
From UML to Petri Nets for non functional Property

Verification

Frédéric Mallet, Marie-Agnès Peraldi-Frati, Charles André

To cite this version:

Frédéric Mallet, Marie-Agnès Peraldi-Frati, Charles André. From UML to Petri Nets
for non functional Property Verification. IEEE International Symposium on Industrial
Embedded Systems, 2006. IES ’06., Oct 2006, Sophia antipolis, France. IEEE, 2006,
<10.1109/IES.2006.357475>. <inria-00371277>

HAL Id: inria-00371277

https://hal.inria.fr/inria-00371277

Submitted on 27 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-UNICE

https://core.ac.uk/display/52790847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00371277

From UML to Petri Nets for non functional Property Verification

F. Mallet, M-A. Peraldi-Frati, C. André
I3S Laboratory (CNRS/UNSA/INRIA)

2000 rte des Lucioles, 06903 Sophia Antipolis (F)

Abstract

Real-time embedded architectures consist of software
and hardware parts. Meeting non-functional constraints
(e.g., real-time constraints) greatly depends on the
mappings from the system functionalities to software and
hardware components. Thus, there is a strong demand
for precise architecture and allocation modeling,
amenable to performance analysis.

The paper proposes a model-driven approach for the
assessment of the quality of allocations of the system
functionalities to the architecture. We consider two
technical domains: the UML domain for the definition of
the model elements, and a non functional property
analysis domain, external to UML, used for formal
verification. This paper focuses on 1) the specification of
expected behavior by UML activities, specialized to
support the synchronous paradigm, 2) the definition of
an analysis model for temporal properties: the Modular
and Hierarchical Time Petri Nets, 3) the transformation
from the specification model to the analysis model.

1. Introduction

Real-time embedded architectures consist of software
and hardware parts. Meeting non-functional constraints
(e.g., real-time constraints) greatly depends on the
mappings from the system functionalities to software
and hardware components. Such a mapping—here called
allocation—includes temporal scheduling as well as
spatial partitioning and communication synthesis
aspects. Thus, there is a strong demand for precise
architecture and allocation modeling, amenable to
performance analysis and that captures the
heterogeneous nature of architectures and applications.

Since its introduction in 1997, the Unified Modeling
Language [1] has become the de facto modeling
language for software development. This is due to its
standardized notation and its support for domain-specific
extensions via the definition of profiles. The standard
semantics of UML 2.0—such as explained by Selic
 [2]—has been willingly kept very general and informal,
even though there were some attempts to give a more
precise semantics [3]. When addressing a specific

domain, a subset of UML is often sufficient but may
require a formal semantics. For instance, in the UML
specification, activities use an informal semantics
inspired from Petri-Net. A formal definition of the
semantics of the activities in terms of Petri-nets has been
proposed [4] by introducing one-to-one structural
transformations. When considering real-time
applications and time behavior, the model needs further
extensions. The TURTLE (Timed UML and RT-LOTOS
Environment) approach [5] proposes the expression of
temporal requirements through extended UML2.0
interaction and sequence diagrams. TURTLE is specific
to real-time embedded systems design and provides a
formal framework based on the RT-LOTOS language.
The automatic generation of RT-LOTOS code allows for
formal analysis of this design by using the RTL tools.

For real-time embedded applications—such as data
and image processing, and automatic control—
functionality and expected behavior are often specified
by data flow models. This justifies our choice of the
UML 2.0 activities for behavioral modeling. In this
paper, we attempt to define a mapping for a restricted-
class of activity diagrams to Time Petri Nets. We do not
aim at specifying a full simulation semantic for the
activities but rather to provide a support for verifying
non functional properties—like deadline—on activities.
Hence, we provide one-to-many transformation rules
that only capture the temporal information extracted
from the activity diagram and according to some
allocation constraints. Other non functional properties
would induce other transformation rules and are beyond
the scope of this paper. The term allocation denotes the
organized mapping of elements within the various
structures and hierarchies of a user model. The
Deployment concept supported by UML is a special case
of allocation.

The standardization of domain-specific extensions for
UML has to follow a profile submission process. For
instance, in the domain of real-time systems, the UML
profile for ‘Schedulability, Performance and Time’
defines standard paradigms of use for modeling of time,
schedulability and time-related aspects [6]. This profile
is being revised and should be merged into some future
extensions [7]. In this paper we do not attempt to

formally define a UML profile, because there are quite
tedious to read for non UML specialists, we rather focus
on the structural transformations required to capture the
allocation constraints and eventually verify temporal
properties.

The paper structure is as follows. Section 2 presents
the application specification used to illustrate our
transformations. The next section introduces specialized
UML activities for the behavioral modeling and data
flow representation. Section 4 defines our structural
transformation rules to obtain a hierarchical modular
Time Petri Net. Section 5 is devoted to an original
property-checking technique: timing properties studied
by the automatically derived Time Petri nets.

2. Application Specification

2.1. Algorithm/Architecture
To illustrate our transformation process, we use a

simple but typical example of control and signal
processing applications. This example consists of
complex atomic data processing parts (operations) driven
by activation conditions (control). The specification is as
the same abstraction level as a TLM (Transaction Level
Model [8]) description. An operation may be an IP
(Intellectual Property) such as an FFT, a convolution, a
filtering… Usually these applications are executed in a
cyclic and periodic way. During a cycle, sensors are
read, operations are performed and outputs are issued.

This application is made of 4 input signals (M, A, B,
C, from sensors), 3 output signals (W, Y, Z, to actuators)
and 3 operations (oper1 to oper3). From the functional
point of view, the system may operate in two modes
(M1, M2) selected by the input M. Each mode is
specified by a data flow model. A functional
specification of the expected behavior is:

The execution platform is given: 2 processors (P1 and

P2) connected by a bidirectional channel.
This example is often used as an illustration of the

SynDEx AAA methodology [9] that focuses on the
adequation between algorithm and architecture
(timeliness and optimization). Even though the goal is
the same, our approach is different because the starting
point is a UML activity and we obtain the result by
applying systematic structural transformations while
SynDEx use its own input format and its own scheduling
algorithms. We rely on UML 2.0, existing profile
(Schedulabitity, Performance, and Time specification:
SPT [6]) and forthcoming profiles (system engineering
 [10], Marte [7]).

2.2. Non functional constraints
Various non functional constraints are imposed.

Deadline is such a constraint (a period of 40 time units,
equal to the deadline): whatever the mode, all operations

must be executed within this deadline. Other constraints
are related to deployment: some processing elements
have fixed location; others have to be mapped onto
physical resources so that real-time constraints are met.

Figure 1: Execution durations for processing
elements.

With the knowledge of the performances of the
platform elements (processors and channels), a cost
specification can be associated with pairs “processing,
processor”, and “communication, channel”. For instance,
the cost can be an execution time characterized by a time
interval, possibly reduced to a singlevalue as in Figure 1.
Additional allocation constraints can be specified such as
uniqueness of deployment, expressed by the
uniqueAllocation attribute. In our example, oper2 is
potentially deployable on P1 or P2, but since
uniqueAllocation is true, we may choose to allocate
oper2 either on P1 or P2, but not both.

Note that, in Figure 1 inpX (outpX) stands for the
acquisition (actuation) processing of signal X.

Figure 2: Execution durations for
communication elements.

Inter processor communications have a duration that
depends on the type of transmitted data (Figure 2, left-
hand side). More generally, several channels (e.g.,
Ethernet and WiFi) may exist between two processors,
associated with different costs (Figure 2, right-hand
side). The communications may even be dissymmetric
(e.g., ADSL where upstream and downstream
communication costs are different).

3. Data flow representation

In UML 1.x activity graphs were just an informal
specialization of state machines. Such a representation
was not convenient for systems engineers. To address
this issue, explicit representation of data and control

flows has been introduced through activity diagrams.
Now, in UML 2.0, activities are first class concepts with
their own diagrams. The semantics of activities is large
enough to cover several domain-specific interpretations
 [2]. A more precise semantics can be given in profiles
using the semantics variation points. In our case, the
semantics is implied by systematic structural
transformations that lead to a mathematically well-
founded model: the Time Petri nets.

An activity is a UML behavior. It specifies a partial
ordering of executions of subordinate behaviors, using
control and data flow models. Activity diagrams support
hierarchical description; subordinate behaviors are
individual elements (actions) that can be invocation
actions or structured activity nodes. The
UML::Activities package consists of many packages. In
order to provide automated transformations and to
perform formal property verifications, we do not support
all the activity model elements and constructs, but we
require a precise semantics for the selected model
elements. We use a synchronous semantics [11], well
adapted to the kind of applications we focus on. This
restriction can be imposed by stereotyping. We define
«SActivity», a stereotype of Activity that conforms to
the synchronous reactive model of computation. This
choice requires this approach to be restricted to
applications with deterministic executions or at least to
applications for which a valid deterministic behavior can
be derived. A synchronous system evolves in a sequence
of non overlapping reactions in a lock-step manner. A
typical synchronous execution scheme consists of a read
phase (input acquisitions), a computation phase, and
finally, a write phase (actuation). The sequence of these
three phases is called a reaction and must be performed
in isolation (i.e., the computation is blind to environment
changes). Moreover a synchronous execution demands
finite executions; it is loop free—the related SActivity is
a Directed Acyclic Graph or DAG—and deterministic.
Details about synchronous execution semantics are
beyond the scope of this paper (see [12]).

Figure 3: Activity Diagram (top-level).

Figure 3 represents the application activity at the top
level. In all figures we use the standard UML 2.0
notation [1]. For pins, only a small rectangle is
normative. We choose, as most UML tools, to place an
arrow inside the rectangle to indicate whether it is an
input or an output pin. Modes are selected by a

DecisionNode. A DecisionInput is a behavior attached to
a decision node, which selects one of its outgoing edges.
The decision node is refined into an invocation action
(decision), defined by its own activity diagram (not
shown in this paper). Here, an action is a UML
CallBehaviorAction that directly invokes a behavior. In
our approach, a behavior is either elementary (e.g.,
isEqual, and thus specified by an elementary operation
given in a table, see Figure 1) or further refined as an
activity diagram (e.g. the M1 activity in Figure 3).

Access to information demands special actions, which
can be resource and time consuming. We explicitly
represent these accesses using two stereotypes of
CallBehaviorAction: CallReadData for inputs, represented
on Figure 3 by the box icon with an outgoing arrow, and
CallWriteData for outputs. The 'which' stereotype
attribute refers to the entity that conveys the value. This
is a constant reference, not implying any object flow,
and assigned to a ValuePin. Figure 3 is interpreted as
follows: a value (the object m) is read from the sensor M
and is used to decide whether to run in mode M1 or M2.
Actions M1 and M2 are call behavior actions, specified in
separate activity diagrams. For instance, activity M1 is
described in Figure 4.

Figure 4: Activity Diagram (Mode M1).

4. From Data flow to Petri Net

Our main goal is to formally verify some non
functional properties of the application. In this paper, we
focus on time properties. For this purpose, we need to
fulfill three requirements. First, give a formal semantics
to each activity model element. Second, compose these
semantics to derive the semantics of the SActivity. Third,
take into account architectural constraints and non
functional properties to be verified.

4.1. Hierarchical and Modular Time Petri Nets
To address the first requirement, Time Petri nets [13]

have been preferred to the UML State Machines and
Activities. Petri nets have well-established mathematical
foundations (semantics) and offer rich analysis
capabilities. Contrary to UML state machines, Petri nets
support true concurrency. As for UML2.0 activity
diagrams, though they are inspired from Petri nets, they
lack a formal semantics.

We introduce Modular and Hierarchical Time Petri
Nets (MHTPN) to meet the second requirement, making
it possible to compose behaviors. The Petri Net

community is working on a model generic enough to
cover all Petri Net formats (namely, the Petri Net
Markup Language, PNML [14]). Our model, MHTPN, is
specific to Time Petri nets, while PNML was designed to
be completely generic. Thus, MHTPN is simpler and fits
better our approach. It is organized in three packages.
This hierarchical model (Figure 5) is built upon the
classical flat model of Petri nets (Figure 6). In this latter

model, timing information (a special kind of cost
specification) is attached to transition (Time Petri Net).
A third package, not presented here, defines graphical
features.

MHTPN modules, like PNML ones, compose through
their interface, supporting both place and transition
fusions.

Figure 5: Modular Time Petri Net Model.

Figure 6: Time Petri Net Core Model.

Deriving MHTPNs from activity diagrams is driven
by the structural transformations specified in Section 4.2.
To satisfy the last requirement, we must take into
account architectural constraints—distribution con-
straints that result in communications—and temporal
constraints. Section 4.4 explains how the MHTPNs are
augmented by dedicated transformation patterns to make

communications explicit. Section 4.5 shows how
temporal constraints are represented in the MHTPN.

4.2. Structural Transformations
The structural transformations from SActivity model

elements to MHTPN model elements are summarized in
Table 1.

SActivity model element Condition MHTPN model element

top level PetriNet
SActivity

other levels Module
ActivityEdge Arc

InitialNode Port

top level Port +ProcessingElement*
FinalNode

other levels Port
ForkNode Fork*
DecisionNode Fork**
JoinNode Join*

ControlNode

MergeNode Join**
Pin Node

ObjectNode
ActivityParameterNode Port

∈ processing element tables ProcessingElement*
Action ∉ processing element tables ModuleInstance

ActivityNode

ExecutableNode
StructuredActivityNode Not supported

* ModuleInstance : instances of modules predefined in a library.
** see the remark below.

Table 1: Behavior Transformation from SActivity model elements to MHTPN model elements.

Note that most of the SActivity model elements are
transformed into module instances. We have defined a
library of MHTPN modules suitable for expressing the
temporal behavior. Figure 7 shows two examples:
ProcessingElement and Join modules. The
ProcessingElement module captures the temporal
behavior of actions that represent elementary processing
elements. In a module the grey-background part is the
interface made of ports. The other part expresses the
module behavior as a modular Petri net (i.e., it may use
module instances as well). The central transition is fired
when the processing element is executing, it takes inputs
from the left hand-side place and produces outputs in the
right hand-side place. This transition can only be fired
when a resource is available; this resource is modeled by
the place above the transition in the figure. This place,
which is a ReferencePlace, may share—with another
ProcessingElement—an actual place defined outside the
module. With this first abstraction, the resource is
released immediately. In section 4.4, we take duration
into account through TimeIntervals associated with
transitions. The Join MHTPN module is a very classical
building block in Petri Nets. Nevertheless, it is important
to note that the usage of such a module as a placeholder
for an SActivity MergeNode is justified because we want
to verify temporal properties. When several branches,

which take time, execute in parallel, the overall time
spent is the maximal time of all branches. Using a Join
results in computing the maximum, while using a Merge
would have resulted in choosing the branch with the
shortest time. Had we chosen to model another non
functional property, like power consumption, we would
have been bound to define another module—a Merge or
any other adapted module—to represent an SActivity
MergeNode.

Figure 7: Examples of modules from the
MHTPN library.

Activity diagram focuses on the execution with a
strong flow flavor and applies well to engineering
systems. An activity expresses what to do but little
where to do it. The activity diagram (section 3) specifies
the algorithmic part of the application (section 2.1). Non
functional constraints and the architectural aspects are

still to be captured. Distribution aspects and induced
communications are also to be modeled. To this end, we
introduce below two concepts—potential allocation and
communication processing elements—and the associated
transformations.

4.3. Potential Allocation
The processing and communication costs are related

to a pair “elementary processing element, host”, which
characterizes a potential allocation. A host is either a
processor or a channel. An elementary processing
element, associated with an elementary operation, is
potentially deployed onto several targets (a set of hosts).
For instance, oper3 can be deployed on processors P1 or
P2. The respective costs are given in tables from Figure
1. A non elementary processing element, whose behavior
is described by an Activity, is associated with a set of
allocations resulting from the allocations of the
subordinate actions. The cost associated with an Activity
results from a semantic transformation that propagates
allocation information. This process is explained below.

4.4. Communication processing element
Given the potential allocations for all elementary

operations, we derive all potential communications.
Some SActivity model elements require adding explicit
communications; this is the case for actions that
represent elementary processing elements and for the
final node of the top-level SActivity. Communications
must explicitly appear when they may have a cost. To
avoid duplication, communications are systematically
inserted before each input port of every elementary
processing element. The communication cost varies
depending on the potential allocations of both the target

and the source elementary processing elements. Since we
are using a modular and hierarchical representation the
source elementary processing elements may not be
known when compiling the module. The source and its
potential allocation will be discovered at elaboration
time after connecting module instances.

No communication is inserted for a user-defined
Activity; its communication costs are eventually paid
when used by an elementary processing element defined
in the corresponding module.

A FinalNode is always translated into an output port.
The FinalNode of the top-level SActivity needs a special
transformation; it can be interpreted as a form of
distributed termination, and as such, it may imply a
communication cost. Therefore, a potential
communication is inserted before it.

Alike elementary processing elements,
communications take inputs, produce outputs, require a
resource (i.e., communication media) and may take time.
Therefore, both elementary processing elements and
communications are represented with Processing-
Element module instances.

4.5. Temporal constraints, architectural constraints
and non-functional properties

Table 2 summarizes how time constraints,
architectural constraints and non-functional properties
are modeled with the MHTPN modules. Execution
durations from Figure 1 are integrated by associating a
TimeInterval with the central transition of the
corresponding ProcessingElement module instance (see
Figure 7).

 UML Models MHTPN Model elements
Behavior See Table 1
Allocation Allocation Cost (time) Time Interval

 Place
Resource

Host
 Concurrency

Degree
Token load or capacity

NFP Deadline ObservingElement*
* ModuleInstance : instances of modules predefined in a library.

Table 2: Transformation rules.

The resource is held during a given amount of time,
thus preventing other processing elements from using it
at the same time. The output tokens are released at the
end of the execution. Similarly, execution durations of
communications (Figure 2) are integrated by associating
a TimeInterval with the central transition of the
corresponding communication ProcessingElement
module instance. This characterization by a time interval
is only sensible for dedicated real-time networks. More
general communications would require stochastic
models, not supported by TINA and MHTPN.

When a resource offers a concurrency degree higher
than one, several tokens are put into the place that
represents the resource, thus making the concurrent use
of this resource possible.

Finally the global deadline constraint is modeled
using an ObservingElement module instance (Figure 8).
This module is specifically designed for time properties.
Had we chosen to verify another kind of non-functional
property—like consumption for instance—we would
have had to design another module.

ObservingElement

Deadline

[0,0] [35,40]

disarm arm

Figure 8: ObservingElement MHTPN module.

5. Time property analysis

For the purpose of time property analysis we use the
time Petri net analyzer (Tina) [15], which supports both
timed and untimed nets. However, Tina does not support
hierarchical descriptions. We have built a tool that
allows for graphical composition of MHTPN modules. It
exports flattened modules into a Tina-compatible format.
Section 5.1 shows how Tina is used to check time
properties. Section 5.2 briefly describes the software
environment we have built as a prototype to demonstrate
the feasibility of our approach.

5.1. Property checking
In order to be analyzed, the MHTPN generated by

model transformations is flattened into a Time Petri Net,
which is a prerequisite for Tina. From a Time Petri Net,
Tina generates various behavioral graphs, on which
analyses can be conducted. The simplest exploration
reports unbounded places and dead transitions.
Behavioral graphs can be efficiently shared and
exchanged as a Kripke Transition system for advanced
analyses

Tina offers a large choice of analysis methods dealing
with various levels of abstraction. The exploration can
be exhaustive, which is often the case for our acyclic
Petri nets, or partial. The violation of safety properties
can be detected on the fly (i.e., while generating the
behavioral graph). Notice that deadline is a form of
safety property, also known as ‘bounded liveness’. When
a property is violated, a counter example is generated.
Tina also allows the designer to express the expected
properties in temporal logic formulas (Linear Time
Logic—LTL—or Computational Tree Logic star—
CTL*—), which are then verified by model-checking
techniques.

Our MHTPN library modules are devised so as dead
transitions reveal property violations or structural
inconsistency. For example, we can identify impossible
allocations, or check whether or not the deadline

constraints are met. For the application of Section 2,
using LTL formulas, the analysis is able to assert the
following properties:

1. There is no valid allocation with a deadline
constraint less than 38 time units.

2. To meet the strong deadline of 38 time units,
oper2, oper3 and outpY must be executed on P2, while
inpC can be executed either on P1 or P2.

3. To meet the weaker deadline constraint of 40
time units, oper2 must be executed on P2 but there is no
constraint for other potential allocations.

5.2. Software environment
We have started to implement a tool suite that

supports the four steps of the transformation chain. The
first step concerns the capture of the activity diagram, of
architectural constraints and of non-functional
properties. The second step is the transformation of
SActivity diagrams into MHTPN. In the third step, the
MHTPN is flattened and exported to Tina as explained
in the previous section. Tina is used to perform the
fourth step and the result provided is brought back inside
our tool for interpretation.

Concerning the actual implementation, the first two
steps imply building a UML modeling tool and using a
mature model transformation technology; they are still
under development and the related actions were
performed manually on the example presented. The third
step has been implemented first because it involves the
manipulation of hundreds of nodes even for small
examples, while previous steps apply to more abstract
models, making them simpler to handle.

We have built an Eclipse plug-in that captures the
MHTPN, flattens it and exports it in a format accepted
by Tina. The MHTPN metamodels shown in Figure 5
and Figure 6 have been captured using an EMF Ecore
model. The EMF technology generates the business
model code, XML generators and parser; it thus provides
a support for making the models persistent. The XML
files produced follow an XML schema also generated by
EMF. Even though EMF also provides tree-based editors
that follow the model description, we have found them
not sufficiently user friendly for our application. Then,
we have implemented upon the EMF-generated business
model code, a graphical interface using the GEF
methodology. More details about the Eclipse framework
and the related EMF and GEF projects are available on
the Eclipse web site [16].

6. Conclusion

This paper has shown a way to use UML and model
transformations to derive an analysis model from a UML
functional description. First, the functionality of the
application is expressed as a stereotyped UML activity
diagram tailored for synchronous reactive execution.
Following the model-driven approach, this model passes

through a series of transformations resulting in a model
amenable to formal analyses.

For property analysis, the semantics of UML 2.0 is
not sufficiently precise (many semantic variation points,
no formal definition). This is a deliberate choice made
by the standard to be widely applicable. When a precise
domain or fine property analyses are targeted, the
semantics has to be strengthened within a profile. This is
what we have done to model distributed control
applications with several potential allocations of
operations to hardware/software execution supports. The
semantics of UML 2 activity diagrams has been revisited
to remove variations points and introduce “synchronous”
evolutions. Details about this profile are available in a
technical report [17]. For analysis, since this paper
focuses on the temporal correctness of applications with
concurrent evolutions, we have chosen Petri Nets as the
analysis domain and especially, modular and hierarchical
time Petri nets.

Diagram interchanges and model transformations
have been implemented in Java, within the Eclipse
framework. Meta-models have been captured using an
EMF Ecore model. Temporal properties are analyzed by
Tina, a time Petri net analyzer. Reachability analysis
tools of Tina establish the existence of a valid allocation
meeting temporal constraints. More complex properties
can be expressed as temporal logic formulas (LTL
formulas) and formally analyzed by model-checking
techniques. The Tina tool box provides the behavioral
graph generator, facilities to specify temporal logic
formulas, and connections to several model-checkers.
For the example studied in the paper, with the given
parameters, we have established that a given operation
must necessarily be allocated to a given processor in
order to meet the deadline. This leads to a reduction of
the possible allocations to be explored. Once the
adequate solutions are better characterized, we may
export pertinent information, extracted from UML
models, to other analysis tools. For instance, we could
easily export the algorithm and architecture models to
SynDEx [9] for further optimization and generation of
the real-time distributed code.

This paper has illustrated how to associate time Petri

nets with our library elements. We have used Petri net
models as behavioral models. However, they cannot
easily capture preemptive behaviors. We plan to use
more expressive formalisms. In the future, to make the
best of the underlying synchronous hypotheses, we
intend to use the industrial synchronous language Esterel
/Scade [18] and its validation tools, or the Polychrony
platform [19].

References

[1] “Unified Modeling Language: Superstructure. V
2.0”. OMG document formal/05-07-04. April 2005.
http://www.omg.org/docs/formal/05-07-04.pdf

[2] B. Selic. “On the Semantic Foundations of
Standard UML 2.0”, SFM-RT 2004, LNCS 3185,
Springer-Verlag, pp. 181-199, 2004.

[3] Tony Clark, Andy Evans, Stuart Kent, Steve
Brodsky, Steve Cook, A feasibility Study in
Rearchitecturing UML as a Family of Languages
using a Precise OO Meta-Modelling Approach,
version 1.0, available from www.puml.org,
September 2000.

[4] H. Störrle. Semantics and Verification of Data
Flow in UML 2.0 Activities. Electronic notes in
Theoretical Computer Science, 127(4), pp. 35-52,
2005.

[5] L. Apvrille, J.-P. Courtiat, C. Lohr, P de Saqui-
Sannes, A Real-Time UML Profile Supported by a
Formal Validation Toolkit, IEEE Transactions on
Software Engineering, Vol 30, N° 7, pp 473-487,
July 2004

[6] “UML Profile for Schedulability, Performance, and
Time, version 1.1”. OMG document formal/2005-
01-02, January 2005, http://www.omg.org/docs/-
formal/05-01-02.pdf

[7] “UML Profile for Modeling and Analysis of Real-
Time and Embedded systems (MARTE) RFP”,
OMG Document realtime/05-02-06, February
2005, http://www.omg.org/docs/realtime/05-02-
06.pdf

[8] L. Cai and D. Gajski, “Transaction Level
Modeling: An Overview”, Proceedings of the
International Conference on Hardware/Software
Codesign & System Synthesis, Newport Beach,
CA, October 2003.

[9] T. Grandpierre, Y. Sorel. “From Algorithm and
Architecture Specifications to Automatic
Generation of Distributed Real-Time Executives: a
Seamless Flow of Graphs Transformations”.
MEMO¬CODE2003, Formal Methods and Models
for Codesign Conference, Mont Saint-Michel,
France, June 2003.

[10] “UML profile for Systems Engineering RFP”,
OMG Document ad/03-03-41, September 2003,
http://www.omg.org/docs/ad/03-03-41.pdf

[11] A. Benveniste, P.Caspi, S. Edwards, N. Halbwachs,
P. Le Guernic, R. De Simone “The synchronous
languages 12 Years Later”, Proc. of the IEEE,
Vol.91, n° 1, pp. 64—83, 2003.

[12] R. De Simone, C. André. “Towards a Synchronous
Reactive UML subprofile?”, International Journal
on Software Tools for Technology Transfer
(STTT), Springer-Verlag, ISBN=1433-2779
(Paper) 1433-2787 (Online). DOI:10.1007/s10009-
005-0206-9, December 2005.

[13] The Petri Nets World. http://www.informatik.uni-
hamburg.de/TGI/PetriNets

[14] J. Billington, S. Christensen, K. van Hee, E.
Kindler, O. Kummer, L. Petrucci, R. Post, C.
Stehno, and M. Weber. “The Petri Net Markup
Language: Concepts, Technology, and Tools”,
ICATPN 2003, Eindhoven, June 2003.
http://www.informatik.huberlin.de/top/pnml/downl
oad/about/PNML_CTT.pdf

[15] B. Berthomieu, P-O. Ribet, F. Vernadat, “The tool
TINA – Construction of abstract state space for
Petri net and Time Petri Nets", Int. Journal of

Production Research, Vol. 42, n° 14, pp. 2741—
2756. July 2004. http://www.laas.fr/tina

[16] The Eclipse project, http://www.eclipse.org
[17] C. André, F. Mallet, M-A. Peraldi-Frati. “Non-

functional Property Analysis using UML2.0 and
Model Transformations”, Research Report n° 5913,
INRIA (F), May 2006.

[18] Esterel Studio./Scade http://www.esterel-techno-
logies.com

[19] P. Le Guernic, J-P. Talpin, J-C. Le Lann.
“Polychrony for system design”, Journal of
Circuits, Systems and Computers, 12(3), pp 261-
304, April 2003.

