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Abstract 13	

The development of surface fissures is an important indicator for understanding and forecasting slope 14	

movements. Landslide investigations therefore frequently include the elaboration and interpretation of 15	

maps representing their spatial distribution, typically comprising intensive field work and 16	

instrumentation. Only recently aerial photography with sub-decimetre spatial resolution is becoming more 17	

commonly available and opens a window to analyse such features from a remote sensing perspective. 18	

While these data are in principle helpful to elaborate maps from image interpretation techniques, there is 19	

still no image processing technique available to extract efficiently these geomorphological features. This 20	

work proposes a largely automated technique for the mapping of landslide surface fissures from very-high 21	

resolution aerial images. The processing chain includes the use of filtering algorithms and post-processing 22	

of the filtered images using object-oriented analysis. The accuracy of the resulting maps is assessed by 23	

comparisons with several expert maps in terms of affected area, fissure density and fissure orientation. 24	

Under homogenous illumination conditions, true positive rates up to 65% and false positive rates 25	

generally below 10% are achieved. The resulting fissure maps provide sufficient detail to infer 26	



mechanical processes at the slope scale and to prioritize areas for more detailed ground investigations or 27	

monitoring. 28	
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1 Introduction 34	

Observations of features and structural patterns of earth surface landforms can reveal information on the 35	

origin and mechanisms controlling the geomorphological processes. Structural geology and 36	

geomorphology have developed comprehensive concepts to delineate geomorphological units and 37	

structure types from remote sensing images, and infer about mechanical processes without necessarily 38	

measuring displacement, deformation or the applied forces directly (Melton 1959; Davis and Reynolds, 39	

1996; Passchier and Trouw, 2005; Pollard and Fletcher, 2005). Surface discontinuities observed in rocks 40	

and sediments have proven to be valuable indicators of the deformation history and stress pattern of the 41	

slope. For landslide analysis, their observation and interpretation can contribute to a better understanding 42	

of the controlling physical processes and help in the assessment of the related hazards (McCalpin, 1984; 43	

Fleming and Johnson, 1989; Parise, 2003). In hard-rock slopes, the analysis of structural discontinuities 44	

(faults, bedding planes, joints, fractures) allows to characterize potentially unstable areas (Hoek and Bray, 45	

1981; Matheson, 1983; Priest, 1993; Selby, 1993; Günther et al., 2004; Jaboyedoff et al., 2004; Glenn et 46	

al., 2006). In soft-rock slopes and sediments, the analysis of surface fissures may indicate the 47	

development of future failures (Krauskopf et al., 1939; Shreve, 1966; Chowdhury and Zhang, 1991; 48	

Abramson et al., 2001; Khattak et al., 2010) and is often considered as a geo-indicator of the activity stage 49	

of a landslide. In sediments, the surface fissure characteristics also influence water infiltration and 50	

drainage, which in turn affect the ground-water system and the kinematic response of slopes to 51	

hydrological events (Malet et al., 2003; Malet et al., 2005b; van Asch et al., 2009). 52	



Maps of surface deformation features can be obtained by extensive field surveys either through the direct 53	

visual observation of the topography (Fleming et al., 1999; Meisina, 2006) or through the indirect 54	

measure of seismic wave propagation in tomography setups (Grandjean et al., 2011; Bièvre et al., 2012). 55	

Relatively large fissures on landslides may also be discernible in Very-High-Resolution (VHR) 56	

spaceborne images (Glenn et al., 2006; Youssef et al., 2009) but typically those structures reach widths in 57	

the decimetre-range and at present only airborne photographs provide sufficient detail for their detection 58	

in the centimetric range. Recent studies (Eisenbeiss, 2009; Niethammer et al., 2011a) have shown that 59	

VHR images acquired from Unmanned Aerial Vehicles (UAVs) are cost-efficient data sources for the 60	

monitoring of landslide surfaces with sub-decimetric image resolution. Especially small UAVs with 61	

payloads below 5 kg and operating altitudes below 2000 m are expected to be employed much more 62	

frequently in coming years (Frost & Sullivan, 2007) though more specific regulations for their specific 63	

operational use are being discussed at national and international levels (Prats et al., 2012; Watts et al., 64	

2012). 65	

Visual interpretation of VHR imagery is a classical method in geomorphology, but it remains subjective, 66	

and rather impractical for repetitive observations or the inspection of large areas. An increasing number of 67	

studies therefore targeted the development of automated techniques to extract relevant features from 68	

imagery (Graham et al., 2010; Martha et al., 2010; Stumpf and Kerle, 2011). Although, the detection and 69	

extraction of linear features is a fundamental operation in digital image processing (Quackenbush, 2004; 70	

Mendonca and Campilho, 2006; Papari and Petkov, 2011), relatively few studies have explored the 71	

application of automatic approaches for the mapping of geomorphological relevant linear features 72	

(Baruch and Filin, 2011; Shruthi et al., 2011). 73	

Considering the increasingly widespread availability of sub-decimetre resolution images from UAVs and 74	

other airborne platforms, this study targeted the development of a semi-automatic image analysis 75	

technique to support geomorphologists in the detection, mapping and characterization of landslide surface 76	

fissures from VHR aerial images. In this context the term “semi-automatic” expresses that the technique 77	

requires user input to be adapted for different image types and environmental settings. The developed 78	



method is based on a combination of Gaussian directional filters, mathematical morphology and object-79	

oriented image analysis (OOA) and was tested on a set of multi-temporal VHR images acquired at the 80	

Super-Sauze landslide (Southeast French Alps). The obtained results were compared to manual mappings 81	

carried out by experts combining image interpretation and field surveys. 82	

 83	

2 Types of surface fissure observed on landslides 84	

Detailed observations of landslide surface fissures were provided by Krauskopf et al. (1939) who adapted 85	

analogies from structural geology for their interpretation and distinguished between strike-slip structures, 86	

normal faults, graben structures and compression structures. Also Ter-Stephanian (1946) noticed the 87	

mechanical significance of surface fissures and elaborated a classification scheme relating fissure 88	

morphology and location within the landslide mass to corresponding mechanical processes. This included 89	

a first-order differentiation between upper extension, side friction, central compression, and lower creep-90	

on cracks. Although some authors used similar classification schemes (Bombard, 1968), the adopted 91	

terminology varies among different authors and affected lithologies (Fleming and Johnson, 1989; Cruden 92	

and Varnes, 1996; Fleming et al., 1999; Walter et al., 2009) and the terms crack and fissure are often used 93	

synonymously to refer to a variety of surface discontinuities. 94	

Here, fissure is adopted as a generic term for open fractures on the topographic surface of a natural slope. 95	

At first instance, transversal, longitudinal and diagonal fissures are distinguished according to their main 96	

orientation axes relative to the dip of the slope. This terminology can be used ad hoc to classify fissures 97	

solely based on geometric properties observed in the field or in an image. A more refined mechanical 98	

classification such as provided in Ter-Stephanian (1946) will generally require considerations of the 99	

fissure patterns, the involved material and the local geometry of the slip surface. The term crack is used in 100	

this manuscript when referring to genetic processes described within classical fracture mechanics 101	

(Anderson, 2005). It should be noted that the term crack is also often adopted to refer to shrinking-102	

swelling induced fractures (Malet et al., 2003) which are not the objective of this study. 103	



Classical fracture mechanics postulates tensile opening, sliding and tearing as the three basic modes for 104	

crack propagation (Fig.	1a). The concept has been developed for brittle material but is also adopted to 105	

explain fracturing of plastic materials at high deformation rates (Schulson and Duval, 2009). Surface 106	

fissures may develop from a combination of all three modes, whereas in practice, considering the 107	

relatively low tensile fracture toughness of most geomaterials (Backers, 2004; Ke et al., 2008; Schulson 108	

and Duval, 2009), tensile fracturing can be expected to dominate the formation of fissures at the free 109	

surfaces of a landslide. However, interpreting tension cracks as a direct indicator for a purely tensile stress 110	

regime may often fall too short. In fact, tensile fracturing may also result from relaxation of tensile 111	

stresses that originate from deformation induced by shearing and compression as well (Wang and Shrive, 112	

1995). A mechanical interpretation and classification of the fissures must therefore consider the fissure 113	

pattern, the material and the landslide geometry. 114	

 115	

 116	

FIG. 1 SOMEWHERE HERE 117	

	118	

Fig. 1b-d illustrates three typical fissure patterns that are frequently used as geoindicators of specific 119	

deformation processes in the above-cited studies. One commonly observed example for such patterns is 120	

the formation of en-echelon fissure arrays (Fig. 1c), often also termed Riedel shears (Riedel, 1929). They 121	

accommodate tensile stress and shear stress typically resulting from shear in the bounding zone of blocks 122	

moving with different displacement rates. Certain patterns such as arrays of transversal fissures (Fig. 1b) 123	

are typically associated with tension in the steeper upper slopes, whereas fissures resulting from 124	

compression and lateral extension (Fig. 1d) are more typically associated with gentler slopes in the transit 125	

and accumulation zones of landsides (Sowers and Royster, 1978). For landslides with a complex 126	

geometry, the position of those fissure patterns may however deviate considerably from this simple 127	

scheme (Niethammer et al., 2011a). 128	

 129	



3 Study site and data 130	

The Super-Sauze mudslide is an active slow-moving landslide located in the Barcelonnette Basin in the 131	

Southern French Alps (Fig. 2) that developed in weathered black marls in the 1960s, and features highly 132	

variable displacement rates (from 0.01 m.day-1 to 0.40 m.day-1) controlled by the local hydrological 133	

conditions (Malet et al., 2005b). The landslide measures 950 m from the main scarp to the toe, and is up 134	

to 150 m wide. The moving mass has a clay-rich matrix containing up to 30% coarse gravel as well as 135	

larger boulders and blocks (Malet et al., 2005b). The surface displays the signs of deformation in the form 136	

of ridges, bulges, lobes and fissures but also markers of surface erosion such as rills and small gullies. 137	

Unlike surrounding stable areas the landslide surface is largely bare and only at a few locations, 138	

especially at its toe, cushion plants form small vegetation patches. Fissure widths of 0.01-0.40 m, lengths 139	

of more than 1.00 m and depths of up to 1.50 m (Espinosa, 2009) can be observed in the field (Fig. 4b). 140	

During the last 15 years, the landslide has been investigated through numerous monitoring campaigns 141	

including in-situ geophysical measurements, terrestrial and airborne LiDAR (Light-Detection and 142	

Ranging) and the acquisition of VHR optical imagery. In the VHR airborne optical images, the fissures 143	

can be recognized as dark curvilinear structures (Fig. 2c-e) as soon as their width approaches one pixel in 144	

size. Previous studies (Malet, 2003; Niethammer et al., 2011a; Walter et al., 2012) already discussed 145	

relationships between the observed fissure patterns (Fig. 2c-e) and strain resulting from a spatially 146	

heterogeneous displacement field and interactions between moving mass and the stable bedrock. 147	

However, a full reconstruction of the complex bedrock geometry that may allow for a more detailed 148	

characterisation of the underlying deformation mechanisms has been completed only recently (Travelletti 149	

and Malet, 2012). 150	

 151	

FIG. 2 SOMEWHERE HERE 152	

 153	



3.1 Airborne acquisitions of VHR optical imagery at the Super Sauze landslide 154	

Between April 2007 and October 2009, diverse imaging systems and airborne platforms were used to 155	

acquire VHR images of the landslide at five different dates (Fig. 3). In July 2008, October 2008, and 156	

October 2009, a low-cost UAV system equipped with compact camera was operated at flight heights 157	

between 100 m and 250 m yielding images of the surface with a ground resolution between 0.03 m and 158	

0.10 m. The individual images were corrected for barrel lens distortion, rectified according to ground 159	

control points (GCPs) measured with differential GPS (DGPS), and finally merged into one large 160	

orthomosaic. Further details on the image acquisition and processing were provided by Niethammer et al. 161	

(2010; 2011b) who quantified the residual positional error (x-y) for the October 2008 images with 162	

0.5 ± 0.57 m within the boundaries of the sliding area. The UAV images for July 2008 and October 2009 163	

are expected to provide better positional accuracies because they were orthorectified using elevation 164	

models that were generated from a photogrammetric analysis of the images. 165	

During the airborne LiDAR surveys (see § 3.2) of, respectively May 2007 and July 2009, two 166	

orthomosaics of optical images with full coverage of the landslide were recorded using medium format 167	

cameras (Fig. 3) mounted on, respectively an airplane and a helicopter. The surveys used fully integrated 168	

systems for direct georeferencing and orthorectification with LiDAR surface models (see § 3.2), which in 169	

general provide sub-decimetre positional accuracy in the x-y plane (Vallet, 2007).  170	

For the study presented here, additionally 60 homologous tie points on stable areas were manually 171	

selected in the available images and showed a mean relative alignment error of 0.76 ± 0.82 m among the 172	

different acquisitions. 173	

Further details on the adopted camera systems and the resolutions of the images resulting from the five 174	

surveys are summarized in Fig. 3. The figure also illustrates the considerable radiometric differences 175	

among the five images originating from illumination changes, seasonal variations and the distinct 176	

characteristics of the sensors. The scenes for May 2007, October 2008 and October 2009 were acquired 177	

under cloudy conditions with diffuse sky radiation and consequently show a more homogenous 178	

illumination of the surface. The scenes for July 2008 and July 2009 in contrast were recorded under sunny 179	



sky yielding strong contrast and many cast shadows. The latter are more prominent in the image for July 180	

2008 which was recorded in the morning hours, at a relatively low sun angle. Available methods for 181	

absolute and relative radiometric correction can be employed for the radiometric alignment of satellite 182	

images (Hong and Zhang, 2008; Vicente-Serrano et al., 2008) but, to the best of our knowledge, no 183	

approach exists to accurately align the radiometry of sub-decimetre images from different sensors, with 184	

substantial changes in illumination, a complex topography and changing surface characteristics. Initial 185	

test using histogram-matching, linear-regression (Schott et al., 1988) and iteratively re-weighted 186	

regression (Canty and Nielsen, 2008) did not provide satisfactory results. Consequently no radiometric 187	

normalization was performed and the image analysis technique was designed and tested with radiometric 188	

diverse imagery. 189	

In order to calibrate adjustable parameters of the detection algorithm to the targeted fissures and the 190	

variable scene characteristics, the processing was first tested on a subset of the terrain covering ~ 191	

14.000 m2 in the central part of the landslide (Fig. 2a, Fig. 3). This section was characterized by different 192	

fissure patterns and recorded during all surveys (including July 2008 and October 2009 which did not 193	

yield full coverage of the surface). Subsequently, the developed workflow was applied on the full scenes 194	

for a comprehensive mapping and analysis of the fissure distribution. Corresponding results for the full 195	

extent of the Super-Sauze landslide and their mechanical significance are discussed in section § 5.2. 196	

 197	

FIG. 3 SOMEWHERE HERE 198	

 199	

3.2 LiDAR DTM 200	

Two airborne LiDAR surveys were conducted in May 2007 and July 2009, respectively. The first survey 201	

used a Riegl LMS-Q560 laser scanner mounted on an airplane flying 600 m above the ground and 202	

resulted in a mean point density of 0.9 pts.m-2 after vegetation filtering. The residual 3D positional error 203	

of the ground points was quantified as 0.12 m. The second survey was conducted with a Riegl Q240i laser 204	

scanner mounted on a helicopter and after vegetation filtering resulted in a mean point cloud density of 205	



3.2 pts.m-2. The residual 3D positional error of the ground points was 0.07 m. Continuous surface raster 206	

with a pixel size of 0.5 m were interpolated from the respective point clouds using Delaunay 207	

triangulation. The resulting surface was then adopted for the extraction of the principal hydrological 208	

drainage lines. 209	

 210	

3.3 Reference datasets: expert maps of surface fissures 211	

Reference mappings of the fissure characteristics (type, distribution) were elaborated by an expert 212	

geomorphologist familiar with the study site. The fissures were first identified on-site during a field 213	

survey carried out in October 2009 at the same time as the acquisition of the UAV images. The position 214	

of the fissures was mapped using a dGPS survey and terrestrial photographs. Then image interpretation 215	

rules were defined to identify and digitize the fissures on the images as polyline vectors using a 2D view 216	

and at a scale of 1:250. The image interpretation rules were then applied to the four other images in order 217	

to elaborate an expert fissure map for each date. The resulting five maps were adopted as a reference to 218	

assess the performance of the semi-automatic method. 219	

 220	

4 Image processing methods  221	

While first generic edge detection operators were already proposed in the 1980s (Marr and Hildreth, 222	

1980; Canny, 1986), the extraction of linear features from imagery remains a challenging task in many 223	

disciplines such as medical research (Mendonca and Campilho, 2006), earth science (Shao et al., 2011; 224	

Shruthi et al., 2011) or signal processing (Lampert and O’Keefe, 2011). For our focus, the specific 225	

challenges posed for an automation of fissure detection can be summarized as follows: 226	

 The approach should be scalable to apply for variable fissure sizes and image resolutions, and as 227	

insensitive as possible to variable radiometric image characteristics; 228	

 The technique should not respond to edges but enable the detection of dark curvilinear structures that 229	

may be oriented at any direction. Classical techniques such as Sobel operator and the Canny detectors 230	



(González and Woods, 2008) have been designed specifically for edge detection and are not directly 231	

applicable; 232	

 The complex micro-topography, the presence of rock blocks and gravels as well as small patches of 233	

vegetation yield highly textured images. Consequently, the approach should enable to smooth out 234	

spurious signals from the noisy background while still retaining small partially disconnected linear 235	

features of interest. Contextual scene information should be taken into account to resolve ambiguities 236	

of the local features. 237	

Considering these challenges, a processing workflow including three main stages was developed. Firstly, 238	

a set of scalable Gaussian filters is applied to detect fissure candidates and suppress responses at edges. 239	

Secondly, a set of morphological filters is used to close small gaps along the extracted candidates. 240	

Thirdly, an object-oriented procedure is followed to eliminate some of the false positives exploiting 241	

higher-level scene information with contextual rules. 242	

 243	

FIG. 4 SOMEWHERE HERE 244	

 245	

4.1 Stage 1: Extraction of fissure candidates using a Gaussian matched filtering algorithm 246	

A particularly well-studied example for the detection of dark curvilinear structures is the extraction of 247	

dark blood vessels in photographs of the human retina. Based on the observation that the cross-profiles of 248	

the vessels resembles a Gaussian distribution, Chaudhuri et al. (1989) proposed the use of a matched filter 249	

(MF) that is essentially a Gaussian convolution kernel subtracted by its own mean value. As illustrated in 250	

Fig. 4a, the cross-sections of surface fissures can be approximated with a Gaussian distribution and an 251	

MF scaled to the size of the fissure will give a peak response when crossing the fissure at an angle of 252	

approximately 90°. Because the MF still yields errors such as false detections at step edges (Fig. 5a,c) 253	

numerous extensions (Hoover et al., 2000; Sofka and Stewart, 2006) and alternative approaches 254	

(Mendonca and Campilho, 2006; Soares et al., 2006) have been developed. Recently, Zhang et al. (2010) 255	

proposed modification to the original MF filtering approach integrating a first order derivative of a 256	



Gaussian function (FDOG) to locally adapt the thresholds separating dark line from non-target features. 257	

Compared to other state-of-the-art algorithms their approach provided competitive accuracies while being 258	

a computationally efficient and hence easier to apply on the large images resulting from VHR remote 259	

sensing. 260	

For this study, a similar approach was implemented in ENVI-IDL 4.8 (ITT Visual Information Solutions). 261	

The algorithm and its parameterization are detailed below. 262	

 263	

 264	
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 266	

The MF is a two dimensional kernel defined in the x-direction by an inverted Gaussian profile (Fig. 5b), 267	

and in the y-direction by replicates of the same profile (Fig. 5d). It may be denoted as: 268	

 269	

, ;
√

, for |x|≤3σ, |y|≤L/2    Eq. 1 270	

 271	

where σ denotes the standard deviation of the Gaussian functions and relates to the width of the targeted 272	

feature. To centre the kernel on zero, it is subtracted by its own mean m. The extent of the kernel in the x-273	

direction is typically constrained to 3σ, whereas L defines the extent of the kernel in the y-direction and 274	

can be related to the length of the fissures. Because the matched filter still yields false responses at dark 275	

and bright step edges (Fig. 5c) Zhang et al. (2010) proposed to use the response of the FDOG to locally 276	

adjust the thresholds which are applied to classify the MF response into fissure and non-fissure structures. 277	

In analogy to Eq. 1, the first order derivative filter may be denoted as: 278	

 279	

′ , ;
√

, for	|x| 3σ, |y| /2    Eq. 2 280	

 281	



Fig. 5f illustrates that the FDOG responds with a single peak to edges but with a zero crossing at the 282	

centre of the idealized fissure. A simple mean filter can be applied to broaden the zero crossing into a 283	

plateau covering the whole width of the fissure (Fig. 5f). Subtracting the smoothed FDOG response from 284	

the MF response will attenuate the signal at edges while at the position of the fissure the full response is 285	

retained (Fig. 5h). 286	

Since the orientation of the fissures is a priori unknown, multiple rotated versions of the Gaussian filters 287	

are applied on the image and for each pixel only the maximum response value is retained. This 288	

corresponds to finding the angle ,  which maximizes the filter response at a given position in the 289	

image ,  using Eq. 3: 290	

 291	

	 , arg	max	 , ⊗ , for 0      Eq. 3 292	

 293	

where ⊗ denotes the convolution operator and  the orientation of the MF.  294	

The calculation of the maximum response image R can then be obtained with Eq. 4: 295	

 296	

, , ⊗
,

0       Eq. 4 297	

 298	

where all negative response values are automatically set to zero and only values greater than zero are 299	

retained. The FDOG filter is rotated according to the determined 	 ,  and the corresponding 300	

response image D can be derived by Eq. 5: 301	

 302	

, 	 , ⊗	
,
⊗       Eq. 5 303	

 304	

where M denotes the above-mentioned mean filter used to broaden the zero crossing to the width of the 305	

fissures.  306	



While Zhang et al. (2010) used a very broad mean filter with a fixed size, we suggest to use a kernel size 307	

that matches the width of the Gaussian kernel (6σ) and is thereby related to the width of the targeted 308	

features (Fig. 5a,f). In contrast to early studies where the FDOG response was used to locally adapt the 309	

threshold (Zhang et al., 2010) the final response image  is obtained by subtracting the FDOG from the 310	

GMF response using Eq. 6: 311	

 312	

, 	 , 	 ∗ , 	        Eq. 6 313	

 314	

where Ct denotes a user defined trade off parameter to adjust the sensitivity of the detection with typical 315	

range of values between 3 and 4. A threshold T is defined by Eq. 7: 316	

 317	

2	           Eq. 7 318	

 319	

where  is the mean of the response image R and .  320	

 321	

A binary fissure candidate map Fmap is obtained by applying the threshold T on the response image R 322	

using Eq. 8: 323	

 324	

, 	 , ∶ 	 1     and     , 	 , ∶ 	 0    Eq. 8 325	

 326	

The thresholding after subtraction of the FDOG response was found to provide a generally more robust 327	

attenuation of undesired edge responses than the technique previously applied by Zhang et al. (2010). 328	

In summary, the user needs to specify four simple parameters, namely (1) the scale of the filter kernels in 329	

terms of σ, (2) the length L of the kernel, (3) the constant Ct of the thresholding sensitivity and (4) the 330	

number of orientations nθ at which the filters are calculated. In this study, nθ was kept constant at 36 for 331	



all experiments, whereas, if computational time becomes an issue, the angular resolution may be reduced 332	

to 12 steps without major losses of accuracy. To determine σ  a tool was created,which allows drawing 333	

profiles on the image and automatically estimates the fitting Gaussian function (Fig. 4). Cross-profiles of 334	

the smallest fissures visible in the image with the coarsest resolution (0.1 m.pixel-1 resolution) were best 335	

fitted by Gaussian curves with σ ≈ 0.6. To ensure a homogenous scale of the detected features among all 336	

images, the kernel can be scaled by changing σ relative to the image resolution. If, for instance, the image 337	

resolution is increased to 0.08 m.pixel-1, a value of σ ≈ 0.75 yields a kernel with the same physical size 338	

(Table 1). The same applies for the filter length L which was estimated as 1 m corresponding to the 339	

typical minimum length of the fissures. Resampling of the images can thereby be avoided. In our 340	

experience, σ establishes the lower bound for the width of the targeted features, whereas the filters still 341	

remain sensitive to features which are up to 5 times larger. For the choice of σ it is also helpful to note 342	

that the discrete kernel cannot represent FDOG functions with σ ≤ 0.5. 343	

To assess the sensitivity of the parameters and to determine a suitable threshold parameter Ct, a 344	

sensitivity analysis was carried out on a subset of the October 2008 image. Based on a visual assessment, 345	

values of L = 1 m and σ = 0.75 were found suitable for the detection of the fine fissure structures. The 346	

preliminary analysis also showed that increasing the parameters L and σ directs the detection towards 347	

more elongated and broader features, whereas in general the sensitivity of those parameters is rather low 348	

compared to the influence of the threshold Ct. Values of Ct = {0.0, 1.0, 2.0, 3.0, 4.0} were tested and 349	

based on a visual assessment of the outputs a value of Ct = 3 was established for an optimal trade-off 350	

between detection rate and the amount of false positives. The final parameter set is summarized in Table 351	

1. 352	

 353	

TABLE 1 SOMEWHERE HERE 354	

 355	



4.2 Stage 2: Connection of broken lines using structuring elements 356	

The highly textured surface of the landslide constitutes a noisy background that affects the detection 357	

especially at section where the fissures are very thin or partially occluded. While a human operator can 358	

easily interpolate broken lines through perceptual grouping (Metzger, 1975), this needs special attention 359	

for a semi-automated mapping technique.  360	

To close small gaps between broken line segments of the detected candidates, a hit-or-miss transform 361	

algorithm (Serra, 1982) was used. The transform assigns a value of 1 to each pixel whose local 362	

neighbourhood fulfils the criteria defined by hit- and miss structures (Fig. 6a), also known as structuring 363	

elements. They were defined to address all plausible 3-by-3 neighbourhoods representing small gaps in 364	

the detection starting from four prototype hit-structures shown in Fig. 6b. The respective miss-structures 365	

(Fig. 6c) are typically derived by simply inverting the prototype hit-structures, and both elements were 366	

rotated (Fig. 6d) to test for a total number of 24 possible neighbourhood arrangements. Exceptional cases 367	

were thereby the structuring elements for closing directly diagonal gaps, where an extended 368	

neighbourhood was used for the hit-and miss structures (Fig. 6b, c) to prevent connections of lines 369	

running parallel to each other.	370	

 371	
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 373	

The connectivity of the line segments was also particularly important for the subsequent object-oriented 374	

post-processing, where objects constitute from pixels groups connected in a Von Neumann 375	

neighbourhood (4 adjacent pixels at each side), and small isolated objects could be disregarded as noise. 376	

 377	

4.3 Stage 3: Object-oriented analysis for false positive removal 378	

Due to visually similar objects, such as linear erosion features (rills, small gullies) and elongated shadows 379	

induced by the micro-topography, the fissure candidates resulting from the described filtering routine may 380	

still comprise numerous false positive detections. While a human interpreter can differentiate most of the 381	



false positives assessing the geospatial context of the scene, the efficient use of such information with 382	

automated systems is a challenge for object-oriented image analysis. To exploit the contextual scene 383	

information for an automatized refinement of the extracted fissure candidate maps, an object-oriented 384	

routine that integrates spatial reasoning into an explicit form was elaborated and implemented using 385	

eCognition 8.64 (Trimble, 2011). The elaborated routine included the following steps: 386	

1) The ratio of shadow around the detections is evaluated and candidates with a ratio of shadow pixels 387	

in their smallest enclosing circle above 33% are regarded as false detections induced by shadings of 388	

the micro-topography. This ratio threshold was determined empirically through visual inspection of 389	

the candidate fissures, and selected to capture elongated false detections with one side lying fully in 390	

shaded zones. The threshold for shadow can thereby be adjusted according to the illumination 391	

conditions and the dynamic range of the image (Table 2). 392	

2) Further false detections may result from vegetation which typically shows a lower reflectance in the 393	

green and red channel compared to the blue. The blue ratio in the sum of all channels is consequently 394	

typically below one third for vegetated areas. The suitable value varies slightly with the illumination 395	

conditions and the season, and Otsu’s method (Otsu, 1979) was employed to automatically adapt to 396	

such changes. Through an iterative testing of all possible values, Otsu’s method determines threshold 397	

value that maximizes variance between two classes in an image. Hence, constraining the search 398	

space to all pixels with a ratio blue below 33%, the algorithm was used to determine the thresholds 399	

that maximize the contrast between vegetation and the background (Fig. 7). Fissure candidates 400	

covered by the resulting vegetation class, or having a relative border length larger than 0.15, were 401	

subsequently removed. 402	

 403	
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	405	

3) Another class of frequent false detections resulted from linear objects such as rills, gullies and nearly 406	

vertical steps at the landslide flanks, which may locally obtain similar characteristics as the targeted 407	



fissures. To test for the presence of larger linear features and evaluate their relationship with fissure 408	

candidates, a strategy to suppress additional false positives was required. For the mapping of the 409	

larger linear elements two sources were adopted. First drainage lines were extracted from the LiDAR 410	

DTMs using hydrological standard tools (Tarboton et al., 1991) and enlarged with a surrounding 411	

buffer of 0.5 m. A second approach was to repeat the Gaussian filtering with the parameter set 412	

indicated in Table 1, but with a two times increased scale σ and a 5 times coarser image resolution 413	

(resampled with bilinear interpolation). This is equivalent to a search with a 10 times larger scale 414	

providing a sufficiently large scale difference to assure that none of the detected linear features 415	

would correspond to fissures. The linear objects extracted with both approaches were virtually 416	

overlaid with the fissure candidates, and the difference of the orientations of their respective centre 417	

lines was adopted as criteria to evaluate if the fissure candidate was in fact part of a larger linear 418	

object or constitutes an independent structure (Fig. 8). Image-based measurements of the angular 419	

offset of the fissured indicated a minimum offset of about ± 13°. Considering that the lowest 420	

effective friction angle values measured for the landslide material are ’	= 26° (Malet et al., 2005a), 421	

the thresholds are consistent with the orientation of '/2 that the Coulomb criterion predicts for the 422	

orientation of shear fissures at the landslide boundary (Tchalenko, 1970). 423	

 424	
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 426	

4) A last filtering step was implemented by removing all candidates with length not longer than 0.4 m 427	

and an area smaller than 0.1 m2. Finally all fissure candidates falling in areas with a fissure class 428	

density lower than 1% in a surrounding neighbourhood of 10 m2 were considered as noise and also 429	

removed.  430	



Table  2 displays that most adopted thresholds were kept the same among all the images and only the 431	

classification rule for the shadow areas was adapted in order to compensate radiometric differences in the 432	

input images. 433	

 434	
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 436	

5 Results 437	

 438	

5.1 Comparison with multi-temporal manual mappings 439	

The primary output of the developed processing routine is a map of the detected fissures represented by 440	

polygons. Applying a Delaunay triangulation that extracts the skeleton of those polygons (Trimble, 2011), 441	

a 2D line representation, which enables a more immediate comparison with expert mappings, can be 442	

obtained. 443	

 444	
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	446	

Fig. 9 displays an example of comparison between an expert map and the result of the semi-automatic 447	

detection. A first visual assessment of the obtained maps suggested better agreement of the fissure 448	

patterns in areas with high contrast and low texture (Fig. 9a), whereas false positives and false negatives 449	

concentrated in sections with low contrast and increased surface texture (Fig. 9b).  450	

For a quantitative assessment of the mapping accuracy the obtained results were compared with the expert 451	

mappings in the central part of the landslide (Fig. 9c) at all five dates. While several accuracy measures 452	

for geographic line datasets have been already proposed, there is still no consensus about one generally 453	

applicable technique and the metrics should be selected according to the problem at hand (Ariza-López 454	

and Mozas-Calvache, 2012). Here, we focused on three crucial aspects of the map accuracy that may have 455	



direct implications for their further use, namely the size of the affected (e.g. fissured) area, the length and 456	

density of the fissures, and their orientation. 457	

 458	

5.1.1 Size of the fissured area 459	

Tveite and Langaas (1999) suggested an accuracy measure for line datasets based on repeated buffering 460	

and overlay operations of detected and reference line datasets. A similar strategy was adopted in this 461	

study by repeatedly calculating true positive and false positives rates from two raster representing the 462	

detections and the expert mapping at increasingly coarser resolutions. Raster were calculated at 10 cm 463	

steps for resolutions between 0.10 m and 1.00 m, and each pixel was assigned as fissured or non-fissured 464	

area according to the presence or absence of a fissure in the detections and the reference map, 465	

respectively. The resulting Receiver Operating Characteristics (ROC) plots are presented (Fig. 10). The 466	

analysis showed a correspondence with the expert maps at true positive rates typically above 40% and up 467	

to 65%. The false positive rates were below 5% except for the scenes recorded with full sunlight where 468	

false positive rates up to 9% could be observed (Fig. 10). 469	

 470	

FIG. 10 SOMEWHERE HERE 471	

	472	

5.1.2 Fissure length and density 473	

Hydrological models that integrate the influence of surface fissures on infiltration and preferential flow 474	

have demonstrated that the fraction of fissures per unit area is an important parameter with considerable 475	

influence on the modelled water storage (Malet et al., 2005b; Krzeminska et al., 2011). Such models are 476	

typically generated at slope scale with grid resolutions below 10 m. To assess the accuracy of the 477	

extracted maps with respect to this potential application, the fissure density was calculated as the line 478	

length in circular sliding windows with diameters between 2 and 10 m, and compared among automated 479	

detection and expert mappings. 480	



 481	
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 483	

The regression plots in Fig. 11	 illustrate the correlation of the fissure density estimates with a 5 m circular 484	

sliding window yielding coefficient of determination (R2) typically above 0.5. The regression analysis 485	

further indicated generally higher densities resulting from the semi-automatic detection originating from 486	

false positive detections but also from a stronger generalization of the fissure line drawings within the 487	

expert mapping. Exceptions from this general trend are the results obtained from the image of July 2008 488	

which was recorded at a low sun incidence angle leading to a relatively low  = 0.36. The bar plots in 489	

Fig. 11display the generally higher R2 values at increasing resolutions of the density raster. This is a well-490	

known effect of spatial aggregation on correlation statistics (Gotway and Young, 2002) but also reflects 491	

the contrast between stronger discrepancies of local details and a better correspondence of the global 492	

fissure pattern pictured in the respective maps. The highest correlation was observed among the mappings 493	

for May 2007 with 0.88 indicating that the lower resolution of the corresponding input image 494	

was not an important factor for the accuracy of the detection.  495	

 496	

5.1.3 Fissure orientation 497	

As outlined in the introductory section, different fissure patterns may signal respective mechanical 498	

processes and statistics of the principal fracture orientation often allow to estimate the directions of the 499	

principal stresses (Pollard and Fletcher, 2005). The fissure orientations were quantified as a third factor to 500	

assess the accuracy of the extracted maps using rose diagrams frequently employed for the analysis and 501	

interpretation of two dimensional orientation data (Jammalamadaka and SenGupta, 2001). Rose diagrams 502	

with a bin width of 10° were computed on a 10 m regular grid for the semi-automatic detections and the 503	

expert mappings at all five dates. Considering the length and direction of each bin expressed as a 504	

respective vector the preferred fissure orientation within a grid cell can be calculated by summing the 505	

vectors over all bins. Taking into account all cells containing fissures in both the expert map and the 506	



semi-automatic detection, the Mean Absolute Error (MAE) of the mean orientations provides a 507	

quantitative measure for the orientation accuracy. 508	

The rose diagrams plots and error statistics in Fig. 12	 depict MAEs between 9.7° and 22.5° for the five 509	

dates. The detections on the three scenes recorded under cloudy sky resulted in MAE not larger than 510	

10.7°, whereas the error rate clearly exceeded 20° with the scenes of July 2008 and 2009 recorded with 511	

full sunlight at the surface. The lower orientation accuracies are largely consistent with the relatively low 512	

accuracies in terms of area (see § 5.1.1) and density (see § 5.1.2) resulting from the detection at the latter 513	

two dates.  514	

 515	

 516	
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 518	

5.2 Fissure patterns as possible geoindicators of deformation processes 519	

For a comprehensive interpretation of the detected fissure patterns at the scale of the entire slope, the 520	

scenes of May 2007, October 2008 and July 2009 offering a full coverage of the landslide, have been 521	

analysed. However, considering the relatively low detection accuracy on the sunlit images of July 2009, 522	

the interpretation was focused essentially on the scenes of 2007 and 2008 spanning also over a period 523	

with displacement rates significantly above the average annual rates (Travelletti, 2011). 524	

Comparing the detection results of May 2007 (Fig. 13a) and October 2008 (Fig. 13b), a significant 525	

increase in the abundance of fissures could be noted for the entire landslide. This can be attributed to a 526	

phase of strongly increased displacement rates (up to 3.5 m.day-1) in early June 2008 (Travelletti, 2011) 527	

preceding the UAV survey in October 2008. Though, in October 2008, the displacement rates already 528	

consolidated again at average rates between 0.01 and 0.03 m.day-1, most of the fissures induced in June 529	

were preserved and evolved at the surface until October. This view is supported by the results obtained 530	

for the test area with the five scenes (Fig. 10,	 Fig. 11) picturing rather a transient evolution than a 531	

complete reorganization of the fissure patterns. Despite partially strong disagreement in the absolute 532	



measured fissure density, both expert maps and semi-automatic mapping showed an increase in fissure 533	

density after May 2007, with higher values in October 2008 (Fig. 11) than directly after the peak 534	

displacement in spring. Pluviometric records for the area in 2008 show relatively dry summer season with 535	

cumulative rainfall of  110 mm for the month of July, August and September, suggesting that the 536	

increased fissure density in October is partially caused by an increased brittleness of the upper soil layer 537	

that dried out during summer. 538	

Besides the general increase in the amount of fissures, it is intriguing to observe that at several local plots, 539	

similar fissure patterns can be observed at approximately the same positions through time (Fig. 12, Fig. 540	

13a,b), despite maximal displacements of up to 55 m between October 2008 and October 2009 541	

(Niethammer et al., 2011a). This indicates the recurrent continuous in-situ formation where the fissures 542	

provide a close representation of the local strain field, similar as observed for the evolution of glacier 543	

crevasses (Harper et al., 1998). 544	

Previous studies (Malet, 2003; Niethammer et al., 2011a; Walter et al., 2012) already observed close 545	

relationships between the occurrence of fissures and the geometry of the stable bedrock at the Super-546	

Sauze landslide. They also noted a general contrast between higher water content and rather ductile 547	

behaviour in the lower subsurface (< 1m) and typically lower water content of the topsoil yielding more 548	

brittle behaviour at the surface. The surface fissures can therefore be understood as the response to 549	

stresses induced in the topsoil through coupling with ductile strain in the deeper subsurface. A similar 550	

model was already described by Fleming and Johnson (1989) and adopted as a basis to qualitatively 551	

estimate the patterns of flow and stresses from a joint-interpretation (Fig. 13) of the detected fissure 552	

patterns and a geometrical model of the stable bedrock (Travelletti and Malet, 2012).  553	

Considering the bedrock geometry and a formation of the open fissures normal to the direction of the least 554	

compressive stress (Pollard and Fletcher, 2005), three different flow field patterns leading to the fissure 555	

formation at the Super-Sauze landslide can be suggested. First, lateral shear at external and internal 556	

landslide boundaries aligned with the general flow field leads to the formation of diagonal shear fissure 557	

arrays (Fig. 13e). Second, longitudinal compressive and tensile strain related to abrupt changes in the 558	



slope of the sliding surface induces tensile stresses at the surface that results in transversal fissure arrays 559	

(Fig. 13c). Third, divergence of the flow field over topographic ridges and at the outlets of confining 560	

topographic channels induces lateral extension and tensile stresses resulting in longitudinal fissure arrays 561	

(Fig. 13d). At several locations, those processes overlap and lead to the formation of mixed structures 562	

such as a radial fissure patterns displayed in Fig. 4 and Fig. 13c, resulting from lateral shear and 563	

longitudinal strain, and from local divergent stress field, respectively. 564	

 565	

FIG. 13 SOMEWHERE HERE 566	

 567	

6 Discussion 568	

Deformation patterns at the surface of landslides are important indicators for the mechanical processes, 569	

whereas the elaboration of detailed maps of such features remains a challenging and time-consuming task. 570	

While Sowers and Royster (1978) still argued that aerial photographs do not reach sufficient resolution 571	

for such mappings, modern digital sensors and new aerial platforms such as UAVs today provide the 572	

necessary level of detail. Furthermore, this study demonstrated the possible use of a semi-automatic 573	

image processing chain for the extraction of surface fissure maps. 574	

The accuracy of the method was assessed by comparisons with expert maps and demonstrated 575	

heterogeneous areal accuracies with true positive rates of up to 65% and false positive rates generally 576	

below 10%. Also, the orientation accuracy showed a variable quality of the resulting maps with mean 577	

deviations between 9.7° and 22.5°. The fissure densities derived from both maps have significant 578	

correlations (R2 between 0.36-0.78), whereas the semi-automatic detections yield typically higher 579	

estimates. Interestingly, this difference is more pronounced with the images of 2009 (Fig.	10) reflecting 580	

the contrast between increased semi-automatic detection rates at higher resolutions and the fixed scale of 581	

the expert mapping. Contrariwise, the best agreement among detection and expert maps was measured for 582	

the scene of May 2007 showing that the lower resolution does not necessarily yield lower accuracies. 583	

Generally lower accuracies were observed for the scenes recorded with full sunlight at the surface in July 584	



2008 and 2009 and the worst results were obtained for July 2008 when images were recorded at a 585	

relatively low sun incidence angle. Since the direct sunlight induces shading that affects the local contrast 586	

and global image normalization methods cannot alleviate this problem and image acquisition with diffuse 587	

skylight appears to be the generally better option. 588	

In the initial stage of the processing chain, a low-level linear feature detector is used. Similar techniques 589	

yield competitive results in medical image analysis (Zhang et al., 2010), whereas the accuracies achieved 590	

with aerial images in this study are still significantly lower. This must be attributed to the generally higher 591	

complexity of outdoor scenes and at the moment still requires additional steps and parameters to take the 592	

contextual scene information into account. The use of an OOA heuristic-based post-processing technique 593	

proofed useful for the removal of false positives and helped to objectify the image analysis by transferring 594	

expert knowledge in an explicit form. The analysis still relies on a number of fixed thresholds which may 595	

hinder an easy transfer of the entire processing chain to a different geographic area. This concerns 596	

especially parameters that require knowledge of the local processes (e.g. minimum fissure length, 597	

effective friction angle) while thresholds that can be determined directly from the image (e.g. shadows, 598	

vegetation) may be adjusted more effortless. 599	

The development of surface fissures precedes and accompanies especially slow- and very slow-moving 600	

landslides (Cruden and Varnes, 1996) making the developed technique particularly applicable to such 601	

types of landslides and to potentially unstable slopes. However, the spatial resolution of the acquired 602	

images must at least match, or should ideally exceed, the width of the targeted fissures, and the vegetation 603	

must be sufficiently sparse to permit direct view on the bare ground. The results of this study 604	

demonstrated that if those requirements are met, the obtained fissure maps can already provide sufficient 605	

accuracy to infer the landslide dynamics and mechanical processes (see § 5.2.) at the slope scale. Density 606	

maps from both semi-automatic and expert mappings show a strong spatial and temporal variability of the 607	

fissure abundance pointing toward important local and temporal contrasts in the infiltration capacity 608	

which may need considerations in the design of hydro-mechanical models. An analysis of the evolution 609	

and mechanics of individual fissures will however require higher temporal resolution and terrestrial 610	



cameras have recently been installed at the surface of the landslide to record imagery for further research 611	

in this direction. It would also be desirable to test the developed technique for the investigation of other 612	

landslides with different characteristics in order to validate a more general applicability of the approach 613	

and the mechanical interpretation of the observed fissure dynamics. 614	

The OOA heuristics already considers multi-scale information to some degree (see § 4.33), whereas for 615	

further methodological improvements an explicit integration of an automatic scale selection technique at 616	

the low-level filtering stage appears as a promising approach to further reduce heuristics and tuneable 617	

parameters (Stumpf et al., 2012). The first and second stages of the proposed method are generic for the 618	

detection of dark linear features and could in principle also be applied to detect other geomorphological 619	

and geological structures with similar characteristics. The proposed technique might be of interest for the 620	

mapping of erosion gullies (Shruthi et al., 2011), geological lineaments (Mallast et al., 2011), ice-glacier 621	

crevasses (Vaughan, 1993) or tectonically induced fractures (Allmendinger and González, 2010), 622	

sufficiently larger to be depicted in sub-metre satellite images. 623	

Considering the intrinsic disagreement in expert mappings of linear features, especially in the inter- and 624	

extrapolation of lines (Sander et al., 1997),  further studies should also include an assessment of the 625	

uncertainties of reference maps since their quality can strongly bias the evaluation of different alternative 626	

approaches (Lampert et al., submitted). 627	

 628	

7 Conclusions 629	

This study developed an image processing chain to extract surface fissures from heterogeneous sets of 630	

VHR aerial images and tested the approach with a challenging multi-temporal set of images recorded at 631	

the Super-Sauze landslide for five different dates. The first two stages of the developed workflow 632	

combine families of Gaussian matched filters and morphological filters and are followed by an object-633	

oriented analysis to reduce the amount of false positive detection using contextual information and 634	

auxiliary topographic information. The detection results can be represented in raster maps or optional by 635	

centre skeleton lines.  636	



Under homogenous illumination conditions a comparison of the results with expert mapping 637	

demonstrated detection rates of up to 65% and orientation errors below 10°. Contrary, the technique is 638	

relatively sensitive to shading effects at full sunlight and prone to errors especially at low sun incidence 639	

angle.  640	

A joint-interpretation of obtained fissure maps and of a 3D geometrical model of the stable bedrock 641	

demonstrated their complementary use for a better understanding of the geomorphological and 642	

geomechanical processes, such that the detected fissure pattern may be used for first approximation for 643	

mechanical processes in the recent deformation history of a slope. 644	

Possible directions for further research are the reduction of tuneable parameters and a more immediate 645	

exploitation of multi-scale information, as well as an adaption of the technique to other linear features 646	

with geomorphological and geological relevance. 647	

 648	
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 867	

 868	

Fig. 1. Generic types of surface fissures and their typical spatial occurrence within a landslide mass. (a) 869	

Modes of fracture propagation: mode I (opening), II (sliding) and III (tearing). (b) Fissures developing 870	

predominately in mode I and resulting from tensile stress. (c) Fissures developing predominately in mode 871	

I and resulting from shear stress. (d) Fissures developing predominantly in mode I resulting from 872	

compressive stress and lateral expansion. The central figure is adapted from (Sowers and Royster, 1978). 873	

	874	

Fig. 2. Oblique view of the Super-Sauze landslide combining a hillshade image derived from an airborne 875	

LiDAR DTM (July 2009) and a UAV image (October 2008). (a) The main scarp (hashed black line), 876	

transport and accumulation zone (black outline), and the area of interest for the multi-temporal analysis 877	

(white square) are indicated. UAV image subsets show (b) compression ridges, (c) longitudinal fissures, 878	

(d) diagonal fissures at the boundary of the active part, and (e) and transversal fissures. 879	

	880	

Fig. 3. Subsets of orthophotographs (see location in the white bounding box in Fig. 2a) acquired at five 881	

different dates with details of the acquisition systems and image ground resolutions. 882	

	883	



Fig. 4. (a) Subset (see extent in Fig. 3) of the UAV image from October 2008 showing typical fissure 884	

patterns and (I-IV) grey-value profiles (green channel) approximated with Gaussian curves. (b) Field 885	

terrestrial photograph taken in October 2009. 886	

	887	

Fig. 5. Illustration of the principles of the Gaussian filtering for (a-c, f-h) a simplified 1-D case, (d, i) a 888	

3D visualization of 2D filters and (e, j) the filter responses for the image subset in Fig. 4a. See text for 889	

details. 890	

	891	

Fig. 6. Strategy used to connect broken line segments. (a) Working principle of the hit- and miss 892	

transform, (b) hit structures, (c) miss structures and (d) respective rotations used for the plausible pixel 893	

neighbourhoods. 894	

Fig. 7. Illustration of the automatic threshold detection for the intermediate mapping of vegetation. 895	

(a) Subset of the October 2008 image at the toe of the landslide. (b) Ratio blue. (c) Initial thresholding at 896	

ratio blue < 0.33 to obtain vegetation candidates (yellow). (d) Histogram of the vegetation candidates with 897	

the automatically selected threshold. (e) Final map of the vegetation (green). 898	

	899	

Fig. 8. Illustration of the object-oriented post-processing routine. (a) Fissure candidates that overlapped 900	

with linear structures. (b) Linear structure detected at a ten times greater filter scale. The fissure 901	

candidates aligned with the linear structures at angles below ± 13° were removed. 902	

	903	

Fig. 9. Example of comparison of the obtained fissure maps with the expert mapping for October 2010 904	

(fissures in red). (a) Area with relatively high agreement of the mapped fissure patterns. (b) Area with 905	

relatively high rate of false negatives and false positives. The scale of the representations corresponds 906	

approximately to the scale used for the expert mapping (1:250).  907	



	908	

Fig. 10: Receiver operating characteristics (ROC) plots for the fissured area at different map resolutions. 909	

The sky conditions for the five different dates are indicated. 910	

 911	

Fig. 11. Correlation between fissure density estimates at 5 m raster resolution based on semi-automatic 912	

detections and expert mappings from the five images. The bar plots at the bottom display the R2 913	

coefficient at different raster resolutions. 914	

	915	

Fig. 12. Rose diagram plots with mean orientation (red line) and error statistics for the mean fissure 916	

orientation per 10 m grid cell for the test area at the five different dates. For visualization, the rose 917	

diagrams where plotted over a hillshade of the landslide surface and the scatterplot angles were centred at 918	

90°.  919	

	920	

Fig. 13. Pseudo 3D view showing the landslide dynamics inferred from the fissure patterns detected in the 921	

aerial images of (a) May 2007 and (b) October 2008. (c, d, e) Close up views for October 2008 showing 922	

inferred landslide dynamics and stress vectors. The results are overlaid on a hillshade model of the 923	

topography of the stable bedrock proposed by (Travelletti and Malet, 2012). 924	

	925	

Table 1 926	

Parameter set of the Gaussian filters scaled according to the respective image resolution. 927	

	928	

Table 2 929	

Summary of the thresholds adopted in the object-oriented post-processing routine. See text for details.	930	
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