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Abstract

The temporal frequency of the thermal data provided by current spaceborne

high-resolution imagery systems is inadequate for agricultural applications.

As an alternative to the lack of high-resolution observations, kilometric ther-

mal data can be disaggregated using a green (photosynthetically active) veg-

etation index e.g. NDVI (Normalized Difference Vegetation Index) collected

at high resolution. Nevertheless, this approach is only valid in the condi-

tions where vegetation temperature is approximately uniform. To extend

the validity domain of the classical approach, a new methodology is devel-

oped by representing the temperature difference between photosynthetically

and non-photosynthetically active vegetation. In practice, both photosyn-

thetically and non-photosynthetically active vegetation fractions are derived

from a time series of Formosat-2 shortwave data, and then included in the

disaggregation procedure. The approach is tested over a 16 km by 10 km irri-

gated cropping area in Mexico during a whole agricultural season. Kilometric
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MODIS (MODerate resolution Imaging Spectroradiometer) surface temper-

ature is disaggregated at 100 m resolution, and disaggregated temperature is

subsequently compared against concurrent ASTER (Advanced Spaceborne

Thermal Emission and Reflection Radiometer) data. Statistical results in-

dicate that the new methodology is more robust than the classical one, and

is always more accurate when fractional non-photosynthetically active vege-

tation cover is larger than 0.10. The mean correlation coefficient and slope

between disaggregated and ASTER temperature is increased from 0.75 to

0.81 and from 0.60 to 0.77, respectively. The approach is also tested using

the MODIS data re-sampled at 2 km resolution. Aggregation reduces errors

in MODIS data and consequently increases the disaggregation accuracy.

Key words: Disaggregation, scaling, surface temperature, vegetation

fraction, albedo, Formosat-2, MODIS, ASTER.

1. Introduction

The usefulness of thermal remote sensing data in hydrometeorology and

agriculture is intimately related to the temporal frequency and spatial res-

olution of acquisition. On the one hand, the temporal frequency of 1 km

resolution MODerate resolution Imaging Spectroradiometer (MODIS) and 5

km resolution Geostationary Operational Environmental Satellites (GOES)

sensors is larger than 1 image per day. MODIS and GOES are routinely used

to monitor drought and surface moisture deficit in relation with climatologi-

cal forcing at the continental scale (e.g. Nishida et al., 2003; Anderson et al.,

2007; Stisen et al., 2008). On the other hand, the temporal frequency of 90 m

resolution Advanced Spaceborne Thermal Emission and Reflection Radiome-
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ter (ASTER) sensor is larger than 15 days. ASTER is used to estimate evap-

otranspiration over highly heterogeneous landscapes (e.g. Schmugge et al.,

1998b; French et al., 2005; Courault et al., 2009), but its relatively long re-

visit cycle is not convenient for seasonal monitoring (e.g. Norman et al., 1995;

Sellers et al., 1995; Norman et al., 2003).

Thanks to the link between surface temperature and hydric status (e.g.

Jackson et al., 1981; Boulet et al., 2007; Er-Raki et al., 2008), the potential

of thermal data combining high-spatial and high-temporal resolution is con-

siderable in the fields of agriculture and water management. In practice,

the spatial and temporal resolution requirements of satellite-derived sur-

face temperature for agricultural applications are estimated as about 40 m

and 1-day revisit (Seguin et al., 1999). To bridge the gap between the low-

spatial resolution of available thermal data and the high-spatial resolution

required over agricultural areas, one may disaggregate low-spatial-resolution

thermal images at high-temporal frequency. To date, most disaggregation

approaches of remotely sensed surface temperature have been based on the

Normalized Difference Vegetation Index (NDVI) available from shortwave

data at a spatial resolution finer than that of thermal data (Kustas et al.,

2003; Agam et al., 2007; Inamdar et al., 2008). Although the NDVI-based

approach has been successfully tested over agricultural areas, Agam et al.

(2007) and Inamdar et al. (2008) emphasized the limitation that the vari-

ability of surface temperature is not explained entirely by NDVI. Recently,

Inamdar and French (2009) developed a new disaggregation methodology of

5 km resolution GOES data using 1 km resolution MODIS-derived surface

emissivity. The authors found that the emissivity-based approach was more
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accurate than a similar one based on NDVI. Note that the approach of

Inamdar and French (2009) is not applicable to the disaggregation of MODIS

type data over agricultural areas. The rationale is that agricultural cov-

ers evolve quickly and surface changes drastically between two successive

ASTER emissivity products separated by a minimum of 16 days and more

often (clouds, programming requests) by several months.

The main limitation of the NDVI-based approach is that the relation-

ship between surface temperature and NDVI is not unique (Agam et al.,

2007). It is not unique because (i) NDVI is mostly sensitive to green (photo-

synthetically active) vegetation cover (e.g. Gutman and Ignatov, 1998) and

(ii) surface temperature depends on parameters other than green vegetation

cover such as surface soil moisture and non-photosynthetically active vegeta-

tion cover (e.g. Moran et al., 1994). Especially, the NDVI over bare soil and

over senescent vegetation is expected to be very low in both cases, whereas

the radiometric temperature over bare soil may be significantly larger than

that over full-cover senescent vegetation. The temperature difference be-

tween bare soil and senescent vegetation can be explained by the decrease of

aerodynamic resistance with vegetation height facilitating heat release from

the surface (e.g. Shuttleworth and Wallace, 1985), and/or by the decrease of

net radiation induced by an increase of surface albedo (e.g. Menenti et al.,

1989).

In fact, robust disaggregation algorithms of surface temperature should

account for all the main parameters involved in the surface energy budget.

The difficulty is then to (i) observe these parameters at high-spatial and

-temporal resolution and (ii) develop a general framework in which these pa-
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rameters can be consistently integrated into the disaggregation procedure.

Accounting for the variability of surface soil moisture is made difficult by the

relatively low-spatial resolution (several tens of kilometers) of available ob-

servations. In particular, the spatial resolution of the SMOS (Soil Moisture

and Ocean Salinity, Kerr et al. (2001)) satellite launched in November 2009 is

about 40 km, and that of the forthcoming SMAP (Soil Moisture Active Pas-

sive, http://smap.jpl.nasa.gov) mission will be about 10 km. Consequently,

the impact of surface soil moisture on surface temperature will not be ad-

dressed in this paper. On the other hand, senescent vegetation cover can be

estimated at high resolution but no disaggregation procedure has included

this parameter yet.

The NDVI-based disaggregation, despite its intrinsic limitations, is among

the best of existing methods. The objective of this study is to complement

the classical approach of Agam et al. (2007) in the conditions where the tem-

perature difference between photosynthetically and non-photosynthetically

active vegetation is significant. The methodology takes advantage of the

unique capabilities of the Formosat-2 instrument (Chern et al., 2008) pro-

viding shortwave data at high-spatial resolution (8 m) and high-temporal

frequency (potentially 1 image per day). The time series of Formosat-2 re-

flectances allow a fine analysis of the seasonality of canopies during the crop

cycle (Duchemin et al., 2008; Hadria et al., 2010). Specifically, Formosat-2

data can be used to retrieve both fractional photosynthetically and non-

photosynthetically active vegetation covers.

The approach is tested over a 16 km by 10 km area near Yaqui in north-

western Mexico. The Yaqui area is adequate to test disaggregation method-
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ologies because surface temperature is highly variable in space due to irri-

gation practices, crop rotations and a high evaporative demand. Kilometric

MODIS Terra surface temperature is disaggregated at 100 m resolution on

seven dates in 2007-2008, and disaggregated temperature is subsequently

compared against concurrent ASTER data. Prior to the application to

MODIS data, the use of aggregated ASTER data allows evaluating disag-

gregation approaches independently from differences between ASTER and

MODIS products. The methodology is presented (Section 2) and is applied

to the ASTER data aggregated at kilometric resolution (Section 3) and to

real MODIS data (Section 4). A sensitivity analysis is conducted in Section

5.

2. Material and Method

The methodology aims to disaggregate kilometric surface temperature at

hectometric (100 m) resolution following the scheme presented in Figure 1.

The 100 m resolution is chosen to evaluate the results using ASTER, which is

currently the spaceborne thermal sensor with the highest spatial resolution.

2.1. Disaggregation methodology

The three disaggregation algorithms D0, D1 and D2 are detailed below.

D0 does not use any ancillary data. D1 is based on the fractional photo-

synthetically active vegetation cover estimated at high resolution and is the

same as the NDVI-based approach of Agam et al. (2007). Fractional pho-

tosynthetically active vegetation cover is noted fpav and is defined as the

surface of green (photosynthetically active) vegetation per soil surface unit.

D2 is based on both fractional photosynthetically and non-photosynthetically
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active vegetation covers. In this paper, fractional non-photosynthetically ac-

tive vegetation cover is expressed as the difference (ftv − fpav) with ftv being

the fraction of total (photosynthetically and non-photosynthetically active)

vegetation. All these variables are derived from Formosat-2 images.

D0 simply sets disaggregated temperature T (0) to low-resolution temper-

ature:

T (0) = Tkm (1)

with Tkm being the temperature available at kilometric resolution. Note that

all the variables defined at kilometric scale are written with the subscript

km.

D1 sets disaggregated temperature T (1) as:

T (1) = Tkm + a1 ×
(

fpav − 〈fpav〉km

)

(2)

with 〈fpav〉km being the average of fpav within each low-resolution pixel, and

a1 the slope of the linear regression between Tkm and 〈fpav〉km. The slope

a1 is evaluated at the scale of the satellite image (Agam et al., 2007). Note

that all the variables defined at the image scale are written in bold.

D2 accounts for both photosynthetically and non-photosynthetically ac-

tive vegetation covers. Disaggregated temperature T (2) is written as:

T (2) = Tkm + a
proj
1 ×

(

fproj
pav − 〈fproj

pav 〉km

)

(3)

with fproj
pav being the fpav projected using the technique of Merlin et al. (2005),

〈fproj
pav 〉km its average within kilometric pixels, and a

proj
1 the slope of the linear

regression between Tkm and fproj
pav, km, with fproj

pav, km being the fproj
pav estimated

at kilometric resolution.

7



The projection technique was theoretically developed in Merlin et al. (2005).

It was successively applied to −2.5 cm soil temperature (Merlin et al., 2006),

to surface evaporative fraction (Merlin et al., 2008) and to soil evaporative ef-

ficiency (Merlin et al., 2010). It is a robust tool to strengthen the correlation

between two variables by representing the dependence of these variables on

other additional variables. In this paper, the projection technique is applied

to fractional photosynthetically active vegetation cover. It aims at artificially

improving the spatial correlation between T and fpav by accounting for the

dependence of T on ftv. Note that fproj
pav is not a physical variable. It is

formally written as:

fproj
pav = fpav − ∆fpav, mod (4)

with ∆fpav, mod being a corrective term that accounts for the dependence of

T on ftv. To derive ∆fpav, mod in Equation (4), T is expressed as:

T = (1 − ftv)Ts + fpavTv, min + (ftv − fpav)Tv, max (5)

with Ts being the high-resolution soil skin temperature, Tv, min the minimum

vegetation temperature observed at low resolution within the study area,

and Tv, max the maximum vegetation temperature observed at low resolu-

tion within the study area. In Equation (5), surface temperature is linearly

decomposed into its soil and vegetation components as a good approxima-

tion of the relationship with power 4th for temperatures (Anderson et al.,

1997; Merlin and Chehbouni, 2004). Vegetation temperature is also linearly

decomposed into the temperature of photosynthetically active vegetation

Tv, min and that of non-photosynthetically active vegetation Tv, max. Fol-
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lowing Equation (5), fpav is modelled by:

fpav, mod =
(1 − ftv)Ts + ftvTv, max − T

Tv, max − Tv, min

(6)

As Ts is unknown at high resolution, it is set to Ts = (Ts, min+Ts, max)/2 in

Equation (6) with Ts, min and Ts, max being the minimum and maximum soil

temperature observed at low resolution within the study area, respectively.

Setting Ts to a uniform value is a strong assumption. However, one should

acknowledge that the main factor of variability of soil temperature is surface

soil moisture, which is not available at high resolution. It is reminded that the

scope of this study is to focus on the variability of vegetation temperature,

and its impact on surface temperature. Surface temperature in Equation (6)

is also unknown at high resolution. As a first guess, it is set to its value at

low resolution Tkm. Hence, modelled fpav becomes:

fpav, mod(ftv) =
(1 − ftv)Ts + ftvTv, max − Tkm

Tv, max −Tv, min

(7)

Finally, the corrective term ∆fpav, mod in Equation (4) is written as the differ-

ence between the fpav modelled using high-resolution ftv and the fpav mod-

elled using kilometric 〈ftv〉km:

∆fpav, mod = fpav, mod(ftv) − fpav, mod(〈ftv〉km) (8)

Hence, one obtains:

∆fpav, mod =
Tv, max − Ts

Tv, max − Tv, min

(ftv − 〈ftv〉km) (9)

Note that Equation (9) does not use temperature data at fine spatial scales.

Projected fpav is computed in Equation (4) and used in the downscaling
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relationship of Equation (3). The regression coefficient a
proj
1 in Equation (3)

is estimated from the projected fpav estimated at kilometric resolution, which

is given by:

fproj
pav, km = 〈fpav〉km −

Tv, max − Ts

Tv, max − Tv, min

(〈ftv〉km − ftv) (10)

with ftv being the average of ftv over the whole study area.

2.2. Data collection and pre-processing

The Yaqui experiment was conducted throughout an agricultural season

from November 2007 to June 2008 in northwestern Mexico (27.25◦ N, 109.88◦

W). The campaign focused on an irrigated area including mainly wheat,

corn, chickpeas and beans. Soil in the top 0–20 cm was classified as clay

with an average of 44% and 36% for clay and sand fractions, respectively.

The objective of the experiment was to characterize the spatial variability of

surface fluxes from the field (hectometric) to kilometric scale. Meteorological

data including air temperature, solar radiation, relative humidity and wind

speed were monitored throughout the agricultural season at a semi-hourly

time step from December 27, 2007 until May 17, 2008. The study area is

defined as a 16 km by 10 km area (i) containing the Yaqui experimental

area, (ii) included in all Formosat and ASTER images, and (iii) delineated

to exactly match up the 1 km resolution MODIS grid.

2.2.1. Formosat-2 data

Formosat-2 was launched by the National Space Organization of Taiwan

in May 2004 onto a sun-synchronous orbit. The Remote Sensing Instrument

(RSI) onboard Formosat-2 provides high-spatial-resolution images (8 m in the
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multispectral mode for nadir viewing) in four spectral bands ranging from

0.45 µm (blue) to 0.90 µm (near infrared). Unlike other systems operating at

high-spatial resolution, Formosat-2/RSI may observe a particular area every

day with the same viewing angle. The scenes are 24-km wide (along-track)

and 27-km long (across-track). More details can be found in Chern et al.

(2008).

Forty-two cloud free Formosat-2/RSI images were collected over the Yaqui

area from 15 November 2007 to 6 June 2008. All images were acquired with

an off-nadir angle of 12±1◦. Image processing included: (i) absolute geoloca-

tion of a cloud-free image against a set of ground control points collected with

GPS, (ii) registration of this and other images using an autocorrelation algo-

rithm, (iii) reprojection of data using UTM WGS 1984 12N coordinate system

with a sampling interval of 8 m, (iv) atmospheric correction (Hagolle et al.,

2008) and (v) re-sampling of 8 m resolution Formosat-2 red and near-infrared

reflectances at 100 m resolution over the 16 km by 10 km study area.

2.2.2. Biophysical variables derived from Formosat-2 images

NDVI and surface albedo are computed using 100 m resolution re-sampled

Formosat-2 data. NDVI is the ratio of the difference between near-infrared

and red reflectances to their sum. Surface albedo α is estimated as a weighted

sum of red and near-infrared reflectances with the coefficients given by Weiss et al.

(1999) and validated in Bsaibes et al. (2009).

Fractional photosynthetically active vegetation cover can be estimated

using the expression of Gutman and Ignatov (1998):

fpav =
NDVI − NDVIs

NDVIpav − NDVIs
(11)
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with NDVIpav corresponding to fully covering photosynthetically active veg-

etation and NDVIs to bare soil or to bare soil partially covered by non-

photosynthetically active vegetation. In the current study, NDVIpav and

NDVIs are set to the maximum (0.93) and minimum (0.18) value of the

NDVI observed during the agricultural season within the study area.

The fractional vegetation cover ftv is defined as the surface of total (pho-

tosynthetically and non-photosynthetically active) vegetation per soil surface

unit. A simple approach is developed to estimate ftv on a pixel-by-pixel basis

from the time series of Formosat-derived fpav and α. As an illustration, Fig-

ure 2 plots the typical variations of surface albedo as a function of fractional

photosynthetically active vegetation cover for a given 100 m resolution pixel

in the study area. It is apparent that surface albedo increases with frac-

tional photosynthetically active vegetation cover, and keeps increasing when

vegetation dries. An interesting feature is visible at the beginning of the agri-

cultural season when the variations of surface albedo are due to the drying

of bare soil in between two irrigations, and at the end of the season when

constant and high values of surface albedo (up to 0.30) are observed from the

harvest date indicating the presence of bright stubble. Formally, fractional

vegetation cover is estimated as:

if α ≤ α(fpav, max), ftv =
α − αs

αpav − αs
(12)

if α > α(fpav, max), ftv = fpav, max (13)

with α(fpav, max) being the surface albedo observed at the maximum of frac-

tional photosynthetically active vegetation cover (fpav, max), αs the albedo of

bare soil, and αpav the albedo of a fully-covering photosynthetically active

canopy. In Equations (12) and (13), α(fpav, max), αs, αpav and fpav, max are
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estimated on a pixel-by-pixel basis from the time series of Formosat-2 data.

An illustration is presented in Figure 2 for a given pixel. Bare soil albedo

αs is set to the minimum value observed during the agricultural season. The

mean and standard deviation of αs over the study area is 0.080 and 0.016 (20

% of the mean value), respectively. Green vegetation albedo αpav is set to the

value extrapolated at fpav = 1 by assuming a linear relationship between α

and fpav during the growing period. The mean and standard deviation of αpav

over the study area is 0.20 and 0.036 (18 % of the mean value), respectively.

During the growing period, soil moisture may have an impact on the re-

lationship between surface albedo and fractional photosynthetically active

vegetation cover in Equation (12). As αs corresponds to the wet soil albedo,

the algorithm tends to overestimate ftv when soils are relatively dry. How-

ever, the successive periods of irrigation and drying and the high-temporal

frequency of Formosat-2 data allow clearly identifying the edge correspond-

ing to wet soil. During the senescence period, the impact of soil moisture

is rather low because irrigation stops and vegetation cover is maximum. In

fact, the relationship in Equation (12) can be applied to the conditions when

soils are relatively dry as long as soil albedo does not get values larger than

green vegetation albedo. This is generally the case for brown clay or silty

soils in agricultural areas, but not for sandy soils.

Figure 3 plots fractional vegetation cover as function of surface albedo

for all dates and all the pixels with α < α(fpav, max). The increase of ftv with

α is explained by a value of soil albedo significantly lower than vegetation

albedo. Figure 3 indicates that the albedo over bare soil is about 0.08, which

is a typical value for wet clay (e.g. Ten Berge, 1986). The albedo over full-
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cover vegetation ranges from about 0.16 to 0.25, which are typical values

for irrigated and dry crops, respectively (e.g. Campbell and Norman, 1998).

The procedure in Equations (12) and (13) would not be adapted for sandy

soils having an albedo (about 0.20) larger than the typical value for green

crops.

The images of fractional photosynthetically active vegetation cover, sur-

face albedo and fractional vegetation cover are presented in Figure 4 at the

beginning (December 30), middle (April 11) and end (May 6) of the agricul-

tural season. They illustrate both the seasonality of canopies throughout the

agricultural season and the high variability of vegetation cover within the

study area.

2.2.3. ASTER data

The ASTER was launched in 1999 on a sunsynchronous platform (NASA’s

Terra satellite) with 10:30 am descending Equator crossing and a 16-day re-

visit cycle. The ASTER thermal sensor provides nadir-looking scenes of

approximately 60 km by 60 km. Data are collected on request over speci-

fied areas. There are five thermal bands with a 90 m resolution and centred

at 8.30, 8.65, 9.05, 10.60 and 11.30 µm. The accuracy in ASTER temper-

ature and emissivity was predicted (Gillespie et al., 1998) and is currently

estimated (Jacob et al., 2008; Sabol et al., 2009) as within 1.5 K and 0.015,

respectively.

During the 2007-2008 agricultural season, 7 cloud free ASTER images

were collected over the Yaqui area at around 11:00 am local solar time on

December 30, February 23, March 10, April 11, April 27, May 6 and May

13. ASTER official products were downloaded from the Earth Observing
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System Data Gateway. They consisted of the 90 m resolution surface skin

temperature (AST08) retrieved by the “temperature and emissivity separa-

tion” algorithm (Gillespie et al., 1998; Schmugge et al., 1998a) and projected

in UTM WGS 1984 12N. The absolute registration of ASTER data was per-

formed using a background 8 m resolution Formosat-2 image. Sub-images

were extracted over the 16 km by 10 km study area and were re-sampled at

100 m resolution using the bicubic interpolation.

In this study, 100 m resolution ASTER data are used as a reference to

evaluate disaggregation results. To evaluate disaggregation algorithms inde-

pendently from differences between ASTER and MODIS products, ASTER

data are also used to generate kilometric observations which are unbiased

against reference temperatures. This is done by linearly averaging high-

resolution surface temperatures, i.e. without accounting for the nonlinear

relationship between physical temperature and emissivity. This choice is

motivated by the results of Liu et al. (2006) who compared the temperature

aggregated using different scaling approaches and obtained very low differ-

ences (maximum difference of 0.2◦C).

2.2.4. MODIS data

The MODIS/Terra data were collected concurrently with ASTER data

with an incidence angle of 7±1◦. MODIS official products consisted of the 928

m resolution surface skin temperature (MOD11-L2) retrieved by the “gen-

eralized split window” algorithm (Wan and Dozier, 1996; Wan et al., 2002)

and registered in a sinusoidal projection. The MODIS Reprojection Tool

(http://igskmncnwb001.cr.usgs.gov/landdaac/tools/modis/index.asp) was used

to project MOD11-L2 data in UTM WGS 1984 12N with a sampling interval
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of 1 km.

As a first assessment of thermal data, the MODIS temperature re-sampled

at 1 km resolution is compared against the ASTER data aggregated at 1

km resolution in Figure 5. The mean root mean square difference between

MODIS and ASTER data is 2.4◦C for all dates. This is consistent with

recent studies reporting a discrepancy between ASTER and MODIS surface

temperature of about 3◦C (Liu et al., 2006, 2007). The same comparison is

done at 2 km resolution by aggregating ASTER and 1 km re-sampled MODIS

data. The 2 km resolution is chosen arbitrarily as twice the MODIS nadir

resolution to investigate the impact of the re-sampling of MODIS data on

the difference between MODIS and ASTER products. The mean root mean

square difference between 2 km resolution re-sampled MODIS and ASTER

data is 1.8◦C for all dates. It is suggested that the lower difference between

MODIS and ASTER products at 2 km resolution is mainly due to the re-

sampling of MODIS temperature product. Re-sampling is a necessary step to

use data in a given coordinate system. However, it systematically smoothes

spatial data, especially over highly heterogeneous areas like Yaqui. Both 1

km and 2 km resolution MODIS data sets will be used in the following to

assess the impact of the accuracy in MODIS data on disaggregation results.

2.3. Extreme temperatures extrapolated from MODIS data using ancillary

data

The disaggregation procedure D2 requires an estimate of Ts, min, Ts, max,

Tv, min and Tv, max. The algorithm for estimating extreme temperatures is

derived from learnings brought by Figure 6.

Figure 6a plots the space defined by kilometric surface temperature and
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kilometric surface albedo for data on April 27. A polygon is obtained as

in Roerink et al. (2000) and Gómez et al. (2005). Note that the relation-

ships between surface temperature and reflectance (or albedo) have been

extensively used to develop remote sensing-based energy budget models like

SEBAL (Surface Energy Balance Algorithm for Land, Bastiaanssen et al.

(1998)) and S-SEBI (Simplified Surface Energy Balance Index, Roerink et al.

(2000)) to monitor evapotranspiration at decametric (Jacob et al., 2002; Gómez et al.,

2005) and regional (van den Hurk et al., 1997) scale.

Before interpreting the space Tkm-〈α〉km at kilometric resolution, let con-

sider the space defined at high resolution. ASTER temperature is plotted

against surface albedo in Figure 6b and against fractional photosyntheti-

cally active vegetation cover in Figure 6c for data on a typical day (April

27). It is apparent that the space T -α has a polygonal shape while the

space T -fpav has a mostly triangular shape. In fact, the presence of non-

photosynthetically active vegetation is captured by surface albedo, but not

by fractional photosynthetically active vegetation cover. This justifies the

use of T -α instead of T -fpav. In Figure 6b, the four edges of the polygon T -α

are interpreted as “bare soil” between A and B, “dry surface” between B

and C, “full-cover vegetation” between C and D and “wet surface” between

D and A. Correspondence with the vertices of the trapezoid in Moran et al.

(1994) is highlighted.

In the case of the disaggregation of MODIS data, high-resolution surface

temperature T is assumed to be unknown. Therefore, one needs to develop

an approach to extrapolate extreme temperatures from the space Tkm-〈α〉km

defined at kilometric resolution. Below is described step-by-step the algo-
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rithm used to estimate Ts, min, Ts, max, Tv, min and Tv, max from Figure

6a:

• Tv, min is set to the air temperature Ta measured in the Yaqui area at

the time of ASTER overpass.

• Ts, min is defined by the intersect between the line of wet surface and

the line of bare soil. The line of bare soil is defined as a vertical line

at 〈α〉km = αmin, with αmin being the minimum surface albedo within

the study area. The line of wet surface passes through (〈αpav〉, Ta)

with 〈αpav〉 being the mean photosynthetically active vegetation albedo

within the study area. The line of wet surface has a slope such as all

points are kept above the wet edge.

• Ts, max is defined by the intersect between the line of dry surface and

the line of bare soil. The line of dry surface passes through the point

with maximum surface temperature and has a slope such as all points

are kept below the dry edge.

• Tv, max is defined as the ordinate of the dry line at 〈α〉km = αmax, with

αmax being the maximum surface albedo within the study area.

To strengthen the approach, the slope of the wet edge and that of the dry

edge are assumed to be the same. This is based on the observation that the

lines AD and BC in the space T -α are practically parallel. This is also based

on a theoretical consideration. Menenti et al. (1989) demonstrated that the

slope ∂α/∂T is proportional to the aerodynamic exchange resistance. Conse-

quently, if the aerodynamic resistance over full-cover non-photosynthetically

18



active vegetation is assumed to be the same as that over full-cover photo-

synthetically active vegetation as in Bastiaanssen et al. (1998), then AD and

BC are theoretically parallel. On an algorithmic point of view, the slope of

wet and dry lines is estimated separately, and the mean value is applied to

both edges.

2.4. Projection

The usefulness of the projection technique is first assessed by plotting in

Figure 7 fpav and fproj
pav as a function of ASTER temperature on the coldest

(December 30) and hottest (May 6) day. One observes that fproj
pav is a better

indicator of the variability of surface temperature than fpav. In particular,

the projection improves the correlation coefficient between fractional photo-

synthetically active vegetation cover and ASTER temperature from 0.72 to

0.76 on December 30 and from 0.70 to 0.73 on May 6.

3. Application to Aggregated ASTER Data

Disaggregation algorithms D0, D1 and D2 are applied to the ASTER

data aggregated at MODIS resolution, and results are compared against

ASTER data. The application to aggregated ASTER data implicitly as-

sumes that low-resolution observations are perfectly accurate with respect

to high-resolution ASTER data. This is practical to evaluate disaggregation

results independently from uncertainties in low-resolution data (Agam et al.,

2007).
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3.1. 1 km resolution aggregated ASTER data

Figure 8 presents the 16 km by 10 km images on the coldest (Decem-

ber 30) and hottest (May 6) day of the temperature disaggregated at 100

m resolution by D0, D1 and D2 and the ASTER temperature re-sampled at

100 m resolution. The images obtained by D1 and D2 are first compared

with ASTER images. One observes that the distribution of temperature is

generally better restituted with D2 than with D1. The images obtained by

D1 and D2 are then compared with those obtained by D0. One observes that

the “boxy artifact” at 1 km resolution is more apparent for D1 than for D2.

The notion of boxy artifact was first introduced by Agam et al. (2007) to de-

scribe the low-resolution grid that is still apparent on disaggregated images.

In Agam et al. (2007), the boxy artifact was attributed to the variability at

low resolution of the surface conditions that are not accounted for in the dis-

aggregation. In the case of D2, it is suggested that the insertion of fractional

non-photosynthetically active vegetation cover improves the sensitivity of the

disaggregation algorithm, then reduces the boxy artifact.

Table 1 lists the root mean square difference, correlation coefficient and

slope between disaggregated and ASTER temperature for each of the seven

ASTER overpass dates. The mean fractional non-photosynthetically active

vegetation cover 〈ftv−fpav〉 is also listed. Results indicate that both D1 and

D2 systematically perform better than D0. They also indicate that the slope

between disaggregated and ASTER temperature is systematically closer to

1 with D2 than with D1. However, the performance of D2 relatively to D1

seems to vary from date to date. In fact, the performance of D2 is intimately

related to the amount of non-photosynthetically active vegetation. One ob-
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serves in Table 1 that disaggregation results are more accurate with D1 on

the three dates when the mean fractional non-photosynthetically active veg-

etation cover over the study area is lower than 0.06. This was expected since

the representation of the impact of non-photosynthetically active vegetation

when the fraction of non-photosynthetically active vegetation is low should

decrease the signal to noise ratio within the disaggregation, and thus make

the uncertainty in disaggregation output increase. When selecting the four

dates with a mean fractional non-photosynthetically active vegetation cover

larger than 0.10, the mean correlation coefficient between disaggregated and

ASTER temperature is increased from 0.75 to 0.81, and the mean slope is

increased from 0.60 to 0.77. The systematic increase in the slope is notably

visible in the scatterplots of Figure 9.

Although D2 is found to be more robust than D1, the error on disaggre-

gated temperature is still about 3◦C. This error is notably explained by the

variability of soil temperature, which was not accounted for in this study.

Also, the performance of D2 seems to be weaker on May 6 and 13 (see Table

1). Note that the scheme for estimating fractional vegetation cover in Equa-

tion (12) may not be valid at the end of the season when leaves wilt and in

some instances fall off.

3.2. 2 km resolution aggregated ASTER data

The disaggregation algorithms D0, D1 and D2 are now applied to the

ASTER data aggregated at 2 km resolution and results are presented in

Table 2 for the four dates with a mean fractional non-photosynthetically

active vegetation cover larger than 0.10. As the number of 2 km resolution

pixels within the study area is much reduced as compared to 1 km resolution
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pixels, the estimation of extreme temperatures in Section 2.3 is still based

on 1 km resolution data for representativity reasons. When using the 2

km instead of 1 km resolution temperature as input to the disaggregation

algorithms, the performance of D0, D1, and D2 is systematically degraded

on each date. The mean correlation coefficient between disaggregated and

ASTER temperature is decreased from 0.75 to 0.68 and from 0.81 to 0.77

for D1 and D2, respectively. The slope is also decreased for D1 from 0.60

to 0.52 but not for D2. The poorer results obtained using the ASTER data

aggregated at 2 km resolution is due to the increase of the sub-pixel variability

at 2 km resolution. This point is illustrated by the increase of the error

in the temperature disaggregated by D0 from 3.7◦C to 4.1◦C when using

data aggregated at 1 km and 2 km resolution, respectively. The increase of

disaggregation error when increasing the gap between high and low resolution

was already mentioned in Merlin et al. (2009).

The aggregation of low-resolution data before the disaggregation makes

the slope between disaggregated and ASTER data decrease. In order words,

aggregating low-resolution data reduces the sensitivity of the disaggrega-

tion algorithm. However, the inclusion of an additional variable (fractional

non-photosynthetically active vegetation in our case) in the disaggregation

increases the sensitivity of D2, and thus makes the slope increase. One

consequence is that D2 is more robust with respect to the resolution of low-

resolution data than D0 and D1. In particular, the slope between disaggre-

gated and ASTER temperature is approximately unchanged for D2 when

using 1 km and 2 km resolution aggregated ASTER data.
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4. Application to MODIS Data

4.1. 1 km resolution re-sampled MODIS data

Disaggregation algorithms are first applied to the MODIS data re-sampled

at 1 km resolution. Statistical results for all dates with a mean fractional

non-photosynthetically active vegetation cover larger than 0.10 are listed in

Table 3. The mean root mean square difference between disaggregated and

ASTER temperature is 4.0◦C and 3.8◦C for D1 and D2, respectively. The

use of MODIS data instead of aggregated ASTER data results in an in-

crease by about 1◦C of the mean error. The error increase is attributed to

the discrepancy between MODIS and ASTER data. In particular, the root

mean square difference (3.8◦C for D2) is approximately equal to the square

root of the sum of the mean square difference between MODIS and ASTER

temperature (2.4◦C) and the mean square error in the temperature disag-

gregated using aggregated ASTER temperature (2.8◦C). The negative mean

differences between disaggregated and ASTER temperature are not caused

by the disaggregation algorithms but by the difference between MODIS and

ASTER products. In terms of algorithmic performance, D1 and D2 are still

more accurate than D0 and D2 is more accurate than D1 consistent with the

results obtained using aggregated ASTER data.

4.2. 2 km resolution re-sampled MODIS data

It is reminded that 2 km resolution re-sampled MODIS data are closer

to ASTER data than 1 km resolution re-sampled MODIS data. As stated

earlier, the difference between MODIS and ASTER products may be due to

image co-registration error and to the algorithm used to derive land surface
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temperature. To assess the impact of the accuracy in re-sampled MODIS

data on disaggregation results, algorithms D0, D1, and D2 are now applied

to 2 km resolution re-sampled MODIS data. Results for all dates with a mean

fractional non-photosynthetically active vegetation cover larger than 0.10 are

presented in Table 4. When using the 2 km instead of 1 km resolution MODIS

temperature as input to the disaggregation algorithms, statistical results are

improved for D1 and D2. The decrease in the mean error for D1 and D2 is

associated with an increase of the mean correlation coefficient and an increase

of the mean slope. In fact, because MODIS data are closer to ASTER data

at 2 km than at 1 km resolution, the aggregation of MODIS data from 1 km

to 2 km has two opposite effects on disaggregation results. On the one hand,

aggregation increases the gap between low and high resolution, and thus

amplifies sub-pixel variabilities and associated disaggregation errors. On the

other hand, aggregation reduces random uncertainties in MODIS data and

consequently increases the disaggregation accuracy. Under the conditions

that prevail in this study, the gain in accuracy by aggregating MODIS data

at 2 km resolution is superior to the loss in accuracy due to the increase

of sub-pixel variabilities, so that the disaggregation is actually improved by

using 2 km resolution re-sampled MODIS data.

5. Sensitivity Analysis

5.1. Input data

Application of disaggregation algorithm D2 requires a number of parame-

ters determined from both high-resolution shortwave data and low-resolution

thermal infrared data. These include albedo values for the estimation of the
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fractional total vegetation cover, and albedo and extreme temperatures for

the projection of fractional photosynthetically active vegetation cover. To

assess the impact on disaggregation results of uncertainties in these parame-

ters, a sensitivity analysis is conducted by varying αs, αpav, Ts, min, Ts, max,

Tv, min and Tv, max. In practice, D2 is applied to three different data sets

A, B and C. Data set A is the same as that used in Section 3.1: ftv is de-

rived from Equation (12) by using the parameters αs and αpav derived at

high-resolution from the time series of Formosat-2 data and fproj
pav is derived

from Equation (9) by using the extreme temperatures derived from the space

Tkm-〈α〉km at 1 km resolution. Data set B is identical to A except that ftv

is derived by using 〈αs〉 and 〈αpav〉, the soil and photosynthetically active

vegetation albedo averaged within the study area respectively. The root

mean square difference between αs and 〈αs〉 and between αpav and 〈αpav〉

is 0.016 and 0.036, respectively. Data set C is identical to A expect that

fproj
pav is derived by using the extreme temperatures derived from the space

T -α at 100 m resolution (as in Figure 6b). The root mean square difference

between the extreme temperatures estimated from the space Tkm-〈α〉km at 1

km resolution and those estimated from the space T -α at 100 m resolution

are 1.8, 2.7, 4.4 and 2.8◦C for Tv,min, Ts,min, Tv,max and Ts,max respectively.

The disaggregation results obtained with data set A, B and C are presented

in Table 5 in terms of root mean square difference, correlation coefficient

and slope between disaggregated and ASTER temperatures. One observes

that the statistical results obtained with data set A are in general slightly

degraded with data set B and slightly improved with data set C. However,

the difference between data sets is relatively low compared to the improve-
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ment associated with the use of D2 instead of D1 and D0. Consequently,

the sensitivity analysis indicates that D2 is relatively stable with respect to

uncertainties in input parameters.

5.2. Formulation of fractional photosynthetically active vegetation cover

Fractional photosynthetically active vegetation cover is required in both

D1 and D2. In this study, fpav is estimated using the expression from

Gutman and Ignatov (1998) presented in Equation (11). As many other ex-

pressions have been developed, one needs to evaluate the impact of a change

in the formulation of fpav on disaggregation results. For instance, Baret et al.

(1995) expressed fractional photosynthetically active vegetation cover as:

fpav = 1 −

(

NDVIpav − NDVI

NDVIpav − NDVIs

)0.62

(14)

and Carlson and Ripley (1997) as:

fpav =

(

NDVI − NDVIs
NDVIpav − NDVIs

)2

(15)

The three formulations from Gutman and Ignatov (1998) (GI98), Baret et al.

(1995) (B95) and Carlson and Ripley (1997) (CR97) are implemented in D1

and D2 and disaggregation algorithms are applied to data set A. In each

case, the root mean square difference, correlation coefficient and slope be-

tween disaggregated and ASTER temperatures are presented in Table 6. One

observes that both GI98 and B95 are approximately equivalent in terms of

disaggregation performance, while errors are slightly increased with CR97.

The performance of D2 is generally superior to that of D1, regardless of the

formulation chosen for fpav. Therefore, the differentiation between photosyn-

thetically and non-photosynthetically active vegetation cover has a stronger
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impact on disaggregated temperature than the choice in the formulation of

fractional photosynthetically active vegetation cover.

6. Conclusion

A new disaggregation procedure of kilometric thermal data is developed

to account for the status of vegetation. It is based on a time series of

Formosat-derived fractional (photosynthetically and non-photosynthetically

active) vegetation cover. The methodology is tested over a 16 km by 10

km irrigated cropping area in northwestern Mexico during the 2007-2008

agricultural season. On seven dates, kilometric surface temperature is disag-

gregated at 100 m resolution, and disaggregated temperature is subsequently

compared against concurrent ASTER data.

The disaggregation approach is first applied to the ASTER data aggre-

gated at MODIS resolution (1 km). Statistical results indicate that the new

methodology is more robust than the classical one, and is always more accu-

rate when fractional non-photosynthetically active vegetation cover is larger

than 0.10. The mean correlation coefficient and slope between disaggregated

and ASTER temperature is increased from 0.75 to 0.81 and from 0.60 to 0.77,

respectively. The disaggregation algorithm is then applied to real MODIS

data. The error on disaggregated temperature is increased by 1◦C, which

corresponds to the difference evaluated at 1 km resolution between ASTER

and MODIS data. The approach is also tested using the MODIS data re-

sampled at 2 km resolution. Aggregation reduces random errors in MODIS

data and consequently increases the disaggregation accuracy.

Although the new methodology is found to be more robust than the
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classical one, the disaggregation error is still about 3◦C, which corresponds

to an error in evapotranspiration of about 150 W m−2 (Kalma et al., 2008).

This error could be partly explained by the variability of surface temperature

for different values of surface soil moisture. The integration of microwave-

derived soil moisture into the disaggregation procedure is part of ongoing

research. Before any robust disaggregation method is developed, monitoring

water fluxes over highly heterogeneous agricultural areas will rely on thermal

remote sensing at Landsat scale.
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Table 1: The ASTER temperature aggregated at 1 km resolution is disaggregated at 100 m resolution by D0, D1, and

D2, and disaggregated temperature is compared to 100 m resolution ASTER temperature in terms of root mean square

difference (RMSD), correlation coefficient (R) and slope. The regression coefficients a1 and a
proj
1 and the mean fractional non-

photosynthetically active vegetation cover 〈ftv − fpav〉 are also indicated for each date. The four dates with 〈ftv − fpav〉 > 0.10

are highlighted in bold.

RMSD (◦C) R (-) Slope (-) a1 a
proj
1 〈ftv − fpav〉

Date D0 D1 D2 D0 D1 D2 D0 D1 D2 (◦C) (◦C) (-)

Dec 30 2.66 1.90 1.71 0.54 0.80 0.85 0.29 0.68 0.81 −9.6 −6.6 0.21

Feb 23 3.69 2.22 2.42 0.56 0.87 0.85 0.31 0.81 0.82 −15 −4.9 0.04

Mar 10 3.88 1.83 2.21 0.59 0.93 0.90 0.34 0.92 0.93 −18 −4.4 0.04

Apr 11 4.83 3.00 3.18 0.61 0.88 0.86 0.37 0.84 0.86 −22 −15 0.06

Apr 27 4.69 3.54 3.52 0.63 0.81 0.84 0.39 0.74 0.90 −23 −20 0.36

May 6 3.71 3.40 3.07 0.60 0.68 0.78 0.37 0.48 0.78 −13 −17 0.62

May 13 3.54 3.15 2.84 0.61 0.71 0.77 0.38 0.49 0.58 −10 −14 0.69

All 3.65 3.00 2.78 0.60 0.75 0.81 0.36 0.60 0.77 −16 −12 0.47
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Table 2: The ASTER temperature aggregated at 2 km resolution is disaggregated at 100 m resolution by D0, D1, and D2,

and disaggregated temperature is compared to 100 m resolution ASTER temperature in terms of root mean square difference

(RMSD), correlation coefficient (R) and slope. The regression coefficients a1 and a
proj
1 are also indicated for each date.

RMSD (◦C) R (-) Slope (-) a1 a
proj
1

Date D0 D1 D2 D0 D1 D2 D0 D1 D2 (◦C) (◦C)

Dec 30 2.95 2.01 1.87 0.36 0.77 0.83 0.13 0.63 0.84 −9.5 −7.2

Apr 27 5.30 4.15 4.29 0.48 0.75 0.81 0.24 0.72 0.98 −26 −24

May 6 4.13 3.87 3.64 0.46 0.57 0.74 0.21 0.40 0.84 −17 −20

May 13 3.95 3.55 3.21 0.47 0.61 0.70 0.23 0.34 0.43 −8.2 −11

All 4.08 3.40 3.25 0.44 0.68 0.77 0.20 0.52 0.77 −15 −16
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Table 3: The MODIS temperature re-sampled at 1 km resolution is disaggregated at 100 m resolution by D0, D1, and D2,

and disaggregated temperature is compared to 100 m resolution ASTER temperature in terms of root mean square difference

(RMSD), correlation coefficient (R), slope and mean difference (MD). The regression coefficients a1 and a
proj
1 are also indicated

for each date.

RMSD (◦C) R (-) Slope (-) MD (◦C) a1 a
proj
1

Date D0 D1 D2 D0 D1 D2 D0 D1 D2 D0 D1 D2 (◦C) (◦C)

Dec 30 3.41 3.08 3.01 0.38 0.64 0.68 0.13 0.26 0.29 −1.74 −1.74 −1.74 −3.3 −0.9

Apr 27 5.26 4.31 3.99 0.51 0.72 0.77 0.23 0.42 0.48 −0.76 −0.76 −0.76 −13 −13

May 6 4.87 4.70 4.37 0.48 0.57 0.69 0.20 0.25 0.35 −2.65 −2.65 −2.65 −5.5 −8.8

May 13 4.15 4.00 3.85 0.48 0.56 0.61 0.19 0.23 0.27 −1.28 −1.28 −1.28 −3.5 −1.6

All 4.42 4.02 3.81 0.46 0.62 0.69 0.19 0.29 0.35 −1.61 −1.61 −1.61 −6.3 −6.1
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Table 4: The MODIS temperature re-sampled at 2 km resolution is disaggregated at 100 m resolution by D0, D1, and D2,

and disaggregated temperature is compared to 100 m resolution ASTER temperature in terms of root mean square difference

(RMSD), correlation coefficient (R), slope and mean difference (MD). The regression coefficients a1 and a
proj
1 are also indicated

for each date.

RMSD (◦C) R (-) Slope (-) MD (◦C) a1 a
proj
1

Date D0 D1 D2 D0 D1 D2 D0 D1 D2 D0 D1 D2 (◦C) (◦C)

Dec 30 3.47 2.84 2.75 0.32 0.75 0.76 0.09 0.37 0.44 −1.74 −1.74 −1.74 −5.4 −1.5

Apr 27 5.48 4.16 3.70 0.44 0.73 0.80 0.17 0.51 0.62 −0.76 −0.76 −0.76 −18 −18

May 6 5.00 4.71 4.22 0.42 0.55 0.71 0.15 0.26 0.47 −2.65 −2.65 −2.65 −9.5 −15

May 13 4.27 4.05 3.91 0.43 0.55 0.61 0.14 0.20 0.24 −1.28 −1.28 −1.28 −4.2 −1.6

All 4.55 3.94 3.64 0.40 0.65 0.72 0.14 0.33 0.44 −1.61 −1.61 −1.61 −9.3 −9.0
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Table 5: The ASTER temperature aggregated at 1 km resolution is disaggregated at 100 m resolution by D2 using data set A,

B and C, and disaggregated temperature is compared to 100 m resolution ASTER temperature in terms of root mean square

difference (RMSD), correlation coefficient (R) and slope. The regression coefficient a
proj
1 is also indicated.

RMSD (◦C) R (-) Slope (-) a
proj
1 (◦C)

Date A B C A B C A B C A B C

Dec 30 1.71 1.66 1.71 0.85 0.85 0.84 0.81 0.79 0.77 −6.6 −6.5 −8.6

Apr 27 3.52 3.45 3.32 0.84 0.84 0.85 0.90 0.83 0.88 −20 −19 −22

May 6 3.07 3.10 3.00 0.78 0.77 0.78 0.78 0.76 0.71 −17 −17 −20

May 13 2.84 2.85 2.70 0.77 0.77 0.80 0.58 0.57 0.63 −14 −14 −15

All 2.78 2.76 2.68 0.81 0.81 0.82 0.77 0.74 0.75 −14 −14 −16
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Table 6: The ASTER temperature aggregated at 1km resolution is disaggregated at 100 m resolution by D2 (D1) using the

fpav formulation from Gutman and Ignatov (1998) (GI98), Baret et al. (1995) (B95) and Carlson and Ripley (1997) (CR97).

Disaggregated temperature is compared to 100 m resolution ASTER temperature in terms of root mean square difference

(RMSD), correlation coefficient (R) and slope.

RMSD (◦C) R (-) Slope (-)

Date GI98 B95 CR97 GI98 B95 CR97 GI98 B95 CR97

Dec 30 1.71 (1.90) 1.78 (1.90) 1.94 (1.99) 0.85 (0.80) 0.84 (0.80) 0.81 (0.78) 0.81 (0.68) 0.80 (0.68) 0.78 (0.69)

Apr 27 3.52 (3.54) 3.57 (3.62) 3.79 (3.84) 0.84 (0.81) 0.84 (0.81) 0.82 (0.78) 0.90 (0.74) 0.91 (0.72) 0.90 (0.68)

May 6 3.07 (3.40) 3.00 (3.41) 3.11 (3.48) 0.78 (0.68) 0.79 (0.68) 0.77 (0.66) 0.78 (0.48) 0.79 (0.48) 0.76 (0.44)

May 13 2.84 (3.15) 2.73 (3.15) 2.78 (3.18) 0.77 (0.71) 0.79 (0.71) 0.79 (0.71) 0.58 (0.49) 0.61 (0.48) 0.62 (0.47)

All 2.78 (3.00) 2.77 (3.02) 2.90 (3.12) 0.81 (0.75) 0.82 (0.75) 0.80 (0.73) 0.77 (0.60) 0.78 (0.59) 0.76 (0.57)
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Figure 1: Schematic diagram presenting an overview of the re-sampling of Formosat-2, ASTER and MODIS data, the disag-

gregation algorithms D0, D1 and D2 and the verification strategy at 100 m resolution.
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Figure 2: The variations of surface albedo (α) as function of fractional photosynthetically

active vegetation cover (fpav) are used to estimate the fraction of total (photosynthetically

plus non-photosynthetically active) vegetation ftv. Fractional vegetation cover (ftv) is set

to fpav during the growing period and to fpav, max during the senescence period.
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Figure 3: Fractional vegetation cover (ftv) is plotted against surface albedo (α) for data

on all dates.
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Figure 4: Images on December 30, April 11 and May 6 of fractional photosynthetically active vegetation cover (fpav), surface

albedo (α) and fractional vegetation cover (ftv) over the 16 km by 10 km study area.
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Figure 5: Re-sampled MODIS temperature is plotted against aggregated ASTER temperature for data at 1 km (left) and 2

km (right) resolution.
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Figure 6: Scatterplot of 1 km resolution aggregated ASTER temperature versus 1 km resolution aggregated surface albedo (a),

ASTER temperature versus surface albedo (b) and ASTER temperature versus fractional photosynthetically active vegetation

cover (c). Extreme temperatures are estimated by intepreting the bare soil, dry surface, full-cover vegetation and wet surface

edges of the polygon in (a).
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Figure 7: Scatterplot of fractional photosynthetically active vegetation cover (fpav) and

projected fractional photosynthetically active vegetation cover (fproj
pav ) versus ASTER tem-

perature.
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Figure 8: ASTER temperature compared to the temperature disaggregated by D0, D1

and D2 on December 30 (left) and May 6 (right).

51



Figure 9: Scatterplot of the temperature disaggregated by D0, D1 and D2 versus ASTER

temperature on December 30, April 27, May 6 and May 13.

52


	Introduction
	Material and Method
	Disaggregation methodology
	Data collection and pre-processing
	Formosat-2 data
	Biophysical variables derived from Formosat-2 images
	ASTER data
	MODIS data

	Extreme temperatures extrapolated from MODIS data using ancillary data
	Projection

	Application to Aggregated ASTER Data
	1 km resolution aggregated ASTER data
	2 km resolution aggregated ASTER data

	Application to MODIS Data
	1 km resolution re-sampled MODIS data
	2 km resolution re-sampled MODIS data

	Sensitivity Analysis
	Input data
	Formulation of fractional photosynthetically active vegetation cover

	Conclusion

