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Impact of Soft Tissue Heterogeneity on
Augmented Reality for Liver Surgery

Nazim Haouchine, Stephane Cotin, Igor Peterlik, Jeremie Dequidt,

Mario Sanz Lopez, Erwan Kerrien and Marie-Odile Berger

Abstract—This paper presents a method for real-time augmented reality of internal liver structures during minimally invasive

hepatic surgery. Vessels and tumors computed from pre-operative CT scans can be overlaid onto the laparoscopic view for

surgery guidance. Compared to current methods, our method is able to locate the in-depth positions of the tumors based on

partial three-dimensional liver tissue motion using a real-time biomechanical model. This model permits to properly handle the

motion of internal structures even in the case of anisotropic or heterogeneous tissues, as it is the case for the liver and many

anatomical structures. Experimentations conducted on phantom liver permits to measure the accuracy of the augmentation while

real-time augmentation on in vivo human liver during real surgery shows the benefits of such an approach for minimally invasive

surgery.

Index Terms—Image-guided Simulation, Biomechanical Modeling, Real-Time Augmented Reality, Computer Assisted Surgery.

✦

1 INTRODUCTION

C ONSIDERABLE advances in medicine have seen the

emergence of new surgery techniques such as Mini-

mally Invasive Surgery (MIS). In this technique, the sur-

geon does not interact with organs directly as in the open

surgery, but manipulates instruments inserted through tro-

cars placed in small incisions in the wall of the abdominal

cavity. The surgeon can observe these instruments on a

display showing a video stream captured by an endoscopic

camera inserted through the navel. The main advantage

of the method is in reduced pain and time recovery. In

addition, reducing bleeding and risks of infection have

increased the number of operations done by a minimally

invasive manner. Although the MIS procedure is considered

as a well-established technique, it remains quite complex

from the surgical standpoint mainly due to the limited visual

feedback and indirect manipulation. On the other hand,

the presence of a video-capturing device such a mono or

stereo laparoscopic camera has naturally led the research

community to investigate the use of Augmented Reality

to guide the surgeon during the procedure (see Figure

1). Indeed, internal structures computed from pre-operative

scans such as tumors and vessels can be superimposed onto

the intra-operative images to facilitate the orientation and

navigation during the surgery.

In order to establish a full augmented reality system
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for MIS, many difficult problems have to be solved [1].

The abdominal cavity undergoing the laparoscopic surgery

remains a very challenging environment for computer vi-

sion tasks. The surgical instruments interacting with the

liver may cause large occlusions, the illumination variations

caused by the endoscopic light and the liver bleeding or

smokes due to electrocautery may disturb organ motion

tracking and recovery of the 3D structures. Among the

most difficult and still unsolved issues is the capacity to

tackle, in real time, elastic deformations of the liver. This

organ can undergo large deformations due to the interaction

with surgical tools, respiratory motion and heart beating.

Currently, most existing AR systems rely on rigid motion

of the organs and only a limited number of papers address

the problem of elastic organ deformation, considering only

the homogeneous and linear elasticity.

The paper is organized as follows. Section 2 presents

the previous works related to non-rigid registration and

augmented reality for surgery. Sections 3, 4 and 5 explain

our approach while section 6 details the experimental

results obtained. Current results and limitations, as well as

the applicability of the method are discussed in section 8.

2 PREVIOUS WORK

In this section we present previous works related to aug-

mented reality for Minimally Invasive Surgery. Since we

propose to address the issue of elastic liver behaviour, we

first present an overview of non-rigid registration methods

in AR systems. Second, previous works on AR techniques

for surgery guidance are presented. In the last part, we

highlight our contribution.

2.1 Capturing Non-rigid Surfaces

Non-rigid surface augmentation has been a topic of in-

terest of many researchers. The need to obtain realistic
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augmentation both in terms of geometric behaviour and

in rendering has increased the number of papers in this

area. Depending on the context, non-rigid registration and

augmentation can be realized directly from 2D images

[2] or may take advantage of a 3D model of the shape.

When the texture information on the object is rich enough,

many points can be matched between images, allowing a

2D deformation motion model to be computed. Bartoli et

al. [3] used a direct method to register non-rigid pairs of

images. In their approach, radial basis mapping is used as

an equivalent to the optical flow constraint regularization

approach [2]. In contrast to direct methods Pilet et al.

[4] proposed a fast and robust tracking for handling large

deformations. This approach uses a set of wide baseline

feature matches and combines 2D deformable meshes with

a robust estimation technique. Zhu et al. [5] proposed

an approach to reduce the number of iterations of the

previous method by using a progressive Finite Newton

algorithm and an efficient factorization method to solve the

optimization problem. In his approach Gay-Belille et al. [6]

considered the occluded pixels as self-occlusion area that

forces the wrap to shrink instead of outliers. Inspired by

this self-occlusion shrinking method, Hilsmann et al. [7]

proposed an approach exploiting an optical flow constraint

regularization by a 2D deformable mesh. The advantage of

such methods is that they can be applied with monocular

images, but they require that rich information texture be

available. Another restriction is that augmentation can only

be realized onto the surface of the object. Thus, AR medical

applications where virtual objects may be added in depth

can not be handled by such techniques. To cope with this

problem, a 3D deformable model has been considered. The

deformation can be guided by monocular images [8] [9] or

directly by 3D features available on the surface acquired

with stereoscopic or depth camera as in [10].

One of the main difficulties of these approaches is to

define an appropriate deformation model. Most of the time,

it is computed from a representative sample of possible

shapes using a dimensionality reduction process. However,

sampling the space of valid shapes for quite deformable

objects/organs is difficult. Another way to describe de-

formable shapes is to use mechanical-based models. In the

past decade, many examples of mechanical-based tracking

methods have emerged. Recent examples are for instance

[11], where a combination of the finite element modelling

with and the extended kalman filter shows the efficiency of

the physics-based method. In [12], a linear finite element

method is used to predict the deformation. The approach

described in [13] relies on the minimization of a stretching

energy subject to external image constraints. The problem

is formalized by considering the surface compressibility

(Poisson ratio) as the unique mechanical parameter assum-

ing local linear elasticity.

Though theoretically well suited to describe the defor-

mation of objects, the use of mechanical-based models

is hampered by the difficulty to choose an appropriate

mechanical model and the elastic parameters describing the

considered deformations without over-parametrization. As

shown in the next section, such models are promising in

the medical field, especially because the volumetric seg-

mentation is available as well as typical elastic parameters

(Young’s modulus) of numerous organs.

Fig. 1. A sequence of images showing the superimpo-

sition of the 3D real-time biomechanical model onto the

human liver, undergoing deformation due to instrument

interaction during minimally invasive hepatic surgery.

The liver is represented in wire-frame, the tumor in

purple, the hepatic vein is shown in blue and the portal

vein in green.

2.2 Augmented Reality for Surgery

A number of research groups have investigated the use of

AR during MIS, however, most contributions are dedicated

to rigid organs or assume that elastic deformations be-

tween pre-operative and intra-operative data are negligible.

In practice, large elastic deformations may occur due to

breathing or due to the interaction of the organ with surgical

tools. Past attempts to perform AR on deformable organs

make use of markers or navigation aids placed close to

the area of navigation targets [14] or require interaction to

refine elastic registration between pre and intro-operative

data [1]. Others, e.g. [15], build pre-operatively a dynamic

4D model of the heart which is registered to intra-operative

data employing ECG. In [16], Su et al. propose a 3D-3D it-

erative closest point (ICP) registration with an image-based

tracking to superimpose the 3D model onto laparoscopic

images for partial kidney resection. Since the kidney does

not actually undergo elastic deformations during surgery,

the 3D-3D registration is performed in a rigid manner.

These methods have shown the feasibility of automatic AR

systems in surgery. Nevertheless, they usually require ad-

ditional constraints during the intervention in the operating

room or consider only simplified scenarios, for example

cyclic or rigid motion of the organs.

Recently, significant advances have been realized towards

automatic registration between pre- and intra-operative data

in MIS. In the context of laparoscopy and employing the

monocular images, Kim et al. [17] proposed a robust solu-

tion to track and augment a deformable surgical site using

shape from shading and conformal mapping. However,

their method only retrieves surface deformation and cannot
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ensure an accurate augmentation of inner structures. Puerto-

Souza et al. [18] proposed a matching algorithm called

Hierarchical Multi-Affine capable of long-term tracking for

augmentation during partial nephrectomy. This approach

estimates a set of affine transformations from clusters of

features in order to relocate occluded or missing features

for a coherent spatio-temporal mesh registration.

When augmentation with in-depth structures is required,

elastic registration of the surface of the organ is no more

sufficient and volume tracking has to be considered.

Mechanical-based deformable models have proven to be

relevant for volume deformation tracking since they allow

to define elastic properties of the shape and thus to infer

in-depth motion from boundary constraints. Nonetheless,

simple models based on linear elasticity have been mostly

considered [19], [20], [21]. In [22], a 4D scan of the heart

is coupled with a biomechanical model. It is controlled

by surface constraints created by features extracted from a

stereovision stream and allows for a quite accurate overlay

of internal structures. However, this approach is limited to

cyclic movements where without large deformations due to

the surgical manipulation.

In [23], a dynamic model based on the equation of

dynamics for elastic materials is proposed: forces measured

in the image drive the model towards the object’s bound-

aries. The organ is supposed to be homogeneous and forces

measured on MRI volumes, though noisy, are available

everywhere in the structure. In [21], intraoperative regis-

tration between stereo endoscopic images and preoperative

model of the liver based on biomechanical properties is

proposed. The linear and Neo-hookean elastic models are

considered and the accuracy of registration is assessed on a

phantom. Results are slightly better with the second model,

nevertheless it is still not suitable for a real time simulation.

A combination of physics-based model and image-based

tracking was proposed in [24], [25] for vascular network

augmentation during hepatic surgery. This approach em-

ploys a physical model as a regularization step to avoid

false tracking measurement and to compute global volu-

metric deformations despite poor image-features detection.

However, results are shown only for a very limited range of

deformations, mainly when the deformation is perpendicu-

lar to the camera optical axis and only visual assessment

is presented.

2.3 Our Contribution

This paper is an extension of our previous work pub-

lished in [26] where we investigated the use of a real-

time deformable liver model based on a biomechanical

approach, and subject to constraints imposed by partial

intra-abdominal image information. Here we present an

extended experimental evaluation of this approach through

two different, increasingly complex, scenarios, by using a

high fidelity phantom liver data and intra-abdominal liver

surgery data. These experiments permit to measure the

internal positions of a tumor inside a tissue undergoing

different types of deformations, with respect to a ground-

truth. Moreover, we provide a comparison to the methods

proposed previously. Since the stiffness and texture of the

fabricated phantom and real liver differ, the in vivo tests on

human data during hepatic surgery assess the robustness

of the tracking algorithm when applied to a real scenario.

Moreover, the initialisation step of the method, which

still remains a challenge, is exposed in more details. The

computational flow of the method is given in Fig. 2.

Fig. 2. The computational flow of the method: The

biomechanical model guided by the 3D image-points

recovered from the intra-abdominal image pair permits

to propagate partial tissue deformations to vessels and

tumors.

3 3D TISSUE DEFORMATION RECOVERY

AND TRACKING

Capturing the 3D tissue deformation of an organ from intra-

abdominal images has been widely studied in the literature

(see [27], [28] for a complete survey). In our work, a stereo

endoscope is used to recover 3D information from the

liver surface. In order to drive the simulation, our method

requires a set of sparse 3D points. For that purpose, we use

a feature-based tracking algorithm where salient landmarks

are detected in each image pair using the Speeded-Up

Robust Features (SURF) descriptor [29] and are tracked

over time employing the Lucas-Kanade optical flow [30].

This combination has proven to be robust to track heart

motion in laparoscopic images [31]. Other feature-matching

frameworks can be used such as hierarchical frameworks

presented in [18]. Feature correspondences between stereo

images are obtained with a nearest neighbour criterion

applied to the feature descriptors coupled with the epipolar

constraint to filter out the outliers. After triangulation, we

obtain a sparse set of m 3D points, stored in a 3 × m

coordinate vector y. Since our non-rigid registration method

is a point-to-point registration, a sparse reconstruction is
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Fig. 3. 3D Estimation on a laparoscopic image of the abdominal cavity showing a part of the liver. (a) SURF

features detection on image pairs acquired from the Da Vinci Robot. (b) The resulting sparse 3D point set y

plotted and (c) mapped. (d) A stereo endoscope of the Da Vinci robot.

sufficient, however, the density of the point cloud can be

increased in order to reduce outliers [32]. Examples of

point correspondences and reconstructed 3D points from

laparoscopic images are shown in Fig. 3.

We used a stereo endoscope from the Da Vinci robot

illustrated in Fig. 3. The camera lens generate radial dis-

tortion and have relative small baselines (about 6 mm). The

camera is calibrated offline and the image distortions are

rectified following Zhang [33]. We make the assumption

that the stereo endoscope is fixed, which is the case when

the surgeon manipulates the surgical instruments.

The SURF detector provides a measure of reliability for

each extracted feature as the determinant of the Hessian

matrix. We take advantage of this measure to associate

each reconstructed 3D point with a quality q defined as

the average reliability of its two corresponding features in

the left and right images. Quality values are normalized so

that q = 1 for the most reliable 3D point and q = 0 for

the least reliable 3D point in the point set y. We denote

q the 3×m vector formed by all values q, assuming the

quality is isotropic at each point. Note that other measures

of reliability could be considered, such as the Euclidean

distances of the matched descriptors or the eigenvalues of

the covariance matrix on the reconstructed points.

4 BIOMECHANICAL MODEL

In this section we provide a description of the biomechan-

ical model used to compute the deformations of the liver.

Before giving details of the tetrahedral model employed for

parenchyma, we focus on the model of vascularization and

mechanical coupling between these two components (see

Figure 4). Since the final composite model is heterogeneous

and anisotropic due to the vascular structures, we finally

describe the solution process based on a direct solver, still

allowing for real-time performance.

4.1 Parenchyma Model

Most biomechanical studies concerning the constitutive

models of the liver parenchyma (see [34] or [35] for

instance) report the non-linear and viscoelastic behavior of

the organ tissue. Since we do not focus on the transient

part of the deformation but rather the static equilibrium

under some specific loading conditions, we do not take into

account the viscous properties of the tissue. On the other

hand, we aim at correct modeling of the large deforma-

tions, since during the surgical interventions, an important

displacements of tissue (e.g. the liver lobes) occur due to

the action of the surgical tools.

For this reason we have opted for the finite element

method based on a co-rotational formulation (introduced by

Felippa in [36]) allowing for large displacements while re-

lying on a linear expression of the stress-strain relationship.

The co-rotational approach is based on the decomposition

of the actual element configuration into rotational and

deformational components, both being quantified w. r. t. the

initial position. More precisely, the actual position of the

element nodes determines the base of the element (given

by three chosen adjacent edges), which is both rotated and

deformed w. r. t. the initial base of the same element. In

order to extract the rotational component (denoted as Re), a

matrix decomposition such as polar, SVD or QR is needed;

in our method we employ the technique described in [37].

The matrix Re is used to update the local stiffness matrix Ke

of the element. Therefore, via this element-wise rotations,

the actual global stiffness matrix K depends in each step

on the actual deformation u and the equation relating the

external forces to the displacements can be written as

f = K(u)u with u = x−x0 (1)

where x0 and x represent nodal positions in rest and actual

positions, respectively, and f are the external forces.

Assuming that linear tetrahedral P1 elements are em-

ployed in the finite element formulation of the parenchyma

model and the mesh is composed of NP nodes, the resulting

system has 3NP degrees of freedom, i. e. uP, P are vectors

of size 3NP whereas KP is a 3NP×3NP matrix, where the

subscript P denotes the parenchyma.

It should be noted that our method is not limited to the

co-rotational model, which can be replaced by hyperelastic

formulation such as the technique based on multiplicative

Jacobian energy decomposition presented in [38].

4.2 Vessel Model

The vascular system is regarded as the main source of

heterogeneity which has a global influence on the mechan-

ical response of the vascularized tissue due to important

stiffness of the vessel wall. The model employed here is



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

based on work presented in [39]. Besides describing the

model in the actual scenario, additional details concerning

the assembling of the composite system are given in the

following text. It should be emphasized that a potential

viscoelastic response due to fluids (i. e. blood) circulating

in the vessels is not taken into account as only a quasi-static

scenario is assumed.

From the mechanical point of view, the vascular system

is modeled with serially linked beam elements in a similar

way as proposed by Duriez et al. [40] for simulating

catheters and guide wires. This model shares some similar-

ities with the co-rotational model described above, and in

particular allows for geometrically non-linear deformations.

At the same time it accounts for rotational degrees of

freedom, i. e. besides linear positions and forces, orientation

and torques are included in the mechanical formulation.

We introduce some modifications to the model to take

into account the nature of vessels, in particular through spe-

cific cross section profiles and moments of inertia (see [41]

for details). The static formulation for the deformation of

a beam is described by a system similar to Eq. 1 with

constituents uV, fV and KV. However, as each node is

equipped with 6 degrees of freedom due to the rotational

components, the size of vectors uV and fV is 6NV and KV

is a 6NV×6NV matrix where NV is the size of beam mesh

representing the geometry of vessels.

4.3 Coupling between Vessels and Parenchyma

In order to build the composite model of vascularized

tissue, we adopt the method proposed in [39]. At the

beginning of the time step, the forces applied in the beam

points are propagated to the vertices of tetrahedra. Then,

stiffness matrices for both beam and tetrehedral models are

assembled and combined together as described below. The

composite system is solved resulting in displacements of

the tetrahedral vertices. Finally, the positions of beam nodes

are updated based on actual positions of tetrahedra. For the

sake of simplicity, we first describe the positional mapping

between the nodes, then the propagation of forces and

finally we show how the stiffness matrices are combined

together to get the global stiffness matrix of the composite

system.

Let us first focus on positional mapping of an arbitrary

beam point of the vessel network. We recall that the point

is defined by its position p and orientation O in space.

Before the simulation starts, the point is associated with a

tetrahedron T which contains the point. Two quantities are

precomputed for each point: the barycentric coordinates of

p w. r. t. the tetrahedron T (denoted as β T ) and orientation

OT of the point formulated relatively with respect to the

tetrahedron T , computed as OT = B−1
T O where BT is

an orthogonal base given by the edges connecting the

nodes of the tetrahedron T in the rest position. It should

be noted that the same matrix is required by the co-

rotational model. Since it is supposed that no relative

motion between the parenchyma and vessels occurs, both

β T and OT remain constant during the simulation and in

each step they are used to calculate the updated position p

and orientation O of the beam point in space. As for the

position, the calculation using the barycentric coordinates is

straightforward. The updated orientation O′ is computed as

O′ =B′
T OT where B′

T is the base given by update positions

of the tetrahedron T . The calculation of the updated base

B′
T requires the orthogonalization process, however, this

computation is already needed by the co-rotation model,

so the mapping does not introduce an additional significant

computational load.

At the same time step, the response forces applied in the

beam node are mapped onto the vertices of the associated

tetrahedron T . For the beam point, there are linear forces

f as well as torques τ , whereas for the tetrahedron, only

linear forces F are modeled in the element vertices. The

linear response force f is mapped from the beam point

to its corresponding tetrahedron T using the barycentric

coordinates β T introduced above. The torques τ are trans-

formed to the linear forces acting in the tetrahedron nodes

using the equation τ = r×F where r is vector connecting

the beam and tetrahedron nodes. Putting it together, the

force contribution of the beam point is added to the forces

applied in the vertices of associated tetrahedron T as

Fi = Fi + βif− (ri × τ) where i runs over the vertices of

T .

As introduced above, the vascularized tissue is a com-

posite deformable object, where the total stiffness matrix

K is composed of contributions provided by stiffness of

parenchyma KP and stiffness of vessels walls KV. Let us

suppose that the mapping between the beam and tetrahedra

nodes can be be expressed in a matrix form as fP = JT fV
where J is a 3NP×6NV Jacobian matrix of the mapping be-

tween the nodes of parenchyma and vessels [42]. The global

stiffness K matrix is then computed as K = KP+J⊤KVJ.

Concerning the tumor, since this work focus only on

small tumors, we assume that its influence on the overall

mechanical behaviour is negligible and therefore the cou-

pling with the parenchyma is only geometric. However, the

tumor can easily be modelled as a real mechanical object

with different properties from those of the parenchyma,

which will not affect the performance of our method.

4.4 Numerical Solution

In this paper, a quasi-static scenario is considered, i. e. the

actual shape of deformable object under applied forces is

computed using the finite element formulation without deal-

ing with the dynamic properties of the tissue. Therefore, in

each step of the simulation, a linear system given by Eq. 1

is resolved. A wide range of direct and iterative solvers have

been proposed in the past to solve such system of equations

emerging in the physics-based modeling of deformable

bodies. In the case of homogeneous systems where the finite

element formulation results in well-conditioned matrices,

iterative solvers such as conjugate gradients have proven

to be efficient techniques converging rapidly to the optimal

solution. However, in our case, the final matrix K gathers

mechanical contributions of both the parenchyma and ves-

sel walls. As the experiments reports a significant difference
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(a) (b) (c)

Fig. 4. 3D heterogeneous biomechanical model of the liver: (a) The volumetric mesh composed of tetrahedra.

(b) The beams generated along the vessels described in Section 4. (c) The heterogeneous liver model including

the vascular network shown in wire-frame.

in stiffness of these two components (e. g. see [43]), the

composite system results in poorly conditioned matrix. In

this case the convergence of iterative solvers becomes an

important issue.

For this reason, we rely on direct LDL solver which

requires an explicit factorization of the system matrix.

Although the solver imposes more strict limitations on the

size of the system being resolved, it still provides a stable

real-time solution applicable to the problems considered in

the scope of this paper.

5 NON-RIGID REGISTRATION

5.1 System initialization

Special care must be taken during the initialization phase

since it can significantly impact the estimated position of

the tumor. As in related works [16], [18] the initialisation is

done manually through a Graphical User Interface (GUI).

First, in order to ensure visual consistency, the intrinsic

parameters of the endoscopic camera are loaded on the GUI

virtual camera. Dense 3D reconstruction is built on the

first pair of laparoscopic images (the first pair is chosen

so that a large part of the liver is visible). This dense

reconstruction permits to obtain a set of partial patches

that represent the visible liver surface. The liver mesh is

then aligned manually to the reconstructed surface, based

on salient geometrical landmarks such as liver contours or

surrounding ligaments. This alignment consists in a rigid

transformation (rotation and translation) and is therefore

insufficient to initialise the registration correctly. Indeed,

due to the gas insufflation, the pre-operative data (liver

mesh from the segmented CT scans) geometrically differs

form the intra-operative data (reconstructed patch) [44]. To

solve this issue, we constraint the biomechanical model

(including the vessels and the tumour) with external forces

so that it fit better the recovered visible liver surface.

The temporal non-rigid registration is a point-to-point

registration (cf. Fig. 5), therefore, the set of three-

dimensional points reconstructed using this initial stereo-

scopic pair of images is projected onto the liver model

surface. This is done using a ray casting method, followed

by a computation of barycentric coordinates describing the

position of these points with respect to adjacent degrees of

freedom of the biomechanical model. Only features that

intersect the liver surface after ray-casting are kept, the

features that do not belong to the liver are filtered out

from laparoscopic images. Finally, the physical boundary

conditions of the biomechanical model are set by fixing its

correct degrees of freedom.

Virtual Camera

Ray Casting

Liver Mesh Surface

Image Point
Projected Point
Spring

Fig. 5. Point-to-point registration: The initial set of

tracked features point y is projected on the surface

using ray-casting to pair the set y with the degrees of

freedom of the mechanical model x at t = 0.

5.2 Stretching Energy Minimization

The non-rigid registration can be seen as a stretching energy

minimization between the three dimensional features recov-

ered from laparoscopic images that represent the tracking

energy Et and the biomechanical model derived from the

preoperative CT data. We consider an energy term that

accounts for the internal energy of the biomechanical model

Ei and the tracking energy Et . Deriving this energy shows

that an extreme (minimum) is reached when the internal
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forces equal the tracking forces. Thus, the internal forces

are expressed as:

fi(x) = ReK · (Re
⊤x−x0) (2)

where K represents the stiffness matrix, Re the co-rotational

matrix and x,x0 are vectors of size 3n representing the

position of the n degrees of freedom of the mechanical

model, respectively at any time t and time t = 0.

The tracked 3D features y represent how visible parts of

the liver are moving. Due to the noise or other reconstruc-

tion inaccuracies, point locations in y are often regularized

by generating a smooth and dense surface model that is

later used as boundary conditions for the biomechanical

model [21]. Instead, we propose here to incorporate such

inaccuracies directly in the mechanical solver using quality

values measured at each 3D point.

External forces are defined by pairing the m 3D points y

to the n degrees of freedom x of the bio-mechanical model.

As explained in 5.1, the tracked points y0 at initialization

(t = 0) are expressed in barycentric coordinates of the

adjacent degrees of freedom leading to the linear relation:

y0 = L ·x0 (3)

where L is a rectangular 3m× 3n matrix. We assume this

linear relation remains valid during the deformation. At any

later time t, the stretching forces induced by the tracking

are defined as

ft(y) = k ·q · (y−y0) (4)

where k can be seen as a stiffness. Finally, the stretching

forces can be expressed with respect to the degrees of

freedom as

ft(x) = L⊤ · ft(y) = ft(x) = L⊤ · k ·q ·L · (x−x0) (5)

Parameter k is set to be one or two order of magnitude

higher than the Young’s modulus in order to impose the

boundary conditions directly and to insure that the simula-

tion remains stable even at large integration steps.

6 EXPERIMENTATION WITH LIVER PHAN-
TOM DATA

In laparoscopic surgery, a reproducible validation remains a

challenging task. In our case, the problem is more complex

since neither qualitative results nor visual assessment can

be used for validation easily, since the internal structures

are not visible in the laparoscopic images. We believe

that performing a CT scan of a phantom liver during the

deformation is an ideal way of defining a ground truth for

the location of an internal structure (e.g. a tumor). However,

surgical instruments as well as the laparoscopic camera

produce significant artifacts during a CT in vivo acquisi-

tion. Further, the boundary conditions of the liver surface,

which influence the motion and deformation of the organ

significantly, are difficult to identify reliably. Therefore we

designed a validation protocol in order to quantify the error

of the prediction computed by the method proposed in this

paper. In the following, we first describe the bench used

to validate our simulation by providing details about the

phantom construction and desired properties. Second, we

explain how the ground truth is determined and finally, we

present a detailed comparison and evaluation of the results.

Fig. 6. The heterogeneous liver phantom: the vascular

network (right) is considered as the main source of

heterogeneity of the silicon-made phantom (left).

6.1 Bench Description

6.1.1 Required Properties

Quantitative validation strongly depends on the targeted

application. The ex-vivo setup was designed to mimic as

closely as possible a typical difficulty encountered during

liver tumor resection in laparoscopy: The liver is firmly

grasped and the tumor locations must be predicted despite

important deformations. The first two features concern the

liver phantom that should be based on a patient-specific

data, encompass the vasculature as well as tumors, and

display known mechanical properties similar to that of a

human liver. The ground-truth tumor locations are tracked

with successive CT scans of the liver acquired while a pro-

gressive force is applied. The phantom and the global setup

should be compatible with CT imaging. The applied force

should be controlled to be reproduced in the simulation.

Moreover, the reproducibility of the deformation is impor-

tant also because of the fact that recording the laparoscopic

video and CT acquisition cannot be done simultaneously.

Therefore, each is performed separately, however, both

modalities are applied to the object undergoing exactly the

same deformation. Finally, the grasping device should not

occult video images and deformations should be varied,

which requires the ability to modulate force direction and

amplitude.

6.1.2 Model Fabrication

To the best of our knowledge, the known polymers and

similar materials are not capable of reproducing the behav-

ior of liver tissue with high fidelity. However, extremely

soft silicone rubber seems to be a good choice being close

enough to a real liver properties, having similar density and

good maximal elongation before a failure occurs [45]. Us-

ing a surface representation of a real patient data (obtained

using semi-automatic methods provided by ITK-Snap 1, we

1. http://www.itksnap.org
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employed 3D printing to reproduce the exact geometry of

the organ and the vascular network.

Given the stiffness of the vessel wall reported for ex-

ample in [43], the network was produced directly by 3D

printing using the softest available polymer (DM9895)

having the Shore hardness A = 90. The fabrication of

the parenchyma was performed using a mold made in a

Siligum to reproduce the liver shape. The mold was further

filled with an extremely soft silicone rubber mix using

Ecoflex R© 00-20 and additive Slacker R© in ratio 1:1/8 by

volume. During the filling procedure, the printed vascular

networks together with artificial inclusions (representing

randomly placed tumors) where inserted inside the mold.

The phantom is shown in Fig. 6.

The procedure results in a very soft and elastic material

representing the parenchyma with a harder vascular net-

work placed inside. Each component is easily detectable

on a CT scan in order to perform an automatic segmenta-

tion. The Tab. 1 shows the values of the most significant

parameters for each component. Finally, the phantom is

manually textured with salient marks in order to ensure

a robust tracking.

Vessels Parenchyma Tumor

Mass (gr) 30 675 0.2

Volume (cc) 32.9 690.2 6.3

Largest dimension (mm) 148 179 3

Young’s Modulus (MPa) 9.2 0.05 -

Poisson’s ratio 0.45 0.40 -

TABLE 1

Characteristics of the liver phantom.

6.1.3 Bench Design and Construction

Considering the specification and constraints formulated

above, we apply a deformation so that the errors introduced

due the friction between different parts of the setup be

minimized. To induce the deformation, we use a servomotor

BMS-2514 capable of a torque up to 23.2 kg.cm, attached to

a pulley having 71 mm in diameter. Three different threads

attached to the same region of the liver surface using

graspers are used to pull in three different directions aligned

to x,y and z axes as seen in the camera view. The effective

force up to 64 N can be applied on the liver surface via this

mechanism depicted in Fig. 7.

Three different deformations induced by the threads are

depicted in Fig. 7: in Deformation 1, a lateral pulling

is applied, in Deformation 2, the surface is being pulled

upwards and in Deformation 3, pulling towards the camera

is performed.

To ensure the compatibility with X-ray based imaging,

every element close to the liver is made of low density

substances. More precisely, each grasper as well as the

two closest pulleys have been specially designed and 3D-

printed in PLA plastic, chosen for its high rigidity compared

to other thermoplastics, providing reliability and stability

(a)

(b)

Fig. 7. Validation bench with top (a) and side (b)

views. The bench is CT-compatible and allows for easy

reproduction of the experiments. The three deforma-

tions permit to quantify the errors depending on the

direction and elongation and at the same time, they can

be simulated straightforwardly via Dirichlet boundary

conditions.

during the output deformation. Polyamide bolts have been

used to fix every element to the base platform.

Arduino-based micro-controller is used to control the

servomotor which is driven according to the commands

received from a wired electromagnetically isolated control

pad. The control is also visualized with a LED which is

used for synchronization. The liver is fixed to the bench

using a glue to ensure fixed boundary conditions.

Def. 1 Def. 2 Def. 3

Elongation (mm) Force (N)

18.8 3.13 3.13 0.93

37.7 6.47 6.72 2.06

56.5 8.87 9.27 4.12

75.4 12.65 12.94 -

TABLE 2

Elongation and forces applied for each deformation.

6.2 Ground Truth Acquisition

The ground truth acquisition involves two procedures de-

scribed in Fig. 8):
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(a)

(b)

Fig. 8. Experimental protocol for the quantitative vali-

dation: (a) The CT scanner with the bench. The wire

hooked to the lobe is pulled by the servomotor and

maintained in position while performing a new CT scan

to provide a ground truth deformation. (b) An overview

of the stereoscopic camera acquiring video stream of

the deformation.

• CT scanning: we perform a CT scan of the phantom,

being first at undeformed configuration, and then at

different deformed configurations (cf. Tab. 2). The

scans are acquired with the Siemens Somatom CT

Scanner producing high quality volume images.

• Video streaming: we record the deformation induced

by the pulling threads using a stereo endoscopic cam-

era. The video stream is recorded at 29.97 FPS pro-

ducing 960× 540 images acquired from the DaVinci

Robot from Intuitive Surgical R©.

The two procedures are repeated for each deformation,

so a sufficiently large data set is obtained giving the exact

locations of the tumors (center of gravity) and the corre-

sponding stereo endoscopic views. A result of the three-

dimensional reconstruction from CT scans is illustrated in

Fig. 13.

6.3 Model Comparison and Quantitative Results

In order to justify the employment of a heterogeneous

biomechanical model, a comparison with a homogeneous

model is provided for three different tumor locations: near

the point of traction (Tumor 1) and surrounded by vessels

(Tumor 2 and Tumor 3) (illustrated in green in Fig. 13).

Additionally, a comparison to a mass-spring model is given.

It should be emphasized that the comparison is done with

the same data and parameters and using the same initial

registration.

We calculate the Euclidean distance between the center

of the mass of the scanned tumor and the center of the

mass of the tracked tumor. The results are presented in

Fig. 9,10,11,12.

(a) (b)

(c) (d)

(e) (f)

Fig. 13. CT-scans: the liver with the initial locations

of tumors (green spheres) in front (a) and top (b)

views and the 3D reconstructed phantom from CT

images at rest (c) and deformed in Deformation 1 (d),

Deformation 2 (e) and Deformation 3 (f).

6.3.1 Deformation 1

In this deformation the lobe is mainly pulled along x and

z axes. The heterogeneous model gives the lowest errors

when compared to the homogeneous and the mass-spring

models. The largest difference between the models can

be noticed in the case of Tumor 2 and Tumor 3 that are

surrounded by vessels. Also, for these two tumors, the error

remains under 6 mm despite the increase in the elongation.

The average error for Tumor 1 is 7.40 mm, Tumor 2

2.79 mm and Tumor 3 5.46 mm, being significantly smaller

that corresponding errors obtained with homogeneous and

mass-spring models (cf. Fig. 12).

6.3.2 Deformation 2

In this case the liver lobe is subjected to an elongation

along y and z axes. Similarly as in the previous Deformation

1, the heterogeneous model gives the lowest errors when

compared to the homogeneous and the mass-spring models.

However, in Tumor 1, the error in heterogeneous model

remains important (9.26 mm) and is similar to the results

obtained using the other two models. Moreover, it increases
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(a) (b) (c)

Fig. 9. A comparison of homogeneous FEM model, heterogeneous FEM model and mass-spring model for the

Deformation 1 with: Tumor 1 (a), Tumor 2 (b), Tumor 3 (c).

(a) (b) (c)

Fig. 10. A comparison of homogeneous FEM model, heterogeneous FEM model and mass-spring model for the

Deformation 2 with: Tumor 1 (a), Tumor 2 (b), Tumor 3 (c).

(a) (b) (c)

Fig. 11. A comparison of homogeneous FEM model, heterogeneous FEM model and mass-spring model for the

Deformation 3 with: Tumor 1 (a), Tumor 2 (b), Tumor 3 (c).

(a) (b) (c)

Fig. 12. Average error for Deformation 1 (a), Deformation 2 (b) and Deformation 3 (c).
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with the elongation. It should be noted that the z axis

shows the highest uncertainty in the 3D reconstruction

which might partially explain the result, together with the

magnitude of the external applied force. The average error

for Tumor 2 is 3.39 mm and Tumor 3 4.28 mm.

6.3.3 Deformation 3

The purpose of the Deformation 3 is to pull one lobe of

the liver in the direction of the camera. Even if the average

errors for the three tumors are low, (4.17 mm, 2.91 mm and

3.49 mm), we notice a similarity between the three models

which can be explained by the fact that the deformation

undergone by the liver is close to a rigid transformation

(mainly a rotation). The vascular network effect on the

behaviour is therefore reduced.

The overall results show that the use of a heterogeneous

model reduces the distance between the scanned tumor and

the simulated one considerably. These errors depend on

the location of the tumor and the type of deformation. We

can also notice that the homogeneous model may display

a similar behaviour to that of mass-spring model under

certain circumstances (such as quasi-rigid deformation).

We believe that the reported results show a significant

improvement over the current laparoscopic procedures since

a safety margin between 10 mm and 25 mm around the

possible location of the tumor (estimated from the pre-

operative CT scan) is usually considered [46].

7 RESULTS ON in vivo HUMAN LIVER

When dealing with an actual patient, quantitative valida-

tion implies major technical challenges as well as ethical

issues. Our approach was conducted on a laparoscopic

sequence taken during a real examination. Our aim was

to demonstrate the accuracy of the tracking in a real envi-

ronment (specular lights, beating heart, respiratory motion,

instrument occlusions, and difference between porcine and

human liver textures) and the performance of our non-rigid

registration. In addition, since the texture of the phantom

may bias the tracking robustness, in vivo experimentations

are needed.

We employ the values of the elastic parameters accord-

ing to [47], [43], [39]: Young’s modulus of parenchyma

EP = 27 kPa and Poisson’s ratio νP = 0.45, Young’s mod-

ulus of vessel wall: EV = 0.62 MPa and Poisson’s ratio

νV = 0.45, thickness of the vessel wall: tV = 200 µm.

The model was composed of 3391 linear P1 tetrahedral

elements (parenchyma) and 120 beam elements (vessels).

The simulation employing this model was running stably in

real-time: refresh rate of 25 FPS was achieved on PC having

Intel i7 M620 2.76GHz processor with 960× 540 images

acquired from the DaVinci Robot provided by Intuitive

Surgical R©. According to [31] the parameters of the Lucas-

Kanade optical flow include the window size of 51× 51

pixels and an inter-frame motion threshold of 20 pixels.

We use the framework Sofa [42] for the simulation of the

elastic behaviour of the heterogeneous liver model.

Fig. 14. Projection error of the overlaid mesh on the

image with a variation on the number of element.

Fig. 15 displays four frames of the augmentation com-

puted during the simulation and shows a good visual match

between the images and the liver mesh.

Since no quantitative results can be obtained on in

vivo data about the internal tumor position, we propose

to compute the projection error of the overlaid mesh on

the laparoscopic image. To do so, we measure a distance

between the overlaid mesh contour and the liver contour

both extracted manually. The Fig. 14 illustrates these dis-

tances and shows that increasing the number of tetrahedral

elements reduces significantly the superimposition errors.

(a) (b)

Fig. 16. Performance of the simulation w.r.t. the num-

ber of elements: (a): different density of parenchyma

meshes (while number of beams equals to 164), (b):

different density of beam elements (while the same

tetrahedral mesh with 3072 elements used).

The computational cost of the simulation is given by sev-

eral factors. First, due to the heterogeneity and anisotropy

introduced by the vascular structures, iterative solvers

(such as conjugate gradients) cannot be used due the to

convergence issues. Therefore, a direct solver (such as

LDL-decomposition) is necessary to solve the system in

each time step. However, the time needed to compute the

LDL decomposition increases rapidly with the number of

mechanical degrees of freedom of the model, which is

given by the number of tetrahedral elements representing

the parenchyma. Further, the number of beam elements

representing the vessels affects the performance as well
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(a) (b)

(c) (d)

Fig. 15. A sequence of images showing, in different views, the superimposition of the real-time biomechanical

model onto the human liver undergoing deformation due to surgical instrument interaction during MIS. The liver

is represented in wire-frame, the tumor in purple, the hepatic vein is shown in blue and the portal vein in green.

due to the computation of mapping which is calculated

in each step of the simulation. Fig. 16 shows the relation

between the number of tetrahedral and beam elements and

the refresh rate of the simulation. In order to achieve a real-

time performance, we use the mesh having 3072 tetrahedra

and 164 beams.

The stiffness corresponding to the external stretching

force (parameter k in Eq. 5 has to be chosen very carefully.

We determined the value empirically; it was set to be an

order of magnitude higher than the Young’s modulus of the

parenchyma in order to fit correctly the tracked points. A

higher stiffness may unbalance the minimization equation

as illustrated in Fig. 17.

Fig. 17. Failed cases: external stretching forces with

high stiffness may unbalance the minimization equa-

tion and forces the model to fit the tracked points that

may be poorly estimated. Incorrectly registered areas

are highlighted in green.

8 LIMITATIONS AND DISCUSSION

Both phantom and in vivo data present good results in term

of surface registration and localisation of internal tumors.

With an estimation of the position below the actual clinical

margin and a computation time compatible with the real-

time visual feedback, we believe that our method is a very

promising solution. Yet, a few limitations remain to be

solved. Several disturbances may occur during the tracking

stage due to the outliers. One way to reduce the impact of

the outliers, is the labelling of the intra-abdominal scene

by segmenting the liver, the surrounding tissues and the

surgical tools to isolate the liver surface.

Another limitation concerning the practical implementa-

tion of the method in the clinical environment is given by

the initial registration, which is done manually. As stated

before, substantial improvement of this part of the work

flow is beyond the scope of this paper since the solution is

quite complex as the underlying problem is ill-posed due to

the difficult extraction of salient geometrical and anatomical

landmarks from the patient data.

From a simulation point of view, we believe that the use

of a real-time heterogeneous biomechanical model permits

to accurately reproduce the behaviour of the liver undergo-

ing large deformations. However, we are aware of the fact

that a better definition of the boundary conditions is needed

to capture its motion with increased accuracy. We consider

addressing this issue already in the initial registration phase.
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Finally, a correct estimation of the mechanical properties

is another key aspect that is to be improved, as these

parameters are known to vary significantly in liver. We

believe that integrating the elastography data recorded pre-

operatively could substantially increase the accuracy of the

model.

9 CONCLUSION

The work presented in this paper deals with accurate

localisation of internal structures such as tumours which

superimposed on the organ surface during minimally inva-

sive surgery. To this end, we developed an image-guided

biomechanical model that is able to capture the complex

deformations undertaken by the liver during the surgery.

A complete experimental bench capable to reproduce as

closely as possible a typical scenario encountered during

liver tumor resection was designed. Promising results were

obtained using in-vivo human liver data and a liver phan-

tom, with internal structures localisation errors below the

safety margins actually preserved during the interventions.

Future work will address the ill-posed issue of initializa-

tion and evaluate its impact on the overall process. A better

definition of the external forces generated from the tracking

in the stretching energy minimization will also be sought

while the visualization of the vascular network overlaid in

the laparoscopic view will be improved to ensure a better

depth perception.
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