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Abstract: Monitoring spatial and temporal variability of vegetation is important to manage 

land and water resources, with significant impact on the sustainability of modern 

agriculture. Cloud cover noticeably reduces the temporal resolution of retrievals based on 

optical data. COSMO-SkyMed (the new Italian Synthetic Aperture RADAR-SAR) opened 

new opportunities to develop agro-hydrological applications. Indeed, it represents a 

valuable source of data for operational use, due to the high spatial and temporal 

resolutions. Although X-band is not the most suitable to model agricultural and 

hydrological processes, an assessment of vegetation development can be achieved combing 

optical vegetation indices (VIs) and SAR backscattering data. In this paper, a correlation 

analysis has been performed between the crossed horizontal-vertical (HV) backscattering 

(°HV) and optical VIs (VIopt) on several plots. The correlation analysis was based on 

incidence angle, spatial resolution and polarization mode. Results have shown that 

temporal changes of °HV (Δ°HV) acquired with high angles (off nadir angle; θ > 40°) best 

correlates with variations of VIopt (ΔVI). The correlation between ΔVI and Δ°HV has been 

shown to be temporally robust. Based on this experimental evidence, a model to infer a VI 

from ° (VISAR) at the time, ti + 1, once known, the VIopt at a reference time, ti, and Δ°HV 

between times, ti + 1 and ti, was implemented and verified. This approach has led to the 

development and validation of an algorithm for coupling a VIopt derived from DEIMOS-1 

images and °HV. The study was carried out over the Sele plain (Campania, Italy), which is 

mainly characterized by herbaceous crops. In situ measurements included leaf area index 
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(LAI), which were collected weekly between August and September 2011 in 25 sites, 

simultaneously to COSMO-SkyMed (CSK) and DEIMOS-1 imaging. Results confirm that 

VISAR obtained using the combined model is able to increase the feasibility of operational 

satellite-based products for supporting agricultural practices. This study is carried out in 

the framework of the COSMOLAND project (Use of COSMO-SkyMed SAR data for 

LAND cover classification and surface parameters retrieval over agricultural sites) funded 

by the Italian Space Agency (ASI).  

Keywords: Normalized Difference Vegetation Index (NDVI); LAI; cross-polarized 

backscattering; DEIMOS-1; COSMO-SkyMed 

 

1. Introduction 

Earth observation (EO) is more and more used to manage land and water resources for agricultural 

applications, such as leaf water potential [1,2], soil water content [3–7], irrigation water 

management [8–10] and flood prediction [11–13]. Diversely from optical imaging, the temporal 

resolution of observations from active sensors, such as SAR, is not limited by sky cloudiness; if 

carefully validated, it may be used in combination with thermal and optical imageries to provide a 

more continuous monitoring of land surfaces. Several new SAR missions have been launched or 

planned: ALOS-PALSAR (Japan); COSMO-SkyMed 1 and 2 (Italy); TerraSAR-X and TerraSAR-X2 

(Germany); SeoSAR PAZ 1 and 2 (Spain); Sentinel 1 (European Space Agency); Radarsat RCM 

(Canada); Kompsat 5 (Korea). These new SAR missions (acquiring at X-, C- and L-bands) are 

characterized by dual polarization capability, a short revisit time (from 12 h to ~10 days) and high 

spatial resolution (<20 m), which could provide suitable data for operative crop monitoring [14,15].  

Numerous studies using either airborne or spaceborne platforms exploit SAR data for biomass 

estimation [16–19]. SAR backscattering is sometimes strongly correlated with forest biomass, particularly 

characterized by low-medium fractional cover and at lower frequencies (P- and L-band) [20–22].  

Mapping vegetation using X-band data has limitations [23], because radiation at X-band penetrates only 

the upper part of the canopy; thus, radar backscattering is only related to the top layer and the crown. 

Although X-band is not the most suitable for agro-hydrological applications, vegetation can be 

monitored combing optical and SAR backscattering data.  

Recently, some research efforts have been carried out in addressing biomass or vegetation water 

content [24] using X-band images. However, the use of SAR data to reproduce ‘optical’ vegetation 

indices, such as the normalized difference vegetation index (NDVI) and leaf area index (LAI), is an 

important task, because these are key-input data in both mass and energy exchange models of  

soil-vegetation-atmosphere systems (e.g., SWAP and SEBAL, et similia). 

COSMO-SkyMed, given its high temporal and spatial resolution, opened new opportunities for an 

operative monitoring in this framework. This paper explores the possibility of coupling SAR and 

optical images for assessing a new type of VI, as resulting from the project “Use of COSMO-SkyMed 

data for LANDcover classification and surface parameters retrieval over agricultural sites” 

(COSMOLAND), funded by the Italian Space Agency (ASI) [25].  
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The specific objectives of the COSMOLAND project were: (i) improving, tailoring and validating 

methods and algorithms for land-cover classification and surface parameter retrieval (including LAI) at 

the regional scale, using COSMO-SkyMed X-band SAR (CSK) data, as well as observations with 

optical passive sensors; and (ii) integrating the output of these algorithms into existing 

hydrological/crop growth models. This research was carried out in the framework of the first objective. 

2. Test Site, Dataset and Methods 

2.1. Test Site  

The Sele plain covers an area of ≈500 km
2
 and is located in the Campania region (Southern Italy) 

(Figure 1). The main crops are maize, forages, potatoes, vegetables, peaches, apricot and pear, which 

are irrigated from April to October.  

The experimental farm “Improsta” is located in the Sele plain, approximately at 14°58′E, 40°33′N 

(see rectangle in Figure 1), and is managed by the Regional Administration of Campania. Within it, 

herbaceous crops, such as maize and alfalfa, are continuously monitored in several plots for research 

purposes and agricultural extension services. 

Figure 1. Test site: (a) StripMap-PingPong °HV color composite (R: 5 September,  

G: 19 August, B: 3 August; (b) CIR image (color infrared composite-near-infrared (NIR), red, 

green) of 15 August. The rectangle locates the Improsta farm within the Sele plain. 

 

(a)      (b) 

2.2. Dataset 

The dataset includes CSK and optical images (in the visible and near infrared ranges) and in situ LAI.  
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2.2.1. Satellite Images 

Active microwave (SAR). The CSK mission, developed in cooperation between ASI and the Italian 

Defense Ministry, is planned as a constellation of four satellites, carrying X-band SAR with right and 

left looking imaging capabilities, an incidence angle ranging between 20° and 60° and a revisit time of 

12 h in the worst case.  

The antenna was designed to implement three different operation modes: (i) spotlight, for metric 

spatial resolution over an area footprint of 100 km
2
, in single polarization; (ii) stripmap, for decametric 

resolution covering areas from 900 to 1,600 km
2
, with dual polarization capability (the so-called 

PingPong configuration); (iii) scanSAR, for tens to hundreds meter resolution over areas ranging from 

10,000 to 40,000 km
2
.  

Seventeen spotlight (SP) and PingPong (PP) images were acquired between 4 August and 5 

September 2011 (Table 1): 

- 7 Spotlight images (vertical-vertical (VV) polarization, 0.5 m spatial resolution and two 

different mean incidence angles: 27°(SPlow) and 41° (SPhigh)); 

- 10 Stripmap PingPong images (HH and HV polarizations and 10 m spatial resolution; mean 

angles: 27° (PPlow) and 46° (PPhigh)).  

Table 1. Acquisition time of in situ leaf area index (LAI), DEIMOS-1 and  

COSMO-SkyMed (CSK) images (SP in single polarization and PP in dual polarization). 
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Passive optical. DEIMOS-1 is a low Earth quasi-polar sun synchronous satellite, launched on  

29 July 2009 and carrying on board the SLIM6 instrument (Surrey Linear Imager Multispectral 6 

channels) having 3 spectral bands: near-infrared (NIR, 0.77–0.90 µm), red (R, 0.63–0.69 µm) and 

green (G, 0.52–0.60 µm).  

The DEIMOS-1 Mission, fully owned and operated by DEIMOS Imaging S.L., offers a new source of 

geospatial imagery at medium spatial resolution (22 m) covering large areas with a swath of 

approximately 600 km. DEIMOS-1 satellite provides a revisit time of 2–3 days, with a competitive cost 

per unit km
2
, thus making it particularly suitable for operational applications (e.g., precision farming). 

Five DEIMOS-1 optical images have been collected between 3 August and 7 September in the 

framework of the project IRRISAT [26]. Figure 2 shows a CIR DEIMOS-1 color composite subset of 

the Improsta farm. Preliminary processing included: atmospheric correction based on MODTRAN and 

library reference spectra of vegetation and NDVI retrieval.  
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Figure 2. CIR DEIMOS image of the Improsta farm (9 August) showing boundaries of the 

“irrigated units” (u.i.): corn (white bounded) and alfalfa (green bounded). 

 

2.2.2. In situ LAI  

LAI (m
2
·m

−2
) has been collected weekly between 1 August and 12 September with a LICOR  

LAI-2000 Plant Canopy Analyzer [27]; the dataset was acquired within 25 plots of corn and alfalfa. In 

particular, the average LAI is retrieved at sunrise from three measurement repetitions of eight  

below-canopy readings each. Moreover, an opaque cover (view cap) with an open wedge of 180° was 

used to avoid the influence of neighboring obstacles (e.g., the operator). This measurement protocol 

allowed to determine statistically meaningful LAI values characterized by a low ratio between SEL 

(standard error of the LAI) and LAI (SEL/LAI ranged between ≈0.02 and ≈0.1); thus, the actual LAI 

should be within ±10% of the LAI sample mean.  

Measured LAI ranged between 0.36 and 5.35 m
2
·m

−2
 with an average value of 2.39 m

2
·m

−2
. In situ 

LAI have been used for producing LAI maps from DEIMOS images by applying an exponential 

relationship with NDVI, i.e., 0.172e
3.64NDVI

 [28]. The calibration of the NDVI vs. LAI relationship 

resulted in a determination coefficient, r
2
 = 0.91, with a standard error (S.E.) of 0.50 m

2
·m

−2
. 

Hereinafter, we refer to LAI as the estimated values from DEIMOS images. 

2.3. Methods 

Pre-processing of CSK images included: (a) backscattering calibration and (b) speckle reduction. 

Speckle reduction has been achieved by applying a multi-temporal filter operator [29] with a  

7 × 7 kernel. The appropriate spatial resolution has been evaluated through a geo-statistical analysis 

based on the Moran’s index
 
[30] and the eight directions “Queen case” approach.  

The multi-temporal filtering has been chosen to fully exploit both space and time dimensions to achieve 

the required equivalent number of looks (ENL), thus obtaining a satisfactory speckle reduction [31,32].  

The resulting speckle index was on average 0.12 compared to 0.20 in the original images. 

Moreover, the chosen filter preserves the spatial resolution of the input data that is still suitable for 

crop monitoring and similar to the spatial resolution of the optical images.  
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Hereinafter, CSK is used to indicate °HV, °HH, °VV, as well as the depolarization difference,  

dpr = °HV − °HH
 
(dB).  

This latter is sensitive either to bare soil roughness or to crop height; indeed, variations of these 

surface characteristics determine a higher increase of °HV compared to that of °HH [33,34]. 

The comparison between CSK and VIs was made following two different approaches: 

(1) image segmentation and comparison of average values for each class; 

(2) temporal variation within small homogeneous areas. 

The relationship between CSK and VIs is to be researched in space and time. The first approach 

investigates the space variability for fixed time and vice versa; the second approach examines the 

temporal variability for given space intervals. 

To this aim, we used a total of 8 CSK sets (°HV, °HH, °VV and dpr collected at both low and high 

incidence angles) and 2 VI sets (NDVI and LAI). For each CSK image, we have considered the nearest VI. 

In the first approach, the procedure has been applied with two different schemes (Figure 3): 

- The first scheme uses VI as the reference image and CSK as the complementary one;  

- Conversely, the second scheme uses CSK as the reference image and VI as complementary. 

Figure 3. CSK vs. vegetation index (VI) comparison flow chart. 
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In each scheme, the reference image has been segmented into N-equal intervals (applying the equal 

interval data classification) and for each interval mean, and standard deviation values have been 

extracted. The segmented reference image is then used to create a Boolean mask for identifying 

corresponding pixels of the complementary image and, for each subset of the complementary image, 

the same statistics have then been calculated. Finally, the statistics of reference and complementary 

images have been compared to investigate any reciprocal relationship between average values and data 

variability of CSK and VI. 

In the second approach, a diachronic analysis between variation of VI and CSK, namely ΔVI and 

ΔCSK, has been carried out within a set of homogeneous areas to investigate the influence of canopy 

growth on solar energy absorption/reflection and microwave backscattering. Once selected, for 30 

homogeneous areas, characterized by low, moderate and high temporal ΔVI, the corresponding ΔCSK 

has been derived.  

An empirical relationship has been sought between the two variations to be successively applied to 

the whole image. The results have been validated by using in situ data taken at the Improsta farm. 

3. Results 

Approach 1: Image Segmentation 

From the different VI and CSK datasets considered in scheme 1, the existence of a general 

exponential relationship between the averages of VI and the corresponding CSK value was found: 

VI = ABCSK (1) 

Figure 4(a,b) refers to the application of schemes 1 and 2, respectively. In Figure 4(a), VI is the 

reference image, whilst in Figure 4(b), CSK has been used as the reference, according to the scheme 2. 

In scheme 1, best fitting (N = 10; r
2
 ~ 0.79, Figure 4(a)) resulted when considering LAI for VI and dpr 

for CSK collected at high angles only (dprhigh), thus reducing the available dataset to five couples of 

DEIMOS-1 and CSK images. The choice of N in the segmentation did not influence the results if N is 

greater than 10. The relationship is applicable if LAI ranges between 0.5 and 3. For LAI < 0.5, the soil 

roughness is strong enough to influence the backscattering; diversely, for LAI > 3, the relationship 

tends to a vertical asymptote, which can be considered as the upper limit of validity. 

Other VI-CSK returned lower correlations compared to the findings of Figure 4(a). As a 

consequence, SP images (acquired in co-polarized mode only) and PPlow have not been considered for 

further setting up and/or calibrating the model. A discrepancy in the backscattering levels between SP 

and PP has been also found.  

In particular, the SP vs. PP revealed only a moderate r
2
 (~0.59); this is due both to differences in the 

look angles (21° and 41° for SP, 27° and 46° for PP) and to differences of the image generation 

between PP and SP having great influences, especially regarding the focusing azimuth process, and 

thus, in the backscattering level.  

The relationship (1) was in line with expectations deriving from a physical interpretation of the 

backscattering phenomenon, with more vegetation showing higher difference between cross-polarized 

and co-polarized backscattering.  
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Furthermore, the disaggregation between two different dates showed the relationship to be almost 

temporally invariant.  

However, relationship (1) has been retrieved between average values of both VI and CSK variables. 

Actual standard deviation values of CSK found for each VI interval are very high, meaning that the 

variability of the independent variable cannot be fully explained by that observed for the  

dependent variable.  

For this reason, the average values of the independent variable are actually constrained in a limited 

range. These results are ever observable between variables that are moderately or coarsely pixel-wise 

correlated (as occurring in this case).  

Indeed, the standard deviation values of dpr (dprst.dev) within LAI intervals are high, especially for 

the lowest LAI ranges (dprst.dev ranges from 3.7 to 3 dB for 3 August and it ranges from 5.5 to 2.8 dB 

for 5 September). This means that an average dpr value (dpravg) of −10 dB represent dpr values 

ranging from −16 to −3 dB (considering two-times the dprst.dev).  

For the above-mentioned reasons, scheme 2, which was based on the segmentation of CSK, did not 

confirm, as expected, the previous finding (Figure 4(b)). Different CSK classes produced similar VI 

averages, with significant differences for distinct acquisition dates.  

Furthermore, we notice that the maximum LAI observed in the different intervals of backscattering 

used for the segmentation is 1–1.5 m
2
·m

−2
 (Figure 4(b)), that is comparable (i.e., the average plus the 

standard deviation is up to 2.7 m
2
·m

−2
) to the maximum value of 3 m

2
·m

−2
, which is possible to infer 

according to scheme 1 (Figure 4(a)). It means that the segmentation based on backscattering 

determines areas characterized by a larger variability of LAI compared to the opposite scheme 1. This 

highlights that it is not possible to apply a relationship similar to Equation (2) to infer LAIavg starting 

from average CSK values.  

One reason for these findings could be due to the effect of residual speckle, even after the  

de-speckling pre-processing, thus leading to the evidence that dpr average variability cannot be fully 

explained by LAI averages and vice versa.  

A larger kernel could be used to further reduce the speckle, but this choice is limited by the average 

size of the agricultural plots of the Sele plain (land heterogeneity). 

Figure 4. dprhigh vs. LAI scatterplot according to (a) both scheme 1 and (b) scheme 2 procedures. 

 

(a)          (b) 
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Approach 2: Temporal Variations 

In the second approach, the relationship between the variation of both CSK and VIs between two 

consecutive acquisitions has been analyzed (ΔVI and ΔCSK, respectively).  

Firstly, we have selected a limited subset of the image, corresponding to homogeneous vegetation cover 

(i.e., characterized by low coefficient of variation) and different average LAI values. We have analyzed the 

variation of both VI and CSK between a reference date (3 August) and subsequent acquisitions; this leads 

to four different sets of ΔVI and ΔCSK. Another two additional sets of variation have been calculated 

considering as the reference date the acquisition of 19 August and the two subsequent images.  

Among all the possible couples of ΔVI and ΔCSK, the best fitting was found when considering 

NDVI for VI and °HV,high (r
2
 = 0.75), the latter corresponding to the acquisition mode PPhigh 

(Section 2.2.1), hereinafter °HV for the sake of brevity.  

This result confirms previous findings, i.e., °pq (backscattering acquired in cross-polarization) is more 

sensitive than like-polarized backscattering, °pp, to the temporal variations of vegetation biomass [35]. 

Figure 5 shows, as an example, the spatial distributions of ΔNDVI(ti + 1) − ti and Δ°HV,(ti + 1) − ti between 

times ti + 1 = 5 September and ti = 3 August (ΔNDVI(ti + 1) − ti = NDVIti + 1 − NDVIti and Δ°HV,(ti + 1) − ti 

= HV,(ti + 1) − °HV,ti).  

Knowing NDVIti at a reference time, ti, and the variation of backscattering, Δ°HV,(ti + 1) − ti, between 

times, ti + 1 and ti, it is then possible to infer NDVIti + 1 by means of a linear relationship: 

NDVIti + 1 = NDVIti + ΔNDVI (ti + 1) − ti = NDVIti + (γ∙ΔHV,(ti + 1) − ti + δ), (2) 

where ΔNDVI (ti + i) − ti is the variation of NDVI and γ and δ are empirical coefficients determined by 

using the observed variations within the spatial subsets and for the acquisitions mentioned above.  

Figure 5. (a) ΔNDVI(ti + 1) − ti and (b) Δ°HV (ti + 1) − ti between 5 September and 3 August. 

 

(a)       (b) 

Within the above relationship (2), NDVIti accounts for the spatial pattern, while  

(γ∙Δ°HV,(ti + 1) − ti + δ) describes its temporal variability. In other words, the variability of the two sets, 

NDVI and °CSK, is determined by different interactions between the surface and the active/passive 

signals, whilst the response in two consecutive images shows a similar behavior (linear proportionality 

in increments or decrements). This procedure does not require a preliminary segmentation of the 
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image, as in Approach (1). Figure 6 shows the relationship between ΔNDVI(ti + 1) − ti and Δ°HV,(ti + 1) − ti 

using the calibration dataset. 

Figure 6. ΔNDVI(ti + 1) − ti vs. Δ°HV,(ti + 1) − ti. 

 

Once Equation (2) has been applied to the whole study area, the method has been validated on a 

subset of homogeneous areas. These areas were selected by classifying the NDVI time series by using 

a k-means algorithm [36]. Thus, five clusters of NDVI showing similar temporal behavior  

were determined.  

In Figure 7, we compare average and st.dev values of NDVI (Figure 7(a,b), respectively) retrieved 

from Equation (3), NDVICSK and the corresponding original ones from DEIMOS images. The average 

values, μNDVICSK vs. μNDVI, are significantly correlated (r
2
 ≈ 0.90, m ≈ 1.10, q ≈ 0.03); as expected, the 

standard deviation of NDVICSK is higher than NDVI. 

Figure 7. NDVICSK vs. normalized difference vegetation index (NDVI) scatterplot of  

(a) average values and (b) st.dev within homogeneous areas selected using the  

k-means algorithm. 

 

(a)                                   (b) 

Table 2 reports the temporal averages, temporal st.dev and S.E. of the NDVICSK vs. NDVI for corn 

and alfalfa u.i. of the Improsta farm. The S.E. of the NDVI ranges between 0.05 and 0.21 (−) over corn 

plots, whereas it ranges between 0.18 and 0.26 (−) over alfalfa.   

DNDVI  = 0.05 D°HV - 0.01

r² = 0.750
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-10 -5 0 5 10

D
N

D
V

I (t
i+
1)
-t
i

(-
)

D°HV,(ti+1)-ti (dB)



Remote Sens. 2013, 5 1399 

 

 

Table 2. Comparison between NDVICSK and NDVI: field temporal average, temporal 

average st.dev and S.E. calculated over corn (ui09, ui11, ui12, ui17, ui18, ui20) and alfalfa 

(ui04, ui05, ui15) plots over the time series.  

 
Field NDVIDEIMOS Avg. (−) NDVICSK Avg. (−) NDVIDEIMOS St.dev (−) NDVICSK St.dev (−) S.E. (−) 

co
rn

 

ui18 0.83 0.77 0.09 0.12 0.05 

ui20 0.59 0.61 0.08 0.17 0.16 

ui11 0.50 0.50 0.14 0.20 0.11 

ui9 0.55 0.54 0.09 0.19 0.21 

ui12 0.60 0.59 0.11 0.17 0.14 

ui17 0.86 0.81 0.08 0.12 0.06 

 

       

Field NDVIDEIMOS Avg. (−) NDVICSK Avg. (−) NDVIDEIMOS St.dev (−) NDVICSK St.dev (−) S.E. (−) 

a
lf

a
lf

a
 ui4 0.48 0.34 0.07 0.13 0.20 

ui5 0.54 0.36 0.06 0.11 0.26 

ui15 0.73 0.65 0.03 0.14 0.28 

Figure 8 shows the temporal behavior of NDVI and NDVICSK for a corn and an alfalfa plot of the 

Improsta farm (Figure 3). NDVICSK has been derived using the acquisition of 3 August as the reference 

time, ti. 

Figure 8. NDVI time series over corn ((a), field ‘ui11’) and alfalfa ((b), field ‘ui15’). 

 

(a)                           (b) 

Better agreement between NDVICSK and NDVI has been found for corn rather than alfalfa plots, 

especially for the second acquisition date; this result has been also confirmed for other irrigation units. 

NDVICSK vs. NDVI on corn was characterized by r
2
 ≈ 0.98; NDVI is slightly overestimated by 

NDVICSK for NDVICSK > 0.67 (m ≈ 1.38, q ≈ −0.25), whereas the dispersion in alfalfa plots has a lower 

r
2
 (≈0.66), and the linear regression line has a lower offset (m ≈ 0.83, q ≈ 0.14). 

Successively, we have applied the exponential empirical relationship defined in Section 2.2.2 to 

NDVICSK to retrieve LAICSK. Figure 9 shows the correlation between LAI and LAICSK for alfalfa and corn 

u.i.; dots represent minima, maxima and averages values (during the period 3 August–5 September).  
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According to NDVI, again, LAICSK vs. LAI on corn was characterized by high r
2
 (≈0.95); LAI is 

slightly underestimated when LAICSK > 0.04 m
2
·m

−2
 (m ≈ 1.04, q ≈ 0.12), whereas the dispersion on 

alfalfa has lower r
2
 (≈0.31), and LAI is slightly underestimated by LAICSK on the whole range of 

variability (m ≈ 0.64, q ≈ 0.69).  

Figure 9. LAICSK vs. LAI: minima (in black), averages (in gray) and maxima (in white) 

calculated over corn (ui09, ui11, ui12, ui17, ui18, ui20, circles) and alfalfa (ui04, ui05, 

ui15, squares) plots from 3 August to 5 September. 

 

Finally, Table 3 reports field temporal averages, temporal st.dev and S.E. of the LAICSK vs. LAI for 

corn and alfalfa. The S.E. of the LAI ranges between 0.29 and 0.84 (m
2
·m

−2
) over corn plots, whereas it 

is higher for alfalfa (up to 1.41 m
2
·m

−2
). The lower agreement for alfalfa is probably related to irrigation, 

which could affect more strongly the backscattering of this kind of canopy. Unluckily, in situ measures 

of soil water content and soil surface roughness were not available to assess how these variables affect 

the proposed procedure. However, at the X-band, the backscattering results mainly from the upper part of 

the canopy and leaves, with little contribution due to the underlying soil surface [37–39].  

Table 3. Comparison between LAICSK and LAI: field temporal average, temporal average 

st.dev and S.E. calculated over corn (ui09, ui11, ui12, ui17, ui18, ui20) and alfalfa (ui04, 

ui05, ui15) plots over the time series.  

 
Field LAIDEIMOS Avg. (−) LAICSK Avg. (−) LAIDEIMOS St.dev (−) LAICSK St.dev (−) S.E. (−) 

co
rn

 

ui18 3.29 2.90 0.66 0.27 0.29 

ui20 1.89 1.77 0.49 0.32 0.55 

ui11 1.22 1.14 0.58 0.35 0.41 

ui9 1.46 1.36 0.39 0.35 0.84 

ui12 1.93 1.50 0.49 0.31 0.64 

ui17 3.40 3.25 0.63 0.26 0.49 

 

       

Field LAIDEIMOS Avg. (−) LAICSK Avg. (−) LAIDEIMOS St.dev (−) LAICSK St.dev (−) S.E. (−) 

a
lf

a
lf

a
 ui4 1.81 0.94 0.25 0.27 0.67 

ui5 3.50 0.80 0.38 0.26 1.41 

ui15 3.56 3.18 0.39 0.25 1.42 
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4. Conclusions  

The possibility of using backscattering SAR images to assess vegetation development and LAI has 

been investigated within this paper, by comparing optical and X-band SAR images from the novel 

COSMO-SkyMed constellation, which has a great potential in terms of spatial and temporal resolution. 

LAI maps derived from DEIMOS optical sensors have been used as the reference.  

Areas with a similar value of LAI, in the range 0–3 m
2
·m

−2
, respond in a similar way to X-band 

backscattering, as shown in the first part of the study; an empirical relationship has been observed 

between average LAI and average backscattering depolarization difference. However, the large 

variability of backscattering within a cluster of pixels with similar LAI values does not allow its 

retrieval directly from backscattering. This could be explained by the joint effect of residual speckle 

and soil water content on backscattering. 

The suitability of CSK data to infer NDVI maps (at DEIMOS-1 spatial resolution) has been 

demonstrated by coupling optical and cross-polarized backscattering (°HV). The method only requires 

the NDVI spatial distribution from optical images at a reference time and the °HV temporal variation. 

High correlation was found between NDVI estimated from °HV and the one calculated from optical 

reflectances (r
2
 ≈ 0.98 on corn; ≈0.66 on alfalfa), moreover standard error over corn and alfalfa fields 

within the experimental farm ranged between 0.05 and 0.26 (−). The comparison in terms of LAI 

showed a good agreement on corn, but with a lower determination coefficient, r
2
 (≈0.83), with a higher 

standard error (0.29–1.41 m
2
·m

−2
). 
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