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a b s t r a c t

The in vitro effects of four Fusarium toxins, fumonisin B1 (FB1), a-zearalenol (a-ZEA), niva-
lenol (NIV) and deoxynivalenol (DON), on mitogen-induced cell proliferation were deter-
mined in swine whole-blood cultures. Considering the lack of sufficient toxicological
data both on single and in combination effects, in vitro studies may contribute to risk as-
sessment of these toxins. Incubation with increasing concentrations of FB1 did not produce
any consequence on proliferation; in contrast a-ZEA, NIV and DON showed an inhibitory
effect. Dose–response curves for each mycotoxin were generated. NIV was found to be
the most potent toxin followed by DON and a-ZEA. The effects of both FB1þ a-ZEA and
NIVþDON mixtures were also analysed to investigate possible interactions. The results in-
dicated that combination of FB1þ a-ZEA produces a synergistic inhibition of porcine cell
proliferation; whereas there is no interaction between DON and NIV on porcine whole-
blood proliferation, at tested concentrations.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The most important Fusarium toxins that may poten-
tially affect human and animals’ health are fumonisin B1

(FB1), zearalenone (ZEA) and trichothecenes such as nivale-
nol (NIV) and deoxynivalenol (DON).

Fusarium fungi are commonly found on cereals grown in
the temperate areas of America, Europe and Asia (Creppy,
2002). A recent data collection on the occurrence of Fusa-
rium toxins in food in the European Union showed a 57% in-
cidence of positive samples for DON and 16% for NIV out of
several thousands of analysed samples (Schothorst and van
Egmond, 2004). Fusarium toxins elicit a wide spectrum of
toxic effects, including the capacity to modify normal im-
mune functions both in humans and animals. Notably the
capacity of these mycotoxins to alter immunity is exerted
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at levels below those causing over toxicity (Oswald et al.,
2005).

Fumonisin B1 is the etiological factor of several myco-
toxicosis in both domestic and laboratory animals (Colvin
and Harrison, 1992; Gelderblom et al., 1991; Kuiper-Good-
man, 1998) and it has been correlated to the incidence of
human oesophageal cancer (Sun et al., 2007). The patho-
physiological effects of FB1 are attributable to disruption
of the sphingolipids metabolism since this mycotoxin is in-
hibitor of ceramide synthase (Ramasamy et al., 1995; Yoo
et al., 1996). The effects of fumonisin B1 on immune system
remain controversial: it causes immune-suppression in
poultry (Li et al., 2000), swine (Harvey et al., 1995),
bovine (Osweiler et al., 2003) and immune-stimulation in
rodent species (Dombrink-Kurtzman et al., 2000; Dres-
den-Osborne et al., 2002; Sharma et al., 2004). Recently,
an in vivo study showed that FB1 alters immune functions
in broilers by decreasing bursa weight and changing gene
expression of cytokines (Cheng et al., 2006).

Zearelenone (ZEA) is a macrocyclic lactone with high
binding affinity toward estrogenic receptors and,
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consequently, it causes estrogenic effects in pigs (Dieckman
and Green, 1992). It has been suggested as causative agent
of infertility and reduced milk production in cattle (D’Mello
and MacDonalds, 1997). In particular, a-zearalenol
(a-ZEA), a metabolite of ZEA, was found more active than
ZEA (Minervini et al., 2001). The immune system is a poten-
tial target for estrogenic endocrine disruptors considering
that its cells express estrogenic receptors (Igarashi et al.,
2001). In spite of that, only few studies have been carried
out on the immune effects of zearalenone and its metabo-
lites. In particular immune alterations were found at high
concentrations of this Fusarium toxin in vitro such as reduc-
tion of both mitotic index and cell survival of bovine
lymphocytes (Lioi et al., 2004; Yu et al., 2005).

Nivalenol and deoxynivalenol belong to the trichothe-
cenes group, very stable compounds both during storage/
milling and processing/cooking of food (Grove, 1988).
Different effects have been associated to trichothecenes, in-
cluding impaired delayed-type hypersensitivity, phagocyte
activity (Pestka et al., 1994; Rotter et al., 1996) and modula-
tion of host response to enteric infections (Li et al., 2005).
In vitro analyses showed that trichothecenes can both sup-
press and stimulate immune functions (Bondy and Pestka,
2000). In particular, NIV inhibited proliferation of human
lymphocytes (Forsell and Pestka, 1985; Thuvander et al.,
1999).

Despite the major sensitivity of swine to Fusarium toxins
(Pestka and Smolinski, 2005), a very limited number of
studies have been carried out to assess the immunotoxicity
of Fusarium toxins in this species. In vitro investigations on
pig peripheral blood mononuclear cells indicated that FB1

decreased IL-4 and increased IFN-gamma synthesis at
both protein and mRNA levels (Taranu et al., 2005) and in-
duced apoptosis of primary swine alveolar macrophages
(Liu et al., 2002) and porcine renal epithelial cells (Gopee
and Sharma, 2004). Moreover, FB1 altered the proliferation
and the barrier function of porcine intestinal epithelial cells
(Bouhet et al., 2004, 2006). Tornyos et al. (2003) showed
that FB1 had no significant effect on the humoral and cellu-
lar specific and non-specific immune responses in pig fed
with contaminated feed at different levels of mycotoxin;
on the other hand Marin et al. (2006) reported that FB1

was immunosuppressive and its effect was higher in males.
In vivo and in vitro studies in pig showed that DON in-

duced a significant inhibition of lymphocytes proliferation
and immunogloblulin secretion (Goyarts et al., 2006);
whereas Accensi et al. (2006) did not observe any immune
effects when pigs were fed with feed contaminated by low
doses of DON.

Considering that food and feed commodities are often
contaminated by more than one mycotoxin, (Speijers and
Speijers, 2004), studying the interactions between different
mycotoxins can be useful. It is known that Fusarium toxins
can exert additive and synergistic effects (Tajima et al.,
2002); but mycotoxins may also act as antagonists (Koshin-
sky and Khachatourians, 1992). Theumer et al. (2003)
showed different in vitro effects of a mixture of aflatoxin
B1 (AFB1) and fumonisin B1 in comparison to the individual
toxins. Another study on Penicillium mycotoxins showed
that the majority of examined mixtures produced in vitro
less-than-additive effects (Bernhoft et al., 2004).
In the present study we investigated the effects of
fumonisin B1, a-zearalenol, nivalenol and deoxynivalenol
on porcine immune response by proliferation assay
performed using whole blood. Then, the effects of fumoni-
sin B1, a-zearalenol, nivalenol and deoxynivalenol were
assessed in binary combination.

2. Materials and methods

2.1. Reagents

RPMI-1640 medium, L-glutamine, streptomycin, penicil-
lin, 2-mercaptoethanol and non-essential aminoacids were
purchased from Cambrex Bioproducts Europe (Verviers,
Belgium). Fumonisin B1 (F-1147), a-zearalenol (Z-0166),
deoxynivalenol (D-0156), nivalenol (N-7769) and conca-
navalin A (C 0412) were purchased from Sigma (St. Louis,
MO, USA).
2.2. Experimental animals

Twenty-six clinically healthy castrated male pigs of Nor-
wegian Landrace breed, 8–10 months old, were used as
blood donors. Blood samples for cell proliferation tests
were collected from vena cava cranialis into heparinized ster-
ile Vacutainer� tubes (7 ml containing 150 IU Li–Heparin).
2.3. Whole-blood cell proliferation assay

Blood samples (20 ml) were diluted 1:20 (v/v) with
RPMI-1640 containing penicillin (100 units/ml), streptomy-
cin (100 mg/ml), 5�10�5 M 2-mercaptoethanol, 1% (w/v)
non-essential aminoacids and 2% pooled and heat-inacti-
vated (56 �C for 30 min) swine serum.

Diluted blood was plated in 96-well flat-bottomed cul-
ture plates at 100 ml/well and single test mycotoxins added
at a range of final concentrations (FB1, 0.5–80 mM; a-ZEA,
0.5–20 mM; DON and NIV, 0.0625–2 mM). In binary combi-
nations mycotoxins were applied at same concentrations
(1:1 ratio) at a range of final combinations (FB1þ a-ZEA
mixture, 0.5–20 mM; NIVþDON mixture, 0.0625–1 mM).

FB1 was dissolved in phosphate buffered saline (PBS),
NIV and a-ZEA in methanol, whereas DON in ethanol.
Each mycotoxin was then further diluted in complete cul-
ture medium. In preliminary studies, it was verified that fi-
nal concentration of solvents in the culture medium did not
affect cell proliferation.

Proliferation was induced by Concanavalin A (Con A) at
an optimised concentration of 10 mg/ml (data not shown).
The drug concentration in each well was calculated based
on the final volume of 200 ml/well. Cell culture was incu-
bated at 37 �C in a 5% CO2-humidified air incubator for
72 h. All assays were performed in triplicate.

Eighteen hours prior to harvesting, cells were pulsed
with 1 mCi/well [3H]-thymidine. Cultures were harvested
on filters using a semiautomatic cell harvester (Filtermate,
Packard, Danvers, MA). [3H]-thymidine incorporation was
assessed by a microplate liquid scintillator (Top Count
NXT�, Packard, Danvers, MA). Results were expressed as
counts per minute (cpm).
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2.4. Statistical analysis

Results were expressed as mean� standard deviation
(SD). Differences among the various treatment groups
were determined by one-way analysis of variance (ANOVA).
Multiple comparison of treatment means was made using
the Tukey test. The criterion for significance was P< 0.05
for all studies.
2.5. Isobole method analysis

The type of interaction between FB1 and a-ZEA myco-
toxins was determined as previously described by us
(Luongo et al., 2006). In particular this type of calculation
can be applied when one of the two micotoxins does not
have any effect when examined alone, according to Beren-
baum (Berenbaum, 1989). The interaction between NIV and
DON mycotoxins was analysed according to Bernhoft
(Bernhoft et al., 2004). In brief, effects of mycotoxins
were determined at a range of six different concentrations:
100%, 80%, 60%, 40%, 20% and 10%, where 100% concentra-
tions were 2.0 mM NIV and 1.0 mM DON; these 100% opti-
mal concentrations were chosen on the basis of
preliminary runs. Toxins in combinations were used at
fixed ratios (100þ100%, 80þ 80%, 60þ 60%, 40þ 40%,
20þ 20%). Results giving IC50 were extrapolated and trans-
ferred to isobole diagrams to illustrate the interactive ef-
fects. By using this particular combination of toxin
concentrations an additive effect is seen when the mixture
50þ 50% of the two toxins causes the same response as
50% concentration of each toxin separately; that means
that the additive effects follow the diagonal line between
the concentration of each single mycotoxin. An indepen-
dent effect is seen when the mixture 100þ100% causes
the same response as 100% concentration of each single
mycotoxin; that means that the independent effect is pres-
ent as vertical and horizontal lines from the effective con-
centration of each single toxin. If the combined effect of
toxins in the diagram constitutes a curve with an upward
bow, the effect can be either less-than additive, indepen-
dent or antagonistic on the basis of statistical evaluation.
A curve with a downward bow represents a synergistic ef-
fect. Student’s t-test was used for statistical analysis of the
estimated combined effects. The criterion for significance
was P< 0.05.

3. Results and discussion

3.1. Effects of administration of single mycotoxins on porcine
whole-blood proliferation

Fusarium toxins are important contaminants, both alone
and in mixture, in food and feed. Among farm animals,
swine is the most susceptible species to Fusarium toxins
as fumonisin B1, a-zearalenol and some trichothecenes
(Pestka and Smolinski, 2005). However a very limited num-
ber of studies have been carried out to assess their toxicity
on pig immune system (Oswald et al., 2005). Consequently,
there is need to develop easy and accurate cell tests to as-
sess the hazard of exposure of swine.
In the present study we addressed this issue by using
a whole-blood proliferation test. The use of whole-blood
lymphocyte proliferation was reported by Bloemena et al.
(1989) and optimised subsequently by Fasanmade and
Jusko (1995) in rat. This approach offers a series of advan-
tages over the analysis of single cell populations, such as
the reduction in the time of assay as well as the generation
of data that resembles in vivo responses (Yancy et al., 2001;
Thies et al., 1999; Edfors-Lilja et al., 1998).

In preliminary time-dependent experiments 72 h was
chosen as optimal incubation time for all tested myco-
toxins. Furthermore, in preliminary tests, it was found
that 10 mg Con A/ml were optimal to induce porcine
whole-blood proliferation (data not shown).

We found that treatment with increasing concentra-
tions of FB1 did not produce any significant effect on the
overall cell proliferation of whole blood following Con A
stimulation, although a wide range of concentrations
were used (0.5–80 mM) (Fig. 1A). These data are in apparent
contrast with our previous results on Jurkat cells, a model
of human T lymphocytes, where we showed that this myco-
toxin enhanced cellular proliferation (Luongo et al., 2006).
Nevertheless the effects of this mycotoxin on the immune
functions remain controversial, as some authors found
that FB1 inhibited cellular proliferation (Osweiler et al.,
2003; Li et al., 2000; Harvey et al., 1995), whereas others
observed that FB1 stimulated cellular proliferation (Sharma
et al., 2004; Dresden-Osborne and Noblet, 2002; Dom-
brink-Kurtzman et al., 2000) and such effects can be
explained by the use of different cellular models. On the
other hand, incubation of cells in the presence of increasing
concentrations of a-ZEA (0.5–20 mM) caused a marked in-
hibitory effect on the mitogen-induced proliferation even
at very low doses (Fig. 1B). These results are in agreement
with previous findings in L929 cells (Tajima et al., 2002).

Similarly, increasing concentrations of the two exam-
ined trichothecenes (NIV and DON) caused inhibition of
cells’ proliferation, following Con A stimulation (Fig. 1C
and D). In particular, NIV concentrations, ranging from
0.0625 to 2 mM, induced a strong inhibition that became
significant and dose-dependent already at the lowest con-
centration (Fig. 1C). DON (0.0625–2 mM) instead induced
a consistent inhibitory effect starting from 0.125 mM.
(Fig. 1D). NIV was found to be the most potent inhibitor
of cell proliferation, followed by DON and a-ZEA, respec-
tively. These data are in agreement with other studies
(Rocha et al., 2005; Meky et al., 2001; Thuvander et al.,
1999) and also with our in vitro results in Jurkat cells
(Luongo et al., 2006; Severino et al., 2006).
3.2. Interactive effects of mycotoxin co-administration

Exposure to mycotoxins often occurs simultaneously. In
spite of the importance of their natural co-occurrence,
there are only a few studies about the interactions among
Fusarium toxins, both in vivo and in vitro (Luongo et al.,
2006; Severino et al., 2006; Speijers and Speijers, 2004).

In mixture, FB1 and a-ZEA were tested at constant ratio
and the effects of the mixture were compared to the effects
of the individual compounds.
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Fig. 1. Influence of FB1 (A), a-ZEA (B), NIV (C) and DON (D) on in vitro porcine whole-blood cell proliferation. Porcine whole-blood cells stimulated with 10 mg/ml
of Concanavalin A (Con A) were incubated in the presence of increasing concentrations of four mycotoxins for 72 h. DNA synthesis was measured by [3H]-
thymidine incorporation and expressed as counts per minute (cpm). Control (ctr): cells incubated in the absence of mycotoxins. Each value represents the
mean� SD of three independent experiments. The criterion for significance was P< 0.05 for all studies.
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the presence of the mixture of increasing concentrations of four mycotoxins for 72 h. Toxins were used at the same concentration as indicated on x-axis. The
results are expressed as counts per minute (cpm) and represent the mean� SD of three independent experiments. The criterion for significance was P< 0.05
for all studies.

D. Luongo et al. / Toxicon 52 (2008) 156–162 159



D. Luongo et al. / Toxicon 52 (2008) 156–162160
For a-ZEA, results reported in Fig. 2A indicated that co-
administration of FB1 was associated to an increased inhibi-
tion of proliferation of blood immune cells. In particular,
even if FB1 alone did not produce any effect, in combination
with a-ZEA decreased the concentration eliciting 50%
inhibition (IC50), suggesting interaction. The inhibition
curves of a-ZEA alone and in combination with a fixed
amount of FB1 (10 mM) were shown in Fig. 3A. The calcu-
lated Da/da ratio (Luongo et al., 2006) for IC50 was less
than 1, indicating a synergistic interaction (Table 1). These
data are in agreement with our previous findings in Jurkat
cells (Luongo et al., 2006).

NIV and DON interaction was analysed according to
Bernhoft et al. (2004) and reported in Fig. 3B. The con-
centration of the two mycotoxins for IC50 alone or in
combination were extrapolated by the curves and
reported in Fig. 3C and Table 1, clearly showing no inter-
action between NIV and DON. On the contrary, some
previous in vitro studies showed a synergistic effect of
combination NIV and DON on yeast growth inhibition
(Madhyastha et al., 1994), and an additive toxicity in hu-
man lymphocytes cultures (Thuvander et al., 1999)
caused by an inhibition of proliferative responses
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Fig. 3. Inhibition curves of a-ZEA alone and in combination with a fixed (10 mM) co
bination (B). NIV and DON interaction was analysed according to Bernhoft et al
concentration eliciting 50% inhibition (IC50) (C). The points are mean concentration
in panel B. *, significantly different from the mixture.
significantly higher than that caused by exposure to
one toxin. Moreover, Tajima et al. (2002) reported that
mixtures of different concentrations of these two tricho-
thecenes can exert an interactive effect in L929 cells. A
plausible explanation for such discrepancies could be
that, as individual toxins show large differences depend-
ing on species, sex, in vivo or in vitro exposure systems,
also the differences in combination toxicity can be influ-
enced by the same factors. Furthermore, on the basis of
data reported in Table 1 we inferred that NIV was the
most potent inhibitor of cell proliferation followed by
DON and a-ZEA.

In conclusion, results obtained with the pig whole-
blood model demonstrated the immunomodulatory capac-
ities exerted by Fusarium toxins, alone and in combination.
We attributed immunosuppressive properties to NIV, DON
and a-ZEA, also in agreement with our previous studies on
the Jurkat cell line (Luongo et al., 2006; Severino et al.,
2006). FB1 had no significant effects on porcine blood cell
proliferation. Moreover, the data of the present work dem-
onstrated that the interaction between FB1 and a-ZEA is
synergistic as previously observed in Jurkat (Luongo et al.,
2006) and according to literature data (Tajima et al.,
0,4 0,6

DON μM

NIV+DON
NIV 
DON
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ncentration of FB1 (A). Inhibition curves of NIV and DON singly and in com-
. (2004). Isobole diagram illustrating combined effects of NIV and DON at
with standard deviation of the mean, based on dose–response curves shown



Table 1
Interactive effects calculated for IC50

Mycotoxins combination Concentration
(mM; mean� SD)

t-Test (P< 0.05)

a-ZEA 6.0� 1.5 [D(a)]
FB1þ a-ZEA 5.6� 2.9 [d(a)] 0.04
NIV alone 0.25� 0.10
DON alone 0.26� 0.60
NIV in (NIVþDON) 0.85� 0.11 0.01
DON in (NIVþDON) 0.43� 0.05 0.000001

Da¼ concentration of the mycotoxin a-ZEA giving 50% inhibition when
examined alone; da¼ concentration of the mycotoxin a-ZEA in the mix-
ture giving 50% inhibition. According to Berenbaum the effect is: additive
when da/Da¼ 1; synergic when da/Da< 1; antagonist when da/Da> 1.
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2002). On the contrary, there is no interaction between
DON and NIV on porcine whole-blood proliferation, at
tested concentrations.

Moreover, these data provide further information about
the validity and utility of whole-blood cellular proliferation
assays for the study of immunotoxicity in vitro (Thies et al.,
1999; Edfors-Lilja et al., 1998).

In terms of risk assessment in foods and feeds, myco-
toxins which show interactive effects are of more concern,
in particular studying the molecular mechanisms of their
toxicity to understand the real way by which Fusarium
toxins can interact each other and exert immunomodula-
tory effects both in humans and animals. Finally, these
studies can help to define or optimise the legal maximum
limits of mycotoxins in food and feedstuffs.

Acknowledgements

The work was supported by a grant from the National
Council of Researches. Ph.D. fellowship of Dr. Diomira
Luongo was supported by the University Federico II of
Naples. We thank Dr Mauro Rossi (Institute of Food Sci-
ences, ISA-CNR, Avellino) for careful reading of the manu-
script and useful advice.

Conflict of interest

These authors have no conflicts of interest.

References

Accensi, F., Pinton, P., Callu, P., Abella-Bourges, N., Guelfi, J.F., Grosjean, F.,
Oswald, I.P., 2006. Ingestion of low doses of deoxynivalenol does not
affect haematological, biochemical, or immune responses of piglets. J.
Anim. Sci. 84 (7), 1935–1942.

Berenbaum, M.C., 1989. What is synergy? Pharmacol. Rev. 41 (2), 93–141.
Bernhoft, A., Keblys, M., Morrison, E., Larsen, H.J., Flaoyen, A., 2004. Com-

bined effects of selected Penicillium mycotoxins on in vitro prolifera-
tion of porcine lymphocytes. Mycopathologia 158 (3), 441–450.

Bloemena, E., Roos, M.T., Van Heeijst, J.L., Vossen, J.M., Schelleken, P.T.,
1989. Whole-blood lymphocyte cultures. J. Immunol. Methods 122
(2), 161–167.

Bondy, G.S., Pestka, J.J., 2000. Immunomodulation by fungal toxins. J. Toxicol.
Environ. Health Crit. Rev. 3 (2), 109–143.

Bouhet, S., Hourcade, E., Loiseau, N., Fikry, A., Martinez, S., Roselli, M.,
Galtier, P., Mengheri, E., Oswald, I.P., 2004. The mycotoxin fumonisin
B1 alters the proliferation and the barrier function of porcine intesti-
nal epithelial cells. Toxicol. Sci. 77 (1), 165–171.

Bouhet, S., Le Dorze, E., Peres, S., Fairbrother, J.M., Oswald, I.P., 2006. My-
cotoxin fumonisin B1 selectively down-regulates the basal IL-8
expression in pig intestine: in vivo and in vitro studies. Food Chem.
Toxicol. 44 (10), 1768–1773.

Cheng, Y.H., Ding, S.T., Chang, M.H., 2006. Effects of fumonisins on macro-
phage immune functions and gene expression of cytokines in broilers.
Arch. Anim. Nutr. 60 (4), 267–276.

Colvin, M.B., Harrison, R.L., 1992. Fumonisin induced pulmonary edema
and hydrothorax in swine. Mycopathologia 117 (1–2), 79–82.

Creppy, E.E., 2002. Update of survey, regulation and toxic effects of myco-
toxins in Europe. Toxicol. Lett. 127 (1–3), 19–28.

D’Mello, J.P.F., MacDonalds, A.M.C., 1997. Mycotoxins. Anim. Feed Sci.
Technol. 69, 155–166.

Dieckman, M.A., Green, M.L., 1992. Mycotoxins and reproduction in
domestic livestock. J. Anim. Sci. 70 (5), 1615–1627.

Dombrink-Kurtzman, M.A., Gomez-Flores, R., Weber, R.J., 2000.
Activation of rat plenic macrophage and lymphocyte functions by
fumonisin B1. Immunopharmacology 49 (3), 401–409.

Dresden-Osborne, C., Noblet, G.P., 2002. Fumonisin B1 affects viability and
alters nitric oxide production of a murine macrophage cell line. Int.
Immunopharmacol. 2 (8), 1087–1093.

Dresden-Osborne, C., Pittman Noblet, G., Enongene, E.N., Bacon, C.W.,
Riley, R.T., Voss, K.A., 2002. Host resistance to Trypanosoma cruzi
infection is enhanced in mice fed Fusarium verticilloides (¼F. monili-
forme) culture material containing fumonisins. Food Chem. Toxicol.
40 (12), 1789–1798.

Edfors-Lilja, I., Wattrang, E., Marklund, L., Moller, M., Andersson-
Eklund, L., Andersson, L., Fossum, C., 1998. Mapping quantitative trait
loci for immune capacity in the pig. J. Immunol. 161 (2), 829–835.

Fasanmade, A.A., Jusko, W.J., 1995. Optimizing whole blood lymphocyte
proliferation in the rat. J. Immunol. Methods 184 (2), 163–167.

Forsell, J.H., Pestka, J.J., 1985. Relation of 8-ketotrichothecene and zearale-
none analog structure to inhibition of mitogen-induced human
lymphocyte blastogenesis. Appl. Environ. Microbiol. 50 (5),
1304–1307.

Gelderblom, W.C., Kriek, N.P., Marasas, W.F., Thiel, P.G., 1991. Toxicity and
carcinogenicy of the Fusarium moniliforme metabolite, fumonisin B1,
in rats. Carcinogenesis 12 (7), 1247–1251.

Gopee, N.V., Sharma, R.P., 2004. The mycotoxin fumonisin B1 transiently
activates nuclear factor-kappa B, tumor necrosis factor alpha and
caspase 3 via protein kinase C alpha dependent pathway in porcine
renal epithelial cells. Cell Biol. Toxicol. 20 (4), 197–212.

Goyarts, T., Danicke, S., Tiemann, U., Rothkotter, H.J., 2006. Effects of the
Fusarium toxins deoxynivalenol (DON) on IgA, IgM and IgG concen-
trations and proliferation of porcine blood lymphocytes. Toxicol.
In Vitro 20 (6), 858–867.

Grove, J.F., 1988. Non macrocylic trichothecenes. Nat. Prod. Rep. 5 (2),
187–209.

Harvey, R.B., Edrington, T.S., Kubena, L.F., Elissalde, M.H., Rottinghaus, G.E.,
1995. Influence of aflatoxin and fuminisin B1-containing culture
material on growing barrows. Am. J. Vet. Res. 56 (12), 1668–1672.

Igarashi, H., Kouro, T., Yokota, T., Comp, P.C., Kincade, P.W., 2001. Age and
stage dependency of estrogen receptor expression by lymphocytes
precursors. Proc. Natl. Acad. Sci. U.S.A. 98 (26), 15131–15136.

Koshinsky, H.A., Khachatourians, G.G., 1992. Trichothecenes synergism,
additivity and antagonism: the significance of the maximally quies-
cent ratio. Nat. Toxins 1 (1), 38–47.

Kuiper-Goodman, T., 1998. Food safety: mycotoxins and phytotoxins in
perspective. In: Miraglia, M., ven Egmond, H., Brera, C., Gilbert, J.
(Eds.), Mycotoxins and Phytotoxins. Developments in Chemistry,
Toxicology and Food Safety. Alaken Ink, Fort Collins, CO, pp. 25–48.

Li, M., Cuff, C.F., Pestka, J.J., 2005. Modulation of murine host response to
enteric reovirus infection by the trichothecene doeoxynivalenol. Tox-
icol. Sci. 87 (1), 134–145.

Li, Y.C., Ledoux, D.R., Bermudez, A.J., Fritsche, K.L., Rottinghaus, G.E., 2000.
The individual and combined effects of fumonisin B1 and monilifor-
min on performance and selected immune parameters in turkey
poults. Poult. Sci. 79 (6), 871–878.

Lioi, M.B., Santoro, A., Barbieri, R., Salzano, S., Ursini, M.V., 2004. Ochratoxin
A and zearalenone: a comparative study on genotoxic effects and cell
death induced in bovine lymphocytes. Mutat. Res. 557 (1), 19–27.

Liu, B.H., Yu, F.Y., Chan, M.H., Yang, Y.L., 2002. The effects of mycotoxin B1
and aflatoxin B1 on primary swine alveolar macrophages. Toxicol.
Appl. Pharmacol. 180 (3), 197–204.

Luongo, D., Severino, L., Bergamo, P., De Luna, R., Lucisano, A., Rossi, M.,
2006. Interactive effects of fumonisin B1 and a-zearalenol on prolifer-
ation and cytokine expression in Jurkat T cells. Toxicol. In vitro 20 (8),
1403–1410.

Madhyastha, M.S., Marquardt, R.R., Abramson, D., 1994. Structure–activity
relationships and interactions among trichothecene mycotoxins as
assessed by yeast bioassay. Toxicon 32 (9), 1147–1152.



D. Luongo et al. / Toxicon 52 (2008) 156–162162
Marin, D.E., Taranu, I., Pascale, F., Lionide, A., Burlacu, R., Bailly, J.D.,
Oswald, I.P., 2006. Sex-related differences in the immune
response of weanling piglets exposed to low doses of fumonisin
extract. Br. J. Nutr. 95 (6), 1185–1192.

Meky, F.A., Hardie, L.J., Evans, S.W., Wild, C.P., 2001. Deoxynivalenol-
induced immunomodulation of human lymphocyte proliferation
and cytokine production. Food Chem. Toxicol. 39 (8), 827–836.

Minervini, F., Dell’Aquila, M.E., Maritato, F., Minoia, P., Visconti, A., 2001.
Toxic effects of the mycotoxin zearalenone and its derivates on in
vitro maturation of bovine oocytes and 17 beta-estradiol levels in mu-
ral granulosa cell cultures. Toxicol. In Vitro 15 (4–5), 489–495.

Oswald, I.P., Marin, D.E., Bouhet, S., Pinton, P., Taranu, I., Accensi, F., 2005.
Immunotoxicological risk of mycotoxins for domestic animals. Food
Addit. Contam. 22 (4), 354–360.

Osweiler, G.D., Kehrli, M.E., Stabel, J.R., Thurston, J.R., Ross, P.F., Wilson, T.M.,
2003. Effects of fumonisin contaminated corn screenings on growth
and health of feeder calves Asian–Austral. J. Anim. Sci. 71, 459–466.

Pestka, J.J., Yan, D., King, L.E., 1994. Flow cytometric analysis of the effects
of the in vitro exposure to vomitoxin (deoxynivalenol) on apoptosis in
murine T, B and IgA cells. Food Chem. Toxicol. 32 (12), 1125–1136.

Pestka, J.J., Smolinski, A.T., 2005. Deoxynivalenol: toxicology and poten-
cial effects on humans. J. Toxicol. Environ. Health B Crit. Rev. 8 (1),
39–69.

Ramasamy, S., Wang, E., Henning, B., Merrill, J.A.H., 1995. Fumonisin B1 al-
ters sphingoilipid metabolism and disrupts the barrier function of
endothelial cells in culture. Toxicol. Appl. Pharmacol. 133 (2), 343–348.

Rocha, O., Ansari, K., Doohan, F.M., 2005. Effects of Trichothecene myco-
toxins on eukaryotic cells: a review. Food Addit. Contam. 22 (4),
369–378.

Rotter, B.A., Prelusky, D.B., Pestka, J.J., 1996. Toxicology of deoxynivalenol
(vomitoxin). J. Toxicol. Environ. Health 48 (1), 1–34.

Schothorst, R.C., van Egmond, H.P., 2004. Report from SCOOP task 3.2.10
‘‘Collection of occurrence data of fusarium toxins in food and assess-
ment of dietary intake by the population of EU member States’’.
Subtask: trichothecenes. Toxicol. Lett. 153, 133–143.

Severino, L., Luongo, D., Bergamo, P., Lucisano, A., Rossi, M., 2006. Myco-
toxins nivalenol and deoxynivalenol differently modulate cytokine
mRNA expression in Jurkat T cells. Cytokine 36 (1–2), 75–82.

Sharma, N., He, Q., Sharma, R.P., 2004. Augmented fumonisin B1 toxicity
in co-cultures: evidence for crosstalk between macrophages and
non-parenchymatous liver epithelial cells involving in proinflamma-
tory cytokines. Toxicology 203 (1–3), 239–251.

Speijers, G.J.A., Speijers, M.H.M., 2004. Combined toxic effects of
mycotoxins. Toxicol. Lett. 153 (1), 91–98.

Sun, G., Wang, S., Hu, X., Su, J., Huang, T., Yu, J., Tang, L., Gao, W., Wang, J.S.,
2007. Fumonisin B1 contamination on home-grown corn in high-risk
areas for esophageal and liver cancer in China. Food Addit. Contam.
24 (2), 181–185.

Tajima, O., Schoen, E.D., Feron, V.J., Groten, J.P., 2002. Statistically designed
experiments in a tiered approach to screen mixtures of Fusarium
mycotoxsins for possible interactions. Food Chem. Toxicol. 40 (5),
685–695.

Taranu, I., Marin, D.E., Bouhet, S., Pascale, F., Bailly, J.D., Miller, J.D.,
Pinton, P., Oswald, I.P., 2005. Mycotoxin fumonisin B1 alters the cyto-
kine profile and decreases the vaccinal antibody titer in pigs. Toxicol.
Sci. 84 (2), 301–307.

Theumer, M.G., Lopez, A.G.,Masih, D.T.,Chulze, S.N.,Rubinstein, H.R., 2003. Im-
munobiological effects of AFB1 and AFB1–FB1 mixture in experimental
subchronic mycotoxicoses in rats. Toxicology 186 (1–2), 159–170.

Thies, F., Peterson, L.D., Powell, J.R., Nebe-von-Caron, G., Hurst, T.L.,
Matthews, K.R., Newsholme, E.A., Calder, P.C., 1999. Manipulation of
the type of fat consumed by growing pigs affects plasma and mono-
nuclear cell fatty acid compositions and lymphocyte and phagocyte
functions. J. Anim. Sci. 77 (1), 137–147.

Thuvander, A., Wikman, C., Gadhasson, I., 1999. In vitro exposure of
human lymphocytes to trichothecenes: individual variation in sensi-
tivity and effects of combined exposure on lymphocyte function. Food
Chem. Toxicol. 37 (6), 639–648.

Tornyos, G., Kovacs, M., Rusvai, M., Horn, P., Fodor, J., Kovacs, F., 2003.
Effects of dietary fumonisin B1 on certain immune parameters of
weaned pigs. Acta Vet. Hung. 51 (3), 171–179.

Yancy, H., Ayers, S.L.,Farrell, D.E.,Day, A., Myers, M.J., 2001. Differential cytokine
mRNA exspression in swine whole blood and peripheral blood mononu-
clear cell cultures. Vet. Immunol. Immunopathol. 79 (1–2), 41–52.

Yoo, H.S., Norred, W.P., Showker, J., Riley, R.T., 1996. Elevated sphingoid
bases and complex sphingolipid depletion as contributing factors in
fumonisin-induced cytotoxicity. Toxicol. Appl. Pharmacol. 138 (2),
211–218.

Yu, Z., Zhang, L., Wu, D., Liu, F., 2005. Anti-apoptotic action of zearalenone
in MCF-7 cells. Ecotoxicol. Environ. Saf. 62 (3), 441–446.


	Effects of four Fusarium toxins (fumonisin B1, alpha-zearalenol, nivalenol and deoxynivalenol) on porcine whole-blood cellular proliferation
	Introduction
	Materials and methods
	Reagents
	Experimental animals
	Whole-blood cell proliferation assay
	Statistical analysis
	Isobole method analysis

	Results and discussion
	Effects of administration of single mycotoxins on porcine whole-blood proliferation
	Interactive effects of mycotoxin co-administration

	Acknowledgements
	Conflict of interest
	References


