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Abstract

The application of piezoelectric composites in energy harvesters is continuously increasing even at the microscale,
with the immediate corollary of a fundamental need for improved computational tools for optimization of perfor-
mances at the design level. In this paper, a refined, yet simple model is proposed with the aim of providing fast and
insightful solutions to the multi-physics problem of energy harvesting via piezoelectric layered structures. The main
objective is to retain a simple structural model (Euler-Bernoulli beam), with the inclusion of effects connected to the
actual three-dimensional shape of the device. A thorough presentation of the analytical model is presented, along with
its validation by comparison with the results of fully 3D computations.
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1. Introduction

Piezoelectric materials have been widely used in
many technological applications at the macroscopic
scale. In recent times, such materials have been enter-
ing in the field of Micro-Electro-Mechanical Systems
(MEMS): in particular, the coupling between electri-
cal and mechanical behavior is feasibly used in MEMS
energy harvesters (which exploit the so-called “direct
effect”) and actuators (based on the “indirect effect”).
Piezoelectric MEMS have been proven to be an at-
tractive technology for harvesting small magnitudes
of energy from ambient vibrations. This technology
promises to eliminate the need for batteries or complex
wiring in microsensors/microsystems, moving closer to-
wards battery-less, autonomous sensors systems and
networks which recovered on-site the energy they need
to fulfill their tasks. At the present time, most of the
piezoelectric harvesters reported in the literature are
cantilever laminated beams and plates with thin films

of lead zirconate titanate Pb(Zr,Ti)O3 (PZT) on Si or
SiNx substrate [1, 2, 3]. The multi-physics simulation
of piezoelectric effects can be obtained by considering
that the structural members are represented by a lami-
nate composite with piezoelectric and silicon layers [4],
the active layer is then attached to an external load resis-
tance which reproduces the circuitry employed for the
power management. Numerous models have been re-
ported, but the effect of 3D strain field on the coupling
has been considered only in few cases [5, 6]. In this
paper, a simple 1D model is built in order to simulate
piezoelectric thin beams and plate harvesters [7]. Start-
ing from the fully coupled 3D constitutive equations of
piezoelectricity, appropriate hypotheses are introduced
to model strains and stresses so that the 1D model takes
into account the 3D effects. It is worth noting that such
behavior is usually neglected if the standard mechan-
ical response of the beam is considered, in view of a
small difference with respect to analytical results. Con-
versely, in the presence of piezoelectric coupling, the
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effects connected to the actual aspect ratio of the can-
tilever involve a significant variation of the results in
terms of electrical quantities. Consequently, the prob-
lem should be carefully studied in order to provide a re-
liable estimate of the energy production in a wide range
of geometrical configurations. The sectional behavior
of the beam is studied through the Classical Lamina-
tion Theory (CLT) specifically modified in order to in-
troduce the piezoelectric coupling and a reduced order
model is built through separation of time and space vari-
ables and the introduction of a suitable shape function
for the beam deformation. The resulting coupled equa-
tions are solved analytically in the frequency domain
and numerically in the time domain by means of step-
by-step integration (α-method). For the sake of compar-
ison, simulations have been carried out also by means of
a fully 3D model implemented in a commercial code,
coupled within an ad hoc created procedure to intro-
duce the effect of the electrical circuit. The results show
that the proposed model is in excellent agreement with
the numerical outcomes, with substantial improvements
with respect to the standard analytical solutions. The
new constitutive equations can be employed for simu-
lating the performances of innovative piezoelectric en-
ergy harvesters, including nonlinear [8, 9, 10], bistable
and frequency-up-converter harvesters [11].

2. One dimensional model with three-dimensional
effects

The piezolaminated cantilever beam is presented in
figure 1, where L is the length, h the total thickness and
b the width. The x3-coordinate originates in the neu-
tral axis and is directed downwards, x1-coordinate lies
along the beam axis while the x2-coordinate originates
in the middle of the beam, so that −b/2 ≤ x2 ≤ b/2. A
piezoelectric layer (for instance, made by PZT material)
is placed on top of the beam substrate and is activated in
d31-mode when the beam deflects: this means that the
axial deformation of the layer causes an electric field in
the vertical direction (along x3-axis).

 

Figure 1: Cantilever piezoelectric harvester, the piezoelectric material
(light grey) is placed on a structural layer (dark grey).

To implement d31-mode, the polarization vector is op-
posite to x3-axis and the electrodes span both the upper
and the lower surfaces of PZT thin film. In this way,
when the PZT layer is stretched along x1-axis, the gen-
erated charge is collected by the electrodes. The bot-
tom electrode is grounded while the other is attached
to an external load resistance (R) which represents an
ideal external circuit employed for the management of
the power generated by PZT. Even though it is not
developed here, the model described in the following
can be easily extended to d33-mode piezoelectric har-
vesters. The standard notation of piezoelectric analysis
is adopted: stress components are denoted by the cap-
ital letter T and strain components by the capital let-
ter S . Voigts notation is employed herein. Ti j, S i j,
Ei, Di are stress, strain, electric field and electric dis-
placement field components; E is the Young’s modu-
lus and ν is the Poissons coefficient, ei j and εS

ii are the
piezoelectric stress constant and the dielectric constant
computed at constant mechanical stress. It is worth not-
ing that, in view of the geometric features of the prob-
lem, only a subset of the tensor and vector components
should be explicitly involved in the analysis. The beam
final stack is not homogeneous since different deposited
layers are employed. The mechanical response of the
layered beam can be obtained by means of a number
of theories widely studied by a group at Politecnico di
Torino, examined in [12]. The same group proposed
a refined electro-mechanical beam formulation which
uses Lagrange-type polynomials to interpolate the un-
knowns over the beam cross section. In such way lin-
ear, bi-linear, and quadratic approximations of the dis-
placement and electric field over the beam cross-section
are obtained [13, 14]. The electromechanical model has
been used in conjunction with Carrera Unified Formu-
lation (CUF) [15] which allows one to introduce any or-
der expansions of the displacement unknowns over the
beam section. Herein, much simpler models are used
to describe the beam-cross section behavior. These as-
sumptions limit the validity of the model to extremely
thin plates and to simple shapes of the laminated struc-
tures since these hypotheses apply to microfarbricated
laminated structures. Herein, the cross-sections orthog-
onal to x1 axis are considered to remain plane after de-
formation and the displacement vector results:

s =

 −x3w′3 (x1; t)
ŝ2 (x1, x2, x3,Λ; t)

y (t) + w3 (x1; t) + ŝ3 (x1, x2, x3,Λ; t)

 (1)

y (t) denotes an external motion of the reference along
x3 axis while w3 is the average vertical displacement of
the beam cross-section (•′ means derivative of • with
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respect to the variable). The kinematic model presented
in eq. (1) is an improvement of Euler-Bernoulli model
which is justified as long as the piezoelectric beam is
considered thin and the layer elastic properties are of
the same order. The modification accounts for addi-
tional vertical and in-plane displacements which depend
on x2 and x3 coordinates. In such a way, if ŝ2 and ŝ3
are appropriately defined, it is possible to build three
dimensional stress-strain states. These displacements
are also assumed to depend on a parameter which is
a sort of in-plane slenderness of the beam defined as
Λ = L/b. Functions ŝ2 and ŝ3 must satisfy some spe-
cific hypotheses in order to be compatible to physical
stress-strain states in the beam. First, since the beam is
considered thin, the in-the-thickness stress must be null,
T33 = 0. Second, the in-plane stress must be T22 = 0
at x2 = ±b/2. Moreover, when Λ→ 0 the beam is in-
finitely wide and the strain condition S 22 = 0 must al-
ways be verified; on the other hand when Λ→ ∞ the
beam width is null and T22 = 0 has to be guaranteed.
Considering piezoelectrics, the constitutive equations
describing these two limit states read [5]:

• Null Transverse Deformation (NTD), Λ→ 0:
T33 = 0 and S 22 = 0

T11 =
E

1 − ν2 S 11 −

(
e31 −

ν

1 − ν
e33

)
E3 (2a)

T22 =
Eν

1 − ν2 S 11 −

(
e32 −

ν

1 − ν
e33

)
E3 (2b)

S 33 =
ν

1 − ν2 S 11 −
(1 − 2ν) (1 + ν)

E (1 − ν)
e33E3 (2c)

D3 =

(
e31 −

ν

1 − ν
e33

)
S 11+

+

(
εS

33 +
(1 − 2ν) (1 + ν)

E (1 − ν)
e2

33

)
E3 (2d)

• Null Transverse Stress (NTS), Λ→ ∞ or
x2 = ±b/2: T33 = 0 and T22 = 0

T11 = ES 11 − (e31 − νe32 − νe33) E3 (3a)

S 22 = −νS 11 +
1 − ν2

E

(
e32 −

ν

1 − ν
e33

)
E3 (3b)

S 33 = −νS 11 +
1 − ν2

E

(
−

ν

1 − ν
e32 + e33

)
E3 (3c)

D3 = (e31 − e32ν − e33ν) S 11+

+

(
1 − ν2

E

(
(e32 + e33)2 −

2e32e33

1 − ν

)
+ εS

33

)
E3 (3d)

Moreover, in-plane electric displacement components
are null accordingly to the position of electrodes.

Finally, the kinematic state given by eq. (1) must be
built such that the mean shear deformations are nulli-
fied. This is guaranteed if ŝ2 is an odd function of x2 and
neglecting all quadratic terms in x3 (since the thickness
is supposed to be small compared to other dimensions).

By imposing T33 = 0, which holds in all cases, one
finds a mandatory correlation that links the in-the-
thickness to the in-plane strains:

S 33 = −
ν

1 − ν
(S 11 + S 22) + c3 (4)

where
c3 =

(1 + ν) (1 − 2ν)
E (1 − ν)

e33E3 (5)

In order to recover both NTD and NTS models with
a single model (Modified Transverse Deformation,
MTD), eq. (3b) must be multiplied by a shape function,
fΛ(x2,Λ), that must be 1 when Λ → ∞ or x2 = ±b/2,
must be 0 when Λ → 0 and must be even in order to
assure null mean shear strain:

S 22 = (−νS 11 + c2) fΛ (6)

where:

c2 =
1 − ν2

E

(
e32 −

ν

1 − ν
e33

)
E3 (7)

The function fΛ (x2,Λ), reported in figure 2, is given by:

fΛ (x2,Λ) = (1 − AΛ (Λ)) |ξ|BΛ(Λ) + AΛ (Λ) (8)

with ξ = 2x2/b and:

AΛ (Λ) =
ΛaΛ

ΛaΛ + bΛ

(9a)

BΛ (Λ) = 1 +
1
Λ

(9b)

where aΛ and bΛ are calibration parameters.

 

 

 

3x

 

Figure 2: Shape function of in-plane strain.

Assuming eqs. (4) and (6) as strain components, the
remaining stresses and electric displacement accord-
ingly result:

3



T11 =
E

(
1 − ν2 fΛ

)
1 − ν2 S 11+

−

(
e31 − ν fΛe32 −

ν (1 − ν fΛ)
1 − ν

e33

)
E3 (10a)

T22 = (1 − fΛ)
( Eν
1 − ν2 S 11 +

−

(
e32 −

ν

1 − ν
e33

)
E3

)
(10b)

D3 =

(
e31 − ν fΛe32 −

ν (1 − ν fΛ)
1 − ν

e33

)
S 11+

+

(
1 − ν2

E

(
e32 −

ν

1 − ν
e33

)2
fΛ+

+
(1 + ν) (1 − 2ν)

E (1 − ν)
e2

33 + εS
33

)
E3 (10c)

The electric potential is constant on the electrodes,
grounded on the bottom electrode and free to change
on the upper one (v). According to the piezoelec-
tric constitutive law, the electric field is proportional
to strain which is linear across the piezoelectric layer
thickness, thus the electric potential (φ) should be con-
sidered quadratic across the thickness of piezoelectric.
However, as long as the piezoelectric layer is thin, a lin-
ear potential can be adopted:

φ = x∗3
v
tP

(11)

where tP is the piezoelectric layer thickness and x∗3 is
the vertical upward coordinate in the piezoelectric layer
(figure 3).

 

 

 

3x

 

Figure 3: Polarization and electric potential between electrodes.

3. Equations of motion

The equations of motion are computed using the dis-
sipative form of Euler-Lagrange equations:

d
dt
∂L

∂q̇i
−
∂L

∂qi
+
∂D

∂q̇i
= 0 ∀qi (12)

where D is the Dissipation function and L is the La-
grangian function which is given by:

L = K − (E −W) (13)

K , E are the kinetic and internal energy, respectively;
W is the external work.

The internal energy is given by:

E =
1
2

∫
B

(T11S 11 + T22S 22 − D3E3) dB (14)

where B denotes the whole volume of the laminated
beam.

Given a stratification where x3,k is the coordinate of
the k-layer and nl the total number of layers, according
to eq. (10) where T11, T22, S 22 and D3 are expressed as
a function of S 11 and E3, the internal energy results:

E =
1
2

∫ L

0
b

nl∑
k=1

∫ x3,k

x3,k−1

(
Êk

ΛS 11S 11 +

−êk
ΛE3S 11 − ε̂

k
ΛE3E3

)
dx3dx1 (15)

where

Êk
Λ =

1
b

∫ b/2

−b/2

E
(
1 − ν2

)
f̂Λ

1 − ν2 dx2 (16a)

êk
Λ =

1
b

∫ b/2

−b/2

e31 − e32ν f̂Λ −
ν
(
1 − ν f̂Λ

)
1 − ν2

 dx2 (16b)

ε̂k
Λ =

1
b

∫ b/2

−b/2

(
1 − ν2

E

(
e32 −

ν

1 − ν
e33

)2
f̂Λ+

+
(1 + ν) (1 − 2ν)

E (1 − ν)
e2

33 + εS
33

)
dx2 (16c)

are averaged values of the elastic, piezoelectric and di-
electric constants which also depend on the parameter
Λ and:

f̂Λ (x2,Λ) = fΛ (x2,Λ) (2 − fΛ (x2,Λ)) (17)

It should be noticed that when fΛ = 1 and fΛ = 0
eqs. (16) reduce to the coefficients of eqs. (2) and
eqs. (3). Moreover, by means of compatibility and as-
suming the hypotheses in eqs. (1) and (11), the strain
and the electric field result:

S 11 = s′1 = −x3w′′3 (18a)

E3 = −φ′ = −
v
tP

(18b)

and the internal energy writes:

E =
1
2

∫ L

0
b

nl∑
k=1

∫ x3,k

x3,k−1

(
Êk

Λx2
3w′′23 +

−2
êk

Λ
x3

tP
vw′′3 −

ε̂k
Λ

t2
P

v2
 dx3dx1 (19)
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By integrating on the thickness, one obtains the general-
ized internal stiffness Cχχ usually defined for the theory
of laminates. In such a case the new constitutive law
also contains, in the integrated constitutive equations,
the generalized piezoelectric coupling coefficient Cχv.
Moreover, the same procedure is adopted on the electri-
cal part of the constitutive law obtaining the generalized
internal capacitance Cvv [4].

Cχχ =

nl∑
k=1

∫ x3,k

x3,k−1

Êk
Λx2

3dx3 (20a)

Cχv =

nl∑
k=1

∫ x3,k

x3,k−1

êk
Λ

x3

tP
dx3 (20b)

Cvv =

nl∑
k=1

∫ x3,k

x3,k−1

ε̂k
Λ

t2
P

dx3 (20c)

The internal energy finally results:

E =
1
2

∫ L

0
b

nl∑
k=1

∫ x3,k

x3,k−1

(
Cχχw′′23 +

−2Cχvvw′′3 −Cvvv2
)

dx3dx1 (21)

The external work is given by:

W = ftw +

∫ L

0

∫ b/2

−b/2
fdw3dx2dx1 − qv (22)

where ft is a tip force at the free edge, fd is a distributed
force on the top surface and q the total charge on the top
electrode. The kinetic energy is given by:

K =
1
2

(
mtẇ2 + Jtẇ′2 + 2Mtẇẇ′ +

+

∫ L

0

∫ b/2

−b/2
mdẇ′23 dx2dx1

)
+

+ ẏ
(
mtẇ + Mtẇ′ +

1
2

∫ L

0

∫ b/2

−b/2
mdẇ′3dx2dx1

)
(23)

where mt, Jt and Mt are the mass and the inertial and
static moment of a tip mass attached at the free edge. w
and w′ are the vertical displacement and the rotation of
the beam evaluated at the free edge. Herein, all terms
which purely depends on ẏ have not been reported since
they do not contribute when computing Euler-Lagrange
equations (•̇means derivation of •with respect to time);
md is the distributed mass of the beam:

md =

nl∑
k=1

∫ x3,k

x3,k−1

ρkdx3 (24)

where ρk is the density of the k-th layer (the rotational
inertia of the beam’s cross-sections can be neglected as
long as the beam is thin while inertial terms due to s2
and s3 have been neglected since they are small with
respect to the longitudinal displacement).

By means of separation of variables the mechanical
unknowns reduce to the displacement at the free edge:

w3 (x1; t) = ψw (x1) w (t) (25)

where ψw is a shape function which must be chosen ap-
propriately to boundary conditions. eq. (25) is substi-
tuted in eqs. (21)-(23) and eq. (12) is computed for both
q1 = w and q2 = v. Herein, A viscous dissipation func-
tion is considered:

D =
1
2

cMẇ2 (26)

where cM is the linear mechanical damping coefficient;
the equation of motion is finally obtained:

mẅ + cMẇ + kL0w − Θχvv = fext − myÿ (27a)
C0v + Θχvw = q (27b)

The coefficients are computed by integrating the shape
function and the generalized constitutive coefficients on
the area of the beam:

m = mt + Jtψ
′2
w (L) + 2Mtψ

′
w (L) +

+

∫ L

0
bmdψ

2
wdx1 (28a)

my = mt + Mtψ
′
w (L) +

∫ L

0
bmdψwdx1 (28b)

fext = ft +

∫ L

0
b fdψwdx1 (28c)

kL =

∫ L

0
bCχχψ

′′2
w dx1 (28d)

C0 =

∫ L

0
bCvvdx1 (28e)

Θχv =

∫ L

0
bCχvψ

′′
wdx1 (28f)

where m is the total inertial term; my is the total mass
activated by the external acceleration; kL is the linear
elastic stiffness; C0 is the internal capacitance of PZT
while Θχv is the coupling constant. The electric charge
collected by the electrodes is managed by an external
circuitry which provides the power supply for the self-
powered electronic device. Different schemes of cir-
cuitries are investigated in [16]. The harvester provides
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AC voltage and the simplest solution is the coupling
with an external load resistance:

q = R−1v (29)

Moreover, the power generated at the optimal load re-
sistance is the maximum theoretical extractable power.
Thus, the case studied is significant since it provides,
given the harvester, the theoretical upper bound for the
power generation. eq. (27) and eq. (29) are usually stud-
ied separately by commercial codes because they be-
long to two different physical domains which interact
through electric potential and electric charge. The so-
lution technique developed for commercial codes is ex-
plained in section 6. In case of the MTD code developed
herein, the two physics are solved simultaneously.

mẅ + cMẇ + kLw − Θχvv = fext − myÿ (30a)

C0v̇ + Θχvẇ + R−1v = 0 (30b)

4. Solution in the frequency domain

The oscillator frequency response to harmonic excita-
tions is studied through the Harmonic Balance Method
[17] which provides an exact solution for linear sys-
tems. Harmonic balance mimics the spectrum analyzer
in simply assuming that the response to a sinusoidal ex-
citation ( fext − myÿ = Fsin(ωt)) is a sinusoid at the same
frequency. A couple of sinusoidal trial solutions of dis-
placement (w = Wsin(ωt)) and voltage (v = V sin(ωt))
is substituted in the equations, the coefficients of same
harmonics are equated and the solution is computed
with respect to the phasor of the response. The Fre-
quency Response Function (FRF) results:

HW =

1 −Ω2
M + κ2

χv
Ω2

M

Ω2
E + Ω2

M

 +

+i
2ζMΩM + κ2

χv
ΩMΩE

Ω2
E + Ω2

M

−1

(31)

whose module is the dimensionless amplitude of the
displacement Y = W/W0, W0 is the static displace-
ment, ΩM = ω/ωr is the dimensionless excitation fre-
quency, ωr =

√
kL/m is the resonance angular fre-

quency, ΩE = 1/RC0ωr is the dimensionless cut-off

frequency of the circuit (τE = RC0 is the time
constant of the RC circuit composed by the capac-
itance of PZT and the external load resistance) and
κ2
χv = Θ2

χv/kLC0 is the effective piezoelectric coupling
coefficient. κ2

χv is a global measure of the degree of cou-
pling which takes into account both the coupling coef-
ficient κ2

31 = e2
31/Eε

S
33 and geometrical aspects. In case

of a pure piezoelectric system, κ2
χv would exactly coin-

cide with κ2
31. Finally, ζM = cM/2mωr is the mechan-

ical damping ratio and the quality factor is defined as
QM = 1/2ζM . The equivalent stiffness and the damping
ratio depend on the piezoelectric coupling, on the exci-
tation frequency and on the load resistance:

keq = kL

1 + κ2
χv

Ω2
M

Ω2
E + Ω2

M

 (32a)

2ζeq = 2ζM + κ2
χv

ΩE

Ω2
E + Ω2

M

(32b)

eqs. (32) show that the presence of the piezoelectric
layer affects the damping coefficient, since energy is
taken out from the system, but it also increases the stiff-
ness. The link between the displacement and the voltage
is linear and is given by:

V = −

 Ω2
M

Ω2
E + Ω2

M

+ i
ΩMΩE

Ω2
E + Ω2

M

 Θχv

C0
W (33)

The power generation is the power dissipated by the
equivalent electrical damper; it results [18]

P =
F2ωrκ

2
χvΩEΩ2

M

kL

(
Ω2

E + Ω2
M

) ×
×


1 −Ω2

M +
κ2
χvΩ

2
M

Ω2
E + Ω2

M

2

+

2ζMΩM +
κ2
χvΩMΩE

Ω2
E + Ω2

M

2
−1

(34)

The power can be maximized with respect to the electric
load, or similarly to the cut-off frequency:

Ω
opt
E = ΩM

√√√√√(
1 −Ω2

M + κ2
χv

)2
+ 4ζ2

MΩ2
M(

1 −Ω2
M

)2
+ 4ζ2

MΩ2
M

(35)

eq. (35) shows that for maximizing the power, the exter-
nal load resistance should be calibrated accordingly to
the frequency of the solicitation.

5. Solution in the time domain

Hughes α-method [19] has been chosen to solve
eq. (30) for time dependent solicitations. The equa-
tions are rearranged in matrix formulation in the vari-
able x> = [w v]:

Mẍ + Cẋ + Kx = F (36)
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where:

M =

[
m 0
0 0

]
(37a)

C =

[
cM 0
Θχv C0

]
(37b)

K =

[
kL −Θχv

0 R−1

]
(37c)

F =

[
fext − myÿ

0

]
(37d)

The method has been implemented and solved in a
MATLAB code.

6. 3D Finite Element model

In order to validate the model explained in sections
2-5 a commercial code, ABAQUS, is employed. The
code allows using piezoelectric constitutive equations
in the classical structural mechanic environment. How-
ever, only 3D models can be built, this is an enormous
limitation since piezoelectric elements are usually em-
ployed in laminated beams or plates. This results in
a large numerical effort since a high number of ele-
ments must be employed to correctly reproduce the be-
havior of high aspect ratio components. Moreover, the
solver of lumped electrical circuitry is not available in
ABAQUS. For what concerns the solution of piezoelec-
tric behavior, the code solves an equation similar to
eq. (27) built on the basis of 3D finite elements aug-
mented with the additional voltage degree of freedom.
The voltage is grounded on the bottom surface of piezo-
electric material while is constrained to be uniform on
the top surface, this to reproduce the presence of elec-
trodes. The electric charge plays the role played in
structural mechanics by the external force. The con-
nection with the electric circuit has been built ad hoc
through an external subroutine which interacts in a stag-
gered procedure through the electric potential and the
electric charge which act respectively as variable and
load in the piezoelectric module and as load and vari-
able in the electric module. The scheme of the solving
algorithm including the subroutine is shown in figure 4.
In this study the subroutine reduces to a discrete version
of Ohm’s law, but there is not any particular limitation
on the equations that could be implemented.

0 1 0;q q q

          n nv w

1n nq q 

      n n nq v w

;n nF q

 

Figure 4: Algorithm for the resolution of the coupled piezoelectric-
electric problem.

The explicit algorithm can be considered correct as
long as the variation of the charge in every step is small
and the difference in the voltage computed with qn and
qn+1 is negligible. This is obtained for a small enough
time step (∆t). In case of a pure resistive circuit, the
stability of the algorithm is assured only if the time
step is lower than the time constant of the RC circuit
(∆t < RC0). Comparative analyses have been performed
to validate the model. A 2 layers (2 µm PZT on 6 µm
silicon substrate) cantilever beam has been chosen. The
length is 1000 µm, the width is parametric and varies
from 50 µm to 5000 µm. Geometrical and material
properties of the layers are given in table 1.

Table 1: Material parameters values of the cantilever MEMS har-
vester, ε0=8.854 10−12F/m.

ρ [g/cm3] E [GPa] ν [-]

PZT 7.70 100 0.30
PolySilicon 2.33 148 0.33

e31 [N/mV] e33 [N/mV] εS
33 [ε0]

PZT -12 20 2000
PolySilicon 0 0 0

Convergence analyses (figure 5 and figure 6) show
that a good approximation can be rapidly obtained em-
ploying quadratic elements. The chosen mesh is re-
ported in figure 5 and counts 40 quadratic elements on
the length and an element for each layer on the thickness
(as shown by figure 7).
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Figure 5: Convergence analysis, linear finite elements.

 

Figure 6: Convergence analysis, quadratic finite elements.

Figure 7: 3D Mesh in ABAQUS.

7. Static analyses

Open circuit static analyses have been performed
with a tip load F = 1 µN/µm at the beam free edge and
null external acceleration. The classical models have
been compared to the modified model which has been
calibrated with respect to ABAQUS analyses. The re-
sulting calibrated parameters are aΛ = 0.8 and bΛ = 2.2.
The response of classical models is constant with re-
spect to the width while the response of the modified
model correctly describes the variation in stiffness (fig-
ure 8) and more important, the variation of the upper
electrode voltage and correspondingly of coupling co-
efficient (figure 9). From the mechanical point of view
the mean error can be reduced from 8% to less than 1%,
while the error on the voltage reduces from 27% to less
than 3%. Considering that the power will be propor-
tional to the voltage squared, the reduction of the error
in the power generation is expected to be even more sig-
nificant.

 

Figure 8: Open circuit Static Analysis, Displacement.
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Figure 9: Open circuit Static Analysis, Voltage.

8. Frequency analyses

 

Figure 10: Frequency response, max ÿ = 90 g, b = 200 µm,
QM = 500, optimal R.

The analytical solution of the frequency response has
been computed for the aforementioned device consid-
ering null external forces and an external acceleration

of 90 g. The frequency response (figure 10) computed
at the optimal load resistance shows two peaks that oc-
cur near the mechanical resonance frequency and near a
second frequency called anti-resonance.

The peaks would perfectly occur at these frequencies
if mechanical damping had been neglected. The pres-
ence of two peaks is physically explained by the fact
that the power (P = v2/R) can be maximized both at
high resistance (high voltage) and at low voltage (low
resistance). It can be shown that in a general case the
peaks are obtained when the injected electrical damp-
ing equals the mechanical damping of the system [20].

Figure 11 shows that classical models cannot describe
the dependence of resonance frequencies ( fr = ωr/2π)
on the width of the device. On the other hand, the mod-
ified model qualitatively reproduces the variation in fre-
quency. It still does not perfectly match with 3D nu-
merical results because of a mismatch in the computa-
tion of the modal mass associated to the first vibrating
mode. This error could be probably be fixed by enrich-
ing the beam cross sectional behavior as proposed in
CUF [21] which proposed the computation and the eval-
uation of higher-order theories for free vibration analy-
sis of beams.

Conversely to the resonance frequency, which is
a pure mechanical parameter, the anti-resonance fre-
quency ( far) depends on the effective piezoelectric cou-
pling coefficient and it measures the global coupling:

far = fr
√

1 + κ2
χv (38)

 

Figure 11: Resonance frequency.
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Figure 12: Anti-Resonance frequency.

Figure 12 shows that a good agreement is also ob-
tained for the anti-resonance frequency. This result
is profoundly different from the previous since anti-
resonance depend on the electrical parameters while the
resonance depends on mechanical ones. This means that
the model can correctly describe the variation of elas-
tic modulus, coupling coefficient and dielectric constant
depending on different width ratio. To better understand
the frequency response computed in section 4, three-
dimensional plots of displacement, voltage and power
generation are represented in figures 13-15. The classi-
cal two peaks power generation response is obtained.
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Figure 13: Displacement, b = 200 µm, QM = 500.
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Figure 14: Voltage, b = 200 µm, QM = 500.
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Figure 15: Power generation, b = 200 µm, QM = 500.
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9. Quasi-Static analyses

 

Figure 16: Quasi Static analysis, b = 200 µm, R = 1 MΩ, Voltage
and Force.

Quasi static analyses have been performed; a smooth
step load followed by a constant plateau has been con-
sidered. The dashed line in figure 16 reproduces the ap-
plied force (right axis) vs. time. The maximum reached
force is F = 1 µN/µm. The load resistance is varied
as parameter and it is shown that the voltage gradually
decreases to zero because the external load resistance
dissipates energy reducing the charge on the electrodes.
The decreasing speed depends on the value of the re-
sistance, the lower the resistance, the faster the voltage
decreases while in open circuit the resulting voltage re-
mains constant since no energy is harvested. Parametric
analyses have been performed varying the load resis-
tance with b = 200 µm (figure 17-18) and b = 2000 µm
(figure 19-20) . It is clear that when R→ ∞ the solution
should collapse to the open circuit solution of figure 9.
While when R → 0 short circuit condition is obtained
and no power can be harvested. In this case, the influ-
ence of the electrical domain is nullified and the oscil-
lator reduces to a pure mechanical one. A peak power
generation is obtained for an optimal value of load re-
sistance which inversely depends on the capacitance of
the device. All models predict the same optimal load
resistance as ABAQUS.

 

Figure 17: Quasi Static analysis, b = 200 µm, Voltage.

As expected, the voltage range does not significantly
change from the 200 µm to the 2000 µm device since
both the coupling constant and the capacitance depend
linearly on the width and the voltage is proportional to
their ratio. On the other hand, the power generation in-
creases (barely linearly) while increasing the width be-
cause of the influence of the external resistance. Indeed,
the optimal resistance inversely depends on the width of
the device.

This same analysis has been performed for different
values of width and the peak power per unit width, com-
puted at the optimal load resistance, has been collected
in figure 21 for all models. It is shown that the MTD
model correctly predicts a cantilever type harvester for
all range of length-beam ratios that have been consid-
ered. On the other hand NTD and NTS models predict
that the power generation is linear to the width and they
always under- and overestimate voltage and power, re-
spectively. As shown by figure 22 the mean error on
the power generation can be reduced from about 30%
to less than 5% considering both models. It can also be
concluded that wider harvesters not only recover more
power, which is obvious, but also have a higher power
density than narrower beams.
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Figure 18: Quasi Static analysis, b = 200 µm, Power.

 

Figure 19: Quasi Static analysis, b = 2000 µm, Voltage.

 

Figure 20: Quasi Static analysis, b = 200 µm, Power.

 

Figure 21: Peak Power generation at Optimal R.

10. Dynamic analyses

Free oscillation analyses have been performed on the
same structure introduced in section 7. As before, the
beam is quasi-statically moved to a certain position but
now is suddenly released and left free to oscillate. The
width is fixed to b = 200 µm while the load resistance
and the mechanical quality factor are tuned as parame-
ters.

12



 

Figure 22: Error on Power Generation.

The mechanical damping has been introduced in
ABAQUS through Rayleigh method:

C = αRM + βRK (39)

by setting:

αR = ωrQM (40a)
βR = 0 (40b)

 

Figure 23: Displacement, b = 200 µm, R = ∞, QM = ∞.

Figure 23 and figure 24 show the free oscillations of
an harvester in case of null mechanical damping at in-
finite and optimal R. It is clear that the presence of the
electrical load correctly damps the oscillation convert-
ing mechanical energy into electrical power. It has to be

noted, that the damping in figure 24 comes only from
the coupling with the electronics.

 

Figure 24: Displacement, b = 200 µm, optimal R, QM = ∞.

 

Figure 25: Voltage, b = 200 µm, optimal R, QM = ∞.

The first significant result is that while the MTD
code took less than 3 seconds to perform the analysis,
ABAQUS required 5 hours 25 minutes and 23 seconds
to produce such results. This is easily explained by
the fact that ABAQUS implemented a 3D fully coupled
model solved in implicit dynamics. One may object that
the MTD model can only be employed in simple cases.
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However, the validity of the model lasts as long as the
piezoelectric material is employed in thin film deposited
on a substrate and this is the case of a large number of
applications, particularly in MEMS. Figure 25 and fig-
ure 26 report the voltage and power generated by the
harvester at optimal load resistance.

 

Figure 26: Power, b = 200 µm, optimal R, QM = ∞.

Two things have to be noticed from previous results.
First, ABAQUS and MATLAB solutions are perfectly
matched in the initial phase of the oscillation while they
slightly shift in the ending part. This is due to the small
mismatch in resonance frequencies which was already
revealed in figure 11 and figure 12 and is newly high-
lighted in figure 27 which shows the Fourier’s transform
of the results. Second, ABAQUS solution shows a sec-
ond frequency which produces a small oscillation of the
peak values of the responses. This effect is not due to
numerical errors since is not eliminated by tuning the
numerical damping coefficient α of Hughes integration
scheme but rather it originates from higher order reso-
nance frequencies which are completely neglected in the
MTD model since only a single shape function has been
employed. On the contrary, in ABAQUS, the sudden
jump activates all modal frequencies. This phenomenon
is much more visible in the voltage plot (figure 28). This
happens because the displacement variable is measured
at the free edge and it is less sensitive to the perturba-
tions that occur in the remaining portion of the beam.
On the contrary the voltage is constrained to be constant
all over the upper and bottom surfaces of PZT, hence it
is a sort of mean value computed on the whole length of

the beam. Higher order frequencies introduce a lower
wavelength perturbation superimposed to the first mode
oscillation. Thus, they mainly affect the voltage. More-
over, the influence of higher modes becomes predomi-
nant at lower external load resistances (figure 29).

 

Figure 27: Fourier’s transform of the free oscillations of the
harvesterb = 200 µm, QM = ∞, R→ ∞.

 

Figure 28: Influence of high order frequencies on the voltage,
b = 200 µm, QM = ∞, R→ ∞.
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Figure 29: Influence of high order frequencies on the voltage,
b = 200 µm, QM = ∞, R = 1 kΩ.

 

Figure 30: Fourier’s transform of the free oscillations of the harvester,
b = 200 µm, QM = ∞, R = 1 kΩ.

Low R means low time constant of the RC circuit
composed by the internal capacitance of PZT and the
external load resistance. Thus, the charge in the PZT
capacitor can be moved faster resulting in more sensi-
tivity to higher frequencies. Figure 30 shows how the
Fourier’s transform of the resulting voltage changes at
different load resistances. Accordingly to these results
it is expected that the MTD model underestimates the

peak voltage (so the peak power generation) at low re-
sistances. The results of parametric analyses at vary-
ing R have been collected in figure 31. As expected
the MTD model better reproduces numerical results than
plane and uniaxial stress models.

 

Figure 31: Dynamic analysis, Peak power generation, b = 200 µm,
QM = ∞.

 

Figure 32: Influence of QM on peak power generation, b = 200 µm,
R = 8.7 kΩ.
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Figure 33: Influence of QM on total energy harvested, b = 200 µm,
R = 8.7 kΩ.

 

Figure 34: Influence of R on total energy harvested, b = 200 µm, R =

8.7 kΩ.

The influence of the mechanical quality factor on the
peak power generation is reported in figure 32. Except
for significant low values of QM , the peak power gener-
ation remains more or less constant. This does not mean
that the mechanical damping has no influence on the
performances of the harvester. In fact, figure 33 shows
that the total energy harvested reduces as QM decreases.
When no mechanical damping is considered, the whole

energy injected into the system is harvested:

EOUT PUT = EINPUT =
F2

max

2kL
(41)

As the peak power generation changes with the load re-
sistance also the energy harvested is modified by the
choice of the load (figure 34).
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Figure 35: Influence of R and QM on peak power generation,
b = 200 µm.

The peak power generation and the energy harvested
are collected in figure 35 and figure 36 where it is shown
that both the power and the energy increase as the qual-
ity factor increases.
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Figure 36: Influence of R and QM on total energy harvested,
b = 200 µm.

It has to be noted that the peak power generation
and the peak energy harvested do not occur at the
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same load resistance. The peak power is reached at
R = 15 kΩ while the peak energy harvested is obtained
at R = 1/C0ωr = 8.7 kΩ. This value designs the opti-
mal load resistance associated to the harvester.

11. Conclusion

A simple 1D model (Modified Transverse Deforma-
tion Model, MTD) has been built to perform multi-
physics simulation for MEMS piezoelectric harvesters.
Suitable hypotheses on stresses and strains have been
implemented to take into account 3D effects on elas-
tic and electric parameters. A mixed theory which in-
cludes the effect of the transverse strain has been con-
sidered such that boundary conditions and limit stress
and strain configurations are recovered. The piezolami-
nated beam with modified elastic and electric constants
has been studied through the Classical Lamination The-
ory (CLT) specifically modified to introduce the piezo-
electric coupling and a lumped parameters model has
been built through separation of variables. An exten-
sion to Finite Element method can be easily introduced.
The resulting coupled equations have been analytically
solved in the frequency domain and have been numeri-
cally solved in the time domain by means of α-method.
The aforementioned model has been validated by com-
parison with fully 3D multi-physics simulations per-
formed by a commercial code (ABAQUS) where an ex-
ternal subroutine has been added to simulate the cou-
pling with an external load resistance. The comparison
with the commercial codes shows that the MTD model
is accurate enough to reproduce qualitatively and quan-
titatively the response of the harvester gaining in terms
of model dimensions and computational time, in partic-
ular when performing step-by-step time analysis. The
validated model can be used to perform simulations on
MEMS scale piezoelectric energy harvesters. More-
over, the developed constitutive law can be applied to
thin piezolaminated beam energy harvesters that exploit
advanced designs for maximizing the conversion of en-
ergy: e.g. nonlinearity [22], including bistability [23]
and frequency-up-conversion [11].
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