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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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A B S T R A C T

Long term flux measurements of different crop species are necessary to improve our understanding of

management and climate effects on carbon flux variability as well as cropland potential in terrestrial

carbon sequestration. The main objectives of this study were to analyse the seasonal dynamics of CO2

fluxes and to establish the effects of climate and cropland management on the annual carbon balance.

CO2 fluxes were measured by means of the eddy correlation (EC) method over two cropland sites,

Auradé and Lamasquère, in South West France for a succession of three crops: rapeseed, winter wheat

and sunflower at Auradé, and triticale, maize and winter wheat at Lamasquère. The net ecosystem

exchange (NEE) was partitioned into gross ecosystem production (GEP) and ecosystem respiration (RE)

and was integrated over the year to compute net ecosystem production (NEP). Different methodologies

tested for NEP computation are discussed and a methodology for estimating NEP uncertainty is

presented.

NEP values ranged between �369 � 33 g C m�2 y�1 for winter wheat at Lamasquère in 2007 and

28 � 18 g C m�2 y�1 for sunflower at Auradé in 2007. These values were in good agreement with NEP values

reported in the literature, except for maize which exhibited a low development compared to the literature.

NEP was strongly influenced by the length of the net carbon assimilation period and by interannual climate

variability. The warm 2007 winter stimulated early growth of winter wheat, causing large differences in GEP,

RE and NEE dynamics for winter wheat when compared to 2006. Management had a strong impact on CO2

flux dynamics and on NEP. Ploughing interrupted net assimilation during voluntary re-growth periods, but it

had a negligible short term effect when it occurred on bare soil. Re-growth events after harvest appeared to

limit carbon loss: at Lamasquère in 2005 re-growth contributed to store up to 50 g C m�2. Differences in NEE

response to climatic variables (VPD, light quality) and vegetation index were addressed and discussed.

Net biome production (NBP) was calculated yearly based on NEP and considering carbon input

through organic fertilizer and carbon output through harvest. For the three crops, the mean NBP at

Auradé indicated a nearly carbon balanced ecosystem, whereas Lamasquère lost about 100 g C m�2 y�1;

therefore, the ecosystem behaved as a carbon source despite the fact that carbon was imported through

organic fertilizer. Carbon exportation through harvest was the main cause of this difference between the

two sites, and it was explained by the farm production type. Lamasquère is a cattle breeding farm,

exporting most of the aboveground biomass for cattle bedding and feeding, whereas Auradé is a cereal

production farm, exporting only seeds.

� 2009 Published by Elsevier B.V.
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C1. Introduction

Understanding and quantifying carbon sources and sinks is a
major challenge for the scientific community. The main goal is to
assess the carbon balance, to see what practices result in lower
emissions and to recommend their use. In terrestrial ecosystems,
the massive conversion of forest to cropland has caused an
important loss of soil carbon, mainly through soil respiration
23
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(Robert and Saugier, 2003). Currently, croplands represent about
one third of Europe’s land surface (Smith et al., 2005). Over the last
8000 years, agriculture has had a significant impact on the
atmospheric concentration of CO2 and CH4 (Salinger, 2007).
Impacts of agriculture on global climate changes through green-
house gas emissions and changes in the physical properties of land
cover have been summarized in the recent analyses of Desjardins
and Sivakumar (2007) Qand Raddatz (2007). Hutchinson et al.
(2007) concluded that the carbon sequestration potential of
croplands should be considered as a modest but non-negligible
contribution to climate change mitigation (between 3% and 6% of
fossil fuel contribution to climate changes), but quantification of
f a three crop succession over two cropland sites in South West
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crop carbon sequestration potential remains very uncertain.
Therefore, variability in stocks and fluxes of carbon in croplands
is a theme of major interest. However, most studies involving
micrometeorological measurements by the eddy correlation (EC)
method have focused on forest ecosystems, some have investi-
gated grasslands and only a minority has concentrated on
croplands.

Recent studies on croplands have focused on seasonal patterns
of CO2 flux and annual carbon balance for different crops. The most
studied croplands were maize-soybean rotations in North America
(Baker and Griffis, 2005; Bernacchi et al., 2005; Hollinger et al.,
2005; Pattey et al., 2002; Suyker et al., 2005, 2004; Verma et al.,
2005). However, rice (Saito et al., 2005), sugar beat (Moureaux
et al., 2006), winter wheat and triticale (Ammann et al., 1996;
Anthoni et al., 2004a; Baldocchi, 1994) have also been studied. In
Soegaard et al. (2003), an attempt was made to scale up crop fluxes
by comparing EC measurements placed on a tall mast coupled with
a footprint analysis of EC measurements over five different crop
plots (winter wheat, spring and fall barley, maize and grass)
around the tall mast.

Some of recent studies on croplands reveal the importance of
management practices on plot carbon balance. In Baker and Griffis
(2005), CO2 flux measurements were carried out on two plots with
similar climatic and soil conditions but different management
practices. The authors concluded that carbon gain caused by
reduced tillage and intercropping compared to conventional
management was compensated for by a drop in productivity
and an increase in crop residue decomposition. However, it has
been shown that the conversion of conventional tillage to no-till
agriculture in maize/soybean crops in the USA might result in an
annual net carbon sequestration of 20.77 Tg C (Bernacchi et al.,
2005, 2006). Hollinger et al. (2005) showed that considering
biomass export and fuel combustion may transform a soybean crop
from a sink to a source of carbon. Therefore, considering
management to address whether a crop is a source or a sink is
essential. Still, too few long-term accurate flux measurements over
different crop species have been conducted to quantify manage-
ment and climate effects on spatial and temporal flux variability, as
well as to determine the potential role of cropland in terrestrial
carbon sequestration.

In the present study, CO2 flux measurements were performed,
using the EC method, during three cropping seasons in South West
France at two crop sites with similar climates but different soils
and management practices. The main objectives were (1) to adapt
conventional EC data post-treatments, developed mainly for forest,
to account for fast and discontinuous canopy structure variations
specific to croplands, to evaluate the impact of these modified
computational methods on annual net ecosystem carbon exchange
(NEP) and estimate NEP uncertainty; (2) to analyse the seasonal
dynamics and CO2 flux evolution of different crop species
(rapeseed, triticale, winter wheat, maize and sunflower) in relation
to management and climate; (3) to compare crop carbon
assimilation efficiencies through analysis of light response curves;
and (4) to establish the annual carbon balance for the different
crops and evaluate the influence of management and climate.

2. Materials and methods

2.1. Site descriptions

Since 18 March 2005, micrometeorological and meteorological
measurements have been performed over two cultivated plots,
Auradé and Lamasquère, separated by 12 km and located near
Toulouse (South West France). Both sites are part of the
CarboEurope-IP Regional experiment (Dolman et al., 2006) and
the CarboEurope-IP Ecosystem component (WP1) experiment.
Please cite this article in press as: Pierre, B., et al., Carbon balance o
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Both sites have been cultivated for more than 30 years and
experience similar climatic conditions but have different manage-
ment practices, soil properties and topography. Crop rotations on
both sites are quite representatives of the main regional crop
rotations. Table 1 summarizes the main characteristics and general
climate of the two sites.

The Auradé plot belongs to a private farmer and is located on a
hillside area near the Garonne river terraces. The plot is
characterised by a rapeseed/winter wheat/sunflower/winter
wheat rotation. It was cultivated with rapeseed (Brassica napus

L.) from 13-Sept-2004 (day-month-year) to 27-Jun-2005, with
winter wheat (Triticum aestivum L.) from 27-Oct-2005 to 29-Jun-
2006 and with sunflower (Helianthus annuus L.) from 11-Apr-2007
to 20-Sept-2007. It was supplied with mineral fertilizer (204 and
124 kg N ha�1 for rapeseed and winter wheat, respectively, and no
fertilization for sunflower) and has never been irrigated. Super-
ficial tillages (5–10 cm depth) were done after rapeseed harvest
(04-Jul-2005 and 04-Aug-2005) to plough residues, and re-growth
of crops and weeds into the soil. Deep tillages (30 cm depth) were
performed before winter wheat sowing (22 and 23-Sept-2005) and
before sunflower sowing (plough on 29 and 30-Sept-2006 and
harrow on 12-Mar-2007).

The Lamasquère plot was cultivated with triticale (Triticosecale)
from 24-Nov-2004 to 11-Jul-2005, with maize (Zea mays L.) used
for silaging from 01-May-2006 to 31-Aug-2006 and with winter
wheat (Triticum aestivum L.) from 18-Oct-2006 to 15-Jul-2007. This
plot is part of an experimental farm owned by the Ecole Supérieure
d’Agronomie de Purpan (ESAP). The instrumented site borders the
‘‘Touch’’ river and is characterised by a triticale/maize/winter
wheat/maize rotation. Organic fertilisers (150, 115 and 150 kg N
ha�1 for triticale, maize and winter wheat, respectively) and
mineral fertilisers (89, 91 and 234 kg N ha�1 for triticale, maize and
winter wheat, respectively) were supplied to the plot. To plough
residues and manure into the soil, the plot was tilled superficially
before the sowing of triticale (28-Sept-2004), and a non-inverting
tillage was performed between the maize harvest and winter
wheat sowing (10 and 11-Oct-2006). A deep tillage was done
before maize sowing (plough on 01-Dec-2005 and harrow on 29
and 30-Mar-2006). The plot was irrigated when maize was
cultivated, with a total amount of 147.8 mm. In autumn 2004,
triticale seeds were spread instead of being sown in a row, because
the soil was too wet to allow the use of conventional tools.

2.2. Field measurements

2.2.1. Flux measurements

Masts were installed in the middle of each plot in order to
optimize fetch in main wind directions (see Table 1). Secured
enclosures surrounded the masts to avoid damage caused by
wild animals. Management within the enclosures closely
resembled the management in the rest of the fields. Turbulent
fluxes of CO2 (Fct), water vapour (evapotranspiration, E and
latent heat, LE), sensible heat (H) and momentum (t) have been
measured continuously by the EC method (Aubinet et al., 2000;
Baldocchi, 2003; Grelle and Lindroth, 1996; Moncrieff et al.,
1997) since 18-Mar-2005. The EC devices were mounted at
heights of 2.8 and 3.65 m at Auradé and Lamasquère, respec-
tively. Instrument heights were chosen to be at worst 1 m higher
than crops at their maximum development. The EC system is
made of a three-dimensional sonic anemometer (CSAT 3,
Campbell Scientific Inc, Logan, UT, USA) and an open-path
infrared gas analyzer (LI7500, LiCor, Lincoln, NE, USA). Data
were recorded at 20 Hz on a data logger (CR5000, Campbell
Scientific Inc, Logan, UT, USA) and stored on a 1 GB compact
flash card. Zero and span calibrations were performed for CO2

and H2O every six month.
f a three crop succession over two cropland sites in South West
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Table 1
Site characteristics and general information on soil and meteorology. Climatic means were measured with each site meteorological station as described in Section 2.2. Mean

annual air temperatures and annual precipitations were computed with data from 18-Mar-2005 to 17-Mar-2006 (2005 values) and from October to October (2006 and 2007

values). Mean wind speed and wind rose were computed with data from 18-Mar-2005 to 01-Oct-2007. Climatic normals are ‘‘Meteo France’’ data from the ‘‘Toulouse Blagnac’’

station (visible at http://www.infoclimat.fr/climatologie/index.php); they correspond to means calculated over 30 years (1961–1990).

Sites

Auradé Lamasquère

Site characteristics

Coordinates 4385409700N, 0181006100E 4384906500N, 0182307900E

Plot area [ha] 23.5 32.3

Elevation [m] 245 180

Slope [%] 2 0

Exposure ENE

Fetch in main wind directions [m] 260 W, 270 ESE 200 W, 140 ESE

Soil

Class of soil texture Clay loam Clay

Particle analysis [% sand; % loam; % clay] 20.6; 47.1; 32.3 12.0; 33.7; 54.3

Site climates

Mean annual temperature

2005 [8C] 12.84 12.54

2006 [8C] 12.97 12.95

2007 [8C] 13.30 13.09

Annual precipitation

2005 [mm] 724 681

2006 [mm] 684 620

2007 [mm] 671 615

Mean wind speed [m s�1] 2.60 1.79

Site climates

Wind distribution

Climatic normals

Mean annual temperature [8C] 12.9

Annual Precipitation [mm] 655.7

B. Pierre et al. / Agricultural and Forest Meteorology xxx (2009) xxx–xxx 3
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Standard meteorological variables were recorded on each site
to analyse and calculate turbulent fluxes. Different radiation
components were measured: incoming and outgoing short-wave
and long-wave radiation with a CNR1 (Kipp & Zonen, Delft, NL); net
radiation with a NR-lite (Kipp & Zonen, Delft, NL); incoming
photosynthetic photon flux density (PPFD) with a PAR-lite (Kipp &
Zonen, Delft, NL) and direct and diffuse PPFD with a BF2 (Delta-T,
Cambridge, UK). Direct and diffuse PPFD measurements began in
March 2005 at Lamasquère and in September 2005 at Auradé.
Three PAR-LE sensors (PAR-LE, Solems, Palaiseau, France) were
used to measure transmitted PPFD to soil and one to measure
reflected PPFD above vegetation. Photosynthetic photon flux
density absorbed by vegetation (aPPFD) was calculated as follows
(Ruimy et al., 1995):

aPPFD ¼ ðPPFDþ rstPPFDÞ � ðtPPFDþ rtPPFDÞ (1)

where rs is the soil reflectance for PPFD, tPPFD is the PPFD
transmitted to soil and rtPPFD is the total reflected PPFD by both
soil and vegetation measured above vegetation. The first and
Please cite this article in press as: Pierre, B., et al., Carbon balance o
France. Agric. Forest Meteorol. (2009), doi:10.1016/j.agrformet.2009
second term of the right-hand side of Eq. (1) correspond to
incoming and outgoing PPFD relative to the vegetation, respec-
tively. rs was estimated as the slope of the linear regression
between rtPPFD and PPFD during bare soil periods between tillage
and sowing. rs estimates were 0.145 (R2 = 0.81) at Lamasquère and
0.231 (R2 = 0.82) at Auradé. aPPFD was only calculated for periods
with plant area index (PAI) higher than 1 m2 m�2 to limit spatial
variability errors in tPPFD measurements caused by spatial
heterogeneity in radiation at the floor and the limited number
of sensors. During those periods, statistical differences between
the PAR-LE sensors were low (relative standard deviation <0.3).

Air temperature and relative humidity were measured with a
Vaisala probe (HMP35A, Vaisala, Helsinki, Finland). Precipitation
was recorded with a ARG100 rain-gauge (Environmental Measure-
ments Ltd., Sunderland, UK), atmospheric pressure with a BS4
sensor (BS4, Delta-T, Cambridge, UK), wind speed and direction
with a 014A wind speed sensor and a 024A wind direction sensor
(Met one instruments, inc., Grants Pass, OR, USA), respectively, at
Lamasquère and a Young wind monitor (05103, Young, Traverse
city, MI, USA) at Auradé. Surface radiative temperature was
measured with a precision infrared temperature sensor (IRTS-P,
f a three crop succession over two cropland sites in South West
.05.004
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Campbell Scientific Inc, Logan, UT, USA). Soil temperature,
moisture and heat flux profiles were measured with TP107
(Campbell Scientific Inc, Logan, UT, USA), CS616 (Campbell
Scientific Inc, Logan, UT, USA) and HFP01 (Hukseflux, Delft, NL)
probes, respectively. Three measurement repetitions were per-
formed on each site at depths of 0.05, 0.10, 0.30 m and a single
measurement was taken at depths of 0.60 and 1 m at Auradé and
Lamasquère, respectively. Since 03-Nov-2006 at Auradé and 24-
Aug-2006 at Lamasquère, CO2 atmospheric concentration, air
temperature and relative humidity profiles (50 and 150 cm
aboveground) have been measured using GMP343 (GMP343,
Vaisala, Helsinki, Finland) and HMP50 (HMP50, Vaisala, Helsinki,
Finland), respectively. These measurements were then used for
multi-layer CO2 storage calculations (see Section 2.3).

2.2.3. Biomass inventories and photosynthetic surface measurements

Destructive measurements were operated to analyse biomass
and PAI dynamics. In 2005, randomly spatially distributed plants
were collected monthly in each field. Between each destructive
measurement date, 30 and 20 randomly spatially distributed
hemispherical photographs were taken at Auradé and Lamasquère,
respectively, to analyse PAI temporal evolution more accurately
(Demarez et al., in press). This method was cross-calibrated with
destructive measurements. In 2006 and in 2007, plants were
collected on the two diagonals of the fields, monthly during slow
vegetation development periods and every two weeks during fast
vegetation development periods. The aboveground dry mass (DM)
distribution among organs was measured using OHAUS balance
(SPU 4001, OHAUS, Pine Brook, NJ, USA). PAI was defined as the half
surface of all green organs and leaf area index (LAI) as the half
surface of green leaves; it was measured by means of a LiCor
planimeter (LI3100, LiCor, Lincoln, NE, USA). For rapeseed, maize
and sunflower, 30 plants were collected at each date. However,
because of the large rapeseed plant sizes, only 10 plants were
sampled at Auradé from April 2005 until harvest. This reduced
sampling and the large variability observed in the field may explain
the large PAI standard deviation observed on 28-Apr-2005
(Fig. 2(a)). For winter wheat, ten 1.5 m long rows were collected
at each sampling date. Because seeds were not sown in rows,
triticale was sampled by collecting ten 0.25 m2 plots.

After harvest, crop residues were sampled on ten 0.25 m2 plots
for each crop. Analyses of plant and residue carbon content were
performed just before harvest. Exported carbon from the plot
during harvest (Exp) was calculated by subtracting the carbon
content in the aboveground biomass (AGB) and the carbon content
in crop residues (Residues). Exp standard deviation, s(Exp), was
calculated from s(AGB) and s(Residues) as:

sðExpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðAGBÞ2

nb
þ sðResiduesÞ2

nr

s
(2)

where nb is the number of aboveground biomass samples, and nr
the number of residues samples. For this calculation, we assume a
normal distribution and independence between AGB and Residues.
We choose to calculate Exp from our destructive samples instead of
using the yield data from the farmers, because their yield estimates
correspond to mean yield values for several plots grown with the
same crop on the farm. However, both Exp and yields were in good
agreement (slope = 0.97, intercept = 19 g C m�2, R2 = 0.98).

2.3. Flux data treatments

2.3.1. Flux calculation

Atmospheric convention was used in this paper with negative
flux moving downward from the atmosphere to the ecosystem and
positive flux moving upward. EdiRe software (Robert Clement, �
Please cite this article in press as: Pierre, B., et al., Carbon balance o
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1999, University of Edinburgh, UK) was used to calculate fluxes on
5 and 30 min intervals following CarboEurope-IP recommenda-
tions. A 2D rotation was applied in order to align the streamwise
wind velocity component with the direction of the mean velocity
vector. Fluxes were corrected for spectral frequency loss (Moore,
1986). Fct, E and LE fluxes were corrected for air density variations
(Webb et al., 1980).

Before temperature, relative humidity and CO2 concentration
profiles below the EC system were measured, changes in CO2

storage (Fcs) were calculated as described in Aubinet et al. (2001)
but with only one measuring height for CO2 concentration:

Fcs ¼
Pa

RTa
� @c

@t
� hec (3)

where hec is the EC system height, Pa is the atmospheric pressure at
hec, Ta is the air temperature at hec, R is the molar gas constant, and c

is the CO2 concentration at hec. This methodology is known to
underestimate Fcs by about 20–25% (Saito et al., 2005). However, it
is often used for ecosystems with short vegetation, such as
croplands and grasslands, where Fcs is assumed to be low (Anthoni
et al., 2004a; Moureaux et al., 2006; Suyker et al., 2005; Verma
et al., 2005; Wohlfahrt et al., 2005; Xu and Baldocchi, 2004). Net
ecosystem exchange (NEE) was then calculated as the sum of Fct

and Fcs. When CO2 concentration profiles below the EC were
measured, Eq. (3) was used to calculate storage in each hl high layer
of the profile. Fcs below the EC system was then calculated as the
sum of storage in each hl high layer.

2.3.2. Flux filtering and quality control

Fluxes were filtered to remove data corresponding to technical
problems, inappropriate meteorological conditions for EC measure-
ments, low spatial representativeness, and violation of EC theory
(Aubinet et al., 2000; Baldocchi, 2003; Foken and Wichura, 1996).

Initially, flux data were discarded if the scalar means, scalar
standard deviations or flux values were out of realistic bounds.

Fct, E and LE were also discarded during rainfall periods and the
half-hour following rainfall events because of a dysfunction of the
open-path gas analyzer and sonic anemometer in wet conditions.
However, Ruppert et al. (2006) showed that rain gauge measure-
ments are not sufficiently accurate to identify light precipitation
events; therefore, outliers remain. In the present study, these
remaining outliers, as well as those caused by the wet gas analyzer
or other events, were detected by the comparison of half-hourly
fluxes Xi with a 200 data point moving mean (Xgi) and standard
deviation (Xsdi) as follows:

if Xi <Xgi � ð2:5 � XsdiÞ (4a)

or

if Xi >Xgi þ ð2:5 � XsdiÞ (4b)

then Xi was discarded from the dataset. This procedure was
performed separately for day-time and night-time data. Night-
time was defined as PPFD < 5 mmol m�2 s�1 and solar elevation
angles <08.

A friction velocity (u�) criteria was used to determine periods
within the low turbulence regime when fluxes are systematically
underestimated by EC measurements (Aubinet et al., 2000; Falge
et al., 2001; Gu et al., 2005; Papale et al., 2006; Reichstein et al.,
2005). Reichstein et al. (2005) proposed an automatic method to
determine the u� threshold applied every three months to take into
account changes in phenology and canopy properties. However, in
croplands, changes in canopy structure are fast and discontinuous
because of harvest and tillage. Therefore, we defined crop
functioning periods (CFP) between dates of sowing, maximum
crop development, harvest and tillage. A u� threshold was then
f a three crop succession over two cropland sites in South West
.05.004
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determined with the Reichstein et al. (2005) automatic method for
each CFP. Flux data below the highest u� threshold were discarded
from the dataset to maintain the same conservative approach as
Reichstein et al. (2005).

For each half-hourly flux value, a fetch including 90% of the flux
(D90_i) was computed with the Kljun et al. (2004) parameterisation.
This fetch was compared with the distance between the mast and
the edge of the plot in the main wind direction for the corresponding
half-hour (Di). If D90_i > Di, fluxes were discarded because we
assumed that it was not sufficiently representative of the plot.

Stationarity and development of turbulent conditions are
important hypotheses for EC measurements. They were tested
with the steady state test and the integral turbulence characteristic
test recommended by Foken and Wichura (1996) and revisited by
Foken et al. (2004). Flux data were flagged 0, 1 or 2 with 0
corresponding to the best quality and 2 to the worst (see Foken
et al. (2004) for details). However, the steady state test was applied
only if an absolute threshold between covariance over 30 min and
means of covariances over 5 min for the corresponding half-hour
was reached. This method allows us to keep fluxes corresponding
to covariances close to zero that failed the steady state test for
mathematical reasons. The absolute threshold was defined as the
EC measurement estimated accuracy; it was fixed, based on our
expertise, at 1.25 mmol CO2 m�2 s�1 for NEE and 10 W m�2 for
energy fluxes H and LE. Fluxes corresponding to an unrotated
vertical wind velocity mean w>0:35 m s�1 were also flagged 2,
because measurements over this threshold cannot be properly
corrected with rotation procedures (Foken and Wichura, 1996;
Göckede et al., 2004). In the remainder of the study, filtered NEE
correspond to values that pass all the filters described above and
with a quality flag lower than 2.

2.3.3. Flux gapfilling and NEE partitioning between GEP and RE

To compute daily to annual sums of fluxes, NEE gaps were filled
in all the dataset. The algorithm described in Reichstein et al.
(2005) was used for gapfilling; it was not applied to the whole
dataset but on each CFP independently to account for the fast and
discontinuous changes in canopy properties. After gapfilling was
achieved, NEE was partitioned into gross ecosystem production
(GEP) and ecosystem respiration (RE) components. The method
described in Reichstein et al. (2005), based on the Lloyd and Taylor
(1994) model parameters optimisation, was followed:

RE ¼ Rref � exp E0
1

Tref � T0
� 1

Ta � T0

� �� �
(5)

where Rref is the respiration at the reference temperature Tref (here
10 8C therefore Rref = R10), E0 is a parameter describing RE

sensitivity to temperature, and T0 is a temperature scale parameter
kept constant at �46.02 8C as in Lloyd and Taylor (1994) to avoid
any over-parameterization of the model as explained by Reichstein
et al. (2005). First, the model parameter E0 was optimised using
nocturnal filtered NEE (equal to the observed ecosystem respira-
tion) for each CFP, because it is strongly correlated to canopy
properties (see Reichstein et al. (2005) for a full description of the
optimisation process). Then R10 was optimised with nocturnal
filtered NEE for five days sliding windows with a two day step and
interpolated every half-hour. Diurnal RE was then calculated using
Equation 5 with optimised E0 and R10 and diurnal Ta. Diurnal GEP
was finally calculated as the difference between the diurnal
gapfilled NEE and the diurnal calculated RE.

2.3.4. Carbon balance calculation and uncertainty assessments

Net ecosystem production (NEP) was defined as the annual
integration of half-hourly NEE values. NEP was computed from
early October to late September, because this period generally
Please cite this article in press as: Pierre, B., et al., Carbon balance o
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begins after summer crop harvest and before the beginning of
winter crop sowing. Therefore, this integration period is valid for
both winter and summer crop species. However, in 2005,
because continuous EC measurements started on 18-Mar-2005,
the NEP for rapeseed at Auradé and triticale at Lamasquère were
computed between 18-Mar-2005 and 17-Mar-2006. Although
this integration period is not ideal because growth had already
started in March, these data were integrated into the analysis
because of the lack of flux data concerning triticale and rapeseed
in the literature.

Three different sources of random errors were investigated to
asses NEP uncertainty:

(1) The uncertainty introduced in NEP by the random error of the
systematic u� threshold determination s(NEPu) was assessed
with the same bootstrapping approach as in Papale et al. (2006).
Data were re-sampled 100 times using the bootstrap approach to
determine 100 u� thresholds. NEE were then filtered with the
new u� thresholds (NEEu) and gapfilled. All other treatments on
NEEu were the same as those described in Section 2.3.2. NEP
from the 100 u� thresholds (NEPu) were then computed.
s(NEPu) was calculated as the standard deviation of all the NEPu.

(2) Random errors in measurement can also introduce uncertainties
in NEP via gapfilling and data integration (Dragoni et al., 2007;
Rannik et al., 2006; Richardson and Hollinger, in press). We
followed the Richardson and Hollinger (in press) methodology to
calculate the uncertainty introduced in NEP by the random
errors in measurement (s(NEPr)) in the following steps:
- Random errors (d) were calculated as the differences between

fluxes in similar climatic conditions on two successive days
(Richardson et al., 2006).

- A relation between s(d) and NEE was established for 20 NEE
bins with the same number of data in each bin. Both sites
were included in this relation, because they have the same
instrumentation set up and the same ecosystem type. The
following relations were found:

sðdÞ ¼ �0:152NEEþ 0:87 for NEE ¼ 0 ðR2 ¼ 0:82Þ (6a)

sðdÞ ¼ �0:204NEEþ 0:47 for NEE ¼ 0 ðR2 ¼ 0:63Þ (6b)

- Random noise from a double exponential distribution with 0
mean and s(d) standard deviation calculated from Equation
6a and 6b was added to filtered NEE (NEEr). NEEr was then
gapfilled, and the noisy NEP (NEPr) was computed. This last
step was repeated 100 times, and s(NEPr) was calculated as
the standard deviation of all NEPr.

(3) The uncertainty introduced in NEP by the gapfilling method
errors s(NEPgap) was analysed through a gap distribution
impact analysis. First, filtered NEE were gapfilled. Then random
noise from a double exponential distribution with 0 mean and
s(d) standard deviation (Eqs (6a) and (6b)) was added to the
modelled NEE resulting from gapfilling procedures; no random
noise was added to the filtered NEE. This procedure was done to
avoid the smoothing impact of gapfilling procedures. Then gaps
(same number, same size, and with approximately the same
distribution between night and day as observed in filtered NEE)
were randomly introduced in this gapfilled NEE (NEEgap).
NEEgap was then gapfilled and integrated to compute NEP
(NEPgap). Gap re-introduction and NEPgap computation was
done 100 times. s(NEPgap) was calculated as the standard
deviation of all the NEPgap.

Assuming a normal distribution of NEPu, NEPr and NEPgap and
that these three sources of error were independent, NEP standard
deviation, s(NEP), was estimated as the quadratic sum of s(NEPu),
s(NEPr) and s(NEPgap). NEP uncertainty was reported at a 95%
f a three crop succession over two cropland sites in South West
.05.004
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confidence interval as 2s(NEP). Although this method is not an
exhaustive description of random and systematic error associated
with the EC method (for more details see Anthoni et al., 2004a;
Goulden et al., 1996; Moncrieff et al., 1996), it allows estimation of
NEP uncertainty in a systematic way, valid for all ecosystem type,
and with the main sources of error caused by standard flux data
treatments.

Carbon output through Exp and input through organic
fertilization (OF) were analysed to evaluate management effects
on carbon balance at the plot scale. Therefore, net biome
production (NBP) was defined as:

NBP ¼ NEPþ OFþ Exp (7)

As in Hollinger et al. (2005), Exp was considered a rapid carbon
release to the atmosphere; thus, it was positive. OF was considered
a carbon input to the plot, and thus was negative. The standard
deviation of OF, s(OF), was calculated from analyses of the carbon
content in organic fertiliser provided by the farmer. Assuming
independence and normality of the different error sources, s(NBP)
was calculated as the quadratic sum of s(NEP), s(Exp) and s(OF).

2.3.5. Net ecosystem exchange (NEE) response to light

Only filtered NEE data were used for the light response analysis
to avoid artificial relations between PPFD and gapfilled NEE.
Relations between daytime NEE (NEEd) and aPPFD were deter-
mined at each crop maximum development (PAI-

max � 0.5 � PAI � PAImax where PAImax is the maximal value of
PAI) to limit crop dynamics effects on these relations. A
nonrectangular hyperbolic light response model (Gilmanov
et al., 2003) was fitted to each dataset:

NEEd ¼
1

2u
ða � aPPFDþ b

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � aPPFDþ bÞ2 � 4abu � aPPFD

q
Þ-g (8)

where a is the initial slope of the light response curve, b is NEEd at
light saturation, g is the respiration term and u is the curvature
parameter (0 < u � 1). All fitted parameters and fitting statistics
are reported in Table 3. Periods with high vapour pressure deficit
(VPD), leading to a decrease in stomatal conductance and therefore
to a decrease in NEEd, were discarded from this analysis because
this phenomenon was not accounted for in Eq. (8). VPD thresholds
were estimated for each crop by the analysis of the distribution of
NEE residuals (NEEres), computed as the difference between
observed NEE and modelled NEE by Eq. (8). NEEres were averaged
for 1 hPa VPD bins. VPD threshold was defined as the lower VPD
bin with NEEres averages significantly higher than 0 (one-sample
unpaired t-test, p-value < 0.05), meaning a systematic over-
estimation of NEEd by the model beyond this threshold.

NEEres were also analysed against aPPFD, soil water content
(SWC) and Ta (data not shown). For aPPFD and SWC, NEEres were
randomly distributed around 0 with no clear pattern. These results
indicate a satisfying NEEd representation by Eq. (8) and show that
no evident water stress was observed for any crop at maximum
development. At high Ta, modelled NEEd overestimations were
observed; however, a strong correlation between VPD and Ta

(R2 = 0.78 on average for the 6 datasets) leads us to think that this
observation is mostly due to VPD.

3. Results and discussion

3.1. Site meteorology

Annual climatic means from our two stations were compared
to climatic normals (30 year average) recorded at the ‘‘Toulouse
Please cite this article in press as: Pierre, B., et al., Carbon balance o
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Blagnac’’ Meteo France station located 22 and 14 km from the
Auradé and Lamasquère plots, respectively (Table 1). On an
annual basis, no climatic anomalies were observed for both sites,
with mean annual temperature and precipitation close to
normals; except during the 2007 cropping season, where mean
annual temperature was slightly warmer than normals, and less
precipitation was observed at the Lamasquère site than normals.
For the 3 cropping seasons, temperature, precipitation and wind
speed were slightly lower at Lamasquère than at the Auradé
plot, but trends were very similar (Fig. 1). On a quarterly basis,
except for large precipitations observed in spring 2007, seasonal
precipitation dynamics were not no well-marked. Precipitation
was generally similar on both sites but with strong local
differences caused by thunderstorm events (Fig. 1d). On a
weekly basis, no major differences were observed for PPFD and
Ta between the two sites. During the winter of 2006–2007,
episodes with high elevated Ta were observed on both sites
compared to the winter of 2005–2006. Main wind directions
were similar at the two sites, but more scatter was observed at
Lamasquère (Table 1). SWC in the first 30 cm of soil followed
globally the same evolution for both sites except during 2006
summer because of irrigation at Lamasquère (Fig. 1c and d).
Absolute values of SWC were higher at Lamasquère than at
Auradé because of (1) a higher water retention capacity of the
soil at Lamasquère due to higher clay content (Table 1) and (2)
the proximity of the ‘‘Touch’’ river at Lamasquère. Therefore, this
absolute difference did not necessarily induce a difference in soil
water availability for plants.

3.2. Crop growth and production

For winter crops (rapeseed, triticale and winter wheat),
growth started with germination in November and remained
slow until March (Figs. 2 and 3). However, winter wheat
growth in 2007 at Lamasquère started earlier than for the other
winter crops due, almost certainly, to the high temperature
episodes during winter 2006–2007 (Fig. 1). The same phenom-
enon was observed by Aubinet et al. (submitted for publication)
for 2007 winter wheat at the Lonzée site in Belgium. Maximum
growth was observed from late April to late May. PAImax,
(Table 2) and the maximum leaf biomass were reached between
the end of April and the middle of May, followed by senescence.
For rapeseed, total biomass corresponded to leaves until April
but all leaves had fallen by early June, even if the stems were
still photosynthetically active. During senescence, biomass was
reallocated from leaves and stems to fruits (Fig. 3). For summer
crops (maize and sunflower), growth started in late May.
Aboveground biomass increase was relatively constant until the
beginning of August for sunflower and the beginning of
September for maize. For both summer crops, PAI was at its
maximum in the middle of July (Fig. 2, Table 2). Maize was
harvested early at the end of August, corresponding to the
beginning of senescence, because it was used for silaging. For
both winter and summer crops, PAI is a more relevant
indicator of photosynthetic area than LAI because leaves are
not the only photosynthetic organ. This was particularly true at
the end of rapeseed development in early June 2005, with
PAI values higher than 1.5 m2 m�2 and GEP values lower
than �8 g C m�2 d�1 even though LAI values were close to
0 m2 m�2, as explained above (Figs. 2 and 4). AGB ranged
from 324 � 157 g C m�2 for Auradé sunflower in 2007 to
810 � 311 g C m�2 for Lamasquère maize in 2006 (Table 2). On
average, AGB were 36% lower at Auradé than at Lamasquère,
but Exp were 65% lower at Auradé than at Lamasquère. This more
important difference in Exp is linked to crop residues, which
were 1.9 times higher at Auradé than at Lamasquère. This is
f a three crop succession over two cropland sites in South West
.05.004
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Fig. 1. Evolution of meteorological variables from 18-Mar-2005 to 01-Oct-2007. (a) Weekly averages of air temperature (Ta), and (b) weekly sums of photosynthetic photon

flux density (PPFD) at Auradé (solid line and full circles) and Lamasquère (dotted line and open circles). (c and d) The half-hourly soil water content integrated between 0 and

0.3 m depth (SWC0_30) and precipitation (P), respectively, for Auradé (full line) and Lamasquère (dotted line). Weekly sums of irrigation (I) for Lamasquère (vertical grey bar)

and the quarterly sums of precipitation for Auradé (grey bar) and Lamasquère (white bar) are also reported on graphs (c) and (d), respectively.
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Obecause Lamasquère is a cattle breeding farm exporting most of

the aboveground biomass for cattle bedding and feeding,
whereas Auradé is a cereal production farm exporting only the
seeds. Residues were particularly low for maize in 2006 at
Lamasquère because all aboveground biomass was used for
silaging.

3.3. Seasonal changes in carbon fluxes

Net carbon fluxes over crop ecosystems are influenced by
different processes; some are natural (photosynthesis and
respiration), and others are caused by human activities (organic
fertilization, tillage, . . .). Fig. 4 presents the evolution of gross
ecosystem production (GEP, i.e., ecosystem carbon uptake by
both crop and weed photosynthesis) and ecosystem respiration
(RE, i.e., autotrophic and heterotrophic respiration). In order to
separate the impacts of temperature from the other possible RE

driving variables (phenology, growth, water, management, etc.)
Please cite this article in press as: Pierre, B., et al., Carbon balance o
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the normalized ecosystem respiration at a reference temperature
of 10 8C (R10) is also reported in Fig. 4.

3.3.1. Gross ecosystem production (GEP)

The dynamics of GEP of the different crops were close to
those of PAI (Figs. 2 and 4). For winter crops, GEP remained low
like PAI until March, except for winter wheat in 2007 at
Lamasquère. Indeed, winter wheat development occurred earlier
in winter 2006–2007 because of the warm episodes described
above. Therefore, absolute GEP values were high from December
to March compared with winter wheat at Auradé in 2006.
Overall, during crop development, absolute values of GEP
increased to a maximum value (GEPmax) corresponding to
PAImax. Daily carbon fluxes at maximum crop development are
reported in Table 2 for each crop. For winter crops, GEPmax

ranged between �15.4 g C m�2 d�1 for rapeseed reached on 24-
May-2005 at Auradé and �18.9 g C m�2 d�1 for winter wheat
reached on 21-Apr-2007 at Lamasquère. These estimates agree
f a three crop succession over two cropland sites in South West
.05.004
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Fig. 2. Evolution of vegetation indices: plant area index (PAI) and leaf area index (LAI) for 2005 (a and b), 2006 (c and d) and 2007 (e and f) crops. The units are green vegetation

area per soil area. Vertical full lines (error bars) are �standard deviation of each measurement mean. For (a) and (b), full triangles represent PAI measured by means of

hemispherical photography (see Section 2.2.3).
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Owith those reported over other winter wheat crops,

�17.4 g C m�2 d�1 and �16.4 g C m�2 d�1 for the Ponca (USA)
and Soroe (Denmark) sites, respectively (Falge et al., 2002),
about �16 g C m�2 d�1 at the Gebesee (Germany) site (Anthoni
et al., 2004a) and �15 g C m�2 d�1 at the Lonzée (Belgium) site
(Aubinet et al., submitted for publication). For maize, GEPmax

was �19.6 g C m�2 d�1. Suyker et al. (2005) reported higher
absolute GEP values of about �27 g C m�2 d�1. However, GEPmax

per leaf area unit were higher at our site than in Suyker et al.
(2005), with respective values of 5.8 g C m�2

leaves d�1 (max-
imum LAI = 3.4 m2 m�2) and 4.5 g C m�2

leaves d�1 (maximum
LAI = 6 m2 m�2). The low GEPmax observed at our site was
probably not caused by physiological stress but by low LAI
values. Moreover, the high GEPmax per leaf area unit observed at
our site could be interpreted as higher light use by the
photosynthetic tissues caused by lower shadow effects at lower
LAI. The difference in LAI can be explained by differences in
irrigation. At our site, the irrigation amount was two times
Please cite this article in press as: Pierre, B., et al., Carbon balance o
France. Agric. Forest Meteorol. (2009), doi:10.1016/j.agrformet.2009
lower than in Suyker et al. (2005) (precipitation + irrigation
during vegetation period were respectively 413 and 749 mm).
Verma et al. (2005) reported maximum LAI values of 3.9 m2 m�2

over rainfed maize with precipitation of 433 mm during the
vegetation period, which is comparable to our study. Differences
in maize variety (grain production in Suyker et al. (2005) and
silaging at our site) and associated management practices might
also explain LAI differences. Sunflower had the lowest absolute
GEPmax rate of �13.7 g C m�2 d�1, probably because of the lower
PAI of this crop (PAImax = 2 m2 m�2) compared to the others.
Then crops entered into senescence, and the absolute values of
GEP decreased until harvest. For maize, the interruption in
carbon assimilation was sudden due to an early harvest just
after the beginning of senescence. This event occurred so that
the maize was used for silaging.

After harvest (see Section 2.1 and Fig. 5 for dates), absolute
values of GEP often increased again due to the re-growth of
seeds that fell during harvest and the growth of weeds under
f a three crop succession over two cropland sites in South West
.05.004
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Fig. 3. Evolution of biomass in the different plant organs for 2005 (a and b), 2006 (c and d) and 2007 (e and f) crops. Vertical full lines (error bars) are�the standard deviation of

each measurement mean. Fruits correspond to siliqua plus flower biomass for rapeseed, ear biomass for winter wheat and triticale, ear plus flower biomass for maize and seed plus

flower biomass for sunflower.
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Ofavourable meteorological conditions. A long re-growth
period was observed at Lamasquère after the triticale harvest
in 2005, with PAI values of about 0.7 m2 m�2 (estimated
with hemispherical photography) and GEP values reaching -
U
N

C

Table 2
Values at the maximum of crop development of plant area index (PAImax), daily ecosyste

the aboveground biomass (AGB) just before harvest, and in residue biomass and exporte

the standard deviations from the mean.

Sites PAImax (m2 m�2) RE_max [g C m�2 d�1] GEPmax

Auradé

Rapeseed 2005 3.4 � 0.6 8.0 �15.4

Winter wheat 2006 3.8 � 1.3 7.0 �15.6

Sunflower 2007 2.0 � 1 7.3 �13.7

Lamasquère

Triticale 2005 3.9 � 1.2 7.0 �17.1

Maize 2006 3.6 � 0.8 11.0 �19.6

Winter wheat 2007 5.4 � 1.5 11.5 �18.9

Please cite this article in press as: Pierre, B., et al., Carbon balance o
France. Agric. Forest Meteorol. (2009), doi:10.1016/j.agrformet.2009
5.65 g C m�2 d�1 on 22-Oct-2005. Two other re-growth events
occurred at Auradé at the end of summer and in fall 2005 with
absolute GEP values smaller than for the Lamasquère re-growth.
Re-growth was more important after 2005 crops than after 2006
m respiration (RE_max) and gross ecosystem production (GEPmax). Carbon content in

d biomass (Exp) just after harvest were also reported. Values after the symbol � are

[g C m�2 d�1] AGB [g C m�2] Residues [g C m�2] Exp [g C m�2]

482 � 158 269 � 76 213 � 61

516 � 115 237 � 66 279 � 42

324 � 157 220 � 67 104 � 36

663 � 109 158 � 41 505 � 39

810 � 311 4 � 3 806 � 57

600 � 125 213 � 82 386 � 47

f a three crop succession over two cropland sites in South West
.05.004
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Fig. 4. Evolution of carbon fluxes for (a) Auradé and (b) Lamasquère plots from 18-Mar-2005 to 01-Oct-2007. The solid line is the daily ecosystem respiration (RE), the dotted

line the daily gross ecosystem production (GEP) and the full grey circles the ecosystem respiration at a reference temperature of 108C (R10). Gaps in R10 correspond to large

gaps in filtered NEE or in Ta inducing failure in the fitting operation (see Section 2.3.3). The different crops species are reported for each site under the curves. Atmospheric

convention was used for this representation; fluxes from ecosystem to atmosphere are positives, and inversely, fluxes from atmosphere to ecosystem are negatives.
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Eand 2007 crops because of important rainfall events and high
temperatures in Fall 2005 (Fig. 1). After maize and sunflower
crops, the stubbles were ploughed into the soil, and winter
wheat was seeded; therefore, no re-growth was observed. For
the other crops, re-growth was stopped by the different tillage
operations (see Section 2.1 for dates). Low absolute GEP values
during winter were caused by (1) low temperatures that
reduced ecosystem activity for winter crops and (2) absence
of vegetation during the winter and spring preceding the
summer crop.

3.3.2. Ecosystem respiration (RE)

RE and R10 seasonal dynamics were quite similar. This suggests
that, at a seasonal scale, crop development is a more important
driving variable for RE than temperature. This hypothesis is
confirmed by measurements at our sites showing that autotrophic
respiration represents the largest proportion of RE during
vegetation periods (Sagnier and Le Dantec, personal communica-
tion). R10 and RE evolution differed more for summer crops
probably because of high summer temperature affecting RE.

RE globally followed the same dynamics as GEP and PAI during
crop development. However, in spring 2005, RE was delayed
compared to GEP. A sudden RE increase occurred in late April,
whereas absolute GEP had already increased. Lags between GEP
and RE dynamics have already been observed by Falge et al. (2002)
in temperate deciduous and boreal coniferous forests. Both
phenological and climatic factors could explain this lag. Heading
and flower emergence are known to induce an increase in crop
respiration (Baldocchi, 1994), and the late RE increase occurred at
Please cite this article in press as: Pierre, B., et al., Carbon balance o
France. Agric. Forest Meteorol. (2009), doi:10.1016/j.agrformet.2009
C

this phenological stage. However, as RE delay was not visible for
2006 and 2007 winter crops, this reinforces the fact that phenology
was not the only factor. Low temperatures until late April followed
by a rapid temperature increase and 45 mm of rainfall between 20-
Apr-2005 and 01-May-2005 (Fig. 1) could have induced a sudden
RE increase. These two meteorological events can contribute to soil
micro-organism activation and quickening of crop development.
Maximum RE values (RE_max) for winter crops ranged between
7.0 g C m�2 d�1 on 17-May-2006 for winter wheat at Auradé and
11.5 g C m�2 d�1 on 24-Apr-2007 for winter wheat at Lamasquère.
These observed values are higher than those reported in Falge et al.
(2002) over two winter wheat plots (3.1 g C m�2 d�1 and
5.6 g C m�2 d�1), but agree with values of 8 g C m�2 d�1 reported
by Aubinet et al. (submitted for publication) over a winter wheat
crop. As GEPmax, RE_max estimated over maize in the present study
was lower than the one (13 g C m�2 d�1) reported by Suyker et al.
(2005), because of the LAI difference explained above.

During intercropping periods, RE was relatively low at both
sites, but peaks occurred. As these peaks affected both RE and
R10, they were not controlled by temperature. Generally rainfall
events, ploughing, residue incorporation into the soil and re-
growth could explain these peaks. For example, RE and R10

increased in the beginning of August 2005 at Auradé, which
occurred following incorporation of residues and plant re-
growth into the soil by the cover crop on 04-Aug-2005 and a
55 mm rainfall event between 10-Aug-2005 and 11-Aug-2005.
In the absence of vegetation on the plot at this time, this RE

increase could be explained by micro-organism activation
caused by higher water and substrate availability for decom-
f a three crop succession over two cropland sites in South West
.05.004
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Fig. 5. Daily net ecosystem exchange (NEE) evolution (left axis) and cumulated values of NEE (right axis) from 18-Mar-2005 to 01-Oct-2007 at the Auradé (a) and Lamasquère

(b) plots. Crop development (denoted as C) and re-growth (denoted as R) periods were reported at the top of each subplot. Annotations corresponding to vertical dotted lines

give information about punctual management operations affecting NEE: S is crop sowing, H is harvest and T and P are superficial tillage and deep ploughing, respectively.
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Rposition. Generally, high RE rates in summer after harvest in

2005 for both sites and in 2006 at Auradé were mainly caused by
re-growth and soil water availability (Figs. 1 and 4).

3.3.3. Net ecosystem exchange (NEE) and carbon storage dynamics

NEE dynamics allow the determination of GEP and RE

importance in the ecosystem carbon dynamics, whereas cumu-
lated NEE allows the identification of carbon storage or release
periods (Fig. 5). A negative slope on the cumulated NEE curve
means that the ecosystem behaves as a carbon sink (GEP > RE),
and a positive slope means that the ecosystem behaves as a
carbon source (GEP < RE). Overall, the dynamics were well-
marked with alternating carbon sequestration and carbon
release periods corresponding to crop growth and bare soil,
respectively. For the three observed seasons, Lamasquère was a
stronger carbon sink than Auradé without considering manage-
ment effects (see Section 3.5.2).

Development of crops (denoted C) appeared quite different for
winter and summer crops. For winter wheat, NEE values were close
to 0 g C m�2 d�1 (GEP = RE) from the beginning of November until
February at Auradé in 2006 and only until December at
Lamasquère in 2007. Then, for all winter crops, NEE values became
negative, and the ecosystem stored carbon until the beginning of
June. Maximum absolute NEE values of �8.6, �9.7, �10.5 and
�9.8 g C m�2 d�1 were observed at Auradé for rapeseed and winter
Please cite this article in press as: Pierre, B., et al., Carbon balance o
France. Agric. Forest Meteorol. (2009), doi:10.1016/j.agrformet.2009
wheat and at Lamasquère for triticale and winter wheat,
respectively. Between May and June, GEP decreased because
senescence began, although RE remained high; therefore, carbon
storage became less important with decreasing absolute NEE
values. In June, senescence was observed with a fast change in the
sign of NEE, which became positive because RE values became
higher than absolute GEP values. For summer crops (maize and
sunflower), NEE values were positive until June, about one and a
half months after sowing. The NEE became negative and maximum
absolute NEE values of �7.8 and �10.2 g C m�2 d�1 were observed
at Auradé for sunflower and at Lamasquère for maize, respectively.
The ecosystem stored carbon from June to August for sunflower
and from mid-June to harvest (denoted H) for maize. The reversal
from a carbon sink to a carbon source was more progressive for
sunflower than for winter crops because of a slower senescence.
For maize, the inversion was sudden because it was harvested,
whereas it was still green just after the beginning of senescence.

Re-growth events (denoted R) after harvest had visible effects
on NEE and cumulated NEE. NEE decreased progressively, and
occasionally negative NEE values were observed at Auradé in 2005
and 2006. During the 2005 re-growth event, the slope of cumulated
NEE was close to 0. Photosynthesis balanced soil and vegetation
respiration during periods when only carbon losses from soil
respiration should have occurred. The re-growth effect was even
more important at Lamasquère because the ecosystem switched
f a three crop succession over two cropland sites in South West
.05.004
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from a source to a sink. Negative NEE values down to
�2 g C m�2 d�1 were observed during re-growth events in 2005,
and it allowed a net carbon storage of �57 g C m�2.

Tillage (denoted T for superficial tillage and P for deep
ploughing) affected the cumulated NEE in two ways, as described
in Sections 3.3.1 and 3.3.2: (1) it stopped carbon assimilation from
re-growth events, and (2) it could contribute to important soil
respiration increases when associated with rainfall events and
incorporation of plant residues as on 10-Aug-2005 at Auradé.
Tillages before summer crops at Auradé and Lamasquère and the
non-inverting tillage between maize and winter wheat at
Lamasquère had no visible impact on NEE.

3.4. NEE response to light

Ecosystem net carbon fluxes of the different crops were
compared in terms of response to light in order to evaluate the
influence of climatic variables, species and sites on NEE as well as
annual carbon balance.

3.4.1. Climatic control on NEE response to light

The VPD threshold above which NEE modelled by Eq. (8) were
overestimated (see Section 2.3.5) was on average 27% lower for
winter crops than for summer crops (Table 3). This shows that
summer crops are more adapted to air high VPD than winter crops;
their higher stomatal conductance was underlined by their higher
net carbon fixation rate at high VPD.

Except for rapeseed at Auradé in 2005, the datasets were split into
two parts according to light quality. The first one corresponded to
the ratio of diffuse PPFD to total PPFD (d/t) lower than 0.5 (clear sky
conditions) and the other to d/t higher than 0.5 (cloudy conditions).
It can be seen that for aPPFD above 400 mmol m�2 s�1, NEEd values
were higher for diffuse conditions (Fig. 6). Such observations have
U
N

C
O

R
R

E

Table 3
Best fit parameters of Equation 8 (a is the initial slope of the light response curves, b is

(0 < u � 1)) and associated statistics (R2 is the determination coefficient, and RMS

(PAImax � 0.5 < PAI � PAImax) at the Auradé and Lamasquère plots. Eq. (8) was fitted for c

(clear sky and cloudy conditions). Values in brackets correspond to VPD thresholds exp

Data Parameters

a [mmol CO2 mmolphoton] b [mmol CO2 m�2 s�1]

All data

Auradé

Rapeseed 2005 (11) �0.0670 �38.43

Winter wheat 2006 (9) �0.0410 �33.52

Sunflower 2007 (14) �0.0357 �19.12

Lamasquère

Triticale 2005 (15) �0.0548 �52.77

Maize 2006 (17) �0.0501 �42.57

Winter wheat 2007 (10) �0.0885 �67.65

Diffuse/total <0.5

Auradé

Winter wheat 2006 �0.0250 �29.89

Sunflower 2007 �0.0420 �19.70

Lamasquère

Triticale 2005 �0.0239 �45.71

Maize 2006 �0.0249 �31.60

Winter wheat 2007 �0.0229 �36.97

Diffuse/total >0.5

Auradé

Winter wheat 2006 �0.0444 �37.86

Sunflower 2007 �0.0398 �28.01

Lamasquère

Triticale 2005 �0.0510 �55.76

Maize 2006 �0.0486 �51.55

Winter wheat 2007 �0.0792 �87.02

Please cite this article in press as: Pierre, B., et al., Carbon balance o
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already been reported for many ecosystems (Alton et al., 2007; Gu
et al., 2002; Law et al., 2002; Moureaux et al., 2006; Suyker et al.,
2004). Considering all crops except rapeseed, the meanb and awere
higher (�51 mmol CO2 m�2 s�1 and �0.051 mol mol�1, respec-
tively) in diffuse light conditions than in direct light conditions
(�33 mmol CO2 m�2 s�1 and �0.028 mol mol�1). Large differences
in parameterisation between diffuse and direct conditions were also
observed by Gu et al. (2002) on different ecosystems (Scots pine
forest, aspen forest, tallgrass prairie, mixed forest and wheat crops).
Higher values of b and a for diffuse light conditions were probably
caused mainly by the limitation of shadow effects with a more
homogeneous distribution of radiation among all leaves in plant
canopies (Gu et al., 2002). It induced better light use efficiency for
NEE and limited saturation effects.

The determination coefficient (R2) and the root mean square
error (RMSE) were respectively 35% higher and 37% lower for
cloudy conditions than for clear sky conditions. It was probably
because aPPFD were usually higher for clear sky conditions, and
this corresponds to the saturation part of the global light response
curve. Therefore, aPPFD was probably not the most important
driving variable influencing NEEd during clear sky conditions
(Baldocchi, 1994); indeed, air and soil temperature and humidity,
wind speed and measurement error are more important driving
variables of NEEd in clear sky conditions.

3.4.2. Species and site impact on NEE response to light

Comparison of crop behaviours and fitting parameters in both
clear sky and cloudy conditions (Fig. 6 and Table 3) shows that light
saturation seems to be correlated to PAImax values (Table 2).
Indeed, low b, as observed for sunflower at Auradé in 2007,
correspond to low PAImax while high b, as observed for winter
wheat at Lamasquère in 2007, correspond to high PAImax. With
similar aPPFD values in both cases, the lower the PAI is, the more
C
T

NEEd at light saturation, g is the respiration term and u is the curvature parameter

E the root mean square error) for each crop at maximum crop development

lear sky conditions data (d/t < 0.5), cloudy conditions data (d/t � 0.5) and for all data

ressed in hPa. NEE and aPPFD data were selected below this threshold (see text).

Statistics

g [mmol CO2 m�2 s�1] u R2 RMSE [mmol CO2 m�2 s�1] n

4.39 0.63 0.88 3.54 568

2.42 0.90 0.86 3.71 504

3.26 0.94 0.82 3.00 473

4.46 0.00 0.79 4.66 307

5.50 0.82 0.80 5.26 614

9.34 0.00 0.85 5.19 315

0.72 0.99 0.81 3.22 200

4.37 0.90 0.38 3.68 139

0.10 0.80 0.52 5.11 150

0.83 1.00 0.61 5.49 277

�1.20 1.00 0.59 5.68 103

2.71 0.90 0.92 3.03 304

3.42 0.70 0.87 2.54 334

4.39 0.31 0.86 3.71 157

5.34 0.87 0.90 3.93 337

8.85 0.00 0.92 3.78 212

f a three crop succession over two cropland sites in South West
.05.004
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Fig. 6. Light response curves at maximum crop development (PAImax � 0.5 < PAI � PAImax) below the VPD threshold (see text) for 2005 (a and b), 2006 (c and d) and 2007 (e

and f) crops. Net ecosystem exchange (NEE) is shown as a function of photosynthetic photon flux density absorbed by vegetation (aPPFD). In (a), all data are represented with

full circles. In (b–f), full circles are data corresponding to a ratio of diffuse to total PPFD < 0.5 (clear sky conditions) and open circles to a ratio of diffuse to total PPFD � 0.5

(cloudy conditions). On each plot, Eq. (8) fitted over all the data (clear sky and cloudy conditions) is also represented with a grey solid line. Fitted parameters and statistics are

reported in Table 3.
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Clight can easily penetrate deeply within the canopy, and the more
light saturation can occur rapidly. Leaf orientation, which is
planophile for sunflower (and almost erectophile for winter
wheat), may also contribute to the earlier saturation of the crop
at high solar incident angles due to more important shadows
effects. This phenomenon also affected a, which was 60% lower for
sunflower than for Lamasquère 2007 winter wheat. For all other
crops, PAImax were similar (3.4 m2 m�2 < PAImax < 3.9 m2 m�2). It
is noteworthy that no marked differences in a and b were observed
between C3 winter crops (rapeseed, winter wheat and triticale)
and the C4 summer crop (maize). Indeed, Baldocchi (1994)
observed lower a values for maize than for winter wheat crop,
but it was caused by lower PPFD absorbed by the maize canopy on
their sites. In our case, aPPFD values were similar for both C3
winter crops and maize. This can be explained by: (1) RE values
being higher for maize than for C3 winter crops, resulting in a
Please cite this article in press as: Pierre, B., et al., Carbon balance o
France. Agric. Forest Meteorol. (2009), doi:10.1016/j.agrformet.2009
lower light use efficiency for maize at our site, as it was noted by
Ruimy et al. (1995), (2) canopy architecture, as mentioned
above, being more erectophile for winter wheat and triticale
than for maize, (3) footprint mismatching between the flux
measurements and PAI and aPPFD measurements and (4) limita-
tions of NEEd description quality by Eq. (8). Other factors, such as
soil type, fertilization supply and inter-annual climate variability,
could contribute to observed differences in crop carbon
assimilation efficiency between sites and species, but they are
difficult to assess here.

3.5. Crop carbon balance

3.5.1. Annual net ecosystem production (NEP)

For winter crops, NEP ranged from �286 � 23 g C m�2 y�1 for
rapeseed in 2005 at Auradé to �369 � 33 g C m�2 y�1 for winter
f a three crop succession over two cropland sites in South West
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Table 4
Annual net ecosystem production (NEP) at different crop sites and for different crop species.

Crop species NEP, (g C m�2 y�1) Site/Year Reference

Summer crops

Maize (mean value) �576 Bondville 1997, 1999, 2001 Hollinger et al. (2005)

Rainfed maize (mean value) �454 Mead 2001, 2002 Verma et al. (2005)

Irrigated maize (mean value) �480 Mead 2001–2003 Verma et al. (2005)

Maize (conventional and reduce tillage) �290 to �300 Rosemount 2003 Baker and Griffis (2005)

Maize �186 � 42 Lamasquère 2006 This study

Potato �49 to 29 Gebesee 2002 Anthoni et al. (2004b)

Soybean (conventional and reduce tillage) �50 to �85 Rosemount 2002 Baker and Griffis (2005)

Soybean (mean value) �33 Bondville 1998, 2000, 2002 Hollinger et al. (2005)

Soybean (mean value) 18 to 48 Mead 2002 Verma et al. (2005)

Spring barley 210 Jokioinen 2001 Lohila et al. (2004)

Sugar beet �610 Lonzée 2004 Moureaux et al. (2006)

Sunflower 28 � 18 Auradé 2007 This study

Winter crops

Rapeseed �286 � 23 Auradé 2005 This study

Triticale �335 � 42 Lamasquère 2005 This study

Winter wheat �183 Ponca 1997 Falge et al. (2001)

Winter wheat �185 to �245 Gebesee 2001 Anthoni et al. (2004a)

Winter wheat �324 � 20 Auradé 2006 This study

Winter wheat �369 � 33 Lamasquère 2007 This study

One year rotation

Winter wheat + maize �197.6 Yucheng 2003 Jun et al. (2006)

Winter wheat + maize �317.9 Yucheng 2004 Jun et al. (2006)
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wheat in 2007 at Lamasquère (Table 4). Despite its large annual GEP,
maize NEP was only �186 � 42 g C m�2 y�1. The ratio of annual GEP
to annual RE, denoted v, allows the determination of the respective
contribution of crop carbon assimilation by photosynthesis and
ecosystem respiration to NEP (Falge et al., 2002). The mean value of v
for winter crops was 1.34. For maize, v was 13% lower than for winter
crops (v ¼ 1:17). However, annual GEP were similar in both cases
(�1310 g C m�2 y�1 on average for winter crops and
�1286 g C m�2 y�1 for maize). The difference in v was therefore
explained by the large observed difference in annual RE

(982 g C m�2 y�1 on average for winter crops and 1100 g C m�2 y�1

for maize). Sunflower was a carbon source on an annual basis with a
NEP of 28 � 18 g C m�2 y�1 (v ¼ 0:97). This low value compared to
maize is the result of a low annual GEP of �803 g C m�2 y�1 and RE of
831 g C m�2 y�1. We suggest that NEP differences observed among
winter crops and among summer crops were mostly due to
differences in crop carbon assimilation efficiency (see Section 3.4)
and to year to year climatic variations. However, these factors could
not fully explain NEP differences between winter and summer crops.
At our sites, summer crop NEP values were in absolute 76% lower than
winter crops. It is therefore important to consider the season length of
carbon assimilation. For 2006 and 2007 crops, the season length of
carbon assimilation was calculated as the number of days between
sowing and harvest with negative daily NEE. It was not calculated for
2005 crops, because flux measurements started after the beginning of
the season of carbon assimilation. The season length was 53% shorter
for summer crops (76 and 86 days for maize and sunflower,
respectively) than for winter crops (156 and 189 days for winter
wheat in 2006 at Auradé and 2007 at Lamasquère, respectively). The
season length was particularly long for 2007 winter wheat at
Lamasquère because of the warm 2007 winter. This emphasizes the
fact that long bare soil periods can counteract the ecosystem carbon
storage on an annual basis by carbon losses through heterotrophic
respiration. Compared to NEP values found at other instrumented
crop sites (Table 4), NEP values obtained at our site were on the same
order of magnitude but with some noticeable differences. Absolute
NEP values were 44% and 35% lower for winter wheat at the Ponca and
Gebesee sites, respectively, (Anthoni et al., 2004a; Falge et al., 2001)
than for the mean NEP of our winter crops. It may be explained by
differences in climate, which is more continental and with lower
Please cite this article in press as: Pierre, B., et al., Carbon balance o
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temperatures at these two sites compared to our oceanic climate and
therefore conducive to lower ecosystem productivity. The low LAI and
early harvest of maize resulted in a 59% lower NEP in our study
compared with values found in the literature (Baker and Griffis, 2005;
Hollinger et al., 2005; Verma et al., 2005). Sunflower NEP was
comparable with low carbon assimilation rates encountered for
soybean (Baker and Griffis, 2005; Hollinger et al., 2005; Verma et al.,
2005) and potato (Anthoni et al., 2004b) with NEP close to neutral.
The stronger sink of carbon was observed at the Lonzée sugar beet
crop in Belgium (Moureaux et al., 2006) and the stronger source at the
Jokioinen spring barley crop in Finland (Lohila et al., 2004). For the
Chinese site of Yucheng (Jun et al., 2006), carbon storage seemed a bit
low compared to all the other sites because two crops (winter wheat
and maize) were cultivated in one year; therefore, bare soil periods
were limited. However, this comparison between sites is relatively
uncertain because of differences in dates concerning the beginning
and the end of the period use for annual NEP calculation, which were
sometimes not explicitly reported. It is therefore important to
harmonize and specify it for future NEP inter-comparisons exercises.

NEP uncertainty (2s(NEP)) estimated in the present study
ranged between �18 g C m�2 y�1 for sunflower at Auradé and
�42 g C m�2 y�1 for triticale and maize at Lamasquère. This estima-
tion of NEP uncertainty is in the same range of values as those
reported in the Baldocchi (2003) review over different sites. In that
study, NEP uncertainty ranged from �30 g C m�2 y�1 at Harvard
forest to �68 g C m�2 y�1 for a short bog with different estimations
methods. Dragoni et al. (2007) calculated an uncertainty in NEP
caused by measurements’ random error with a Monte Carlo
simulation approach that varied between �10 and
�12 g C m�2 y�1. These results were very close to our uncertainty
in NEP caused by measurements’ random error that varied between
�4 and �7 g C m�2 y�1 at our sites. Richardson and Hollinger (in
press) used a similar approach than in the present study to estimate
NEP uncertainty due to measurements random error and to long gaps
in the data set. These authors found results very close to our global
uncertainty estimate, ranging between �25 and �44 g C m�2 y�1 at
different forest sites. Independent of the method used, NEP
uncertainty estimates seem relatively stable across different sites.

Table 5 reports the impacts of methodology on NEP calculation.
Differences in NEP were very limited and were always in the
f a three crop succession over two cropland sites in South West
.05.004
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Fig. 7. The annual carbon balance at the plot scale. (a), (c) and (e) are rapeseed, winter wh

at Lamasquère. Grey bars represent net ecosystem production (NEP), black bars are orga

(Exp) and hatched bars are net biome production (NBP), i.e., the sum of NEP, OF and Exp.

lines (error bars) are �the standard deviation of each variable.

Table 5
Methodology impacts on net ecosystem production (NEP). NEP was calculated with

the methodology describe in the present study (see Section 2.3 for methodology

details), with the application of a conventional steady state test with no absolute

threshold (A), with fixed periods of 90 days that affect both u� threshold detection

and gapfilling (B), with a calculation of the storage term (Fcs) from one point of the

CO2 concentration measurement (C) and with the simultaneous application of A, B

and C. Units are g C m�2 y�1.

Site/Year This study A: fixed

90-day

periods

B: conventional

stationarity

C: Fcs

from 1

point

A + B + C

Auradé

2005 �286 � 22 �295 � 22 �277 � 21 �286 � 22 �287 � 22

2006 �324 � 20 �319 � 19 �313 � 19 �324 � 20 �307 � 19

2007 28 � 18 24 � 18 36 � 19 31 � 20 33 � 19

Lamasquère

2005 �335 � 42 �352 � 29 �331 � 41 �335 � 42 �342 � 28

2006 �186 � 42 �204 � 34 �182 � 36 �194 � 37 �192 � 30

2007 �369 � 33 �389 � 27 �362 � 36 �375 � 33 �381 � 27
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uncertainty range. However, NEP calculated with the conventional
steady state test were systematically higher than those calculated
with our modified steady state test. As it is explained in Section
2.3.2, the conventional steady state test might failed when NEE is
close to 0 for mathematical reasons. Therefore, when considering
bare soil periods with a low respiration rate, NEE close to 0 were
discarded and replaced by gapfilled data from higher positive NEE
values. It resulted in a systematic overestimation of NEP. The effect
of applying fixed periods of 90 days (Reichstein et al., 2005) instead
of CFP for the determination of u� threshold and gapfilling
procedures is not obvious. In most cases, using 90-day periods
resulted in a slight underestimation of NEP. The most critical
management event that modified roughly instantaneous carbon
fluxes were harvest and tillage operations. Thus, the impact on NEP
should therefore depend on how the CFP and 90-day periods
mismatch. Impact of Fcs calculation from one point measurement
of CO2 concentration is only noticeable for 2007 NEP at Auradé and
TE
D

 P
R

O

eat and sunflower at Auradé, and (b), (d) and (f) are triticale, maize and winter wheat

nic fertilization (OF), white bars are carbon output of the plot by exported biomass

OF data given by the farmer, only carried out at Lamasquère (b, c and f). Vertical full

f a three crop succession over two cropland sites in South West
.05.004
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for 2006 and 2007 NEP at Lamasquère when CO2 concentration
profile was installed. In theory, as gaps in filtered NEE occurred
mostly at night (53% of gap on average for both sites) when Fcs is
important, calculation of Fcs from one point should result in an
underestimation of NEP. Mean diurnal variation of half-hourly Fcs

data was 2.6 times higher at Lamasquère than at Auradé (not
shown). At Auradé Fcs was relatively low because of the slight slope
at this site, which may induce horizontal advection during low
turbulence conditions. Thus, a slight NEP underestimation was
observed at Lamasquère in 2006 and 2007 but not at Auradé in
2007. Finally, the compensation phenomenon when applying the
conventional steady state test, fixed 90-day periods and Fcs

calculation from one point all together resulted in no systematic
differences in NEP.

3.5.2. Management impacts on annual carbon balance

For the six crops, annual NBP ranged from a significant carbon
sink of �161 � 66 g C m�2 y�1 for winter wheat at Lamasquère in
2007 to a strong carbon source of 372 � 78 g C m�2 y�1 for maize at
Lamasquère in 2006 (Fig. 7). Marked differences in NBP were
observed between the two crop sites, Auradé and Lamasquère. First,
OF at Lamasquère was an important carbon input ranging from
�68 � 31 to�249 � 49 g C m�2 y�1. As a consequence, carbon inputs
(NEP + OF) were on average 58% lower at Auradé than at Lamasquère,
whereas NEP were only 35% lower. However, Lamasquère carbon
exportations were 2.8 times higher than Auradé Exp (Table 2). As a
consequence, for 2005 and 2006 crops, NBP were negative at Auradé
and positive at Lamasquère. For sunflower in 2007 at Auradé, positive
NEP resulted in a source of carbon of 132 � 37 g C m�2 y�1

considering Exp. The significant carbon sink for the winter wheat
in 2007 at Lamasquère may be explained in two ways: (1) absolute
NEP was the highest observed of the six crops, and (2) Exp was less
important compared to 2005 and 2006 at Lamasquère (residues was
more than 2 times higher in 2007 than the mean of 2005 and 2006).
However, the ratio of�NEP to Exp was equal to 0.96 for winter wheat
at Lamasquère in 2007, meaning that the plot was a carbon sink only
because of OF. For 2005 and 2006 crops, the ratio of �NEP to Exp was
1.34 and 1.16 for rapeseed and winter wheat at Auradé, respectively,
and 0.66 and 0.23 for triticale and maize at Lamasquère, respectively.
This reveals the strong impact of biomass exportation on NBP for
these 2 years.

In the USA, it has been shown that maize/soybean rotation had
NBP close to neutrality: some studies found non-significant low
carbon sinks (Baker and Griffis, 2005; Dobermann et al., 2006;
Hollinger et al., 2005, 2006), and others non-significant low carbon
sources (Grant et al., 2007; Verma et al., 2005). These differences
were mostly due to management practices (irrigation, tillage, . . .).
These results are comparable to those found at Auradé with a
carbon balance for the 3 years close to neutrality. At Lamasquère,
the mean NBP for the 3 years was about 100 g C m�2 y�1; therefore,
this site is a carbon source. Similar observations have been made in
other agrosystems. Anthoni et al. (2004a) found that winter wheat
crop was a significant carbon source with a NBP between 45 and
105 g C m�2 y�1. Similar carbon sources were reported in north
China by Jun et al. (2006) over 2 one-year winter wheat/maize
rotations with NBP between 108 and 341 g C m�2 y�1. For a four
years rotation of sugar beat/winter wheat/potato/winter wheat,
Aubinet et al. (submitted for publication) observed a slighter mean
NBP of 42 g C m�2 y�1. However, they concluded that the large
climatic difference in 2007 led to an underestimation of NBP;
therefore, they computed a NBP of 90 g C m�2 y�1 by substituting
2007 data with 2005 data. Grant et al. (2007) confirmed all these
results for NBP by a modelling approach over 100 years, showing
that carbon storage potential in agro-ecosystem soils is limited.

In the present study, larger uncertainties were observed for NBP
than for NEP, and they were mostly due to important uncertainties
Please cite this article in press as: Pierre, B., et al., Carbon balance o
France. Agric. Forest Meteorol. (2009), doi:10.1016/j.agrformet.2009
C
TE

D
 P

R
O

O
F

in Exp and in OF. Therefore, we recommended that careful biomass
sampling and regular OF analysis should be done to limit these
uncertainties, even if these manipulations are very fastidious and
time consuming.

4. Summary and conclusions

Carbon fluxes and the carbon balance of a succession of three
crops were analysed at two cropland sites in South West France
using the EC method and biomass sampling. With special care
concerning the method of flux computation and correction
adapted for croplands, NEE was partitioned into GEP and RE and
integrated over the year to compute NEP and NBP. We observed
that the carbon flux dynamics were strongly correlated to crop
development at the two sites. Winter crops had an earlier and a
longer vegetation period than summer crops. However, inter-
annual climate variability affected these dynamics. For example,
winter wheat at Lamasquère in 2007 had an elevated winter
development caused by exceptionally warm conditions. Another
factor that had a strong impact on carbon fluxes was manage-
ment practices. We observed that re-growth events could limit
the carbon release of the ecosystem by introducing negative NEE
values during periods when respiration should be the only cause
of carbon fluxes. Tillage limited carbon storage, avoiding re-
growth, and, if associated with rainfalls, it increased RE, by
supplying substrate and enhancing micro-organism decomposi-
tion activity. Without these conditions, tillage effects on carbon
fluxes were less obvious at our sites. NEE light response curves
revealed differences in crops carbon assimilation. Both climatic
(light intensity and quality, VPD, etc.) and plant species (PAI,
plant architectures, physiology, etc.) variables affected this
response in different ways and therefore introduced differences
in NEP and NBP. Moreover, these variables can be correlated to
and affected by management practices like fertilization and by
site specificities.

NEP ranged between �369 � 33 g C m�2 y�1 for winter wheat at
Lamasquère in 2007 and 28 � 18 g C m�2 y�1 for sunflower at Auradé
in 2007. Higher absolute NEP values for winter crops than for summer
crops were observed, due to the longer season length for carbon
assimilation. Differences within winter or summer crops were
thought to be due mostly to year to year climate variability and
differences in crop species. At the annual scale, we showed that the
methodology impact on NEP was less than our uncertainty
estimations; however, using the conventional stationarity test
without an absolute threshold could lead to a systematic over-
estimation of NEP. Finally, NBP were calculated for each crop by
adding carbon inputs through organic fertilizers and carbon outputs
through biomass exportation to NEP. For the three years, the Auradé
NBP indicate a nearly carbon balanced ecosystem, whereas the
Lamasquère NBP of about 100 g C m�2 y�1 indicates that the
ecosystem was a carbon source. Moreover, carbon inputs through
organic fertilizers could induce important CH4 and N2O emissions,
which are stronger greenhouse gases than CO2. Therefore, a complete
greenhouse gas budget at the plot scale should be investigated to fully
evaluate these crop management impacts. We suggest that the
differences in carbon balance between Auradé and Lamasquère are
mostly due to differences in the type of farm: cereal production at
Auradé and cattle breeding at Lamasquère.

Despite the fact that the carbon storage potential of croplands
seems to be poor, long term monitoring experiments are very
important to evaluate the carbon balance of different rotations
cycles, with various climate and physical backgrounds. It will
provide insights into which rotations, crop species and crop
management techniques can mitigate carbon release to the
atmosphere and improve carbon sequestration in the context of
climate change and increasing earth population and food needs.
f a three crop succession over two cropland sites in South West
.05.004

http://dx.doi.org/10.1016/j.agrformet.2009.05.004
Beziat
Barrer 

Beziat
Texte inséré 
2009

Beziat
Texte surligné 

Beziat
Texte surligné 

Beziat
Texte surligné 

Beziat
Texte surligné 

Beziat
Texte surligné 

Beziat
Texte surligné 

Beziat
Texte surligné 

Beziat
Texte surligné 

Beziat
Texte surligné 

Beziat
Texte surligné 



C

Q2

Q3

4

1078

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

B. Pierre et al. / Agricultural and Forest Meteorology xxx (2009) xxx–xxx 17

G Model

AGMET 4087 1–18
U
N

C
O

R
R

E

Acknowledgements

This work was made possible through the support of the French
Ministry In Charge of Research (‘‘Réseau Terre et Espace’’), the
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