
5		
6 7		
8 9	298	'Sphagnum' vs. 'herbaceous' peat). In these cases, the uncertainty associated with
10 11	299	classifying peat samples mostly relates to the uniformity of naming convention used
12 13	300	among the investigators. For example, a peat sample that contains sizable fractions of
14 15	301	brown moss and humified peat may be classified by an investigator as 'brown moss peat'
16 17	302	and by another one as 'humified peat'. We recognize that, due to their nature, brown
18 10	303	moss and humified peat types might be less uniform than Sphagnum <u>or</u> , herbaceous_, or
20	304	woody peat types. We included as much stratigraphic information as possible in the
22	305	database, though ambiguous or imprecise descriptions were left out to avoid further
23 24	306	uncertaintiesconfusions.
25 26	307	
27 28	308	Dry bBulk density and organic matter concentrationcontent were determined following
29 30	309	standard procedures, in all cases where these parameters were measured, were
31 32	310	determined following standard procedures (Dean, 1974; Chambers et al., 2011). Peat
33 34	311	samples of a known fresh volume were either freeze-dried or oven-dried at ca. 100 °C
35 36	312	until constant weight was reached and weighed to determine bulk density, then burned at
37 38	313	500-600 °C for one to four hours and weighed again to determine organic matter content.
39 40	314	The accuracy of these measurements mostly depends on sample handling (care must be
41 42	315	taken to prevent peat compaction in the field and in the laboratory) and the analytical
43 44	316	error associated with weighing. The product of bulk density (BD; g cm ⁻³) and organic
45	317	matter content (OM%) of each peat sample was used to calculate organic matter bulk
40	318	density (OMBD; g OM cm ⁻³), also referred to as ash-free bulk density (AFBD) or organic
48 49	319	bulk density (OBD) in the literature (Yu et al., 2003; Björ <u>c</u> k and Clemmensen, 2004). We
50 51	320	compiled a total of 21,220 bulk density measurements-from 214 cores, 18,973 organic
52 53		

http://mc.manuscriptcentral.com/holocene

_
3
3
4
5
5
6
7
, ,
8
9
10
10
11
10
12
13
1/
14
15
16
10
17
18
10
19
20
24
21
22
22
23
24
25
20
26
27
21
28
20
29
30
04
31
32
22
33
34
25
30
36
27
31
38
30
59
40
⊿1
42
43
.0
A A
44
44 45
44 45
44 45 46
44 45 46 47
44 45 46 47
44 45 46 47 48
44 45 46 47 48 49
44 45 46 47 48 49 50
44 45 46 47 48 49 50
44 45 46 47 48 49 50 51
44 45 46 47 48 49 50 51
44 45 46 47 48 49 50 51 52
44 45 46 47 48 49 50 51 52 53
44 45 46 47 48 49 50 51 52 53 54
44 45 46 47 48 49 50 51 52 53 54
44 45 46 47 48 49 50 51 52 53 54 55
44 45 46 47 48 49 50 51 52 53 54 55 55
44 45 46 47 48 49 50 51 52 53 54 55 56
44 45 46 47 48 49 50 51 52 53 54 55 56 57
44 45 46 47 48 49 50 51 52 53 55 56 57 58
44 45 46 47 48 49 50 51 52 53 54 55 56 57 85
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

1

321 matter content values from 190 cores, and computed 18,544 organic matter bulk density 322 values from 184 cores (Figure 2a). 323 324 Total peat carbon C and nitrogen N content were directly measured by combustion and 325 elemental analysis of dry peat samples (Chambers et al., 2011). We compiled 3741 C and 326 3365 carbon N measurements -from 56 cores and 3365 nitrogen content measurements 327 from 40 cores (Figure 2a). We also computed a total of 3362 carbon to nitrogen ratio 328 (C/N) mass ratio values from 40 cores. 329 330 Finally, the regression between total peat earbon <u>C</u> content (C%) and peat organic matter 331 content (OM%) for each peat type is presented as an estimate for earbon-C content in 332 organic matter (OC%). A total of 995 samples from 19 cores were used in this analysis. 333 The slope of each one of these regressions is interpreted as the 'conversion factor' from 334 OM% to OC%, such that it provides an indirect way for estimating the C% content of 335 ash-free peat for investigators who do not perform <u>elemental</u> C% measurements directly. 336 337 *Peat-core chronology* Peat-core chronologies were almost exclusively based on radiocarbon (¹⁴C) dates that 338 339 were determined mostly by accelerator mass spectrometry (AMS) on terrestrial plant 340 macrofossils or bulk peat (Piotrowska et al., 2011). A few older chronologies were based on conventional ¹⁴C dating of bulk samples. Because no systematic offset has been 341 observed in the ¹⁴C age of bulk vs. non-woody plant macrofossils The use of bulk dates is 342 justified since the absence of a systematic offset between the ¹⁴C dates of bulk peat 343

HOLOCENE

344	versus those of plant macrofossils it contains (G.M. MacDonald, pers. comm. 2013), the
345	use of bulk dates is justifiable. For the purpose of this study, all ¹⁴ C ages-dates were
346	calibrated to calendar years before present (cal. BP) using the program CALIB 6.1.0
347	(Stuiver and Reimer, 1993) with the IntCal09 calibration dataset (Reimer et al., 2009). In
348	this paper, ages are reported in thousands of calibrated years before present (ka) , such
349	that 1 ka = 1000 cal. B.P.
350	
351	Age-depth relationships were established for all continuous peat cores for which at least
352	five radiocarbon dates (^{14}C) age determinations were available (n = 151 cores). Except for
353	a few palynostratigraphic and tephrochronologic markers, nearly all records have
354	chronologies exclusively based on ¹⁴ C ages (Supplementary Table 1). Chronologies were
355	obtained through linear interpolation of calibrated ages between dated horizons. Single-
356	age estimates were taken from the mid-point of each calibrated 2σ probability
357	distribution. This parsimonious approach captures general patterns of temporal changes
358	in peat accumulation and allows for analysis of peatC accumulation trajectories (e.g.,
359	Telford et al., 2004). Although more sophisticated approaches are possible (e.g.,
360	Charman et al., 2013), we seek to make the fewest or simplest assumptions for this
361	analysis because the temporal resolution target for peatC accumulation rate calculations
362	is relatively low (at 500 years). In the cases where the original investigator identified
363	hiatuses (e.g., peat loss caused by erosion or fire) or depositional anomalies (e.g., thick
364	tephra layers that interrupted peat accumulation) along their peat records, these gaps were
365	taken into consideration when building age-depth relationships (Glaser et al., 2012).
366	Otherwise, peat records were assumed to be continuous.
	14

367		
368	In an effort to assess the representativeness of our samples in terms of peatland inception	
369	agestiming, peat basal ages were compiled and compared to results from large datasets	
370	(MacDonald et al., 2006; Gorham et al., 2007; Korhola et al., 2010). When multiple cores	
371	were collected from a single peatland, only the oldest core was accounted for when	
372	estimating peat inception age. Peat inception ages from 19916 sites (Supplementary	
373	Table 1) were summed and binned in 500-year intervals.	
374		
375	Long-term rates of carbon and nitrogen accumulation	
376	A subset-total of 151 peat cores from 127 sites werewas used for estimating rates of peat	
377	C accumulation. This dataset contains 96 cores from 78 North American sites and 55	
378	cores from 49 Eurasian sites (Figure 1). Of the 33 sites presented in Yu et al.'s (2009)	
379	study, 25 were used in the present study (Supplementary Table 1). The remaining 8 sites	
380	did not fulfill our dating quality criterion (presented below). When multiple cores were	
381	collected from a single peatland, each core was attributed a fraction of the weight for that	
382	site such that, for a site with three cores, the peat C accumulation history of each core	
383	only accounted for 1/3. For each core, peat chronology was constrained by at least five	
384	age determinations. The dating resolution quality of these each records was determined	
385	by the quotient of the calibrated peat basal age and the number of age determinations. For	
386	example, a 10,000-year-old peat core with a chronology constrained by 10 14 C dates was	
387	attributed a dating resolution-quality of 1000 years perone date per 1000 years. About	
388	58% of these our 151 cores weare characterized by an acceptable dating resolution	
389	between 10 and quality of one to two ¹⁴ C dates per 1000 years (Figure 2b). These	Formatted: Superscript
	15	
	15	

2			
3 1			
5			
6			
7			
8	390	resolutions are well suited to capture millennial-scale variations in C accumulation.	
9 10	201	C	
11	391	Several preat cores with high resolution (10 500 years more than two "C dates per 1000	Formatted: Superscript
12	392	<u>years</u> -per date, (n = 35 cores) weare available from North America and Europe. The	
13			
14 15	393	coarser lower dating resolution quality cores (≤ 1 date per ≥ 1000 years, per date) weare	
16	394	unevenly distributed and comprise 44% of the North American records (42-out of 96	
17			
18	395	cores) and 40% of the Eurasian records (22 out of 55 cores).	
19 20	396		
21	070		
22	397	The long-term rate of peatC accumulation was calculated for each core following one of	
23	308	the these following five approaches (Supplementary Table 1): (1) wWhenever possible	
24 25	570	the these to nowing invertigation of the state of the sta	
26	399	peat core chronology was combined with bulk density and C ^M -content values for each	
27	400	donth increment $(n = 47 \text{ acres})$; (2) i. In the acres where direct C manufarments were	
28	400	depth increment $(n - 47 \text{ cores})_{a^{2}}(2)$ 14 the cases where direct C measurements were	
29 30	401	lacking, peat core chronology was combined with ash-freeorganic matter bulk density	
31	400		
32	402	measurements and a mean organic matter carbon <u>C content value</u> of 49% <u>in organic</u>	
33	403	<u>matter</u> (n = 57 cores; see the Results section for details); (3) f cores that lacked ash-	
34 35			
36	404	free <u>organic matter</u> bulk density and direct C- <u>% content measurements</u> , peat core	
37	405	chronology was combined with bulk density measurements and a mean total carbon-C	
38			
39 40	406	content of 47% in total peat (n = 3 cores; see the Results section for details); (4)	
41	407	wWhenever neither bulk density nor C% -content was directly available from the cores,	
42			
43 11	408	long-term rate of peatC accumulation was calculated for each core by combining time-	
45	409	dependent bulk densities (0.08 g cm ⁻³ at 0-0.5 ka; 0.12 g cm ⁻³ at 0.5-6 ka; 0.14 g cm ⁻³ at	
46			
47	410	6-12 ka) with a mean C content of 47% in total peat for each dated interval ($n = 32$ cores;	
48 49	411	see the Results section for details) and (5) pPeat -C accumulation rates for the remaining	
50		contraction for domino <u>, and</u> . (c) <u>prom</u> _ c accumulation rates for the remaining	
51	412	12 cores were directly obtained from published figures and tables. For all the cores, time-	
52			
53			

413	weighted peatC accumulation rates were summed and binned in 500-year intervals. It is
414	important to note that such reconstructions are 'apparent rates' that are different from true
415	rates of C uptake accumulation in peatlands, because decomposition processes have been
416	affecting old peat layers for thousands of years (Turunen et al., 2002). Finally, the long-
417	term rate of peat N accumulation was calculated by combining our binned peat-C
418	accumulation rates with time-dependent C/N values (65 at 0-6 ka, and 40 at 6-10 ka).
419	
420	Results
421	Peat Properties
422	the mean bulk density value for each peat type is reported in Table 1, and regional
423	differences are presented in Table 2. Descriptive statistics of dataset
424	The frequency distribution of each peat property is shown in Figure 3. Mean values and
425	standard deviations for all peat properties are presented by peat type in The frequency
426	distribution is presented in Figure 3a Table 1, and by region in Table 2.
427	
428	Bulk density values (n = 21,220) rangesd from 0.003 to 0.498 g cm ⁻³ , with a mean value
429	of 0.118 ± 0.069 g cm ⁻³ (1 standard deviation (S.D.)). A one-way analysis of variance
430	(ANOVA) revealsed an significant effect of peat type on bulk density ($F(10709) = 941$)
431	p < 0.0001), with all peat types significantly different from each other on the basis of
432	post-hoc Tukey's LSD tests ($p < 0.0001$). In increasing order, mean bulk density of the
433	peat types is <i>Sphagnum</i> < Woody < Herbaceous < Brown Moss < Humified (Table 1).
434	

4 5		
6		
7 8 9	435	Organic matter content (n = 18,973) has $\frac{1}{2}$ a mean value of 90.7 ± 13% (1 S.D.) and a
9 10 11	436	median of 95.7%. The frequency distribution is presented in Figure 3b, the mean organic
12 13	437	matter content for each peat type is reported in Table 1, and regional differences are
13 14 15	438	presented in Table 2. The ANOVA revealsed an significant effect of peat type on organic
15 16 17	439	matter content ($F(9512) = 349, p < 0.0001$), with all peat types significantly different
17	440	from each other (Tukey's LSD: $p < 0.0001$). In decreasing order, mean organic matter
19 20	441	content of the peat types <u>isare</u> Sphagnum > Woody > Herbaceous > Brown Moss >
21 22	442	Humified (Table 1).
23 24	443	
25 26	444	Organic matter bulk density or ash free bulk density ($n = 18,544$) rangesd from 0.003 to
27 28	445	0.452 g OM cm ⁻³ , with a mean value of 0.105 ± 0.051 g OM cm ⁻³ (1 S.D.). The frequency
29 30	446	distribution is presented in Figure 3c, the mean organic matter density for each peat type
31 32	447	is reported in Table 1, and regional differences are presented in Table 2. The ANOVA
33 34	448	revealsed an significant effect of peat type on organic matter density ($F(9081) = 942, p < 1000$
35 36	449	0.0001), with all peat types significantly different from each other (Tukey's LSD: p
37 38	450	0.0001). In increasing order, mean organic matter density of the peat types is Sphagnum
39 40	451	< Herbaceous < Woody < Brown Moss < Humified (Table 1).
40 41 42	452	
43	453	Total peat carbon <u>C</u> content in total peat ($n = 3741$) range <u>s</u> from 30 to 60%, with a mean
44 45	454	value of $46.8 \pm 6.1\%$ (1 S.D.) and a median of 47.8%. While the lowest values (< 35%)
46 47	455	are almost exclusively associated with samples from Alaska, western Canada,
48 49	456	Fennoscandia, and eastern Russia, the highest values (> 55%) are characteristic of sites
50 51	457	located in the western European Islands and Fennoscandia. Mean C% values for all five
52 53		
54 55		18
56 57		

458	peat types are reported in Table 1, and regional differences are presented in Table 2. The
459	ANOVA revealsed an significant effect of peat type on C% ($F(2494) = 161, p < 161, $
460	0.0001), with Sphagnum samples significantly different from other peat types (Tukey's
461	LSD: $p < 0.0001$). Herbaceous and woody peats <u>awe</u> re distinct from other types, but
462	hardly dindistinguishable from one another (Tukey's LSD: $p = 0.238$). Likewise,
463	humified and brown moss peats <u>awere</u> distinct from other types, but indistinguishable
464	from each other (Tukey's LSD: $p = 0.448$). In increasing order, mean C% of the peat
465	types is <i>Sphagnum</i> < Humified = Brown Moss < Herbaceous = Woody (Table 1). The
466	frequency distribution of C% in peat is is also characterized by a second, though minor,
467	mode at 40% (Figure 3d). The latter is mostly associated with Sphagnum peat samples, as
468	their average C content (C%) is significantly lower than those for other peat types (Table
469	1). This difference is likely caused by the high content of complex and recalcitrant
470	compounds found in Sphagnum tissues such as lipids and waxes, which have lower C%
471	than more labile biopolymers such as cellulose (Cagnon et al., 2009).
472	
473	On the basis of 995 samples for which both OM [%] C and C% were quantified, we
474	therefore developed conversion factors (slopes of linear regressions) for several peat
475	types_ , providing ways to estimate OC% for investigators who do not perform C%
476	measurements routinely(Figure 4). There iwas a noticeable difference between the slope
477	of <i>Sphagnum</i> peat (0.423 \pm 0.030; n = 454) and that of non- <i>Sphagnum</i> peat (0.514 \pm
478	0.024; n = 308). The <u>carbon C</u> content in organic matter (OC%) for <i>Sphagnum</i> peat <u>iwa</u> s
479	smaller than expected (at $42.3 \pm 3.0\%$ (e.g., Bauer et al., 2006; Beilman et al., 2009;
480	Table 3)). As the majority of our <i>Sphagnum</i> samples for this specific analysis <u>awe</u> re

2			
3			
5			
6			
7 8 9	481	younger than 0.5 ka (304 out of 454 samples) and extracted from raised bogs, it is very	
10 11	482	likely that our estimated OC% biases towards young and undecomposed Sphagnum. This	
12 13	483	'young Sphagnum peat effect' heavily influenced the slope of the overall relation	
14 15	484	between C% and OM% (0.467 \pm 0.045) due to the overrepresentation of <i>Sphagnum</i>	
16 16 17	485	samples in the dataset (454 out of 995 samples). To minimize this bias when estimating	
18 19	486	mean OC% in peat, all 304 young Sphagnum samples were removed from the dataset,	
20 21	487	yielding an overall conversion factor of 0.492 ± 0.024 .	
21 22 22	488		
23 24 25	489	Total peat nitrogen <u>N</u> content <u>in peat</u> (n = 3365) range <u>sed</u> from 0.04 to 3.39%, with a mean	
25 26 27	490	value of $1.2 \pm 0.7\%$ (1 S.D.). TThe frequency distribution <u>is</u> asymmetric <u>and</u>	
28	491	characterized by, with a mode at 0.65% (Figure 3e). The latter is largely due to the	
29 30	492	overrepresentation of Sphagnum peat <u>samples</u> (having low N content) in our	
31 32	493	samples <u>database</u> . The ANOVA revealsed an significant effect of peat type on N content	
33 34	494	(F (2504) = 666, p < 0.0001) with <i>Sphagnum</i> and herbaceous peat types significantly	
35 36	495	different from each other and from all other types (Tukey's LSD: $p < 0.0001$). Humified	
37 38	496	and brown moss peats <u>awere</u> distinct from other types, but indistinguishable from each	
39 40	497	other (Tukey's LSD: $p = 0.113$). Likewise, woody and brown moss peats <u>awere</u>	
41 42	498	indistinguishable from one another (Tukey's LSD: $p = 0.240$). In increasing order, mean	
43 44	499	N content <u>N%</u> of the peat types is <i>Sphagnum</i> < Woody = Brown Moss = Humified <	
45 46	500	Herbaceous (Table 1).	
47 48	501		
49 50	502	C/N mass ratio (n = 3362) rangest from 12 to 217, with a mean value of 55 ± 33 (1 S.D.).	
51 52	503	The frequency distribution <u>isis</u> asymmetric <u>and characterized by</u> , with a mode at 25	
53 54			
55 56		20	
57 58			
59			

504	(Figure 3f). While the distribution mode (25) is associated with non-Sphagnum peat
505	types, the distribution mean (55) is skewed towards Sphagnum peat samples owing to
506	their overrepresentation in our samples database (Figures 3f). The ANOVA revealsed an
507	significant effect of peat type on C/N ratio ($F(2501) = 174, p < 0.0001$) with Sphagnum
508	peat significantly different from all other types (Tukey's LSD: $p < 0.0001$). Woody peat
509	<u>iwa</u> s distinguishable from all peat types except for brown moss peat (Tukey's LSD: $p =$
510	0.665). Herbaceous and humified peat types \underline{awe} re indistinguishable from one another
511	(Tukey's LSD: $p = 0.721$). In decreasing order, the mean C/N ratio of peat types is
512	Sphagnum > Woody = Brown Moss > Humified = Herbaceous (Table 1).
513	
514	Temporal changes in peat properties
515	The frequency distribution is presented in Figure 3a
516	
517	We find a decreasing trend in bulk density over the Holocene (Figure 5a), with the
518	densest peat characterizing the oldest samples (8-10 ka) and the least-dense peat
519	characterizing the youngest samples (0-2 ka). This trend is most likely attributable to the
520	progressive decomposition and subsequent compaction of peat over time, as well as to
521	higher ash content in early-stage peat (likely from fens). Conversely, aA clear increasing
522	trend in organic matter content (OM%) is found over the Holocene (Figure 5b), with the
523	greatest OM% characterizing the youngest samples (0-2 ka) and the least OM%
524	characterizing the oldest samples (8-10 ka). This trend is most likely attributable to
525	higher inorganic material inputs during early-stage peatland development as well as to a
526	greater loss of OM in the deeper portions of peat profiles OOrganic matter bulk density

1
2
2
1
4
5
6
7
8
9
10
11
12
13
1/
15
10
10
17
18
19
20
21
22
23
24
25
26
27
21
20
29
30
31
32
33
34
35
36
37
38
39
40
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50
ວອ

site trends exhibited by BD and OM% (Figures 5a, 5b). The only exceptions except e the low OMBD values characterizing the youngest samples (< 0.5 ka), probably o the large proportion of young, undecomposed <i>Sphagnum</i> peat samples.
e the low OMBD values characterizing the youngest samples (< 0.5 ka), probably o the large proportion of young, undecomposed <i>Sphagnum</i> peat samples.
o the large proportion of young, undecomposed Sphagnum peat samples.
e OMBD values closely tracked changes in bulk density during the mid and late
cene (0 8 ka), their trajectory diverged between 8 and 10 ka (Figure 4a and 4c)
use of decreasing organic matter content in early Holocene peat samples (Figure 4b).
ntent in peat remains uniform over the Holocene (Figure 5d), except for slightly
r C% during the late Holocene. However, as C values for early Holocene samples
ased on a very limited number of samples and peat records (white bars in Fig. 4d).
aution against analysis or interpretation of the documented trend in our data. We also
a decreasing trend in N%-content over the Holocene, such that young peat deposits
ssociated with low N%-content (Figure 5e). This trend could be explained by a
ressive retention of N downcore as a result of long term peat decomposition
esses and associated C loss (e.g., Kuhry and Vitt, 1996). Peat deposits older than 6 ka
nostly associated with lower C/N ratios, whereas peat samples younger than 6 ka are
acterized by high C/N values (Figure 5f).
neral, Sphagnum peat is characterized by lower BD, OMBD, C%, N%, and C/N
than samples composed of non-Sphagnum peat (Figure 6). Therefore, peatland
lopment could explain much of the aforementioned temporal trends (Figure 5), as

550	edense peat (herbaceous, brown moss, and humified types) typically charactarly-stage
551	rich fens are typically characterized by non-Sphagnum peat, whereas and late-stage poor
552	fens and bogs are Sphagnum-dominated (Figure 6h)AlternativelThis effect may be
553	partly explained by peat type differences between young and old samples, with young
554	samples mostly composed of Sphagnum peat (having low N content) and old samples
555	composed of non Sphagnum peat (having high N content). peat type differences between
556	young and old samples, with young samples mostly composed of Sphagnum peat (having
557	low N content) and old samples composed of non Sphagnum peat (having high N
558	content). This 'peat type effect' may also be combined with
559	
560	
561	
562	Spatial differences in peat properties
563	Significant differences in bulk density are found at the regional scale (Table 2). The
564	densest peat is observed in Alaska (mean = 0.168 ± 0.087 g cm ⁻³) and western Canada
564 565	densest peat is observed in Alaska (mean = 0.168 ± 0.087 g cm ⁻³) and western Canada (mean = 0.166 ± 0.076 g cm ⁻³), whereas the least dense peat is found from the western
564 565 566	<u>densest peat is observed in Alaska (mean = 0.168 ± 0.087 g cm⁻³) and western Canada</u> (mean = 0.166 ± 0.076 g cm ⁻³), whereas the least dense peat is found from the western European Islands (mean = 0.055 ± 0.027 g cm ⁻³). Organic matter bulk density values
564 565 566 567	densest peat is observed in Alaska (mean = 0.168 ± 0.087 g cm ⁻³) and western Canada (mean = 0.166 ± 0.076 g cm ⁻³), whereas the least dense peat is found from the western European Islands (mean = 0.055 ± 0.027 g cm ⁻³). Organic matter bulk density values follow a similar pattern across these regions (Table 2). These differences are strongly
564 565 566 567 568	densest peat is observed in Alaska (mean = 0.168 ± 0.087 g cm ⁻³) and western Canada (mean = 0.166 ± 0.076 g cm ⁻³), whereas the least dense peat is found from the western European Islands (mean = 0.055 ± 0.027 g cm ⁻³). Organic matter bulk density values follow a similar pattern across these regions (Table 2). These differences are strongly correlated with peat types and sample ages, with the Alaskan and western Canadian
564 565 566 567 568 569	densest peat is observed in Alaska (mean = 0.168 ± 0.087 g cm ⁻³) and western Canada (mean = 0.166 ± 0.076 g cm ⁻³), whereas the least dense peat is found from the western European Islands (mean = 0.055 ± 0.027 g cm ⁻³). Organic matter bulk density values follow a similar pattern across these regions (Table 2). These differences are strongly correlated with peat types and sample ages, with the Alaskan and western Canadian samples largely constituted of herbaceous, humified, and brown moss peat types. These
564 565 566 567 568 569 570	densest peat is observed in Alaska (mean = 0.168 ± 0.087 g cm ⁻³) and western Canada (mean = 0.166 ± 0.076 g cm ⁻³), whereas the least dense peat is found from the western European Islands (mean = 0.055 ± 0.027 g cm ⁻³). Organic matter bulk density values follow a similar pattern across these regions (Table 2). These differences are strongly correlated with peat types and sample ages, with the Alaskan and western Canadian samples largely constituted of herbaceous, humified, and brown moss peat types. These regional differences were strongly correlated with peat types and sample ages, with the
564 565 566 567 568 569 570 571	densest peat is observed in Alaska (mean = 0.168 ± 0.087 g cm-3) and western Canada(mean = 0.166 ± 0.076 g cm-3), whereas the least dense peat is found from the westernEuropean Islands (mean = 0.055 ± 0.027 g cm-3). Organic matter bulk density valuesfollow a similar pattern across these regions (Table 2). These differences are stronglycorrelated with peat types and sample ages, with the Alaskan and western Canadiansamples largely constituted of herbaceous, humified, and brown moss peat types. Theseregional differences were strongly correlated with peat types and sample ages, with theUnited Kingdom samples mostly composed of young Sphagnum peat and the Alaskan
564 565 567 568 569 570 571 572	densest peat is observed in Alaska (mean = 0.168 ± 0.087 g cm-3) and western Canada(mean = 0.166 ± 0.076 g cm-3), whereas the least dense peat is found from the westernEuropean Islands (mean = 0.055 ± 0.027 g cm-3). Organic matter bulk density valuesfollow a similar pattern across these regions (Table 2). These differences are stronglycorrelated with peat types and sample ages, with the Alaskan and western Canadiansamples largely constituted of herbaceous, humified, and brown moss peat types. TheseUnited Kingdom samples mostly composed of young Sphagnum peat and the Alaskansamples largely constituted of old herbaceous, humified, and brown moss peat types.

HOLOCENE

2	
3	
1	
-	
5	
6	
7	
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
<u>د</u> ا	
22	
23	
24	
25	
20	
26	
27	
28	
20	
29	
30	
31	
32	
33	
33	
34	
35	
36	
27	
57	
38	
39	
40	
⊿1	
10	
42	
43	
44	
45	
10	
40	
47	
48	
49	
50	
50	
51	
52	
53	
51	
54	
55	
56	
57	
50	
50	
59	
60	

573	
574	Significant differences in bulk density were found at the regional scale (Table 2 and
575	Figure 6a). The densest peat was found at permafrost sites (), whereas the least dense peat
576	was reported from non-permafrost peatlands (). There was also a marked difference
577	between Alaskan (mean = 0.168 ± 0.087 g cm ⁻³) and western Canadian sites (mean =
578	$\frac{0.166 \pm 0.076 \text{ g cm}^3}{1000000000000000000000000000000000000$
579	em ⁻³). These regional differences were strongly correlated with peat types and sample
580	ages, with the United Kingdom samples mostly composed of young Sphagnum peat and
581	the Alaskan samples largely constituted of old herbaceous, humified, and brown moss
582	peat types.
583	
584	OM% does not vary much between regions (> 90% in all regions), with the notable
585	exception of Alaskan and eastern Russian/Asian peatlands that exhibit-a mean values of
586	$76.6 \pm 18.8\%$ and $80.3 \pm 16.7\%$, respectively (Table 2). Aeolian dust and tephra ash
587	inputs to some peatlands in Alaska, Kamchatka, and Japan might partly explain such low
588	OM% values.
589	
590	Peat inception ages and long-term rates of carbon <u>and nitrogen</u> accumulation
591	Calibrated ages (mid-point) for peat inception ranged from $0^{-1.6}$ to 15 ka and the
592	frequency distribution followed a bimodal distribution with is characterized by a modes at
593	11-9 ka and at 8-6 ka (Figure 2c). The early Holocene modelatter corresponds with peat
594	inception peaks in the West Siberian Lowlands <u>and, in</u> Alaska , and Fennoscandia . The
595	mid Holocene peak is linked with peatland inception across western Canada and the

24

http://mc.manuscriptcentral.com/holocene

596	Hudson Bay Lowlands. While the majority of sites older than 11 ka are found in Alaska
597	and Siberia, most sites younger than 6 ka are located in northeastern Canada. Generally
598	speakingIn general, our samples are in agreement with much larger networks of peat
599	basal ages (Smith et al., 2004; MacDonald et al., 2006; Gorham et al., 2007; Korhola et
600	al., 2010; Ruppel et al., 2013; Yu et al., 2013) , except for our underrepresentation of
601	peatlands with inception ages between 10 and 8 ka (Figure 2b). This discrepancy may be
602	attributable to an underrepresentation of Siberian sites in our dataset (Smith et al., 2004).
603	
604	The time-weighted long-term rate of C accumulation average <u>sed</u> $22.9 \pm 2.0 \text{ g C m}^{-2} \text{ yr}^{-1}$
605	(standard error <u>of mean</u> (S.E. <u>M.</u>); Figure <u>7b</u> 6). Values exhibit an increasing trend that
606	initially peaks during the early Holocene between 10 and 7.5 ka at $\frac{25-2827.0 \pm 2.6}{25}$ g C
607	m ⁻² yr ⁻¹ . This peak is largely caused by rapid peat accumulation in Alaska, the Western
608	Siberia Lowlands, and southeastern Canada. The remainder of the Holocene is
609	characterized by a decreasing trend in C accumulation rates from 24 to 18 g C m ⁻² yr ⁻¹
610	and a time-weighted mean at 22.0 ± 1.9 g C m ⁻² yr ⁻¹ , and millennial scale variations
611	(Figure $\frac{7b6}{}$). There is a notable minimum value between 3 and 1.5 ka at 18-19 g C m ⁻²
612	yr ⁻¹ . Lack of decomposition probably explains most of the apparent increase in
613	accumulation over the past millennium (24-32 g C m ⁻² yr ⁻¹), as young peat appears to be
614	accumulating more quickly than old peat simply because the former has undergone less
615	decomposition than the latter (Clymo, 1984).
616	
617	The time-weighted long-term rate of N accumulation averages 0.5 ± 0.04 g N m ⁻² yr ⁻¹
618	(S.E.M.; Figure 7c). While the mid and late Holocene (6-0 ka) are characterized by the
	25

2		
3 4		
5		
6		
7		
8 9	619	lowest rates of N accumulation at 0.34 g N m ⁻² yr ⁻¹ , the highest rates (0.61 g N m ⁻² yr ⁻¹)
10 11	620	occur between 12 and 6 ka (Figure 7c). This trend mirrors that of C accumulation (Figure
12 13	621	7b), as C and N sequestration rates are both mainly influenced by peat density and its
10 14 15	622	accumulation rate. The low rates of N accumulation over the past 6 ka might also relate
16 17	623	to the increasing presence and persistence of Sphagnum (having high C/N ratio and low
18	624	N concentration) in northern peatlands (Figures 6 and 7).
20	625	
21	626	Discussion
23 24	627	<u>R</u> Data representativeness of <u>the database for</u> northern peatlands
25 26	628	The present database contains the most comprehensive compilation of peat properties and Formatted: Comment Text
27	629	C accumulation records for northern peatlands. The previous large-scale synthesis (Yu et
29 30	630	al., 2009) only contained 33 sites and lacked records from the Hudson Bay lowlands and
31 32	631	the Russian Far East, and had limited sites from West Siberia and the western European
33 34	632	Islands. The present database fills gaps from these regions.
35 36	633	
37 38	634	However, European Russia, The database comprises 268 peat cores from 215 sites
39 40	635	located between 45 and 69 °N, throughout the circum Arctic peatland domain. These
41 42	636	sites were found across broad gradients of continentality, temperature, growing season
43 44	637	length, and precipitation (Yu et al., 2009). The majority of our study sites were found in
45 46	638	large peatland complexes such as the Hudson Bay Lowlands or in peatland rich regions
47 48	639	such as the northwestern European Islands and Fennoscandia. Conversely, smaller
49 50	640	peatland systems such as kettle bogs and other isolated features were sparsely
50 51	641	represented. As the main objective of our dataset was to estimate the northern peatland C
52 53		
54		
วว 56		26
57		
58		
59		
642	stock, the high proportion of sites from large peatland complexes seems justified. On	
-----	---	
643	another note, further studies of small depressional peatlands could potentially lead to a	
644	better understanding of peat C accumulation processes and peatland sensitivity to climate	
645	change (e.g., Buffam et al., 2010; Ireland et al., 2013). East Siberia, and the Russian Far	
646	East clearly remain poorly studied regions in terms of northern peat C stocks and	
647	accumulation histories (Figure 1). A wetland map by Stolbovoi and McCallum (2002)	
648	suggests that shallow peaty deposits (<50 cm) interspersed with few deeper peat bogs	
649	(>50 cm) dominate the Far East Russian landscape. Most of these deeper peatlands are	
650	presumably found in Kamchatka and Sakhalin (Stolbovoi, 2002). This broad portrait is,	
651	however, based on fewer than 30 soil profiles from across East Siberia and Far East	
652	Russia (Stolbovoi et al., 2001), making it difficult to evaluate the importance of this	
653	region in the northern peatland C cycle. In general, peat C stocks in Eastern Russia may	
654	not be as massive as those from West Siberia or European Russia (Stolbovoi and	
655	McCallum, 2002). Therefore, understanding how these shallow peatlands in East Siberia	
656	and the Russian Far East have developed during the Holocene would provide useful end-	
657	members of climate controls of peat C accumulation, but these peatlands do not seem to	
658	represent a large missing C stock.	
659		
660	Northern peatland soil properties: key findings and uncertainties	
661	Peat-carbon stocks-and density	
662	Several studies have quantified the soil C density and total C pool of peatlands using	
663	different approaches (e.g., Armentano and Menges, 1986; Gorham, 1991; Yu et al.,	
664	2010). These different methods have led to total C pool estimates for northern peatlands	
	27	

HOLOCENE

665	that vary by at least a factor of two, from 234 to 547 Gt <u>C</u> (Lappalainen, 1996; Yu et al.,
666	2010; see Yu, 2012 for a review). Many of these studies have combined mean peat depth,
667	modern peatland area, and a single mean peat-C bulk-density value (BD x C% or OMBD
668	x OC%) in their calculations (e.g., Gorham, 1991). Applying Gorham's (1991) mean peat
669	depth and peatland area estimates to the mean BD and C% results presented in this from
670	our database yields a peat-C pool estimate of 436 GtC (2.3 m x 3.42 Mkm ² x 0.118 g cm ⁻
671	3 x 47% C). However, it is well documented that most peatlands undergo a shift from
672	herbaceous fen to Sphagnum peatbog during their developmental history (Hughes, 2000;
673	Figure 6h) and that different BD, C%, and rates of peat accumulation are associated with
674	fen and bog peats (e.g., Vitt et al., 2000 <u>; Figure 6</u>). We also know that peat-C
675	accumulation rates have varied asynchronously between regions throughout the Holocene
676	as a result of regional changes in hydroclimatic conditions (e.g., Yu et al., 2009; Charman
677	et al., 2013). Therefore, we argue that reconstructing Holocene changes in peatC
678	accumulation on the basis of measured peat C density peat-C bulk density values and
679	reliable peat-core chronologies constitutes a step forward in providing the best possible
680	peatC stock estimates (see Yu et al., 20 <u>1009</u> for an example). It also allows for
681	quantifying spatial and temporal differences in rates of peatC accumulation, as well as
682	the temporal trajectories of peatC fluxes to the atmosphere (MacDonald et al., 2006; Yu
683	et al., 2013). However, better maps of the present peatland area (and its change over
684	time) are still needed to improve current peat C stock estimates. Therefore, our database
685	should be of great use for updating current peat C stock estimates, as it contains the most
686	extensive set of peat-C bulk density measurements.
687	
	28

1
2
3
1
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
20
21
28
29
30
31
32
33
24
34
35
36
37
38
39
40
 ∕1
40
42
43
44
45
46
47
48
40 /0
49 50
50
51
52
53
54
55
56
50
ວ/ ເວິ
58
59
60

688	Carbon content in organic matter
689	For each peat layer, peatCearbon bulk density can be estimated by the product of either
690	(1) bulk density and $\frac{\text{total peat}\underline{C} \cdot \text{carbon}}{\text{carbon}}$ content in total peat (BD x C%), or (2) ash-free
691	bulk density and carbon C content in organic matter (OMBD x OC%). It is important to
692	mention that peat C stocks estimated using BD x C% or OMBD x OC% yield the same
693	value. Whenever BD and C% measurements were available along peat cores, we used the
694	former formula. However, when only OMBD was available, the second formula was
695	used. It could be argued that the first option is preferable when estimating peatC stocks,
696	as it produces values that are directly comparable to routine soilC measurements from
697	other terrestrial ecosystems. However, the present database clearly indicates that the
698	majority of peatland scientists routinely analyze organic matter content (OM%; n =
699	18,973 samples) rather than C% ($n = 3741$ samples) along peat cores. To provide a way
700	to estimate OC% from OM%, we developed the following conversion factors: $42.3 \pm$
701	3.0% for <i>Sphagnum</i> peat, $51.4 \pm 2.4\%$ for non- <i>Sphagnum</i> peat, and $49.2 \pm 2.4\%$ overall
702	(Figure 4, Table 1).
703	
704	While the overall peat and the non-Sphagnum peat conversion factors are in line with
705	those from previous studies (e.g., Gorham, 1991; Vitt et al., 2000; Turunen et al., 2002;
706	Beilman et al., 2009), the Sphagnum peat factor is lower than other estimates (e.g., Bauer
707	et al., 2006; Beilman et al., 2009; Table 3). Indeed, our mean OC% Sphagnum value at
708	42.3% is close to that of surface Sphagnum tissues, suggesting that it constitutes a valid
709	estimate for ash-free and poorly decomposed Sphagnum peat. As previously mentioned,

HOLOCENE

2		
3 4		
5 6		
7	1	
9	710	this bias toward <u>s</u> low OC% is due to a large number of <i>Sphagnum</i> samples younger than
10 11	711	0.5 ka (<u>304 out of 454 Sphagnum samples</u>).
12 13	712	
14	713	<u>Although each one of the three conversion factor slopes was significant ($p \le 0.0001$).</u>
16	714	there is a noticeable scatter in the data (Figure 4) that cannot solely be explained by the \sim
17 18 10	715	1% analytical error associated with the loss-on-ignition procedure (Heiri et al., 2001).
19 20	716	The progressive accumulation of recalcitrant C in old samples (lignin ~ 60% C vs.
21 22	717	cellulose ~ 42% C), assuming it occurs at a greater rate than the loss of OM in the deeper
23 24	718	portions of peat profiles, could explain why C% appears higher than our OC% conversion
25 26	719	factors (Cagnon et al., 2009). The presence of inorganic C, particularly for the humified
27 28	720	and brown moss peat types, could also explain these results. While the overall peat and
29 30	721	the non-Sphagnum peat conversion factors are in line with those from previous studies
31 32	722	(e.g., Gorham, 1991; Vitt et al., 2000; Turunen et al., 2002; Beilman et al., 2009), the
33 34	723	Sphagnum peat factor is lower than other estimates. Indeed, our mean OC% Sphagnum
35 36	724	value at 42% is close to that of surface Sphagnum tissues, suggesting that it constitutes a
37 38	725	valid estimate for ash free and poorly decomposed Sphagnum peat. As previously
39 40	726	mentioned, this bias toward low OC% is due to a large number of Sphagnum samples
41 42	727	younger than 0.5 ka (304 samples out of 454).
43 44	728	
45	729	
46 47 48	730	Oligotrophication and the fen-to-bog transition in northern peatlands Carbon content in
40 49 50	731	organic matter
50 51	I	
52 53		
54 55		20
56 57		50
58		
59 60		
		http://mc.manuscriptcentral.com/holocene

500		
732	The relation between total peat carbon content (C%) and peat organic matter content	
733	(OM%) is presented in Figure 4 (n = 995).	
734		
735	Our averaged bulk density $(0.12 \pm 0.07 \text{ g cm}^3)$ and organic matter bulk density $(0.11 \pm 0.07 \text{ g cm}^3)$	
736	0.05 g OM cm ⁻³) values are within the range of most widely used estimates (e.g., Clymo,	
737	1984; Yu et al., 2010; Table 3).	
738		
739	Sphagnum and non-Sphagnum peat types were characterized by very different peat	
740	properties, with Sphagnum peat having lower BD, OMBD, C%, N%, and C/N ratio than	
741	non-Sphagnum peat (Figure 6). These differences become important when estimating	
742	Holocene peat C fluxes, as the proportion of Sphagnum-dominated peat records increases	
743	during the late Holocene due to the fen-to-bog transition (Figure 6h). For example, much	
744	stronger CH ₄ emissions are associated with fens than bogs (e.g., Pelletier et al., 2007). In	Formatted: Subscript
745	terms of C sequestration rates, the systematically higher organic C density of non-	
746	Sphagnum peat suggests that higher accumulation rates are possible in fens than in bogs	
747	(Figure 6g), assuming optimal hydroclimatic conditions leading to rapid peat burial. In	
748	addition, as non-Sphagnum samples contain twice the N mass of Sphagnum peat (Figure	
749	6e), early-stage fens have the ability to stock more N than late-stage bogs. Overall,	
750	further studies on the timing of the fen-to-bog transition across the northern peatland	
751	domain are needed to better our understanding of its impact on C sequestration and CH_{4}	Formatted: Subscript
752	emissions.	
753		
754		
	21	
	51	

1
2
2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
IÖ
19
20
21
22
23
24
24
25
26
27
28
29
30
21
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
15
40
46
47
48
49
50
51
50
52
53
54
55
56
57
58

59 60

755	Holocene pattern of circum-Arctic peatland carbon accumulation <u>in northern</u>
756	<u>peatlands</u>
757	The overall trajectory and shape of our Holocene peatC accumulation curve is similar to
758	the synthesis fromof a much smaller_dataset (<u>n = 33;</u> Yu et al., 2009). As such, an-that
759	shows an early Holocene peak during the Holocene Thermal Maximum (HTM) as well
760	asand an overall slowdown of earbon-C accumulation during the mid- and late-Holocene,
761	particularly after 4 ka during the Neoglacial period and associated permafrost
762	development, were found in both syntheses (Vitt et al., 2000; Figure 76). However, the
763	mean Holocene value of 22.9 ± 2.0 g C m ⁻² yr ⁻¹ (1 S.E.) presented here is approximately
764	24% higher than the estimate in Yu et al.'s 2009 study (18.6 g C m ⁻² yr ⁻¹). Our larger
765	dataset likely better represents the northern peatlandC accumulation ratesstock. These
766	results imply that current peatC stocks might be underestimated.
767	
768	While the peak value at 27 g C m ⁻² yr ⁻¹ is about 23% higher than the time-weighted mean
769	peat-C accumulation rate for the remainder of the Holocene at 22 g C m ⁻² yr ⁻¹ , we only
770	found a 2% difference in organic C density values between young $(0.053 \pm 0.02 \text{ g C cm}^{-1})$
771	$\frac{3}{2}$ and old (0.057 ± 0.03 g C cm ⁻³) peat samples. These results clearly show that the peak
772	value during the early Holocene cannot be mainly attributed to presumably dense peat
773	deposits that would be rich in recalcitrant C due to long-term decomposition and
774	compaction. Instead, factors influencing the rate of peat burial such as peat type
775	(Sphagnum vs. non-Sphagnum peat; Figure 6), growing season length, and other
776	environmental variables, must have been responsible for such high rates of C
777	sequestration during the early Holocene.

2
2
3
4
5
6
7
1
8
9
10
44
11
12
13
14
15
15
16
17
18
10
19
20
21
22
22
23
24
25
26
20
27
28
29
30
30
31
32
33
31
34
35
36
37
20
30
39
40
41
10
42
43
44
45
16
40
47
48
49
50
50
51
52
53
50
04
55
56
57
50
58

1

778	
779	The Holocene Thermal Maximum (HTM) is a well-documented period of orbitally-
780	induced warm climate in the northern high-latitude region (Kaufman et al., 2004;
781	Renssen et al., 2012; Marcott et al., 2013) that reaches its maximum around 11 ka
782	(Berger and Loutre, 1991; Figure 7a). The peak in warm climatic conditions shows a
783	transgressional pattern across northern North America that moved eastward with the
784	waning Laurentide Ice Sheet during the early and mid Holocene (Kaufman et al., 2004).
785	This progressive increase in land availability coupled with warming summer conditions
786	have been proposed as the main controls on peatland inception and rapid C accumulation
787	across northern North America (Harden et al., 1992; Gorham et al., 2007, 2012; Yu et al.,
788	2009; Jones and Yu, 2010). As such, the highest rates of C accumulation have been
789	recorded between 11 and 8.5 ka in Alaska, but only around 7 ka in western Canada
790	(Figure 6; Vitt et al., 2000; Yu et al., 2009; Jones and Yu, 2010). In general, our results
791	confirm this trend and support the hypothesis that warm summers could promote peat
792	formation and C sequestration (Beilman et al., 2009; Yu et al., 2009; Charman et al.,
793	2013), as the highest rates of C accumulation broadly coincide with the peak in summer
794	insolation from 11 to 7 ka (Figure 7). We acknowledge that water input was necessary to
795	allow for peatland development. Furthermore, the observed temporal asymmetry in
796	peatland inception age and peaks in C accumulation rates between Alaska, western
797	Canada, and the Hudson Bay Lowlands follows the transgressional pattern of the HTM.
798	For example, peat inception and highest peat C accumulation rates occur at 11-9 ka in
799	Alaska, whereas they are delayed in western Canada with peak values around 9-7 ka.

HOLOCENE

0
2
3
4
5
5
6
7
8
0
9
10
11
10
12
13
14
15
10
16
17
18
10
19
20
21
22
~~
23
24
25
20
20
27
28
20
29
30
31
32
52
33
34
35
200
30
37
38
20
39
40
41
42
40
43
44
45
16
40
47
48
49
50
51
52
52
55
54
55
56
50
57
58
59
60
60

800	These findings have important implications for projecting the fate of peat-C stocks in a
801	future warmer world.
802	
803	The Neoglacial period is characterized by generally cooler and wetter conditions than the
804	HTM (Figure 7a; Marcott et al., 2013). Particularly low C accumulation rates coincide
805	with this time period across the northern peatland domain (Figure 7; Vitt et al., 2000;
806	Jones and Yu, 2010). Peat accumulation processes might even have stopped in some
807	regions (e.g., Peteet et al., 1998). The onset of permafrost aggradation in many peatlands
808	also occurred during the Neoglacial period (Zoltai, 1971, 1995; Vitt et al., 2000; Oksanen
809	et al., 2003; Sannel and Kuhry, 2008), reducing the peat C-sink capacity. In addition to
810	shorter and cooler growing seasons, lower C accumulation rates in permafrost sites likely
811	relates to a slower peat burial due to (1) more intense peat decomposition in the acrotelm
812	due to drier surface conditions, and (2) a slower rate of peat formation and associated C
813	inputs to soil because many peat plateaus are not Sphagnum-dominated. Overall, our
814	results support the notion that climatic changes such as the HTM and the Neoglacial
815	cooling impact C sequestration rates in peatlands.
816	
817	Role of northern peatlands in the global nitrogen cycle
818	As relatively few downcore peat N concentrations have been reported in the literature, it
819	was difficult to compare our mean value of 1.2% to previous estimates. Percent N in new
820	foliage of vascular species growing in subarctic peatlands average 1.8% (Schuur et al.,
821	2007), similar to our mean value for non-<i>Sphagnum</i> peat types (1.5%). Bragazza et al.
822	(2012) reported N content values of 0.7% for Sphagnum fuscum litter and 1.48% for

http://mc.manuscriptcentral.com/holocene

Page 78 of 117

HOLOCENE

2
Z
3
4
т Г
C
6
7
1
8
9
10
10
11
12
12
13
14
15
16
10
17
18
10
19
20
21
20
22
23
24
27
25
26
27
21
28
29
20
30
31
32
22
33
34
35
20
30
37
38
00
39
40
<u></u>
40
42
43
44
45
46
47
ті 40
48
49
50
50 F4
21
52
53
55
54
55
56
50
57
58
50
:09

60

1

823	<i>Eriophorum vaginatum</i> (herbaceous) litter, also -in line with our results (Table 1).
824	Similarly, Turunen et al. (2004) documented peat N concentrations ranging from 0.35 to
825	2.25% (mean value of 0.8%) for the uppermost sections of 23 Sphagnum bogs across
826	northeastern Canada. Overall, these values closely match our findings for Sphagnum
827	(0.7%) and herbaceous $(1.7%)$ peat types (Table 1).
828	
829	Using our peat C pool estimate of 436 Gt and assuming a mean C/N ratio of 45 yields a
830	peatN pool of 9.7 Gt, roughly equivalent to 10% of the global soil N pool at 95 Gt (Post
831	et al., 1985). This estimate is within the range proposed by Limpens et al. (2006) at 8-15
832	GtN. We also calculated 500 year bin N accumulation rates for the past 10,000 years by
833	combining our binned peat C accumulation rates with time dependent C/N values.
834	Results indicate a The Holocene time-weighted peatN accumulation rate of 0.5 ± 0.04
835	g N m ⁻² yr ⁻¹ (S.E.; Figure <u>7</u> 6) is also in line with a previous estimate of 0.19-0.48 g N m ⁻²
836	<u>yr⁻¹ (Limpens et al., 2006)</u> . While the mid and late Holocene (<u>6-0</u> 0-6 ka) <u>awe</u> re
837	characterized by the lowest rates of peat-N accumulation at 0.34 g N m ⁻² yr ⁻¹ , the highest
838	rates (0.61 g N m ⁻² yr ⁻¹) occurred between <u>126</u> and <u>612</u> ka (Figure <u>7c6</u>). This trend
839	mirrors that of C accumulation (Figure 6), as C and N sequestration rates are both
840	influenced by bulk density and peat accumulation rates. The low rates of N accumulation
841	over the past 6 ka might also relate to the increasing presence and persistence of
842	Sphagnum peat (having high C/N ratio and low N concentration) across the northern
843	peatlands as a result of the fen to bog transition (Figures 6 and 76). Overall, given the
844	bias toward Sphagnum-dominated sites in our database, N pools and N accumulation
845	rates are probably underestimated.
I	

1	
2 3	
4	
5	
6 7	
8 9	846
10 11	847
12 13	848
14 15	849
15 16 17	850
18	851
19 20	852
21 22	853
23 24	854
25 26	855
27 28	856
29 30	857
31 32	858
33 34	859
35 36	860
37 38	861
39 40	862
41 42	863
43 44	864
45 46	865
47 48	866
49 50	867
50 51 52	868
52 53	
54 55	
56	
57	
58 59	
60	

.9 al., 2013), pointing to a potentially important and undocumented role of northern 60 peatlands in the global N cycle. These results also raise the important question of N 51 provenance: in the absence of large rates of atmospheric N deposition during the early 52 Holocene, the only process that could account for such a large N pool in peatlands is N 53 fixation, either through symbiotic or asymbiotic processes (Limpens et al., 2006). 54 55 The fate of these large peat-N stocks remains largely unknown under recent and projected warming. Indeed, the importance of peatlands as sources of nitrous oxide (N₂O) 6 57 is just emerging (e.g., Repo et al., 2009; Marushchak et al., 2011; Palmer et al., 2012), 8 and studies have suggested that reduced surface moisture or increasing temperatures 59 might significantly promote the production, transformation, and transport of dissolved N, 60 and N₂O emissions to the atmosphere through denitrification (e.g., Kane et al., 2010). On 51 the contrary, some authors have speculated that the potential increase in peatland- N_2O 52 emissions from climate change may not be significant relative to the global N₂O budget 53 (e.g., Martikainen et al., 1993; Frolking et al., 2011). Overall, additional peat N cycling 64 studies are needed to address these remaining questions. 55

Rapid N sequestration in peatlands during the early Holocene might have contributed to

the global decline in reactive N availability for terrestrial ecosystems (McLaucghlan et

6 **<u>F</u>Conclusions and future directions**

Peat core analysis has been extensively used over the past 20 years for estimating rates of
peat_-<u>Cearbon</u> accumulation at local, regional, and continental scales (e.g., Mäkilä, 1997;

869	Clymo et al., 1998; Vitt et al., 2000; Turunen et al., 2002; Mäkilä and Saarnisto, 2008;
870	Yu et al., 2010; van Bellen et al., 2011; Gorham et al., 2012). The present study analyzed
871	a new database that comprises 268 peat records from 215 northern peatland sites located
872	throughout the circum Arctic peatlands. This systematic analysis of peat properties and
873	Holocene C accumulation rates is essential for accurately addressing the following
874	general research topics in the future: (1) describing and quantifying spatial and temporal
875	patterns of Holocene peatland C and N accumulation; (2) assessing the sensitivity of C
876	and N accumulation to climate foreingchange; (3) estimating peatland soil organic matter
877	(SOM), soil organic carbon (SOC), and soil organic nitrogen (SON) pools at regional and
878	hemispheric scales, (4) furthering our understanding of peatland <u>C cycle-carbon –</u> -
879	climate linkages, and (5) providing the scientific community with a large dataset for
880	developing and testing earth system and ecological models.
881	
881 882	Acknowledgements
881 882 883	Acknowledgements The authors would like to We acknowledge the peatland research community for sharing
881 882 883 884	Acknowledgements The authors would like toWe acknowledge the peatland research community for sharing their datasets. The U.S. NSF supported the synthesis work through grant ARC-1107981
881 882 883 884 885	Acknowledgements The authors would like toWe acknowledge the peatland research community for sharing their datasets. The U.S. NSF supported the synthesis work through grant ARC-1107981 to Lehigh University. The collection and analysis of unpublished records used in this
881 882 883 884 885 885	Acknowledgements The authors would like toWe acknowledge the peatland research community for sharing their datasets. The U.S. NSF supported the synthesis work through grant ARC-1107981 to Lehigh University. The collection and analysis of unpublished records used in this synthesis were supported by the following funding agencies and research grants: Alaska
881 882 883 884 885 885 886 887	Acknowledgements The authors would like toWe acknowledge the peatland research community for sharing their datasets. The U.S. NSF supported the synthesis work through grant ARC-1107981 to Lehigh University. The collection and analysis of unpublished records used in this synthesis were supported by the following funding agencies and research grants: Alaska (NSF ARC-1107981, AGS-0628455, and EAR-0819717; USGS Climate Research and
881 882 883 884 885 886 887 888	Acknowledgements The authors would like toWe acknowledge the peatland research community for sharing their datasets. The U.S. NSF supported the synthesis work through grant ARC-1107981 to Lehigh University. The collection and analysis of unpublished records used in this synthesis were supported by the following funding agencies and research grants: Alaska (NSF ARC-1107981, AGS-0628455, and EAR-0819717; USGS Climate Research and Development Program), Canada (NSF ARC-1107981, EAR-0223271, EAR-0843685,
881 882 883 884 885 886 887 888 888	Acknowledgements The authors would like toWe acknowledge the peatland research community for sharing their datasets. The U.S. NSF supported the synthesis work through grant ARC-1107981 to Lehigh University. The collection and analysis of unpublished records used in this synthesis were supported by the following funding agencies and research grants: Alaska (NSF ARC-1107981, AGS-0628455, and EAR-0819717; USGS Climate Research and Development Program), Canada (NSF ARC-1107981, EAR-0223271, EAR-0843685, and AGS-0628598; NSERC CRDPJ-305605, CRDPJ-365867; Hydro-Québec),
881 882 883 884 885 886 887 888 888 889 890	Acknowledgements The authors would like toWe acknowledge the peatland research community for sharing their datasets. The U.S. NSF supported the synthesis work through grant ARC-1107981 to Lehigh University. The collection and analysis of unpublished records used in this synthesis were supported by the following funding agencies and research grants: Alaska (NSF ARC-1107981, AGS-0628455, and EAR-0819717; USGS Climate Research and Development Program), Canada (NSF ARC-1107981, EAR-0223271, EAR-0843685, and AGS-0628598; NSERC CRDPJ-305605, CRDPJ-365867; Hydro-Québec), Fennoscandia and Western Siberia (NSF OPP-9818496; Academy of Finland 201321 and
881 882 883 884 885 886 887 888 888 889 890 891	Acknowledgements The authors would like toWe acknowledge the peatland research community for sharing their datasets. The U.S. NSF supported the synthesis work through grant ARC-1107981 to Lehigh University. The collection and analysis of unpublished records used in this synthesis were supported by the following funding agencies and research grants: Alaska (NSF ARC-1107981, AGS-0628455, and EAR-0819717; USGS Climate Research and Development Program), Canada (NSF ARC-1107981, EAR-0223271, EAR-0843685, and AGS-0628598; NSERC CRDPJ-305605, CRDPJ-365867; Hydro-Québec), Fennoscandia and Western Siberia (NSF OPP-9818496; Academy of Finland 201321 and 1133515; University of Helsinki), Kamchatka (NSF ARC-1107981, ARC-1108116), and
881 882 883 884 885 886 887 888 887 888 889 890 891	Acknowledgements The authors would like toWe acknowledge the peatland research community for sharing their datasets. The U.S. NSF supported the synthesis work through grant ARC-1107981 to Lehigh University. The collection and analysis of unpublished records used in this synthesis were supported by the following funding agencies and research grants: Alaska (NSF ARC-1107981, AGS-0628455, and EAR-0819717; USGS Climate Research and Development Program), Canada (NSF ARC-1107981, EAR-0223271, EAR-0843685, and AGS-0628598; NSERC CRDPJ-305605, CRDPJ-365867; Hydro-Québec), Fennoscandia and Western Siberia (NSF OPP-9818496; Academy of Finland 201321 and 1133515; University of Helsinki), Kamchatka (NSF ARC-1107981, ARC-1108116), and

HOLOCENE

3		
4		
5		
6 7		
7 8 9	892	the United Kingdom (Yorkshire Peat Partnership). Lehigh University's Library and
10 11	893	Technology Services staff is acknowledged for its support in building the web interface
12 13	894	for the peatland database. Finally, comments from Paul Glaser and two other journal
14 15	895	reviewers improved the overall quality of the manuscript.
16 17	896	
18 19	897	References
20 21 22	898 899 900	Armentano TV and Menges ES (1986) Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. <i>Journal of Ecology</i> 74: 755-774.
22 23 24	901 902	Bauer IE, Bhatti JS, Cash KJ, Tarnocai, C and Robinson SD (2006) Developing statistical models to estimate the carbon density of organic soils. <i>Canadian Journal of Soil Science</i>
25 26	903 904	86: 295-304.
27	905	Beilman DW, MacDonald GM, Smith LC and Reimer PJ (2009) Carbon accumulation in
28	906	peatlands of West Siberia over the last 2000 years. Global Biogeochemical cycles 23,
29	907	GB1012. doi: 10.1029/2007GB003112.
30	908	
31	909	Belyea LR (2009) Non-linear dynamics of peatlands and potential feedbacks on the
32	910	climate system. In: Baird A, Belyea L, Comas X, Reeve A. and Slater L (Eds.), Northern
33	911	peatlands and carbon cycling, American Geophysical Union Monograph Series,
34	912	Washington D.C., USA, pp. 5-18.
35	913	Denser A and Leaster M.E. (1001). Insolution excluses for the elimeter of the last 10 million
36 37	914 915	years. Quaternary Science Reviews 10: 297-317.
38	916	
39	917 010	Bergner K, Albano A and Bohlin E (1990) The content of peat: a compilation of hotomical indicational data of most Deportment of Agricultural Response
40	910 010	Dotanical, physical and chemical data of peat. Department of Agricultural Research.
41	919	Northern Sweden, Swedish University of Agricultural Sciences.
42	921	Biörck S and Clemmensen LB (2004) Aeolian sediment in raised bog denosits Halland
43	922	SW Sweden: a new proxy record of Holocene winter storminess in southern Scandinavia?
44	923	<i>The Holocene</i> 14: 677-688.
45	924	
46	925	Blodau C (2002) Carbon cycling in peatlands - A review of processes and controls,
47	926	Environmental Reviews 10: 111-134.
48	927	
49	928	Bragazza L, Buttler A, Habermacher J, Brancaleoni L, Gerdol R, Fritze H, Hanajik P,
50	929	Laiho R and Johnson D (2012) High nitrogen deposition alters the decomposition of bog
51	930	plant litter and reduces carbon accumulation. <i>Global Change Biology</i> 18: 1163-1172.
52	931	
53		
54		
55		38
56		50
57		
58		
59		
60		

2		
3		
4		
ວ 6		
0		
7 8		
a a	932	Bridgham SC, Megonigal JP, Keller JK, Bliss, NB and Trettin C (2006) The carbon
10	933	balance of North American wetlands. <i>Wetlands</i> 26: 889-916.
11	934	
12	935	Bulliam I, Carpenter SK, Yeck W, Hanson PC and Turner MG (2010) Filling holes in
13	930	regional carbon budgets. Fredicting pear depth in a north temperate take district. Journal
14	937	of Geophysical Research – Biogeosciences 115, 001005, 001.10.1029/ 2009/0001054.
15	930	Cagnon B. Py X. Guillot A. Stoeckli F and Chambat G (2009) Contributions of
16	940	hemicellulose cellulose and lignin to the mass and the porous properties of chars and
17	941	steam activated carbons from various lignocellulosic precursors. <i>Bioresource Technology</i>
18	942	100: 292-298.
19	943	
20	944	Camill P (1999) Peat accumulation and succession following permafrost thaw in the
21	945	boreal peatlands of Manitoba, Canada. Ecoscience 6: 592-602.
22	946	
23	947	Chambers FM, Beilman DW and Yu Z (2011) Methods for determining peat
24	948	humification and for quantifying peat bulk density, organic matter and carbon content for
25	949	palaeostudies of climate and peatland carbon dynamics. Mires and Peat 7, article 7, 10 p.
26	950	
27	951	Charman D, Beilman D, Blaauw M, Booth RK, Brewer S, Chambers F, Christen JA,
28	952	Gallego-Sala AV, Harrison SP, Hughes PDM, Jackson S, Korhola A, Mauquoy D,
29	953	Mitchell F, Prentice IC, van der Linden M, De Vleeschouwer F, Yu Z, Alm J, Bauer IE,
30	954	McCorish Y, Garneau M, Hohl V, Huang Y, Karofeld E, Le Roux G, Loisel J, Moschen
31	955	R, NICHOIS JE, NIEMINEN IM, MACDONAID GM, Phadtare NR, Kausch N, Sillasoo U,
32	950 957	D and Zhao V (2013) Climate related changes in peatland carbon accumulation during
33	958	the last millennium <i>Biogeosciences</i> 10: 929-944 doi: 10.5194/bg-10-929-2013
34	959	the fast minemian. <i>Diogeosciences</i> 10. <i>323-344</i> . doi: 10.3174/0g-10-323-2013.
35	960	Clymo RS (1984) The limits to peat growth <i>Philosophical Transactions of the Royal</i>
36	961	Society of London. Series B. Biological Sciences 303: 605-654.
37	962	
38	963	Clymo RS, Turunen J and Tolonen K (1998) Carbon accumulation in peatlands. Oikos
39	964	81: 368-388.
40	965	
41	966	Dean Jr WE (1974) Determination of carbonate and organic matter in calcareous
42	967	sediments and sedimentary rocks by loss on ignition: comparison with other methods.
43	968	Journal of Sedimentary Petrology 44: 242-248.
44 45	969	
40	970	Froiking S and Roulet NI (2007) Holocene radiative forcing impact of northern peatiand
40 47	9/1	carbon accumulation and methane emissions. <i>Global Change Biology</i> 13, 1-10.
47 78	972	Frolking S. Talbot I. Jones MC. Treat CC. Kauffman IB. Tuittila E-S and Roulet N
40 40	974	(2011) Peatlands in the Earth's 21 st century counled climate-carbon system
	975	Environmental Reviews 19: 371-396
51	976	
52		
53		
54		
55		20
56		39
57		
58		

1

1		
2		
3		
4		
5		
6		
7		
8	977	Glaser PH, Volin IC, Givnish TI, Hansen BCS and Stricker CA (2012) Carbon and
9	978	sediment accumulation in the Everolades (USA) during the past 4000 years: rates
10	979	drivers and sources of error <i>Journal of Geophysical Research-Riogeosciences</i> 117
11	980	G03026 doi:10.1029/2011JG001821
12	981	
13	982	Gorham E (1990) Biotic impoverishment in northern peatlands. In: Woodwell GM (Ed.).
14	983	<i>The Earth in transition: Patterns and processes of biotic impoverishment.</i> Cambridge
15	984	University Press, New York, USA, pp. 65-98.
16	985	
17	986	Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to
18	987	climatic warming. Ecological Applications 1: 182-195.
19	988	
20	989	Gorham E, Lehman C, Dyke A, Janssens J and Dyke L (2007) Temporal and spatial
21	990	aspects of peatland initiation following deglaciation in North America. <i>Quaternary</i>
22	991	Science Reviews 26: 300-311.
23	992	
24	993	Gorham E, Lehman C, Dyke A, Clymo D and Janssens J. (2012) Long-term carbon
25	994	sequestration in North American peatlands. <i>Quaternary Science Reviews</i> 58: 77-82.
26	995	
27	996	Harden JW, Sundquist ET, Stallard RF and Mark RK (1992) Dynamics of soil carbon
28	997	during deglaciation of the Laurentide ice sheet. Science 258: 1921-1924.
29	998	
30	999	Heiri O, Lotter AF and Lemcke G (2001) Loss on ignition as a method for estimating
31	1000	organic and carbonate content in sediments: reproducibility and comparability of results.
32	1001	Journal of Paleolimnology 25: 101-110.
33	1002	Hughaves DDM (2000) A recommissed of the mechanisms leading to embrotremby in
34	1003	British raised mires <i>Ecology Latters</i> 3: 7-9
35	1004	bittish faised hines. Ecology Leners 5. 7-7.
36	1006	Ireland AW Booth RK Hotchkiss SC and Schmitz JE (2013) A comparative study of
37	1007	within-basin and regional peatland development: implications for peatland carbon
38	1008	dynamics. <i>Ouaternary Science Reviews</i> 61: 85-95.
39	1009	
40	1010	Jones MC and Yu Z (2010) Rapid deglacial and early Holocene expansion of peatlands in
41	1011	Alaska. Proceedings of the National Academy of Sciences 107: 7347-7352.
42	1012	
43	1013	Kane ES, Turetsky MR, Harden JW, McGuire AD and Waddington JM (2010) Seasonal
44	1014	ice and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a
45	1015	boreal-rich fen. Journal of Geophysical Research – Biogeosciences 115, G04012. doi:
46	1016	10.1029/2010JG001366.
47	1017	
48	1018	Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker
49	1019	LB, Coats LL, Cwynar LC, Duvall ML, Dyke AS, Edwards ME, Eisner WR, Gajewski
50	1020	K, Geirsdottir A, Hu FS, Jennings AE, Kaplan MR, Kerwin MW, Lozhkin AV,
51	1021	MacDonald GM, Miller GH, Mock CJ, Oswald WW, Otto-Bliesner BL, Porinchu DF,
52		
53		
54		
55		40
56		
56 57		
56 57 58		
56 57 58 59		

2		
3		
4		
5		
0 7		
7 8		
g	1022	Ruhland KR, Smol JP, Steig EJ, Wolfey BB (2004) Holocene thermal maximum in the
10	1023	western Arctic (0-180 °W). Quaternary Science Reviews 23: 529-560.
11	1024	
12	1025	Kornola A, Ruppel M, Sepp <u>a</u> H, <u>valiranta</u> M, virtanen I and weckstr <u>o</u> m J (2010) The
13	1020	montance of normern peatiand expansion to the fate-folocene fise of atmospheric
14	1027	inclianc. Qualernary science Reviews 29. 011-017.
15	1020	Lannalainen F (1996) General review on world peatlands and peat resources. In:
16	1020	Lappalainen E (Ed.) Global Peat Resources International Peat Society, Jyska, pp. 53-56
17	1031	
18	1032	Limpens J, Heijmans MPD and Berendse F (2006) The nitrogen cycle in boreal
19	1033	peatlands. In: Wieder RK and Vitt DH (Eds.), Boreal Peatland Ecosystems. Ecological
20	1034	Studies Vol. 188, Springer-Verlag, Berlin Heidelberg, Germany, pp. 195-230.
21	1035	
22	1036	MacDonald GM, Beilman DW, Kremenetski KV, Sheng Y, Smith LC and Valichko AA
23	1037	(2006) Rapid early development of circum-arctic peatlands and atmospheric CH ₄ and
24	1038	CO ₂ variations. <i>Science</i> 314: 285-288.
25	1039	
26	1040	Mäkilä M (1997) Holocene lateral expansion, peat growth and carbon accumulation on
27	1041	Haukkasuo, a raised bog in southeastern Finland. <i>Boreas</i> 26: 1-14. doi:10.1111/j.1502-
28	1042	5885.1997.1000047.X.
29	1043	Mäkilä M and Saarnisto M (2008) Carbon accumulation in boreal peatlands during the
30	1044	Holocene – impacts of climate variations. In: Strack M (Ed.) Peatlands and climate
31	1046	change. International Peat Society. Jyväskylä Finland pp. 24-43
32	1047	
33	1048	Maltby E and Immirzi P (1993) Carbon dynamics in peatlands and other wetland soils,
34	1049	regional and global perspectives. Chemosphere 27: 999-1023.
30	1050	
37	1051	Marcott SA, Shakun JD, Clark PU and Mix AC (2013) A reconstruction of regional and
38	1052	global temperature for the past 11,300 years. <i>Science</i> 339: 1198-1201.
39	1053	
40	1054	Martikainen PJ, Nykanen H, Crill P and Silvola J (1993) Effect of a lowered water-table
41	1055	on muous-oxide nuxes nom northern peatiands. Nature 366, 51-55.
42	1050	Marushchak MF. Pitkämäki A. Kononen H. Biasi C. Sennälä M. and Martikainen PL
43	1057	(2011) Hot spots for nitrous oxide emissions found in different types of permafrost
44	1059	peatlands. <i>Global Change Biology</i> 17: 2601-2614.
45	1060	I man and the second
46	1061	Mauquoy D and van Geel B (2007) Mire and Peat Macros. In: Elias S.A. (Ed.),
47	1062	Encyclopedia of Quaternary Science. vol. 3. Elsevier, Amsterdam, The Netherlands, pp.
48	1063	2315-2336.
49	1064	
50	1065	McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann
51	1066	M, Lorenson TD, MacDonald RW and Roulet N (2009) Sensitivity of the carbon cycle in
52	1067	the Arctic to climate change. Ecological Monographs 79: 523-555.
53		
54		
55		41
56		
ว/ 58		

1

Italic

1			
2			
3			
4			
5			
6			
7			
8	1068		
9	1069	McLaughlan KK, Williams II, Craine IM and Jeffers ES (2013) Changes in global	
10	1070	nitrogen cycling during the Holocene enoch <i>Nature</i> 495: 352-357	
11	1071		
12	1072	Oksanen PO, Kuhry P and Alekseeva RN (2003) Holocene development and permafrost	
13	1073	history of the Usinsk Mire northeast European Russia <i>Géographie Physique et</i>	Formatted: Font
14	1074	Ouaternaire 57: 169-187.	
15	1075		
16	1076	Palmer K. Biasi C and Horn MA (2012) Contrasting denitrifier communities relate to	
17	1077	contrasting N_2O emission patterns from acidic peat soils in arctic tundra. <i>The ISME</i>	
18	1078	Journal 6: 1058-1077.	
19	1079		
20	1080	Pelletier L, Moore TR, Roulet NT, Garneau M and Beaulieu-Audy V (2007) Methane	
21	1081	fluxes from three peatlands in the La Grande Rivière watershed, James Bay lowland,	
22	1082	Canada. Journal of Geophysical Research – Biogeosciences 112, G01018. doi:	
23	1083	10.1029/2006JG000216.	
24	1084		
25	1085	Peteet D, Andreev A, Bardeen W and Mistretta F (1998) Long-term Arctic peatland	
26	1086	dynamics, vegetation and climate history of the Pur-Taz region, Western Siberia. Boreas	
27	1087	27: 115-126.	
28	1088		
20	1089	Piotrowska N, Blaauw M, Mauquoy D and Chambers FM (2011) Constructing deposition	
20	1090	chronologies for peat deposits using radiocarbon dating. Mires and Peat 7, article 10, 14	
31	1091	p.	
32	1092		
33	1093	Post WM, Pastor J, Zinke PJ and Stangenberger AG (1985) Global patterns of soil	
34	1094	nitrogen storage. Nature 317: 613-616.	
35	1095		
36	1096	Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand C, Blackwell PG, Buck	
27	1097	CE, Burr G, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson	
31 20	1098	TM, Hughen KA, Kromer B, McCormac FG, Manning S, Bronk Ramsey C, Reimer RW,	
30	1099	Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J,	
39	1100	Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–	
40	1101	50,000 years cal BP. <i>Radiocarbon</i> 51: 1111-1150.	
41	1102		
42	1103	Renssen H, Seppä H, Crosta X, Goose H and Roche DM (2012) Global characterization	
43	1104	of the Holocene Thermal Maximum. Quaternary Science Reviews 48: 7-19.	
44	1105		
40	1106	Repo ME, Susiluoto S, Lind SE, Jokinen S, Elsakov V, Biasi C, Virtanen I, Martikainen	
46	1107	PJ (2009) Large N_2O emissions from cryoturbated peat soil in tundra. <i>Nature Geoscience</i>	
47	1108	2: 189-192.	
48	1109	Durnel M. Wäligente M. Wigter en T. and Kerkele A. (2012). Destale siel greetisterung and	
49	1110	Ruppel M, Valirania M, Virtanen T and Kornola A (2013) Postglacial spatiotemporal	
50	1111	Europa, The Holosome doi:10.1177/0050692612400052	
51	1112	Europe. The Holocene. doi.10.1177/0555085015455055.	
52 50	1113		
53 E4			
54 57			
55		42	
50			
5/			
58			
59			
60			

2			
3			
4			
с 6			
7			
8	1114	R ydin H and Jaclum I (2013). The biology of negation 2^{nd} edition. Oxford University	Earmattad: Superscript
9	1114	Press Oxford LIK 382 n	Formatted: Superscript
10	1115	$\frac{11055}{1000}, 0.00, $	
11	1117	Sannel ABK and Kuhry P (2008) Long-term stability of permafrost in subarctic peat	
12	1118	plateaus, west-central Canada. The Holocene 18: 589-601.	
13	1119		
14	1120	Sheng Y, Smith LC, MacDonald GM, Kremenetski KV, Frey KE, Velichko AA, Lee M,	
15	1121	Beilman DW and Dubinin P (2004) A high-resolution GIS-based inventory of the West	
10	1122	Siberian peat carbon pool. <i>Global Biogeochemical Cycles</i> 18, GB3004. doi:	
18	1123	10.1029/2005GB002190.	
19	1124	Smith L.C. MacDonald G.M. Velichko, A.A. Beilman, D.W. Borisova, O.K. Frey	
20	1126	K.E., Kremenetski, K.V., Sheng, Y. 2004. Siberian peatlands a net carbon sink and global	
21	1127	methane source since the Early Holocene. Science, 303, 353–356.	
22	1128		
23	1129	Stolbovoi V (2002) Carbon in Russian soils. Climatic Change 55: 131-156.	
24	1130		
25	1131	Stolbovoi V and McCallum I (2002) Land resources of Russia. International Institute for	
26	1132 1122	Applied Systems Analysis, www.ilasa.ac.at/Research/FOR/russia_cd/download.ntm.	
27	1133	Stolbovoj V. Montanarella I. Medvedev V. Smevan N. Shishov I. Ungureanu V.	
28	1135	Dobrovolski G. Jamagne M. King D. Rozhkov V and Savin I (2001) Integration of data	
29	1136	on the soils of Russia, Byelorus, Moldova and Ukraine into the Soil Geographic Database	
30	1137	of the European Community. Eurasian Soil Science 34: 687-703.	
32	1138		
33	1139	Stuiver M and Reimer PJ (1993) Extended ¹⁴ C database and revised CALIB radiocarbon	
34	1140	calibration program. <i>Radiocarbon</i> 35: 215-230.	
35	1141	Talfard D.L. Uassaard E and Dirks UID (2004) All aga danth models are virtually but have	
36	1142	hadly? Quaternary Science Reviews 23: 1-5	
37	1144	budiy: guaternary setence Reviews 25. 1-5.	
38	1145	Troels-Smith J (1955) Characterization of unconsolidated sediments. Danmarks	
39	1146	Geologiske Undersøgelse Series 4: 1-73.	
40	1147		
41	1148	Turetsky MR, Wieder RK, Vitt DH, Evans RJ and Scott KD (2007) The disappearance of	
4Z 12	1149	relict permafrost in boreal North America: effects on peatland carbon storage and fluxes.	
43	1150 1151	Global Change Biology 13: 1922-1934.	
45	1151	Turunen I. Tomppo F. Tolonen K and Reinikainen A (2002) Estimating carbon	
46	1152	accumulation rates of undrained mires in Finland – application to boreal and subarctic	
47	1154	regions. The Holocene 12: 69-80.	
48	1155	°	
49	1156	Turunen J, Roulet NT, Moore TR and Richard PJH (2004) Nitrogen deposition and	
50	1157	increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Global	
51	1158	<i>Biogeochemical Cycles</i> , 18, GB3002. doi: 10.1029/2003GB002154.	
52	1159		
53			
04 55			
56		43	
57			
58			
59			
60			

1 2 3 4		
6 7		
7 8 9 10 11 12 13	1160 1161 1162 1163 1164	van Bellen S, Dallaire P-L, Garneau M and Bergeron Y (2011) Quantifying spatial and temporal Holocene carbon accumulation in ombrotrophic peatlands of the Eastmain region, Quebec, Canada. <i>Global Biogeochemical Cycles</i> 25, GB2016. doi:10.1029/2010GB003877.
14 15 16	1165 1166 1167 1168	carbon storage of peatlands of continental western Canada through the Holocene. Canadian Journal of Earth Sciences 37: 683-693.
17 18 19	1169 1170 1171	Yu Z (2011) Holocene carbon flux histories of the world's peatlands: global carbon-cycle implications. <i>The Holocene</i> 21: 761-774.
20 21 22	1172 1173 1174	Yu Z (2012) Northern peatland carbon stocks and dynamics: a review. <i>Biogeosciences</i> 9: 4071-4085.
23 24 25 26	1175 1176 1177 1178	Yu Z, Campbell ID, Campbell C, Vitt DH, Bond GC and Apps MJ (2003) Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales. <i>The Holocene</i> 13: 801-808.
20 27 28 29 30	1179 1180 1181 1182 1183	Yu Z, Beilman DW and Jones MC (2009) Sensitivity of northern peatland carbon dynamics to Holocene climate change. In: Baird A, Belyea L, Comas X, Reeve A, Slater L (Eds.), <i>Northern peatlands and carbon cycling</i> . American Geophysical Union Monograph Series, Washington D.C., USA, pp. 55-69.
31 32 33 34	1184 1185 1186 1187	Yu Z, Loisel J, Brosseau DP, Beilman DW and Hunt SJ (2010) Global peatland dynamics since the Last Glacial Maximum. <i>Geophysical Research Letters</i> 37, L13402. doi:10.1029/2010GL043584.
35 36 37 38 39	1188 1189 1190 1191 1192	Yu Z, Loisel J, Turetsky MR, Cai S, Zhao Y, Frolking S, MacDonald GM and Bubier JL (2013) Evidence for elevated emissions from high-latitude wetlands contributing to high atmospheric CH ₄ concentration in the early Holocene. <i>Global Biogeochemical Cycles</i> 27: 131-140. doi:10.1002/GBC.20025.
40 41 42	1193 1194 1195	Zoltai SC (1971) Southern limit of permafrost features in peat landforms, Manitoba and Saskatchewan. <i>Geological Association of Canada</i> , Special Paper 9, 305-310.
43 44 45 46	1196 1197 1198	Zoltai SC (1995) Permafrost distribution in peatlands of west-central Canada during the Holocene warm period 6000 years B.P. <i>Géographie Physique et Quaternaire</i> 49: 45-54.
47 48	1199	Figure and Table Captions
49 50	1200	Figure 1. Location of study sites. Map showing the distribution of northern peatlands
51 52 53 54	1201	(green area from Yu et al., 2010) and peatland sites included in this study ($n = 215$ sites,
55 56 57 58		44
59 60		

5 6 7		
8 9	1202	including 268 peat cores). Long-term rate of peat-carbon accumulation was estimated
10 11	1203	from 127 sites (151 peat cores; red and blue dots). The yellow dots represent cores for
12 13	1204	which only peat properties (bulk density, organic matter content, etc.) were available and
14 15	1205	synthesized. Refer to Supplementary Table 1 for details.
16 17	1206	
18	1207	Figure 2. Overview of data availability for North America (black bars) and Eurasia
19 20	1208	(white bars). (A) Number of cores (total = 238) containing information on
21	1209	carbon/nitrogen ratio (n = 40), nitrogen content (n = 40), carbon content (n = 56), peat
23 24	1210	types (n = 83), organic matter bulk density (n = 184), organic matter content (n = 190),
25 26	1211	and bulk density (n = 214). (B) Number of cores (total = 151) with a temporal dating
27 28	1212	resolution <u>quality</u> better than $\frac{500 \text{ years}}{1000 \text{ years}}$ (n = 35), $\frac{500 \cdot 1000 \text{ one to}}{1000 \text{ one to}}$
29 30	1213	two dates per 1000 years (n = 52), and less than one date per > 1000 years (n = 64). (C)
31 32	1214	Number of calibrated basal peat ages (median) in 500-year bins from the database (black
33 34	1215	bars, n = 199) compared to all northern hemisphere basal peat ages (median) in 200-year
35 36	1216	bins (grey bars, n = 2559, MGK data from <u>M</u> acDonald et al., 2006, <u>G</u> orham et al., 2007,
37 38	1217	<u>K</u> orhola et al., 2010).
39 40	1218	
41 42	1219	Figure 3. Distribution histograms of peat properties in northern peatlands. (A) Frequency
43 44	1220	distribution of bulk density for unidentified peat type samples (white bars) and different
45 46	1221	peat types (color bars). (B) Frequency distribution of organic matter content for different
40 47 49	1222	peat types. (C) Frequency distribution of organic matter bulk density for different peat
40 49 50	1223	types. (D) Frequency distribution of carbon content for different peat types. (E)
50 51		
52 53		
54 55		45
00 57 58		

HOLOCENE

2			
3 4			
5			
0 7			
8 9	1224	Frequency distribution of nitrogen content for different peat types. (F) Frequency	
10 11	1225	distribution of carbon/nitrogen mass ratio for different peat types.	
12 13	1226		
14 15	1227	Figure 4. Relation between carbon content and organic matter content in northern	
16 17	1228	peatlands. The slope of each regression line is used as a conversion factor for estimating	
18 10	1229	carbon content from organic matter content.	
20	1230		
22	1231	Figure 5. Temporal patterns of peat properties (mean, standard deviation, and number of	
23 24	1232	samples). (A) Bulk density. (B) Organic matter content. (C) Organic matter bulk density.	
25 26	1233	(D) Carbon content. (E) Nitrogen content. (F) Carbon/Nitrogen mass ratio. White bars	
27 28	1234	represent values that were based on a limited number of samples and peat records.	
29 30	1235		
31 32	1236	Figure 6. Main differences between Sphagnum and non-Sphagnum peat samples. (A)	
33 34	1237	Bulk density. (B) Organic matter bulk density. (C) Organic carbon bulk density. (D)	
35 36	1238	Carbon content. (E) Nitrogen content. (F) Carbon/Nitrogen mass ratio. (G) Temporal	
37 38	1239	pattern of organic C bulk density. (H) Proportional change in the number of peat records	
39 40	1240	that are Sphagnum-dominated, presented as a percentage of the total number of records.	
41 42	1241		
43	1242	Figure 7. Long-term apparent rate of carbon and nitrogen accumulation from northern	
45 46	1243	peatlands (n = 127 sites). (A) Summer insolation at 60°N (data from Berger and Loutre,	
40 47 40	1244	1991) and temperature anomaly from an 11,300-year reconstruction for the northern	
40 49	1245	extra-polar region from 30 to 90°N (data from Marcott et al., 2013). Temperature	
50 51	1246	anomaly was calculated based on the 1961-1990 temperature averages. (B) Mean peat-	
52 53			
54 55			
56		46	
57			
оө 59			

2		
3		
4		
с С		
7		
8 9	1247	carbon accumulation rates (PCAR) and standard error in 500-year bins. The number of
10 11	1248	sites per 500-year bins is also presented. (C) Mean peat-nitrogen accumulation rates
12 13	1249	(PNAR) and standard error in 500-year bins. These values were obtained using differen
14 15	1250	C/N values over time, as indicated by the line. PCAR: peat carbon accumulation rate;
16 17	1251	PNAR: peat N accumulation rate.
18 19	1252	
20 21	1253	Table 1. Peat properties in northern peatlands. Means and standard deviations are
22 23	1254	presented, along with the number of samples (n).
24	1255	
25 26 27	1256	Table 2. Northern peatland peat properties by regions. Means and standard deviations a
27 28 20	1257	presented, along with the number of samples (n).
29 30 31	1258	
32 33	1259	Table 3. Comparison of northern peatland peat properties estimates with other publisher
34 35	1260	values. Means and standard deviations are presented, along with the number of samples
36 37	1261	(n) when available.
38 39	1262	Supplementary Material
40	1205	
41 42 43 44 45 46 47	1264	Table S1. Summary information for the study sites included in the database.
47 48 49 50 51 52 53 54 55 56 57 58 57		47
59 60		

es per 500-year bins is also presented. (C) Mean peat-nitrogen accumulation rates
NAR) and standard error in 500-year bins. These values were obtained using different
N values over time, as indicated by the line. PCAR: peat carbon accumulation rate;
IAR: peat N accumulation rate.
ble 1. Peat properties in northern peatlands. Means and standard deviations are
esented, along with the number of samples (n).
ble 2. Northern peatland peat properties by regions. Means and standard deviations are
esented, along with the number of samples (n).
ble 3. Comparison of northern peatland peat properties estimates with other published
lues. Means and standard deviations are presented, along with the number of samples
when available.
pplementary Material
ble S1. Summary information for the study sites included in the database.

Figure 1. Location of study sites. Map showing the distribution of northern peatlands (green area from Yu et al., 2010) and peatland sites included in this study (n = 215 sites, including 268 peat cores). Long-term rate of peat-carbon accumulation was estimated from 127 sites (151 peat cores; red and blue dots). The yellow dots represent cores for which only peat properties (bulk density, organic matter content, etc.) were available and synthesized. Refer to Supplementary Table 1 for details. 279x361mm (300 x 300 DPI)

Figure 2. Overview of data availability for North America (black bars) and Eurasia (white bars). (A) Number of cores (total = 238) containing information on carbon/nitrogen ratio (n = 40), nitrogen content (n = 40), carbon content (n = 56), peat types (n = 83), organic matter bulk density (n = 184), organic matter content (n = 190), and bulk density (n = 214). (B) Number of cores (total = 151) with a dating quality better than two dates per 1000 years (n = 35), one to two dates per 1000 years (n = 52), and less than one date per 1000 years (n = 64). (C) Number of calibrated basal peat ages (median) in 500-year bins from the database (n = 199) compared to all northern hemisphere basal peat ages (median) in 200-year bins (n = 2559, MGK data from MacDonald et al., 2006, Gorham et al., 2007, Korhola et al., 2010).
279x361mm (300 x 300 DPI)

density for unidentified peat type samples (white bars) and different peat types (color bars). (B) Frequency distribution of organic matter content for different peat types. (C) Frequency distribution of organic matter bulk density for different peat types. (D) Frequency distribution of carbon content for different peat types. (E) Frequency distribution of nitrogen content for different peat types. (F) Frequency distribution of carbon/nitrogen mass ratio for different peat types. 279x361mm (300 x 300 DPI)

Figure 4. Relation between carbon content and organic matter content in northern peatlands. The slope of each regression line is used as a conversion factor for estimating carbon content from organic matter content.

279x361mm (300 x 300 DPI)

Bulk Density (g cm⁻³) 0.25 A 0.20 0.15 0.10 Organic Matter Content (%) 0.05 0.00 B Organic Matter Bulk Density (g OM cm^{-3}) 0.20 С 0.15 0.10 0.05 0.00 Carbon Content (%) D Nitrogen Content (%) 2.5 Е T 2.0 1.5 1.0 0.5 Carbon/Nitrogen Ratio 0.0 F >12 Age (ka)

Figure 5. Temporal patterns of peat properties (mean, standard deviation, and number of samples). (A) Bulk density. (B) Organic matter content. (C) Organic matter bulk density. (D) Carbon content. (E) Nitrogen content. (F) Carbon/Nitrogen mass ratio. White bars represent values that were based on a limited number of samples and peat records. 279x361mm (300 x 300 DPI)

Figure 6. Main differences between Sphagnum and non-Sphagnum peat samples. (A) Bulk density. (B) Organic matter bulk density. (C) Organic carbon bulk density. (D) Carbon content. (E) Nitrogen content. (F) Carbon/Nitrogen mass ratio. (G) Temporal pattern of organic C bulk density. (H) Proportional change in the number of peat records that are Sphagnum-dominated, presented as a percentage of the total number of records.

279x361mm (300 x 300 DPI)

Figure 7. Long-term apparent rate of carbon and nitrogen accumulation from northern peatlands (n = 127 sites). (A) Summer insolation at 60°N (data from Berger and Loutre, 1991) and temperature anomaly from an 11,300-year reconstruction for the northern extra-polar region from 30 to 90°N (data from Marcott et al., 2013). Temperature anomaly was calculated based on the 1961-1990 temperature averages. (B) Mean peat-carbon accumulation rates (PCAR) and standard error in 500-year bins. The number of sites per 500-year bins is also presented. (C) Mean peat-nitrogen accumulation rates (PNAR) and standard error in 500-year bins. These values were obtained using different C/N values over time, as indicated by the line. 279x361mm (300 x 300 DPI)

Table 1. Peat properties in northern peatlands. Means and standard deviations are presented, along with the number of samples (*n*).

-	Sphagnum	Herbaceous	Woody	Humified	Brown Moss	Overall***
Bulk density (g cm ⁻³)	$0.076 \pm 0.038 \\ (n = 4372)$	$\begin{array}{c} 0.118 \pm 0.075 \\ (3188) \end{array}$	$\begin{array}{c} 0.108 \pm 0.047 \\ (1584) \end{array}$	$\begin{array}{c} 0.192 \pm 0.082 \\ (452) \end{array}$	$\begin{array}{c} 0.177 \pm 0.076 \\ (1114) \end{array}$	$\begin{array}{c} 0.118 \pm 0.069 \\ (21,220) \end{array}$
Organic matter content (%)	94.3 ± 9.3 (3297)	85.6 ± 15.4 (3121)	92.0 ± 13.5 (1587)	$78.4 \pm 17.8 \\ (418)$	81.4 ± 15.5 (1090)	$90.7 \pm 13.0 \\ (18,973)$
Organic matter bulk density (g OM cm ⁻³)	$\begin{array}{c} 0.073 \pm 0.031 \\ (3332) \end{array}$	0.089 ± 0.036 (2854)	$\begin{array}{c} 0.098 \pm 0.032 \\ (1388) \end{array}$	$\begin{array}{c} 0.144 \pm 0.036 \\ (418) \end{array}$	$\begin{array}{c} 0.136 \pm 0.043 \\ (1090) \end{array}$	$\begin{array}{c} 0.105 \pm 0.051 \\ (18,544) \end{array}$
Carbon content in total peat (%)	46.0 ± 4.1 (1520)	50.5 ± 4.9 (519)	50.9 ± 4.0 (308)	47.4 ± 4.1 (96)	47.9 ± 2.8 (72)	46.8 ± 6.1 (3741)
Carbon content in organic matter (%)	$42.3 \pm 3.0*$ (454)	51.1 ± 1.7* (147)	51.4 ± 3.4* (59)	53.2 ± 2.6* (58)	$50.0 \pm 2.0*$ (44)	$49.2 \pm 2.4 **$ (458)
Nitrogen content in peat (%)	0.7 ± 0.3 (1523)	1.7 ± 0.6 (518)	1.3 ± 0.5 (308)	1.5 ± 0.4 (96)	1.4 ± 0.7 (60)	1.2 ± 0.7 (3365)
Carbon/Nitrogen mass ratio	81.0 ± 49.2 (1520)	34.4 ± 15.0 (518)	45.3 ± 19.1 (308)	36.0 ± 17.6 (96)	42.9 ± 18.8 (60)	55 ± 33 (3362)

*Obtained from regression between carbon content and organic matter content (see the Database and analysis section).

Includes all herbaceous, woody, humified and brown moss samples, as well as *Sphagnum* samples older than 0.5 ka (see Results section). *Includes samples for which peat type was not ascribed.

Table 2. Northern peatland peat properties by regions. Means and standard deviations are presented, along with the number of samples in parentheses (n).

10									
11 12	Alaska	Western Canada	Hudson & James Bays	Eastern Canada/USA	Western European Islands	Continental Europe	Fennoscandia	Western Russia	Eastern Russia & Asia
12	0.168 ± 0.087	0.166 ± 0.076	0.097 ± 0.038	0.100 ± 0.039	0.055 ± 0.027	0.120 ± 0.139	0.075 ± 0.043	0.118 ± 0.070	0.116 ± 0.063
13 Bulk density 14 $(g \text{ cm}^{-3})$	(<i>n</i> = 1659)	(3635)	(6002)	(2834)	(656)	(410)	(562)	(2701)	(2761)
15	766 ± 100	01.6 ± 9.1	04 9 + 9 2	078 ± 65	07.5 ± 1.9	07.4 ± 5.42	05.6 ± 9.7	04.6 ± 10.2	90.2 ± 16.7
16 Organic matter	70.0 ± 10.0	91.0 ± 0.1	94.0 ± 0.2	$9/.0 \pm 0.3$	97.3 ± 1.8	97.4 ± 3.43	93.0 ± 0.7	94.0 ± 10.3	60.5 ± 10.7
17 content (%)	(1659)	(3442)	(5129)	(1835)	(227)	(305)	(789)	(2666)	(2700)
18	0.119 ± 0.049	0.151 ± 0.062	0.088 ± 0.029	0.107 ± 0.028	0.055 ± 0.035	0.056 ± 0.028	0.073 ± 0.034	0.106 ± 0.058	0.088 ± 0.034
19rganic matter bulk	(1659)	(3/41)	(5129)	(1750)	(227)	(222)	(422)	(2773)	(2700)
26 density (g OM cm ⁻³)	(1057)	(1++1)	(312))	(1750)	(227)	(222)	(422)	(2775)	(2700)
21	42.4 ± 3.7	45.0 ± 4.3	47.9 ± 4.5	48.9 ± 3.7	54.0 ± 2.5	38.9 ± 1.3	44.4 ± 5.7	49.2 ± 3.2	36.0 ± 9.2
₂₂ Carbon content in	(64)	(382)	(1026)	(1084)	(242)	(60)	(580)	(74)	(229)
23 total peat (%)	(04)	(562)	(1020)	(1004)	(242)	(00)	(300)	(/-)	(22))
24	1.3 ± 0.6	1.1 ± 0.8	1.6 ± 0.7	0.9 ± 0.5	1.6 ± 0.4	0.7 ± 0.1	1.0 ± 0.5	1.6 ± 0.9	1.4 ± 0.6
⁻ Nitrogen content in	(64)	(265)	(910)	(1084)	(242)	(60)	(565)	(44)	(131)
26 peat (%)	(0.)	(200)	() ()	(1001)		(00)	(000)	()	(101)
27	43.9 ± 32.8	62.4 ± 37.5	39.5 ± 23.7	77.2 ± 56.1	35.7 ± 10.8	54.2 ± 7.6	57.9 ± 31.4	40.8 ± 21.7	34.2 ± 21.9
²⁷ Carbon/Nitrogen	(64)	(265)	(910)	(1084)	(242)	(60)	(562)	(44)	(131)
∠o mass ratio	(* -)	()	()	()	()		()	()	()
-29									
30									

Table 3. Northern peatland peat properties estimates from published studies. Means and standard deviations are presented, along with the number of samples in parentheses (*n*) when available.

9 10	Bulk density (g cm ⁻³)	Organic matter content (%)	Organic matter bulk density (g OM cm ⁻³)	Carbon content in organic matter (%)	Carbon/Nitrogen mass ratio	Region	Reference
11 12 13	-	-	0.094 open fens & bogs 0.105 wooded & shrubby fens	51.8 ± 4.7 (<i>n</i> = 253)	-	Western Canada	Vitt et al., 2000
14 15 16 17 18	0.073 ± 0.029 Sphagnum 0.091 ± 0.025 brown moss 0.110 ± 0.037 sedge-moss 0.211 ± 0.061 humified 0.138 ± 0.036 wood	95.5 ± 2.6 Sphagnum 90.3 ± 6.6 brown moss 91.4 ± 4.4 sedge-moss 73.6 ± 13.0 humified 87.8 ± 6.3 wood	0.069 ± 0.028 Sphagnum 0.082 ± 0.023 brown moss 0.100 ± 0.032 sedge-moss 0.149 ± 0.023 humified 0.120 ± 0.029 wood	50.7 ± 5.0 Sphagnum 51.9 ± 3.4 brown moss 53.4 ± 2.9 sedge-moss 54.0 ± 3.8 humified 52.1 ± 3.5 wood	-	Western Canada	Bauer et al., 2006
19 20 21	-	-	0.0784 bogs	52.8 (<i>n</i> = 276)	-	Eastern Canada and USA	Gorham, 1990
22 23 24 25	-	-	0.112	51.7	-	Eastern Canada and USA	Gorham, 1991
23 26 27 28	0.128 ± 0.065	96.26 ± 3.16	0.123*	52	-	West Siberia Lowlands	Sheng et al., 2004
20 29 30 31	-	-	-	51 ± 5 <i>Sphagnum</i> ** 55 ± 3 non- <i>Sphagnum</i> ** 52 ± 3 overall**	h -	West Siberia Lowlands	Beilman et al., 2009
33 34	-	-	0.074 bogs 0.081 fens	50	-	Finland	Turunen et al., 2002
35 36 37	$0.118 \pm 0.069 \\ (n = 21,220)$	90.7 ± 13.0 (<i>n</i> = 18,973)	0.105 ± 0.051 (<i>n</i> = 18,544)	49.2 ± 2.4 (<i>n</i> = 458)	55 ± 33 (<i>n</i> = 3362)	circum-Arctic	This study
39 40 41 42 43 44 45	*This value was o **Standard errors	btained by multiplying bulk o	density (0.128 g cm ⁻³) by organic ma	atter content (96.26%).			
46 47 48			http://mc.manuscriptce	entral.com/holocene			

Supplementary Material: Table S1. Summary information for the study sites included in the circum-Arctic peatland database.

1

7 8 Oldest Number Basal Peat Carbon Abbreviated 9 of ¹⁴C Core name and ID Peatland type Country Latitude Longitude Other dates age age properties reference* rate site 10 (cal BP) (cal BP) dates site NORTH AMERICA Beaulieu-Audy, 2009 Y^3 Υ La Grande 3 Bog Canada 53.57 -76.13 7 6816 Ν Y Y^3 Beaulieu-Audy, 2009 La Grande 2 Bog Canada 53.65 -77.73 6 6543 Υ Ν Y Y^3 Beaulieu-Audy, 2009 La Grande 1 Intermediate fen Canada 53.9 -78.77 8 1612 Υ Ν Y Y^5 16 Belyea, 1996 Rainy River Bog Bog Canada 48.78 -94.55 9 5310 Ν Ν Ν 17 Y^5 Bender, 1969 Porcupine Bog Canada 52.52 -101.25 7 7624 Υ Ν Ν 18 Y^5 Bender, 1969 Colville Lake Bog Canada 67.1 -125.78 7 7650 Υ Ν Ν 19 Y^5 20 Booth. 2004 South Rhody Kettle bog USA 46.55 -86.07 9 10,562 Υ Ν Ν 21 Y^2 Bunbury, 2012 VC04-06 Shrub bog 52.71 -84.18 6 6599 Υ Ν Y Canada 22 Y^2 Y^1 Camill, 2009 Joey Lake 5 Permafrost bog Canada 55.46 -98.16 8 8100 Ν Y 23 Y^2 Camill, 2009 Joey Lake 7 Permafrost bog Canada 55.46 -98.16 10 8256 Υ Ν Y 24 Y^2 25 Y^1 Camill, 2009 Joey Lake 2 Permafrost bog Canada 55.47 -98.16 11 7980 Ν Υ 26 Y^2 -98.15 Camill, 2009 Joey Lake 12 Permafrost bog Canada 55.47 8 6564 Y^1 Ν Υ 27 Y^2 Y^1 Camill, 2009 Joey Lake 15 Permafrost bog Canada 55.47 -98.15 10 7882 Ν Y 28 Y^2 \mathbf{Y}^1 29 Camill, 2009 Joey Lake 17 Permafrost bog Canada 55.47 -98.16 7 7632 Ν Y 30_P Y^2 Camill, unpubl Lake 785 core 4 Canada 59.11 -97.4 9 6833 Υ Ν Y Permafrost bog 31 32^{P.} Camill, unpubl Y^2 Unit Lake core 4 Permafrost bog Canada 59.42 -97.48 9 7053 Y Ν Y Y^2 33P. Camill, unpubl Lake 396 core 3 Permafrost bog 59.58 -98.57 6 6077 Υ Ν Y Canada 34P. Camill, unpubl Y^2 Shuttle Lake core 2 Permafrost bog 59.86 -97.64 Υ Ν Υ Canada 6 6242 36 Charman, 1995 35 Y^5 Wally Creek Area Bog Canada 49.07 -80.6 10 6672 Υ Ν Ν Y^2 39. Charman, unpubl Burnt Village Raised bog 51.13 -55.93 26 8526 Y Ν Y Canada 38. Charman, unpubl Y^2 Petite Bog Raised bog Canada 45.14 -63.94 32 13,474 Y Ν Y 3<u>9</u> 40 Y^2 Charman, unpubl Sidney Bog Raised bog USA 44.39 -69.79 31 9311 Υ Ν Y Y^5 Elliott, 2011 Mer Bleue Bog Canada 45.68 -75.8 11 8463 Υ Ν Ν 41

42 43

http://mc.manuscriptcentral.com/holocene

- 48
- 10

1 2											
3 4 5 Abbreviated 6 reference [*] 7	Site name	Peatland type	Country	Latitude	Longitude	¹⁴ C dates (number)	Oldest age (cal BP)	Basal age (cal BP)	Other dates	Carbon rate site	Peat properties site
8M. Garneau, unpubl	Ours 1	Fen	Canada	54.05	-72.45	6	5491	Ν	Ν	Y ³	Y
9M. Garneau, unpubl	Ours 3	Fen	Canada	54.05	-72.46	5	3899	Ν	Ν	Y ³	Y
10 1M. Garneau, unpubl	Ours 4	Fen	Canada	54.05	-72.46	6	4774	Ν	Ν	Y ³	Y
1 M. Garneau, unpubl	Aero 1	Fen	Canada	54.1	-72.52	6	5485	Ν	Ν	Y ³	Y
181. Garneau, unpubl	Aero 5	Fen	Canada	54.1	-72.52	6	4252	Ν	Ν	Y^3	Y
14 Glaser, 2004	Oldman Bog	Bog	Canada	51.02	-84.57	13	6728	Y	Ν	Y^5	Ν
15 16 Glaser, 2004	Albany River Bog	Bog	Canada	51.43	-83.62	6	5492	Y	Ν	Y^5	Ν
17 Glaser, 2004	Belec Lake Bog	Bog	Canada	51.62	-82.28	7	4480	Y	Ν	Y^5	Ν
18 Gorham, 2003 ^a	Miscou	Bog	Canada	47.93	-64.5	7	9000	Y	Ν	Y^6	Ν
19 20 Gorham, 2003 ^a	Fourchou	Bog	Canada	45.93	-60.27	8	11,200	Y	Ν	Y^6	Ν
20 21 Gorham, 2003	Denbigh	Fen	USA	48.22	-100.5	8	12,500	Y	Ν	Y^6	Ν
22 Holmquist, unpubl	JBL8	Sphagnum bog	Canada	50.47	-89.93	11	4481	Y	Ν	Y ³	Y
23 Holmquist, unpubl	JBL1	Sphagnum bog	Canada	51.07	-89.8	11	6034	Y	Ν	Y^3	Y
24 25 Holmquist, unpubl	JBL2	Sphagnum bog	Canada	52.02	-90.13	13	6742	Y	Ν	Y^3	Y
26 Holmquist, unpubl	JBL3	Sphagnum bog	Canada	52.87	-89.93	10	7708	Y	Ν	Y^3	Y
27. Holmquist, unpubl	JBL7	Sphagnum bog	Canada	54.4	-89.52	12	7607	Y	Ν	Y^3	Y
28 Holmquist, unpubl	JBL6	Permafrost bog	Canada	54.77	-89.32	8	3248	Y	Ν	Y^3	Y
30 Holmquist, unpubl	JBL4	Sphagnum bog	Canada	55.27	-88.93	11	6051	Y	Ν	Y^3	Y
31 Holmquist, unpubl	JBL5	Peat plateau	Canada	55.42	-88.95	12	5826	Y	Ν	Y^3	Y
32 Hu, 1994	Caribou Bog RC-2	Bog	USA	45	-69	6	9707	Y	pollen (1)	Y^5	Y
33 34 Hughes, 2006	Nordan's Pond Bog	Bog	Canada	53.6	-49.17	10	8827	Ν	Ν	Y^5	Ν
35 Hunt, 2013	Nuikluk 10-1	Peat plateau	USA (Alaska)	64.83	-163.45	5	6392	\mathbf{Y}^1	Ν	Y^3	Y
36 Hunt, 2013	Nuikluk 10-2	Collapse Scar	USA (Alaska)	64.83	-163.45	9	13,545	Y	Ν	Y^3	Y
$\frac{37}{29}$ Jones, 2010 ^a	Horse Trail Fen	Poor fen	USA (Alaska)	60.42	-150.9	11	12,695	Y	Ν	Y^3	Y
39 Jones, 2010 ^a	Kenai Gasfield 07-2	Poor Fen	USA (Alaska)	60.45	-151.25	17	11,448	Y	Ν	Y^3	Y
40 Jones, 2010 ^a 41	No Name Creek 07-1	Poor Fen	USA (Alaska)	60.63	-151.08	10	10,993	Y	Ν	Y^3	Y

http://mc.manuscriptcentral.com/holocene

- 41 42 43 44 45 46 47 48

HOLOCENE

2 3												
4 5 Abb 6 ref 7	oreviated ference [*]	Site name	Peatland type	Country	Latitude	Longitude	¹⁴ C dates (number)	Oldest age (cal BP)	Basal age (cal BP)	Other dates	Carbon rate site	Peat properties site
8 Jone	es, 2010 ^a	Swanson Fen	Poor fen	USA (Alaska)	60.79	-150.83	10	14,065	Y	Ν	Y ³	Y
9 Kle	ein, 2013	Kahiltna Valley Mor.	Bog	USA (Alaska)	62.37	-151.09	5	1949	Ν	Ν	Y^3	Y
10 11 E. Kle	ein, unpubl	HERC 09-3	Bog	USA (Alaska)	62.37	-151.07	8	11,768	Y	Ν	Y^3	Y
12 Kuh	ry, 1996 ^a	Slave Lake Bog	Bog	Canada	55.01	-114.09	6	10,516	Y	Ν	Y^2	Y
13 Lama	arre, 2012	KUJU-PD2	Permafrost bog	Canada	55.23	-77.7	8	5084	Y	Ν	Y^3	Y
14 Lave	oie, 2000	Lac Malbaie MAL-2	Bog	Canada	47.6	-70.97	5	10,654	Y	Ν	Y^5	Ν
15 16 ^{Lave}	oie, 2000	Frontenac FRON-2	Bog	Canada	45.97	-71.13	7	12,851	Y	Ν	Y^5	Ν
17 Lav	oie, 2013	Covey Hill	Bog	Canada	45.00	-73.49	12	12,720	Y	Ν	Y^3	Y
18 Lois	sel, 2010	Lac Le Caron RiP2	Bog	Canada	52.28	-75.83	6	2731	Ν	Ν	Y^2	Y
19 Lois	sel, 2013	Petersville 08-S	Bog	USA (Alaska)	62.42	-150.68	6	2825	Ν	tephra (1)	Y^2	Y
20 21 ^{J. Loi:}	sel, unpubl	Petersville 09-MC	Bog	USA (Alaska)	62.42	-150.68	12	13,881	Y	tephra (4)	Y^3	Y
22MacDo	onald, 1983	Natla River Bog	Bog	Canada	63.02	-128.8	6	9747	Y	tephra (1)	Y^5	Y
23 Mag	nan, 2012	Radisson	Semi-forested bog	Canada	53.73	-77.7	6	6154	Y	Ν	Y^5	Ν
24 26 ^{. Mag}	gnan, unpubl	Lebel	Raised bog	Canada	49.1	-68.25	12	5831	Y	Ν	Y^3	Y
266. Mag	gnan, unpubl	Baie	Raised bog	Canada	49.1	-68.22	9	4221	Y	Ν	Y^3	Y
2G. Mag	gnan, unpubl	Morts	Peat plateau	Canada	50.26	-63.67	10	3246	Y	Ν	Y^3	Y
28 G. Mag	gnan, unpubl	Plaine	Peat plateau	Canada	50.27	-63.54	12	7451	Y	Ν	Y^3	Y
29 30 Mull	ler, 2003 ^a	Mirabel bog (7 cores)	Bog	Canada	45.68	-74.03	2 to 7	10,000	Y	Ν	Y^6	Ν
31. Nich	nols, unpubl	Bear Bog	Bog	USA (Alaska)	60.53	-145.45	13	10357	Y	Ν	Y^3	Y
32 _{O'Dor}	nnell, 2012	Koyukuk Flats PP2	Peat plateau	USA (Alaska)	65.19	-155.36	7	12,329	Y	Ν	Y^5	Ν
33 34 O'Re	eilly, 2011	Victor Fen	Fen	Canada	52.71	-84.17	6	6405	Y	Ν	Y^5	Ν
3 15 1. Pack	kalen, unpubl	HL-02	Patterned bog	Canada	54.61	-84.61	5	4494	Y	Ν	Y^2	Y
36 _{Robin}	nson, 2006 ^a	Martin River	Bog	Canada	61.8	-121.4	6	7552	Y	Ν	Y^4	Y
37 Sann	nel, 2009 ^a	Selwyn Lake 1	Peat plateau	Canada	59.88	-104.2	14	6573	Y	Ν	Y^2	Y
30 30 ^C . Tari	nocai, 2010	T5	Polygon bog	Canada	68.57	-133.50	6	8805	Y	Ν	Y^2	Y
40C. Tan 41 42	nocai, 2010	IN-BG-1	Polyg. peat plateau	Canada	68.32	-133.42	9	9121	Y	Ν	Y^2	Y

- 43 44 45 46 47 48
- 10

1											
3											
4 5 Abbreviated 6 reference [*] 7	Site name	Peatland type	Country	Latitude	Longitude	¹⁴ C dates (number)	Oldest age (cal BP)	Basal age (cal BP)	Other dates	Carbon rate site	Peat properties site
8 C. Tarnocai, 2010	IN-BG-3	Polyg. peat plateau	Canada	68.32	-133.43	6	6293	Y	Ν	Y^2	Y
9 C. Tarnocai, 2010	NW-BG-8	Polyg. peat plateau	Canada	65.21	-127.01	5	10,818	Y	Ν	Y^2	Y
10 11C. Tarnocai, 2010	NW-BG-10	Polyg. peat plateau	Canada	65.21	-127.00	5	10,480	Y	Ν	Y^2	Y
12. Tarnocai, unpubl	T1	Polygon bog	Canada	68.32	-133.42	7	8623	Y	Ν	Y^2	Y
16. Tarnocai, unpubl	Т6	Polygon bog	Canada	69.12	-134.18	5	3014	Y	Ν	Y^2	Y
14. Tarnocai, unpubl	IN-BG-2B	Polyg. peat plateau	Canada	68.32	-133.43	6	5828	Y	Ν	Y^2	Y
15 16. Tarnocai, unpubl	NW-BG-2	Polyg. peat plateau	Canada	65.21	-127.01	5	10,932	Y	Ν	Y^2	Y
1¢. Tarnocai, unpubl	NW-BG-3	Polyg. peat plateau	Canada	65.21	-127.01	6	11,010	Y	Ν	Y^2	Y
18 Turunen, 2003 ^a	Diana Lake bog	Slope bog	Canada	54.15	-130.25	5	8500	Y	Ν	Y^6	Ν
19 20 ^{van Bellen, 2011}	Mosaik	Bog	Canada	51.98	-75.4	10	7120	Y	Ν	Y ³	Y
20 21 ^{van Bellen, 2011}	Sterne	Bog	Canada	52.05	-75.17	11	7134	Y	Ν	Y ³	Y
22van Bellen, 2011	Lac Le Caron	Bog	Canada	52.28	-75.83	12	7510	Y	Ν	Y ³	Y
23 Yu, 2003 ^a	Upper Pinto Fen	Rich fen	Canada	53.58	-118.02	20	7599	Y	Ν	Y ³	Y
24 25 Yu, 2006 ^a	Goldeye Lake Fen	Rich fen	Canada	52.45	-116.2	6	9207	Y	tephra (2)	Y^3	Y
26 Z. Yu, unpubl	Sundance Fen 03-2	Rich fen	Canada	53.58	-116.75	5	6719	\mathbf{Y}^1	Ν	Y^3	Y
27 Z. Yu, unpubl	Sundance Fen 03-3	Rich fen	Canada	53.58	-116.75	13	10,973	Y	Ν	Y ³	Y
$\frac{28}{20}$ Z. Yu, unpubl	Utikuma	Poor Fen	Canada	55.84	-115.09	18	5079	Y	Ν	Y ³	Y
30^{29} Z. Yu, unpubl	Mariana Lake 03-1	Poor Fen	Canada	55.9	-112.09	14	7222	Y	Ν	Y ³	Y
31 Z. Yu, unpubl	Mariana Lake 03-2	Poor Fen	Canada	55.9	-112.09	11	6105	\mathbf{Y}^1	Ν	Y^3	Y
$\frac{32}{22}$ Z. Yu, unpubl	Mariana Lake 03-3	Poor Fen	Canada	56.02	-111.93	18	5872	\mathbf{Y}^1	Ν	Y ³	Y
$_{34}^{33}$ Z. Yu, unpubl ^a	Patuanak	Internal lawn	Canada	55.85	-107.68	11	9017	Y	Ν	Y ³	Y
35 I. Garneau, unpubl	Ours 5	Fen	Canada	54.05	-72.46	3	5958	Ν	Ν	Ν	Y
361. Garneau, unpubl	Ours 2	Fen	Canada	54.05	-72.46	2	3496	Ν	Ν	Ν	Y
37 M. Garneau, unpubl	Aero 3	Fen	Canada	54.1	-72.52	2	3387	Ν	Ν	Ν	Y
39 Hu, 1994	Caribou Bog RC-1	Bog	USA	45	-69	2	9547	\mathbf{Y}^1	pollen (3)	Ν	Y
40 Lamarre, 2012 41	KUJU-BF2	Permafrost bog	Canada	55.23	-77.7	4	3914	Y	Ν	Ν	Y

http://mc.manuscriptcentral.com/holocene

1 2											
3 <u>4</u> 5 Abbreviated 6 reference*	Site name	Peatland type	Country	Latitude	Longitude	¹⁴ C dates (number)	Oldest age (cal BP)	Basal age (cal BP)	Other dates	Carbon rate site	Peat properties site
8 Loisel, 2010	Mosaik RiP2	Bog	Canada	51.97	-75.4	4	2433	N	N	Ν	Y
M. Paackalen, unpubl	KJ2-3	Poor fen	Canada	51.59	-81.76	4	4677	Y	Ν	Ν	Y
10 Robinson, 2000	Peat Plateau LC	Peat Plateau	Canada	61.8	-121.4	0		Ν	tephra (1)	Ν	Y
11 12 Robinson, 2000	Peat Plateau 13	Peat Plateau	Canada	61.8	-121.4	0		Ν	tephra (1)	Ν	Y
13 Robinson, 2000	Poor Fen 11	Poor Fen	Canada	61.8	-121.4	0		Ν	tephra (1)	Ν	Y
14 Robinson, 2000	Rich Fen 12	Rich fen	Canada	61.8	-121.4	0		Ν	tephra (1)	Ν	Y
15 16 Robinson, 2000	Unfrozen Bog 10	Permafrost bog	Canada	61.8	-121.4	0		Ν	tephra (1)	Ν	Y
17 Robinson, 2000	Collapse Scar Fen 06	Collapse Scar	Canada	61.8	-121.4	0		Ν	tephra (1)	Ν	Y
18 Sannel, 2009	Ennadai Lake 1	Peat plateau	Canada	60.83	-101.55	4	5792	Y	Ν	Ν	Y
19 C. Tarnocai, unpubl	NW-BG-4	Polyg. peat plateau	Canada	65.21	-127.01	3	9916	Y	Ν	Ν	Y
20 29. Tarnocai, unpubl	NW-BG-9	Polyg. peat plateau	Canada	65.23	-127.00	3	9575	Y	Ν	Ν	Y
22 Z. Yu, unpubl	Hondo	Rich fen	Canada	55.08	-114.14	4	10,012	Y	Ν	Ν	Y
23 <u>EURASIA</u>											
24 25 ^{Anderson, 1998^a}	Glen Torridon	Olig. topogen. bog	UK	57.56	-5.37	7	9568	Y	Ν	Y^2	Y
26Anderson, 1998 ^a	Glen Carron	Olig. topogen. bog	UK	57.53	-5.15	6	10,431	Y	Ν	Y^2	Y
27 _{Andersson} , 2010	Lilla Backsjömyren 1	Mixed mire	Sweden	62.41	14.32	5	8527	Y	tephra (2)	Y^5	Y
28 29 ^{Andersson, 2010}	Lilla Backsjömyren 2	Mixed mire	Sweden	62.41	14.32	13	3804	Y^1	tephra (2)	Y^5	Y
30 Barber, 2003	Bolton Fell Moss J,L	Bog	UK	55	-2	28	10,476	Y	Ν	Y^5	Ν
31 Barber, 2003	Mongan Bog	Bog	Ireland	53	-8	13	4607	Ν	Ν	Y^5	Ν
32 Barber, 2003	Abbeyknockmoy Bog	Bog	Ireland	53.5	-9	10	6707	Ν	Ν	Y^5	Ν
GBocchicchio, unpubl.	KAM12-C4	Bog	Russia (Far-E)	54.01	156.08	10	12,891	Y	Ν	Y^3	Y
35 Borren, 2004 ^a	Vasyugan (V21)	Bog	Russia (Siberia)	56.83	78.42	11	9709	Y	Ν	Y^3	Y
36 Borren, 2004 ^a	86-Kvartal (Zh0)	Fen	Russia (Siberia)	56.83	84.58	9	8711	Y	Ν	Y^3	Y
37 Charman, 1994	East Southerland	Fen	UK	58	-3	6	10,084	Y	Ν	Y^5	Ν
BegVleeschouwer, 2009	Słowińskie Błota	Raised bog	Poland	54.36	16.49	8	1165	Ν	Ν	Y^2	Y
Ble Vleeschouwer, 2012 41	Misten	Raised bog	Belgium	50.56	6.16	15	1434	Ν	Ν	Y^2	Y

http://mc.manuscriptcentral.com/holocene

- 42 43 44 45 46 47 48

- 10
| 1
2
2 | | | | | | | | | | | |
|--|---------------------|-------------------|------------------|----------|-----------|--------------------------------------|---------------------------|--------------------------|-------------|---------------------|----------------------------|
| 3 4 5 Abbreviated 6 7 | Site name | Peatland type | Country | Latitude | Longitude | ¹⁴ C
dates
(number) | Oldest
age
(cal BP) | Basal
age
(cal BP) | Other dates | Carbon
rate site | Peat
properties
site |
| 8 Gałka, 2013a | Stażki-B | Bog | Poland | 54.43 | 18.09 | 9 | 7352 | Y | Ν | Y ⁵ | Y |
| 9 Gałka, 2013b | Kusowo | Raised bog | Poland | 54 | 18 | 8 | 578 | Ν | Ν | Y^5 | Ν |
| 10
11 Glebov, 2002 | Ob-Vasygan | Bog | Russia (Siberia) | 60.52 | 77.68 | 17 | 10,817 | Y | Ν | Y^5 | Ν |
| 12 Hendon, 2001 | Butternburn Flow 1 | Intermed. ombrotr | UK | 55.08 | -2.5 | 7 | 9,213 | Y | Ν | Y^5 | Ν |
| 13 Hughes, 2013 | Utasai Bog | Oligotrophic bog | Japan | 42.38 | 140.18 | 7 | 2954 | Ν | tephra (4) | Y^2 | Y |
| 14 Kokfelt, 2010 | Stordalen | Permafrost bog | Sweden | 68.35 | 19.05 | 11 | 4717 | Y | Ν | Y^2 | Y |
| 15
16amentowicz, 2013 | Stażki-F | Rich fen | Poland | 54.43 | 18.09 | 8 | 1225 | \mathbf{Y}^1 | Ν | Y^5 | Y |
| 17 Large, 2009 | Hongyuan HYLK1 | Bog | China | 32.77 | 102.52 | 14 | 10,827 | Y | Ν | Y^2 | Y |
| 18J. Loisel, unpubl. | KAM12-C1 | Bog | Russia (Far-E) | 54.9 | 156.6 | 13 | 11,914 | Y | Ν | Y^3 | Y |
| 19
GoMacDonald, unpubl | N-1 | Peat plateau | Russia (W Sib) | 63.16 | 74.82 | 8 | 10,072 | Y | Ν | Y^3 | Y |
| 20
61 MacDonald, unpubl | V-34 | Open raised bog | Russia (W Sib) | 61.47 | 79.46 | 8 | 8824 | Y | Ν | Y^3 | Y |
| 6 2MacDonald, unpubl | E-110 | Peat plateau | Russia (W Sib) | 66.47 | 76.99 | 6 | 9496 | Y | Ν | Y^3 | Y |
| 63. MacDonald, unpubl | D-127 | Peat plateau | Russia (W Sib) | 64.31 | 70.29 | 6 | 10,034 | Y | Ν | Y^3 | Y |
| 24
G ₅ MacDonald, unpubl | SIB06 | Pine-domin. bog | Russia (W Sib) | 58.44 | 83.43 | 17 | 8680 | Y | Ν | Y^3 | Y |
| 26 Mäkilä, 2007 ^a | Hanhijänkä | Palsa | Finland | 68.4 | 23.55 | 7 | 9800 | Y | Ν | Y^6 | Ν |
| 27 Mäkilä, 2007 ^a | Luovuoma (3 cores) | Fen | Finland | 68.4 | 23.55 | 6 | 9800 | Y | Ν | Y^6 | Ν |
| 28 Mäkilä, 2001 ^a | Ruosuo (P8) | Aapa | Finland | 65.65 | 27.32 | 7 | 9500 | Y | Ν | Y^2 | Y |
| 29
30 Mäkilä, 2001 ^a | Ruosuo (P20) | Aapa | Finland | 65.65 | 27.32 | 9 | 9500 | \mathbf{Y}^1 | Ν | Y^2 | Y |
| 31 Mäkilä, 2001 ^a | Saarisuo (B800) | Fen | Finland | 65.65 | 27.32 | 11 | 9600 | Y | Ν | Y^2 | Y |
| 32 Mäkilä, 1997 ^a | Haukkasuo (3 cores) | Bog | Finland | 60.82 | 26.95 | 13 | 9500 | Y | Ν | Y^6 | Ν |
| 33 P Mathijssen, unpubl | Lompolojänkkä | Fen | Finland | 68 | 24.22 | 10 | 9969 | Y | Ν | Y^3 | Y |
| 35 Mathijssen, unpubl | Siikaneva | Bog | Finland | 61.84 | 24.17 | 6 | 9622 | Y | Ν | Y^4 | Y |
| 36 Mauquoy, 2002 | Walton Moss 21 | Raised bog | UK | 54.98 | -2.77 | 21 | 1120 | Ν | Ν | Y^2 | Y |
| 37
Mauquoy, 2002 | Walton Moss 20 | Raised bog | UK | 54.98 | -2.77 | 23 | 1048 | Ν | Ν | Y^2 | Y |
| 38
39 Mauquoy, 2002 | Walton Moss 19 | Raised bog | UK | 54.98 | -2.77 | 30 | 925 | Ν | Ν | Y^2 | Y |
| 40 Mauquoy, 2002
41 | Lille Vildmose | Raised bog | Denmark | 56.83 | 10.25 | 19 | 609 | Ν | Ν | Y^2 | Y |

http://mc.manuscriptcentral.com/holocene

- 42 43 44 45 46 47 48

1											
2											
4											
5 Abbreviated 6 reference [*] 7	Site name	Peatland type	Country	Latitude	Longitude	¹⁴ C dates (number)	Oldest age (cal BP)	Basal age (cal BP)	Other dates	Carbon rate site	Peat properties site
8 Oksanen, 2001	Rogovaya River 2	Peat plateau	Russia (E Eur.)	67.27	62.14	5	10,413	Y ¹	Ν	Y^2	Y
9 Oksanen, 2001	Rogovaya River 3	Peat plateau	Russia (E Eur.)	67.25	62.07	6	10,641	Y	Ν	Y^3	Y
10 11 Oksanen, 2003	Usinsk Mire 1	Peat plateau	Russia (E. Eur.)	57.42	65.67	6	13,236	Y	Ν	Y^2	Y
12 ² Onkainen, unpubl	Seida	Peat plateau	Russia (E. Eur.)	67.05	62.92	6	8469	Y	Ν	Y^4	Y
13 Ruhland, 2000	Lena River Valley	Wet fen	Russia (E Sib)	69.38	125.13	6	8022	Y	Ν	Y^5	Ν
14 Tuittila, 2007	Lakkasuo (hummock)	Bog	Finland	61.78	24.3	12	6567	\mathbf{Y}^1	Ν	Y^5	Y
15 16 ^{Tuittila} , 2007	Lakkasuo (lawn)	Bog	Finland	61.78	24.3	7	6803	Y	Ν	Y^5	Y
17 Turunen, 2001 ^a	Salym-Gyugan Mire 3	Bog	Russia (W Sib)	60.17	72.83	6	10,500	Y	Ν	Y^6	Ν
18 Väliranta, 2007	Kontolanrahka	Bog	Finland	60.78	22.78	40	4937	Y	¹³⁷ Cs	Y^2	Y
19 Van der Linden, 2006	Saxnäs Mosse	Raised bog	Sweden	56.86	13.46	36	1068	Ν	Ν	Y^2	Y
20 24an der Linden, 2007	Barschpfuhl	Kettle hole	Germany	53.05	13.83	32	134	Ν	Ν	Y^2	Y
22 n der Linden, 2008	Lappmyran	String & flark mire	Sweden	64.16	19.58	40	1712	Ν	Ν	Y^2	Y
23 der Linden, 2008	Åkerlänna Römosse	Raised bog	Sweden	60.02	17.36	36	392	Ν	Ν	Y^2	Y
24 25 ^Y . Zhao, unpubl.	Altay	Sedge-dom rich fen	China	48.12	88.35	18	11,308	Y	Ν	Y^3	Y
26 Zhao, 2011	Zoige	Sedge-dom rich fen	China	33.45	102.63	7	9996	Y	Ν	Y^3	Y
27 Zhou, 2010	Hani Peat Bog	Bog	China	42.22	126.52	6	15,014	Y	Ν	Y^5	Ν
28 20 Anderson, 1998	Eilean Subhainn	Olig. topogen. bog	UK	57.69	-5.48	4	8700	Y	Ν	Ν	Y
39. Beilman, unpubl.	KAM12-C10	Fen	Russia (Far-E)	55.5	159.87	1	7500	Y	Ν	Ν	Y
31 Juutinen, 2013	Kiposuo III	Fen	Finland	69.18	27.28	3	9510	Y	pollen (1)	Ν	Y
32 Juutinen, 2013	Kiposuo IV	Fen	Finland	69.18	27.28	2	8574	\mathbf{Y}^1	Ν	Ν	Y
33 34 McCarroll, unpubl	Mossdale Moor 2	Blanket bog	UK	49.85	-7.46	3	1429	Ν	Ν	Ν	Y
35 5mith, 2004, 2012	N-2	Peat plateau	Russia (W Sib)	63.88	75.02	1	3600	Y	Ν	Ν	Y
36smith, 2004, 2012	S-4	Non-permafrost	Russia (W Sib)	61.55	72.71	1	6285	Y	Ν	Ν	Y
³⁷ Smith, 2004, 2012	S-5	Non-permafrost	Russia (W Sib)	61.98	72.18	1	3885	Y	Ν	Ν	Y
36 36 mith, 2004, 2012	S-6	Non-permafrost	Russia (W Sib)	61.62	73.98	1	11,120	Y	Ν	Ν	Y
40smith, 2004, 2012 41 42	S-7	Non-permafrost	Russia (W Sib)	61.49	74.32	1	8675	Y	Ν	N	Y

- 43 44 45 46 47 48
- 10

1 2 2											
3 4 5 Abbreviated 6 reference* 7	Site name	Peatland type	Country	Latitude	Longitude	¹⁴ C dates (number)	Oldest age (cal BP)	Basal age (cal BP)	Other dates	Carbon rate site	Peat properties site
8 Smith, 2004, 2012	S-8	Pine-domin. bog	Russia (W Sib)	61.75	73.39	1	9860	Y	Ν	Ν	Y
9 Smith, 2004, 2012	S-9	Non-permafrost	Russia (W Sib)	62.12	73.84	2	8725	Y	Ν	Ν	Y
10 11 Smith, 2004, 2012	N-10	Peat plateau	Russia (W Sib)	63.14	76.54	1	4720	Y	Ν	Ν	Y
12 ⁶ mith, 2004, 2012	N-11	Non-permafrost	Russia (W Sib)	62.66	76.77	1	5090	Y	Ν	Ν	Y
135mith, 2004, 2012	N-12	Peat plateau	Russia (W Sib)	63.50	76.82	1	10,080	Y	Ν	Ν	Y
14 Smith, 2004, 2012	N-13	Peat plateau	Russia (W Sib)	63.77	76.64	1	9465	Y	Ν	Ν	Y
15 16 ^{Smith} , 2004, 2012	N-14	Peat plateau	Russia (W Sib)	63.77	75.51	1	9035	Y	Ν	Ν	Y
178mith, 2004, 2012	N-15	Peat plateau	Russia (W Sib)	63.65	74.27	2	9630	Y	Ν	Ν	Y
18smith, 2004, 2012	N-16	Peat plateau	Russia (W Sib)	64.50	75.53	1	3540	Y	Ν	Ν	Y
19 20 ³ mith, 2004, 2012	N-17	Peat plateau	Russia (W Sib)	64.07	74.99	1	11,330	Y	Ν	Ν	Y
20 2∱mith, 2004, 2012	N-18	Peat plateau	Russia (W Sib)	62.85	75.22	1	1005	Y	Ν	Ν	Y
22 5 mith, 2004, 2012	N-19	Peat plateau	Russia (W Sib)	62.96	74.26	1	8290	\mathbf{Y}^1	Ν	Ν	Y
23 ₅ mith, 2004, 2012	N-19-1	Peat plateau	Russia (W Sib)	62.96	74.26	1	8675	Y	Ν	Ν	Y
24 25 ^{Smith} , 2004, 2012	S-20	Pine-domin. bog	Russia (W Sib)	62.55	71.72	1	3395	Y	Ν	Ν	Y
26 mith, 2004, 2012	S-21	Pine-domin. bog	Russia (W Sib)	62.40	72.87	1	9905	Y	Ν	Ν	Y
27 _{Smith} , 2004, 2012	S-22	Pine-domin. bog	Russia (W Sib)	60.84	71.26	2	7125	Y	Ν	Ν	Y
28 mith, 2004, 2012	S-23	Pine-domin. bog	Russia (W Sib)	60.65	73.08	1	6665	Y	Ν	Ν	Y
36 mith, 2004, 2012	S-24	Open raised bog	Russia (W Sib)	61.32	73.24	1	2305	Y	Ν	Ν	Y
31 Smith, 2004, 2012	S-25	Pine-domin. bog	Russia (W Sib)	62.25	74.78	1	9910	Y	Ν	Ν	Y
32 _{Smith} , 2004, 2012	V-26	Open raised bog	Russia (W Sib)	61.03	76.47	2	9700	Y	Ν	Ν	Y
33 34 ² Smith, 2004, 2012	V-27	Open raised bog	Russia (W Sib)	61.32	76.73	1	4540	Y	Ν	Ν	Y
35 5mith, 2004, 2012	V-28	Open raised bog	Russia (W Sib)	61.81	77.50	1	7750	Y	Ν	Ν	Y
36 mith, 2004, 2012	V-29	Open raised bog	Russia (W Sib)	61.23	75.31	1	9750	Y	Ν	Ν	Y
37 Smith, 2004, 2012	V-30	Open raised bog	Russia (W Sib)	61.74	75.20	1	5455	Y	Ν	Ν	Y
36 mith, 2004, 2012	V-31	Open raised bog	Russia (W Sib)	62.37	75.79	1	5600	Y	Ν	Ν	Y
40Smith, 2004, 2012 41	V-32	Open raised bog	Russia (W Sib)	62.36	77.48	1	2140	Y	Ν	Ν	Y

http://mc.manuscriptcentral.com/holocene

- 42 43 44 45 46 47 48

- 10

1											
2											
3											
5 Abbreviated 6 reference* 7	Site name	Peatland type	Country	Latitude	Longitude	¹⁴ C dates (number)	Oldest age (cal BP)	Basal age (cal BP)	Other dates	Carbon rate site	Peat properties site
8 Smith, 2004, 2012	V-33	Open raised bog	Russia (W Sib)	62.00	76.71	1	10,975	Y	Ν	Ν	Y
9 Smith, 2004, 2012	V-35	Open raised bog	Russia (W Sib)	60.80	77.62	1	10,350	Y	Ν	Ν	Y
10 Smith, 2004, 2012	V-36	Open raised bog	Russia (W Sib)	60.81	78.58	1	4400	Y	Ν	Ν	Y
12 mith, 2004, 2012	V-37	Betula & Salix fen	Russia (W Sib)	61.25	74.73	1	2425	Y	Ν	Ν	Y
13 5mith, 2004, 2012	V-38	Open raised bog	Russia (W Sib)	60.80	74.54	2	7525	Y	Ν	Ν	Y
14 Smith, 2004, 2012	V-39	Open raised bog	Russia (W Sib)	61.09	79.38	2	10,925	Y	Ν	Ν	Y
15 16 ^{Smith} , 2004, 2012	V-40	Open raised bog	Russia (W Sib)	61.20	77.84	1	7850	Y	Ν	Ν	Y
178mith, 2004, 2012	E-101	Peat plateau	Russia (W Sib)	66.46	76.68	1	10,970	Y	Ν	Ν	Y
18 mith, 2004, 2012	E-102	Peat plateau	Russia (W Sib)	66.04	76.59	1	8065	Y	Ν	Ν	Y
19 mith, 2004, 2012	E-103	Peat plateau	Russia (W Sib)	66.74	76.48	1	10,395	Y	Ν	Ν	Y
20 2∱mith, 2004, 2012	E-104	Peat plateau	Russia (W Sib)	65.97	77.99	1	4240	Y	Ν	Ν	Y
22 5 mith, 2004, 2012	E-105	Peat plateau	Russia (W Sib)	65.98	77.61	1	735	Y	Ν	Ν	Y
23 mith, 2004, 2012	E-106	Peat plateau	Russia (W Sib)	66.00	77.35	1	9175	Y	Ν	Ν	Y
24 25 ^{Smith} , 2004, 2012	E-107	Peat plateau	Russia (W Sib)	66.01	75.86	1	6650	Y	Ν	Ν	Y
26 mith, 2004, 2012	E-108	Peat plateau	Russia (W Sib)	65.86	75.29	1	10,685	Y	Ν	Ν	Y
27 _{Smith} , 2004, 2012	E-111	Peat plateau	Russia (W Sib)	66.20	79.14	1	8630	Y	Ν	Ν	Y
28 mith, 2004, 2012	E-112	Peat plateau	Russia (W Sib)	66.20	79.14	1	8765	Y	Ν	Ν	Y
36 mith, 2004, 2012	E-113	Peat plateau	Russia (W Sib)	66.45	79.32	4	8305	Y	Ν	Ν	Y
31 Smith, 2004, 2012	E-114	Peat plateau	Russia (W Sib)	66.44	76.32	1	605	Y	Ν	Ν	Y
32 _{Smith} , 2004, 2012	E-115	Peat plateau	Russia (W Sib)	67.81	75.43	2	9120	Y	Ν	Ν	Y
33 34 ² Smith, 2004, 2012	E-116	Peat plateau	Russia (W Sib)	67.46	76.42	1	3050	Y	Ν	Ν	Y
35 5mith, 2004, 2012	E-118	Peat plateau	Russia (W Sib)	66.60	77.41	1	2540	Y	Ν	Ν	Y
36 mith, 2004, 2012	E-118M	Peat plateau	Russia (W Sib)	66.60	77.41	0		Ν	Ν	Ν	Y
37 Smith, 2004, 2012	E-119	Peat plateau	Russia (W Sib)	65.50	75.50	2	9750	Y	Ν	Ν	Y
36 36 mith, 2004, 2012	E-120	Peat plateau	Russia (W Sib)	65.61	77.96	1	2585	Y	Ν	Ν	Y
40Smith, 2004, 2012 41 42	E-120M	Peat plateau	Russia (W Sib)	65.61	77.96	0		Ν	Ν	N	Y
43 44											

- 46 47 48 10

45

1 2											
3											
4 5 Abbreviated 6 reference [*] 7	Site name	Peatland type	Country	Latitude	Longitude	¹⁴ C dates (number)	Oldest age (cal BP)	Basal age (cal BP)	Other dates	Carbon rate site	Peat properties site
8 Smith, 2004, 2012	E-121	Peat plateau	Russia (W Sib)	65.87	78.81	1	2190	Y	Ν	Ν	Y
9 Smith, 2004, 2012	E-121M	Peat plateau	Russia (W Sib)	65.87	78.81	0		Ν	Ν	Ν	Y
10 Smith, 2004, 2012	D-122	Peat plateau	Russia (W Sib)	65.58	73.01	2	8495	Y	Ν	Ν	Y
12 ⁵ mith, 2004, 2012	D-123	Peat plateau	Russia (W Sib)	64.42	71.03	1	10,080	Y	Ν	Ν	Y
135mith, 2004, 2012	D-123M	Peat plateau	Russia (W Sib)	64.42	71.03	0		Ν	Ν	Ν	Y
14 Smith, 2004, 2012	D-124	Peat plateau	Russia (W Sib)	65.08	72.97	1	6475	Y	Ν	Ν	Y
15 16 ^{Smith} , 2004, 2012	D-124M	Peat plateau	Russia (W Sib)	65.08	72.97	0		Ν	Ν	Ν	Y
17Smith, 2004, 2012	D-125	Peat plateau	Russia (W Sib)	64.52	72.16	1	9600	Y	Ν	Ν	Y
1&mith, 2004, 2012	D-125M	Peat plateau	Russia (W Sib)	64.52	72.16	1	9735	Y	Ν	Ν	Y
19 Smith, 2004, 2012	D-126	Peat plateau	Russia (W Sib)	64.33	71.20	1	9140	Y	Ν	Ν	Y
20 2 Smith, 2004, 2012	D-126M	Peat plateau	Russia (W Sib)	64.33	71.20	0		Ν	Ν	Ν	Y
22 Smith, 2004, 2012	D-127M	Peat plateau	Russia (W Sib)	64.31	70.29	1	10,420	Y	Ν	Ν	Y
23 mith, 2004, 2012	D-128	Peat plateau	Russia (W Sib)	65.55	72.46	1	9180	Y	Ν	Ν	Y
24 25 ^{Smith} , 2004, 2012	P-129	Peat plateau	Russia (W Sib)	66.61	73.75	1	9635	Y	Ν	Ν	Y
26 mith, 2004, 2012	P-130	Peat plateau	Russia (W Sib)	66.87	74.53	1	8815	Y	Ν	Ν	Y
27/smith, 2004, 2012	P-131	Peat plateau	Russia (W Sib)	66.17	73.99	2	9940	Y	Ν	Ν	Y
28 Smith, 2004, 2012	P-132	Peat plateau	Russia (W Sib)	66.50	73.95	1	10,065	Y	Ν	Ν	Y
36 mith, 2004, 2012	P-133	Peat plateau	Russia (W Sib)	65.79	74.35	1	6515	Y	Ν	Ν	Y
31 Smith, 2004, 2012	G-134	Peat plateau	Russia (W Sib)	64.43	77.18	1	8285	Y	Ν	Ν	Y
32 _{Smith} , 2004, 2012	G-135	Peat plateau	Russia (W Sib)	64.83	77.67	1	9450	Y	Ν	Ν	Y
33 34 ³ Smith, 2004, 2012	G-136	Peat plateau	Russia (W Sib)	64.15	75.36	2	7820	Y	Ν	Ν	Y
35 5mith, 2004, 2012	G-136M	Peat plateau	Russia (W Sib)	64.15	75.36	1	6385	Y	Ν	Ν	Y
36 mith, 2004, 2012	G-137	Peat plateau	Russia (W Sib)	63.75	75.77	4	9360	Y	Ν	Ν	Y
37 Smith, 2004, 2012	G-138	Peat plateau	Russia (W Sib)	64.52	76.67	1	9915	Y	Ν	Ν	Y
36 mith, 2004, 2012	G-139	Peat plateau	Russia (W Sib)	64.89	76.73	1	6240	Y	Ν	Ν	Y
405mith, 2004, 2012 41	G-139M	Peat plateau	Russia (W Sib)	64.89	76.73	0		Ν	Ν	Ν	Y

http://mc.manuscriptcentral.com/holocene

10

3 4											
5 Abbreviated 6 reference [*] 7	Site name	Peatland type	Country	Latitude	Longitude	¹⁴ C dates (number)	Oldest age (cal BP)	Basal age (cal BP)	Other dates	Carbon rate site	Peat properties site
8 Smith, 2004, 2012	G-140	Peat plateau	Russia (W Sib)	64.27	79.55	1	10,365	Y	Ν	Ν	Y
9 Smith, 2004, 2012	G-140M	Peat plateau	Russia (W Sib)	64.27	79.55	0		Ν	Ν	Ν	Y
10 Smith, 2004, 2012	G-141	Peat plateau	Russia (W Sib)	64.69	75.40	1	10,410	Y	Ν	Ν	Y
12 ⁵ mith, 2004, 2012	G-142	Peat plateau	Russia (W Sib)	64.09	78.60	0		Ν	Ν	Ν	Y
135mith, 2004, 2012	G-142M	Peat plateau	Russia (W Sib)	64.09	78.60	1	8675	Y	Ν	Ν	Y
¹⁴ Smith, 2004, 2012	SIB01	Pine-domin. bog	Russia (W Sib)	59.36	68.98	3	6970	Y	Ν	Ν	Y
15 16 ^{Smith} , 2004, 2012	SIB02	Pine-domin. bog	Russia (W Sib)	61.06	70.06	2	8500	Y	Ν	Ν	Y
178mith, 2004, 2012	SIB03	Pine-domin. bog	Russia (W Sib)	56.36	79.07	3	2770	Y	Ν	Ν	Y
18smith, 2004, 2012	SIB04	Pine-domin. bog	Russia (W Sib)	56.80	78.74	3	3770	Y	Ν	Ν	Y
19 20 mith, 2004, 2012	SIB05	Pine-domin. bog	Russia (W Sib)	57.35	81.16	3	4240	Y	Ν	Ν	Y
20 21 Väliranta, 2003	Ortino 1	Peat plateau	Russia (E. Eur.)	68	54	4	10,374	Y	Ν	Ν	Y
22 Väliranta, 2003	Ortino 2	Peat plateau	Russia (E. Eur.)	68	54	3	8786	\mathbf{Y}^1	Ν	Ν	Y
23 *A list of de	tailed references is pre	esented below the table.									

*A list of detailed references is presented below the table.

^aSite used in Yu et al.'s (2009) synthesis.

¹Basal age not considered in the peatland inception age database because older cores were collected from the same site.

²Measured bulk density was multiplied by measured C content (elemental analyzer) for each layer to estimate C bulk density (g C cm⁻³).

³Measured ash-free bulk density was multiplied by inferred C content (ash-free bulk density x 49%) for each layer to estimate C bulk density.

⁴Measured bulk density was multiplied by assumed C content (47%) for each layer to estimate C bulk density.

⁵Assumed time-dependent bulk density was multiplied by assumed C content (47%) for each dated interval to estimate peat-C density.

⁶Peat-C accumulation rates directly obtained from published figures and tables.

References:

Anderson, D.E. 1998. A reconstruction of Holocene climatic changes from peat bogs in north-west Scotland. Boreas, 27, 208-224.

Andersson, S., Schoning, K. 2010. Surface wetness and mire development during the late Holocene in central Sweden. Boreas, 39, 749-760.

Barber, K.E., Chambers, F.M., Maddy, D. 2003. Holocene palaeoclimates from peat stratigraphy: macrofossil proxy climate records from three oceanic raised bogs in England and Ireland. Quaternary Science Reviews, 22, 521-539.

Beaulieu-Audy, V., Garneau, M., Richard, P.J.H., Asnong, H. 2009. Holocene palaeoecological reconstruction of three boreal peatlands in the La Grande Rivière region, Québec, Canada. The Holocene, 19(3), 459-476.

Belyea, L.R., Warner, B.G. 1996. Temporal scale and the accumulation of peat in a *Sphagnum* bog. Canadian Journal of Botany, 74, 366-377.

Bender, M.M., Bryson, R.A., Baerreis, D.A. 1969. University of Wisconsin radiocarbon dates VI. Radiocarbon, 11(1), 228-235.

Booth, R.K., Jackson, S.T., Gray, C.E.D. 2004. Paleoecology and high-resolution paleohydrology of a kettle peatland in upper Michigan. Quaternary Research, 61, 1-13.

Borren, W., Bleuten, W., Lapshina, E.D. 2004. Holocene peat and carbon accumulation rates in the southern taiga of western Siberia. Quaternary Research, 61, 42-51.

Bunbury, J., Finkelstein, S.A., Bollman, J. 2012. Holocene hydro-climatic change and effects on carbon accumulation inferred from a peat bog in the Attawapiskat River watershed, Hudson Bay Lowlands, Canada. Quaternary Research, 78, 275-284.

Camill, P., Barry, A., Williams, E., Andreassi, C., Limmer, J., Solick, D. 2009. Climate-vegetation-fire interactions and their impact on long-term carbon dynamics in a boreal peatland landscape in northern Manitoba, Canada. Journal of Geophysical Research, 114, G04017, doi:10.1029/2009JG001071.

Charman, D.J. 1994. Patterned fen development in northern Scotland: developing a hypothesis from palaeoecological data. Journal of Quaternary Science, 9(3), 285-297.

Charman, D.J., Aravena, R., Warner, B.G. 1995. Carbon dynamics in a forested peatland in North-Eastern Ontario, Canada. Journal of Ecology, 82(1), 55-62.

De Vleeschouwer, F., Piotrowska, N., Sikorski, J., Pawlyta, J., Cheburkin, A., Le Roux, G., Lamentowicz, M., Fagel, N., Mauquoy, D. 2009. Multiproxy evidence of 'Little Ice

HOLOCENE

Age' palaeoenvironmental changes in a peat bog from northern Poland. The Holocene, 19(4), 625-637.

De Vleeschouwer, F., Pazdur, A., Luthers, C., Streel, M., Mauquoy, D., Wastiaux, C., Le Roux, G., Moschen, R., Blaauw, M., Pawlyta, J., Sikorski, J., Piotrowska, N. 2012. A millennial record of environmental change in peat deposits from the Misten bog (East Belgium). Quaternary International, 268, 44-57.

Elliott, S.M., Roe, H.M., Patterson, T. 2011. Testate amoebae as indicators of hydroseral change: An 8500 years record from Mer Bleue Bog, eastern Ontario, Canada. Quaternary International, 268, 128-144.

Gałka, M., Miotk-Szpiganowicz, G., Goslar, T., Jeśko, M., van der Knaap, W., Lamentowicz, M. 2013a. Paleohydrology, fires and vegetation succession in the southern Blatic during the last 7500 years reconstructed from a raised bog based on multi-proxy data. Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 209-221.

Gałka, M., Tobolski, K., Górska, A., Milecka, K., Fiałkiewicz-Kozieł, B., Lamentowicz, M. 2013b. Disentangling the drivers of a Baltic bog development during the Little Ice Age in northern Poland. Quaternary International, doi.org/10.1016/j.quaint.2013.02.026.

Glaser, P.H., Hansen, B.C.S., Siegel, D.I., Reeve, A.S., Morin, P.J. 2004. Rates, pathways and drivers for peatland development in the Hudson Bay Lowlands, northern Ontario, Canada. Journal of Ecology, 92, 1036-1053.

Glebov, F.Z., Karpenko, L.V., Dashkovskaya, I.S. 2002. Climatic changes, successions of peatlands and zonal vegetation, and peat accumulation dynamics in the Holocene (the West-Siberia peat profile 'Vodorasdel'). Climatic Change, 55, 175-181.

Gorham, E., Janssens, J.A., Glaser, P.H. 2003. Rates of peat accumulation during the postglacial period in 32 sites from Alaska to Newfoundland, with special emphasis on northern Minnesota. Canadian Journal of Botany, 81, 429-438.

Hendon, D., Charman, D.J., Kent, M. 2001. Palaeohydrological records derived from testate amoebae analysis from peatlands in northern England: within-site variability, between-site comparability and palaeoclimatic implications. The Holocene, 11(2), 127-148.

Hu, F.S., Davis, R.B. 1994. Postglacial development of a Maine bog and paleoenvironmental implications. Canadian Journal of Botany, 73, 638-649.

Hughes, P.D.M., Blundell, A., Charman, D.J., Bartlett, S., Daniell, J.R.G., Wojatschke, A., Chambers, F.M. 2006. An 8500 cal. year multi-proxy climate record from a bog in eastern Newfoundland: contributions of meltwater discharge and solar forcing. Quaternary Science Reviews, 25, 1208-1227.

Hughes, P.D.M., Mallon, G., Brown, A., Esssex, H.J., Stanford, J.D., Hotes, S. 2013. The impact of high tephra loading on late-Holocene carbon accumulation and vegetation succession in peatland communities. Quaternary Science Reviews, 67, 160-175.

Hunt, S., Yu, Z., Jones, M. 2013. Lateglacial and Holocene climate, disturbance and permafrost peatland dynamics on the Seward Peninsula, western Alaska. Quaternary Science Reviews, 63, 42-58.

Jones, M.C., Yu, Z. 2010. Rapid deglacial and early Holocene expansion of peatlands in Alaska. Proceedings of the National Academy of Sciences, 107(15), 7347-7352.

Juutinen, S., Väliranta, M., Kuutti, V., Laine, A.M., Virtanen, T., Seppä, H., Weckström, Tuittila, E.-S. 2013. Short-term and long-term carbon dynamics in a northern peatland-stream-lake continuum: A catchment approach. Journal of Geophysical Research, 118, 1-13, doi:10.1002/JGRG20028.

Klein, E.S., Booth, R.K., Yu, Z., Mark, B.G., Stansell, N.D. 2013. Hydrology-mediated differential response of carbon accumulation to late Holocene climate change at two peatlands in Southcentral Alaska. Quaternary Science Reviews, 64, 61-75.

Kokfelt, U., Reuss, N., Struyf, E., Sonesson, M., Rundgren, M., Skog, G., Rosén, P., Hammarlund, D. 2010. Wetland development, permafrost history and nutrient cycling inferred from late Holocene peat and lake sediment records in subarctic Sweden. Journal of Paleolimnology, 44, 327-342.

Kuhry, P.,Vitt, D.H. 1996. Fossil carbon/nitrogen ratios as a measure of peat decomposition, Ecology, 77(1), 271-275.

Lamentowicz, M., Gałka, M., Milecka, K., Tobolski, K., Lamentowicz, L., Fiałkiewicz-Kozieł, B., Blaauw, M. 2013. A 1300-year multi-proxy, high-resolution record from a rich fen in northern Poland: reconstructing hydrology, land use and climate change. Journal of Quaternary Science, 28(6): 582-594.

Lamarre, A., Garneau, M., Asnong, H. 2012. Holocene paleohydrological reconstruction and carbon accumulation of a permafrost peatland using testate amoeba and macrofossil analyses, Kuujjuarapik, subarctic Québec, Canada. Review of Palaeobotany and Palynology, 186, 131-141.

Large, D.J., Spiro, B., Ferrat, M., Shopland, M., Kylander, M., Gallagher, K., Li, X., Shen, C., Possnert, G., Zhang, G., Darling, W.G., Weiss, D. 2009. The influence of climate, hydrology and permafrost on Holocene peat accumulation at 3500 m on the eastern Qinghai-Tibetan Plateau. Quaternary Science Reviews, 3303-3314.

Lavoie, M., Richard, P.J.H. 2000. The role of climate on the developmental history of Frontenac Peatland, southern Quebec. Canadian Journal of Botany, 78, 668-684.

1	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
30	
30	
37	
38	
39	
40	
41	
42	
<u>⊿</u> 2	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
52	
50	
59	

60

Lavoie, M., Richard, P.J.H. 2000. Paléoécologie de la tourbière du lac Malbaie, dans le massif des Laurentides (Québec): .valuation du role du climat sur l'accumulation de la tourbe. Géographie Physique et Quaternaire, 54(2), 169-185.

Lavoie, M., Pellerin, S., Larocque, M. 2013. Examining the role of allogenous and autogenous factors in the long-term dynamics of a temperate headwater peatland (southern Québec, Canada). Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 336-348.

Loisel, J., Garneau, M. 2010. Late Holocene paleoecohydrology and carbon accumulation estimates from two boreal peat bogs in eastern Canada: Potential and limits of multi-proxy archives. Palaeogeography, Palaeoclimatology, Palaeoecology, 291, 493-533.

Loisel, J., Yu, Z. 2013. Recent acceleration of carbon accumulation in a boreal peatland, south central Alaska. Journal of Geophysical Research, 118, 1-13, doi:10.1029/2012JG001978.

MacDonald, G.M. 1983. Holocene vegetation history of the Upper Natla River Area, Northwest Territories, Canada.Arctic and Alpine Research, 15(2), 169-180.

Magnan, G., Lavoie, M., Payette, S. 2012. Impact of fire on long-term vegetation dynamics of ombrotrophic peatlands in northwestern Québec, Canada. Quaternary Research, 77, 110-121.

Mäkilä, M. 1997. Holocene lateral expansion, peat growth and carbon accumulation on Haukkasuo, a raised bog in southeastern Finland, Boreas, 26 (1), 1-14, doi:10.1111/j.1502-3885.1997.tb00647.x.

Mäkilä, M., Saarnisto, M., Kankainen, T. 2001. Aapa mires as a carbon sink and source during the Holocene. Journal of Ecology, 89(4), 589-599.

Mäkilä, M., Moisanen, M. 2007. Holocene lateral expansion and carbon accumulation of Luovuoma, a northern fen in Finnish Lapland. Boreas, 36(2), 198-210.

Mauquoy, D., Engelkes, T., Groot, M.H.M., Markesteijn, F., Oudejans, M.G., van der Plicht, J., van Geel, B. 2002. High-resolution records of late-Holocene climate change and carbon accumulation in two north=west European ombrotrophic peat bogs. Palaeogeography, Palaeoclimatology, Palaeoecology, 186, 275-310.

Muller, S.D., Richard, P.J.H., Larouche, A.C. 2003. Holocene development of a peatland (southern Québec): a spatio-temporal reconstruction based on pachymetry, sedimentology, microfossils and macrofossils. The Holocene, 13(5), 649-664.

O'Donnell, J.A., Jorgenson, M.T., Harden, J.W., McGuire, A.D., Kanevskiy, M.Z., Wickland, K.P. 2012. The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland. Ecosystems, 15, 213-229.

O'Reilly, B.C. 2011. Paleoecological and carbon accumulation dynamics of a peatland in the Hudson Bay Lowlands, Northern Ontario, from the mid-Holocene to present. M.Sc thesis, University of Toronto, Canada.

Oksanen, P.O., Kuhry, P., Alekseeva, R.N. 2001. Holocene development of the Rogovaya River peat plateau, European Russian Arctic. The Holocene, 11(1): 25-40.

Oksanen, P.O., Kuhry, P., Alekseeva, R.N. 2003. Holocene development and permafrost history of the Usinsk Mire, Northeast European Russia. Géographie Physique et Quaternaire, 57(2-3), 169-187.

Robinson, S.D. 2000. Carbon accumulation in discontinuously frozen peatlands, Southwestern Northwest Territories, Canada. Ph.D. thesis, McGill University, Canada.

Robinson, S.D. 2006. Carbon accumulation in peatlands, southwestern Northwest Territories, Canada. Canadian Journal of Soil Science, 86, 305-319.

Ruhland, K., Smol, J.P., Jasinski, J.P.P., Warner, B.G. 2000. Response of diatoms and other siliceous indicators to the developmental history of a peatland in the Tiksi Forest, Siberia, Russia. Arctic, Antarctic, and Alpine Research, 32(2), 167-178.

Sannel, A.B.K., Kuhry, P. 2009. Holocene peat growth and decay dynamics in sub-arctic peat plateaus, west-central Canada. Boreas, 38: 13-24.

Smith, L.C., Beilman, D.W., Kremenetski, K.V., Sheng, Y., MacDonald, G.M., Lammers, R.B., Shiklomanov, A.I., Lapshina, E.D. 2012. Influence of permafrost on water storage in West Siberian peatlands revealed from a new database of soil properties. Permafrost and Periglacial Processes, 23, 69-79.

Smith, L.C., MacDonald, G.M., Velichko, A.A., Beilman, D.W., Borisova, O.K., Frey, K.E., Kremenetski, K.V., Sheng, Y. 2004. Siberian peatlands a net carbon sink and global methane source since the early Holocene. Science, 303(5656), 353-356.

Tarnocai, C. 2010. Carbon sequestration dynamics and climate change in Subarctic and Low Arctic organic cryosols in Canada. Proceedings of the 19th World Congress of Soil Science, p. 5-8.

Tuittila, E.-S., Väliranta, M., Laine, J., Korhola, A. 2007. Quantifying patterns and controls of mire vegetation succession in a southern boreal bog in Finland using partial ordinations. Journal of Vegetation Science, 18, 891-902.

Turunen, J., Tahvanainen, T., Tolonen, K. 2001. Carbon accumulation in West Siberian mires, Russia. Global Biogeochemical Cycles, 15(2), 285-296.

Turunen, C., Turunen, J. 2003. Development history and carbon accumulation of a slope bog in oceanic British Columbia, Canada. The Holocene, 13(2), 225-238.

Väliranta, M., Kaakinen, A., Kuhry, P. 2003. Holocene climate and landscape evolution East of the Pechora delta, East-European Russian Arctic. Quaternary Research, 59, 335-344.

Väliranta, M., Korhola, A., Seppä, H., Tuittila, E.-S., Sarmaja-Korjonen, K., Laine, J., Alm, J. 2007. High-resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the late Holcoene: a quantitative approach. The Holocene, 17(8), 1093-1107.

van der Linden, M. 2007. Effects of climate change and human impact on late-Holocene species composition and carbon accumulation in bog ecosystems. Ph.D. thesis, Universiteit van Amsterdam, The Netherlands.

van der Linden , M., van Geel, B. 2006. Late-Holocene climate change and human impact recorded in a South Swedish ombrotrophic peat bog. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(3-4), 649-667.

van der Linden, M., Vickery, E., Charman, D.J., Broekens, P., van Geel, B. 2008. Vegetation history and human impact during the last 300 years recorded in a German peat deposit. Review of Palaeobotany and Palynology, 152, 158-175.

van Bellen, S., Dallaire, P.-L., Garneau, M., Bergeron, Y. 2011. Quantifying spatial and temporal Holocene carbon accumulation in ombrotrophic peatlands of the Eastmain region, Quebec, Canada, Global Biogeochemical Cycles, 25, GB2016, doi:10.1029/2010GB003877.

Yu, Z., Campbell, I.D., Campbell, C., Vitt, D.H., Bond, G.C., Apps, M.J. 2003. Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales. The Holocene, 13(6), 801-808.

Yu, Z., Beilman, D.W., Jones, M.C. 2009. Sensitivity of northern peatland carbon dynamics to Holocene climate change. In: Baird, A., Belyea, L., Comas, X., Reeve, A., Slater, L. (Eds.), Northern peatlands and carbon cycling, American Geophysical Union Monograph Series, Washington D.C., USA, pp. 55-69.

Yu, Z. 2006. Holocene carbon accumulation of fen peatlands in boreal Western Canada: A complex ecosystem response to climate variation and disturbance. Ecosystems, 9(8), 1278-1288.

Zhao, Y., Yu, Z., Zhao, W. 2011. Holocene vegetation and climate histories in the eastern Tibetan Plateau: controls by insolation-driven temperature or monsoon-derived precipitation changes? Quaternary Science Reviews, 30, 1173-1184.

Zhou, W., Zheng, Y., Meyers, P.A., Jull, A.J., T., Xie, S. 2010. Postglacial climatechange record in biomarker lipid compositions of the Hani peat sequence, Northeastern China. Earth and Planetary Science Letters, 294, 37-46.

http://mc.manuscriptcentral.com/holocene