
1 23

Wireless Personal Communications
An International Journal

ISSN 0929-6212

Wireless Pers Commun
DOI 10.1007/s11277-015-2481-4

Sensor Function Virtualization to Support
Distributed Intelligence in the Internet of
Things

Floris Van den Abeele, Jeroen Hoebeke,
Girum Ketema Teklemariam, Ingrid
Moerman & Piet Demeester

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55799441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Sensor Function Virtualization to Support Distributed
Intelligence in the Internet of Things

Floris Van den Abeele • Jeroen Hoebeke • Girum Ketema Teklemariam •

Ingrid Moerman • Piet Demeester

� Springer Science+Business Media New York 2015

Abstract It is estimated that—by 2020—billion devices will be connected to the Internet.

This number not only includes TVs, PCs, tablets and smartphones, but also billions of

embedded sensors that will make up the ‘‘Internet of Things’’ and enable a whole new

range of intelligent services in domains such as manufacturing, health, smart homes,

logistics, etc. To some extent, intelligence such as data processing or access control can be

placed on the devices themselves. Alternatively, functionalities can be outsourced to the

cloud. In reality, there is no single solution that fits all needs. Cooperation between devices,

intermediate infrastructures (local networks, access networks, global networks) and/or

cloud systems is needed in order to optimally support IoT communication and IoT ap-

plications. Through distributed intelligence the right communication and processing

functionality will be available at the right place. The first part of this paper motivates the

need for such distributed intelligence based on shortcomings in typical IoT systems. The

second part focuses on the concept of sensor function virtualization, a potential enabler for

distributed intelligence, and presents solutions on how to realize it.

Keywords Internet of Things � Cloud � WSN � 6LoWPAN � CoAP � Sensor function

virtualization

F. Van den Abeele (&) � J. Hoebeke � G. K. Teklemariam � I. Moerman � P. Demeester
Department of Information Technology (INTEC), Ghent University - iMinds,
Gaston Crommenlaan 8, Box 201, 9050 Ghent, Belgium
e-mail: floris.vandenabeele@intec.ugent.be

J. Hoebeke
e-mail: jhoebeke@intec.UGent.be

G. K. Teklemariam
e-mail: gketema@intec.UGent.be

I. Moerman
e-mail: imoerman@intec.UGent.be

P. Demeester
e-mail: pietdm@intec.UGent.be

123

Wireless Pers Commun
DOI 10.1007/s11277-015-2481-4

Author's personal copy

1 Introduction

Today, most of the data available on the Internet is generated by humans. With more and

more everyday objects or sensors being connected to the Internet, the amount of data

generated by things is going to increase rapidly. It is estimated that by 2020, 50 billion

devices will be connected to the Internet, outnumbering the number of human beings on

our planet [5]. This vision is commonly referred to as the Internet of Things.

In the Internet of Things, heterogeneous objects will grasp information about our

physical world and inject it in the virtual world where it can be used as input to all kinds of

services. Depending on the type of service, a decision can be taken to act again upon the

physical world. As a result, everything around us will become an integral part of the

Internet, capable of generating and consuming information. It is evident that the Internet of

Things may have a great impact in a wide range of application domains such as health,

manufacturing, building automation, transportation, smart cities, logistics, etc.

In order to connect things to the Internet, they need to be equipped with processing and

communication capabilities. In many cases these capabilities are very limited, as these

devices may need to run on batteries for several months or years or need to be produced at

an extremely low cost. Such devices are often referred to as constrained devices, many of

them belonging to Class 1 (approximately 10KiB RAM and 100KiB ROM) as defined by

the IETF lwig working group [10]. Specific low data rate and low power communication

technologies have been designed, such as IEEE 802.15.4. Further, as typical Internet

protocols had not been designed for such small footprints, initial efforts to interconnect

these devices to the Internet resulted in proprietary protocols and architectures. However,

their incompatibility with widely adopted Internet protocols has hampered their uptake and

the realization of the IoT vision.

The last few years, this mindset has been changing and many efforts have been put into

the extension of Internet technologies to constrained devices. Most noteworthy are the

efforts of the Internet Engineering Task Force, the de facto standardization organization for

Internet protocols. Their initial efforts focused on the networking layer and resulted in the

integration of constrained devices and constrained networks in the IPv6 Internet. As a next

step, they now target the efficient integration of these devices in web services. So far, the

IETF has standardized the Constrained Application Protocol (CoAP), which can be seen as

an embedded counterpart of HTTP. With these technologies, it has become possible to

interconnect tiny objects or networks of such objects with the IPv6 Internet and to build

applications that interact with them using embedded web service technology, bringing us

one step closer to the realization of the Internet of Things.

From the above description, it becomes clear that it has been a challenge to fit an

Internet-compatible protocol stack on devices with very limited capabilities. It required the

careful design of tailored communication protocols. One can question how far one can go

to further extend these devices with additional functionalities or intelligence typically

encountered in more powerful devices, such as access control, preprocessing of data, data

formatting, resource visibility, etc. At some point it will become technically infeasible to

put additional intelligence on the devices themselves due to their constraints. Conse-

quently, such intelligence needs to be outsourced to more powerful devices such as

gateways, routers, neighboring devices, the cloud, etc. In addition, as every IoT application

may have different requirements and devices may be very heterogeneous, there will be no

single recipe on how to optimally distribute this intelligence.

The optimal placement of functionalities or intelligence is only one aspect of the whole

picture. Current networks and radio technologies are very homogeneous, homogeneous in a

F. Van den Abeele et al.

123

Author's personal copy

sense that the resulting communication infrastructure often offers the very same service to

every application running on top of it. Looking at the large number of IoT application

domains or the variety of IoT applications with heterogeneous requirements within a single

application domain, optimal support of IoT applications also requires adaptations of the

network behavior. Whenever possible, networking elements should expose the necessary

interfaces in order to optimally configure the underlying network behavior.

Combining both aspects brings us to the concept of distributed intelligence in the

context of the Internet of Things: depending on the application, user and policy require-

ments, it is decided where to place the intelligence to operate certain functions and how to

optimally configure the communication infrastructure.

In the remainder of the paper, we will first further motivate the need for such distributed

intelligence by identifying a number of shortcomings in typical IoT systems in Sect. 2.

Section 3 presents sensor function virtualization (SFV) as an important enabler for real-

izing distributed intelligence. Before moving on to examples of SFV, Sect. 4 gives a short

overview of the IETF IoT protocol stack. This stack is used for examples of SFV in the

unconstrained and constrained domain in Sects. 5 and 6 respectively. Section 7 presents

the related work that we have identified in the literature. The paper ends with a number of

conclusions and future work in Sect. 8.

2 The Need for Distributed Intelligence

2.1 Generic IoT System

Figure 1 shows a high-level representation of a generic IoT system from a communication

and processing point of view. On the left there are the embedded devices with some form

of processing and communication capabilities. These devices can be very heterogeneous in

terms of energy provisioning (energy harvesting, battery powered, mains powered),

communication capabilities (IEEE 802.15.4, BLE, IEEE 802.11, etc.), processing power

and communication behavior (always connected vs intermittently connected). Examples of

such devices are a battery-operated environmental sensor, a Wi-Fi weighing scale, a

tracking device with a GPRS module or even a powerful smart phone. In an IoT system,

these devices typically collect information about the physical world and, possibly after

some (limited) local processing, communicate this information to an external service or

another device for further processing.

The information is then transmitted over a local communication network, such as a

6LoWPAN network or a WLAN network, in order to reach the Internet. On its way out, it

Sensors + smart devices
(embedded processing)

Local
connectivity

Intermediate processing
(e.g. gateway) Cloud processing Global

connectivity

Fig. 1 A generic Internet of Things system

Sensor Function Virtualization to Support Distributed Intelligence

123

Author's personal copy

(e)

Sensors + smart devices Local
connectivity Intermediate processing Cloud processing Global

connectivity

Zigbee
network

3G

Gateway

(a) Zigbee sensor generates an alarm upon which a user needs to be informed. The intelligence resides in
the cloud.

Internet

Cellular

Sensor devices Local
connectivity Intermediate processing Cloud processing Global

connectivity

Border router

LLN
network

Processing

Storage

(b) Sensors in a 6LoWPAN sensor network monitor their environment. All measurements are sent to the
cloud where they are stored.

Internet

Sensor devices Local
connectivity Intermediate processing Cloud processing Global

connectivity

(c) Temperature sensors in a home automation network measure temperature. Based on the measurements,
the HVAC system is being triggered. All intelligence resides in the gateway.

Sensors + smart devices
(embedded processing)

Local
connectivity Intermediate processing Cloud processing Global

connectivity

LAN
Router

Internet

(d) A tracking device with a SIM card communicates its position to a cloud service over a GPRS connection.
The information is stored in the cloud and can be consulted by customers.

Sensors + smart devices
(embedded processing)

Local
connectivity Intermediate processing Cloud processing Global

connectivity

LAN Internet

 User 1 (residing in the same network) and user 2 (residing in a remote network) are interacting with a
sensor device.

Local user

Remote user

Gateway

F. Van den Abeele et al.

123

Author's personal copy

passes intermediate processing components such as a home gateway, a border router or an

access point. In most cases, such a component will mainly perform some protocol trans-

lations (e.g. conversion between 6LoWPAN and IPv6, NAT translation, etc.). After that,

the information is communicated over a global communication network (i.e. the Internet)

until it reaches a cloud service. The cloud service will process the sensed data, enrich it,

combine it with other sources of information and eventually convert it into retrievable

knowledge that needs to be stored or actions that need to be performed in the real world. In

the latter case, there will be a flow from right to left in Fig. 1, until the action reaches an

embedded device such as an actuator.

Of course, many variants of the above generic IoT system exist and in many IoT

systems not all of the components shown in Fig. 1 need to be present or involved.

Therefore, in Fig. 2, we have mapped a number of realistic IoT use cases to this generic

system.

2.2 Open Challenges

In this subsection we will illustrate through a number of concrete examples, i.e. instan-

tiations of the generic IoT system shown in Fig. 1, some of the existing limitations of state-

of-the-art IoT systems and pinpoint the root cause of these limitations.

2.2.1 Act in Time

Many IoT business models adopt a cloud-based approach as partially illustrated in Fig. 2a.

Sensor data is pushed to the cloud where it is being processed. If needed, corrective actions

are taken. All intelligence is centralized in the cloud, which makes it convenient for the

cloud service provider to maintain the system and to roll out new functionalities. However,

depending on the application, the complete sensing and actuation cycle might have to be

completed within a certain time interval. For instance, turning on a light using a light

switch requires a worst case latency of 200 ms or better, whereas other home automation

applications may live with higher latencies. Consequently, depending on the type of IoT

application, the processing functionality may reside either far away from the constrained

devices (in the cloud) or must reside nearby in order to meet certain performance re-

quirements. Future IoT systems should be able to cope with these requirements, e.g. by

supporting distributed processing that puts the intelligence wherever it is most needed.

Even when the processing functionality resides close to the sensors and actuators, e.g.

on a gateway as shown in Fig. 2c, it may still be possible that the underlying network is not

capable of meeting the performance requirements imposed by the IoT application e.g. due

to suboptimal routing, inefficient medium access control or competition with other wireless

traffic. To tackle this, it should not only become possible to place the intelligence where it

is needed, but also to optimally configure the underlying network. Similar observations can

be made for cases where for instance synchronization is needed.

2.2.2 Work Offline

IoT applications that solely rely on intelligence in a cloud system will completely break

upon an interruption of the Internet connectivity (the ‘‘global connectivity’’ in Figs. 1, 2).

b Fig. 2 Five IoT scenarios mapped to the generic IoT system from Fig. 1

Sensor Function Virtualization to Support Distributed Intelligence

123

Author's personal copy

For instance, one can create a building management system that is fully managed and

controlled by the cloud based on locally collected sensor data. However, in case the cloud

is unavailable, the building management system should still be able to deliver a minimal

service level. Consequently, the core functionalities of an IoT application should reside in

the local network. This way, using simplified local processing, it is still possible to have an

operational application albeit with reduced functionality. If connectivity is available, more

advanced functionalities, e.g. by using externally available data, can be offered to the

users. Again, distribution of intelligence and processing is needed to offer a robust IoT

system.

2.2.3 Serve Many

IoT systems such as the one shown in Fig. 2e, may not only scale up to thousands of

sensors and actuators, but may also involve a multitude of users, each user taking up a

particular role in the overall system. For instance, in a building management system one

can have the building owner, facility managers, tenants, cleaning staff, visitors, etc.

Depending on their role and the corresponding policies, users should perceive a different

system in terms of the data they can see, the actions they can take, etc. However, many of

the involved devices are not capable of supporting this level of granularity in terms of

visibility, access control, etc. due to their constraints. Even if they would be able to offer

some of this functionality such as a security algorithm, it most likely would not scale with

the number of users due to resource depletion, i.e. every additional user will require storage

of additional state information. Therefore, it should become possible to outsource this

functionality to more powerful infrastructure, preferably without impacting the constrained

devices. Further, the outsourced functionality ought to be placed at the most optimal

location. Note that this depends on the actual location of the user, e.g. a local vs a remote

user.

2.2.4 Move and Sleep

The IoT system shown in Fig. 2d involves tracking devices. These devices are mobile as

they move with the object they are tracking. In most cases, as these devices are also battery

powered, they are not permanently connected to the Internet. This has two consequences.

First of all, the IP address of the device will change over time. Secondly, when users want

to interact with the device, e.g. to perform some reconfigurations, the device will mostly be

offline. Both aspects complicate the interaction with these devices for end users or external

systems. Additional functionality has to be provided along the communication path in

order to hide the sleepy and mobile behavior of the devices, thereby offering a uniform

view to the outside world.

2.2.5 Monoglot

Most constrained devices do not posses the capabilities for supporting a wide range of data

formats or protocols. In many cases, they only speak a single protocol and deliver their data

in a particular format or content type. Further, the transferred data is often kept as compact

as possible in order to reduce the communication overhead and to save energy. Lengthy,

verbose descriptions are out of the question. When an IoT application is implemented as a

vertical silo, where devices and cloud are designed to be interoperable, this may not be a

F. Van den Abeele et al.

123

Author's personal copy

problem. However, in more open systems where a variety of devices and services may

interact with each other or where IoT devices can be connected to any service provider, this

may easily lead to interoperability problems.

Different parties will most likely support different data formats (e.g. JSON vs XML,

Fahrenheit vs Centigrade, etc.). When they need to interact, additional intelligence is needed

for translating between incompatible data formats, else lack of interoperability will prevent

their collaboration. Sometimes, the data generated by constrained devices is not self-de-

scriptive. Therefore, on its path towards e.g. a cloud service, the data may be enriched with

additional information to make it completely self-describing. A last example relates to the

semantic web. Before semantic reasoning can take place, the sensor data needs to be tagged

with additional semantic information. Again, placing such semantic descriptions on the

constrained devices themselves might be too complex, so this functionality is better out-

sourced to more powerful devices. These examples illustrate that by dynamically placing

intelligence in network or processing elements, interoperability can be greatly increased.

2.3 Distributed Intelligence

From the previous examples it becomes clear that in order to optimally support a wide

variety of IoT applications and user needs, additional intelligence is needed. This intelli-

gence is not only related to the processing of data, but is also related to security, Quality of

Service, network configuration, etc. Further, there is no single place where this intelligence

has to be placed or activated. Depending on the situation, it may be spread from the devices

themselves up to the cloud, covering all components in the chain shown in Fig. 1. In many

cases, the intelligence needs to be distributed over different locations in order to deliver the

desired functionality or performance. Further, it involves both processing and networking

elements.

This is what we define as distributed intelligence. It is the cooperation between devices,

intermediate communication infrastructures (local networks, access networks, global net-

works) and/or cloud systems in order to optimally support IoT communication and IoT

applications. Starting from the application requirements, user needs and policies, intelli-

gence is optimally distributed and activated in order to operate functions such as pro-

cessing, security, QoS and to configure the communication infrastructure. Through

distributed intelligence, the right communication and processing functionality will be

available at the right place and at the right time as is illustrated in Fig. 3.

Sensors + smart devices
(embedded processing)

Local
connectivity

Intermediate processing
(e.g. gateway) Cloud processing Global

connectivity

IoT application(s) User needs/policies

Fig. 3 The concept of distributed intelligence

Sensor Function Virtualization to Support Distributed Intelligence

123

Author's personal copy

Distributed intelligence will enable us to tackle the aforementioned shortcomings of

existing IoT systems. It can contribute to increased interoperability, better usage of scarce

resources, better application performance, improved user experience, more secure systems,

etc. As can be seen from the previous discussion its realization is not straightforward and

imposes significant challenges, mainly due to the fact that it is distributed in nature,

involves both processing and communication and, communication-wise, pertains to mul-

tiple layers in the communication stack.

In the remainder of the paper, we will propose some concrete enablers to support the

concept of distributed intelligence and will illustrate how they can work in the context of

open IETF-based IoT protocol stacks. Hereby, we focus on the fact that typical IoT devices

are constrained in nature and not capable of offering all functionality needed. Therefore,

solutions are needed to outsource such functionalities to more powerful components, i.e. to

virtualize this functionality as will be explained in the following section. Other interesting

aspects of distributed intelligence, such as enabling an optimal configuration of the un-

derlying network are outside the scope of this work.

3 Sensor Function Virtualization for the Internet of Things

The previous section illustrated why distributed processing is needed in the Internet of

Things and gave a high-level overview of distributed intelligence. This section looks at

how distributed processing can be realized while keeping in mind the challenges specific to

the IoT domain. To this end, we propose an approach that enables distributed processing by

offloading certain functionality from constrained devices to unconstrained infrastructure

such as a (virtualized) gateway, the cloud and other (in-network) infrastructure. Hence the

term ‘‘sensor function virtualization’’ (SFV), where a sensor is defined more broadly to

also include actuators and other types of constrained devices.

As the Internet of Things is expected to include up to 50 billion devices by 2020, any

proposed solution for such sensor function virtualization should be able to scale as the

number of devices increases. Here, two important points are to be noted. By running (parts

of the) sensor function virtualization on cloud infrastructure, we expect our solution to

profit from the elasticity provided by these environments: i.e. as the number of devices

increases, more resources are automatically allocated by the cloud infrastructure to handle

the increased load. Elasticity is a huge benefit for scalability that results from pooling

resources in large data centers. Apart from elasticity, sensor function virtualization solu-

tions should also follow a tiered design. Here, multiple tiers work together by each taking

care of a part of the sensor function virtualization. Next to a more scalable approach, a

tiered design also allows to mitigate some of the issues present in sensor function virtu-

alization that relies solely on cloud-based infrastructure (e.g. high latency and non-func-

tioning devices when Internet is unavailable).

Another important aspect for sensor function virtualization is the heterogeneity of both

constrained devices and infrastructure. Constrained devices might be battery powered,

might be part of a fixed communication infrastructure, might be mobile, have a large

diversity in processing power and so on. Also, different forms of infrastructure that can aid

in sensor function virtualization are expected to exist. In some deployments (e.g. typical

WSN scenarios) there might be a mains-powered gateway that can assist in sensor function

virtualization. In other settings, such gateways are not common but the access network

itself might assist in sensor function virtualization (e.g. mobile devices that rely on GPRS

communication). Finally, some environments might not provide any opportunities for

F. Van den Abeele et al.

123

Author's personal copy

tiering at all and here one is limited to external infrastructure (such as the cloud). Solutions

for SFV have to be flexible in order to deal with these forms of heterogeneity and should

try to shield users as much as possible from the heterogeneity of the underlying devices and

infrastructure.

A final important aspect is that the actual sensor function virtualization should be

transparent to end users. This means that any virtual functions that are added to devices

should build on top of existing communication interfaces and that changes to protocols

running on end hosts should be minimal and preferably non-existent. When SFV enhances

physical devices, it should appear as if the constrained device offers the virtualized

functions by itself from the user’s point of view. When working with entirely virtualized

devices, the interface to the user should be the same as the one that is used to communicate

with constrained devices. If not, it will be cumbersome for users to discover and use the

additional functionality.

Keeping in mind the requirements of the previous paragraphs, our proposed architecture

is presented in Fig. 4. The basic principle is that sensor function virtualization is realized

by decomposing the desired functionality into smaller modules. In the figure the modules

are categorized according to the functionality that they provide (e.g. a module imple-

menting 6LoWPAN compression would fall in the network category). The main benefit of

this modular approach is that modules can be added at runtime (much like a plugin-based

system) and that it allows to deploy modules over multiple machines thus improving

scalability. The input and output data types for all types of modules are network packets.

When network traffic arrives at a machine that provides sensor function virtualization,

network packets flow up the architecture through a set of modules and down again through

(possibly another set of modules) towards an outgoing network interface. The matching

component takes care of passing network packets through the correct chain of modules

based on configuration information that it stores. When combining all of these small

modular functional blocks that are running on a number of machines, the distributed

processing and in turn sensor function virtualization for the IoT are realized.

Depending on the functionality that is to be virtualized, one or more locations in the

network are suitable for deploying the functionality. For example, if local operation (i.e.

within the same network) is required in case of Internet failure, virtualizing functionality

on cloud infrastructure probably is unfeasible. In this case the local gateway will play an

important role in sensor function virtualization. If on the other hand, global operation is

required at all times then always-online systems (such as the cloud, but potentially also the

Fig. 4 Architecture for sensor function virtualization in the Internet of Things

Sensor Function Virtualization to Support Distributed Intelligence

123

Author's personal copy

gateway if it is available) can bridge situations where a constrained device is unavailable

for communication (e.g. it might be sleeping to conserve energy, or its GPRS connection

might be unavailable). Packaging SFV in modular components that can be (re)deployed at

runtime, ensure that our architecture is able to handle this kind of flexibility.

Figure 5 gives an overview of the different locations where sensor function virtual-

ization can be realized. The colored disks at the bottom represent constrained devices. Note

that mobile device might migrate to a different access network in case of inter-network

mobility (only one access network is shown in the figure). The figure also displays po-

tential users on the right hand side (note that a constrained device is also considered as a

user). As the Internet—and by extension most standardization efforts by IETF (see

Sect. 4)—follows a host-centric approach our SFV architecture is designed to be com-

patible with this point of view. While SFV in effect moves functionality away from

Internet hosts to supporting infrastructure, our approach allows extending constrained

devices in a way that is transparent to its users. Transparency here means that it appears as

if the functionality resides on the device itself, while in fact it is offered by supporting

infrastructure. This is an important point, as this transparency differentiates our work from

most of the cloud-based systems available today that each offer their own integration

interface. This transparency means that users do not have to integrate with yet another

cloud-based API as SFV functionality appears to be offered by the device itself. One

consequence is that in order for a component of our architecture to enhance a constrained

device with new functionality it must be able to receive and process requests for this

device. For gateways that are on the routing path between a device and its Internet client

this is trivial. For cloud-based infrastructure, extra measures are most likely necessary in

all cases.

Figure 6 gives an overview of the mechanisms that ensure that cloud-based SFV in-

frastructure—or more generally any infrastructure that is not on the routing path between

Fig. 5 Infrastructure at different locations throughout the Internet works together to provide sensor function
virtualization in the Internet of Things

F. Van den Abeele et al.

123

Author's personal copy

the user and the constrained device—is able to process requests destined and responses

coming from the constrained devices that it handles. This is necessary if the cloud in-

frastructure should be able to modify requests and responses in order to fulfill its function

in a transparent way (e.g. remove unnecessary data, add semantic descriptions, translate

between data formats, etc).

In case a (black arrows), an interception component deployed along the routing path is

responsible for forwarding (matching) incoming network traffic for the constrained device

(1) towards the cloud infrastructure (2). Once the request arrives in the cloud it can be

processed, and a response can be generated immediately or a (modified) request can be sent

towards the constrained device (3). In the latter case, the interception component is also

responsible for ensuring that responses pass via the cloud. Once the cloud has processed

the response (e.g. to update a cache), it forwards the response to the user (4). Note that

response processing by the cloud is optional in certain cases (e.g. in the case of a cache that

is only running on the gateway). Depending on the use case, the interception component

can be configured by the cloud to stop forwarding traffic of a particular stream after the

cloud has processed a number of packets of said stream (e.g. in access control the de-

nial/granting of access is configured into the gateway by the cloud). This avoids unnec-

essary forwarding of traffic to the cloud. In this case the gateway can also forward

responses directly to the user.

In case b (blue arrows), the constrained devices receive an IPv6 address that is globally

routable and that is routed via the cloud infrastructure. As a result the cloud is able to

process networking traffic destined to constrained devices (5). When the cloud forwards

the traffic to the constrained device, then this traffic has to be encapsulated on the public

Internet (otherwise it would never reach its destination). The tunnel endpoint can be a

gateway (if one is available) or could be the constrained device itself (depending on its

processing capabilities). The former is more suitable for WSN-like networks, while the

latter is applicable to mobile nodes that are capable of hosting a tunnel endpoint. Note that

(a)

(b)

(c)

Fig. 6 Three different integration strategies for cloud-based SFV

Sensor Function Virtualization to Support Distributed Intelligence

123

Author's personal copy

the tunnel endpoint should also send all returning traffic through the tunnel in this case (6).

If not, the cloud infrastructure is unable to process the responses from constrained devices

(making e.g. caching impossible).

In case c (red arrows), the cloud-based SFV infrastructure mirrors every constrained

device via a virtual device that is allocated a globally-routable IPv6 address from a

‘‘Virtual device subnet’’ that is routed to the cloud. In this case users interact with the

virtual device in the cloud (7). Here the cloud fulfills the role of a traditional reverse proxy.

This mode of operation is still transparent in the sense that the virtual device offers the

same interfaces as the actual constrained devices but in this case the user does have to

communicate with an Internet host at a different IPv6 address. The cloud infrastructure

processes requests from users destined to virtual devices and forwards these to the actual

constrained devices (8). The responses arrive from the constrained device and are sent back

to user (9). This case is actually a generalization of case b. Note that this mechanism can

also be used as a light-weight alternative to mobile IPv6 for constrained devices where

their anchor point on the Internet changes due to their mobility. In this case, users always

communicate with the fixed ‘‘virtual device’’ and the cloud takes care of mapping requests

to the volatile IP endpoint of the constrained device. Signaling of the volatile IP address

can happen via existing interfaces.

4 IETF Protocol Stack for the Internet of Things

As the remainder of this paper will employ CoAP and the IETF IoT stack for illustrating

SFV, a concise overview of all protocols involved is presented here. Ishaq et. al present a

more elaborate overview of the subject in [7].

The IETF started standardization for the IoT with an adaptation protocol for IPv6 over

802.15.4 communication links. The resulting protocol is defined by RFCs 4944 [11] and

6282 [6] and is more generally known as 6LoWPAN (IPv6 over Low power Wireless

Personal Area Networks). 6LoWPAN allows compressing IPv6 and UDP packets by

eliding redundant information in IPv6 and UDP headers. 6LoWPAN also provides frag-

mentation support for large IPv6 packets, thus fulfilling the minimum MTU requirement of

1280 bytes found in IPv6. As a result, deploying IPv6 (with its 40 bytes header) on links

with small MTUs (such as 802.15.4 links with a 127B MTU) in a standard compliant

matter has been possible since 2007. It is interesting to note that the idea of compression

for IPv6 in 6LoWPAN is also being applied to other protocols (such as DTLS [13]).

Around 2008 consensus emerged in the IETF on standardizing a routing protocol for use

in low power and lossy networks (LLNs). Due to the unique properties of LLNs (e.g.

conserve energy as much as possible, point to multipoint traffic, etc.), their routing re-

quirements differ from what traditional routing protocols considered at that time. The

results of the ROLL working group include a number of requirements for specific types of

LLNs (home automation, industrial, smart city, etc.) and a routing protocol known as the

‘‘IPv6 Routing Protocol for Low-Power and Lossy Networks’’ (RPL). RPL, standardized in

RFC 6550 [21], allows constructing routing trees (known as DODAGs) for LLNs ac-

cording to an objective function that can be tuned to meet the requirements specific to the

type of LLN.

In June 2014 the IETF Constrained RESTful Enviroments (core) working group stan-

dardized an application layer protocol for use in low power and lossy networks. The

Constrained Application Protocol (CoAP), as defined in RFC 7252 [16], allows building

applications based on the concepts of RESTful web services that are well-known from the

F. Van den Abeele et al.

123

Author's personal copy

WWW. CoAP can be thought of as a lightweight alternative to HTTP and as the coun-

terpart of HTTP for use in the embedded world (with battery operated devices, unreliable

wireless links and low-cost 16 bit microcontrollers). Another important contribution of the

working group is RFC 6690 [15] which specifies a format for web linking for constrained

web servers. This format can describe hosted resources, provide attributes for resources

and define relationships between links. It is designed with a simple parser in mind that is

memory efficient and that provides compact web links. Figure 8 shows a typical request/

response message exchange between a CoAP client and server. First the client discovers

which resources are hosted by the server via the ‘‘well-known/core’’ resource, the response

contains a list of links according to the core link format. The second request retrieves a

plain-text representation of the temperature resource from the server.

The CoRE working group identified that security is an important requirement for almost

all IoT applications. Therefor it chose to rely on transport-layer security as this is a popular

choice in the WWW today. More specifically, RFC 7252 defines a binding for CoAP that

specifies how CoAP should be used in conjunction with DTLS. Datagram Transport Layer

Security (DTLS, RFC 6347 [14]) provides end-to-end security via TLS over UDP (as

opposed to TCP in case of TLS). When employing pre-shared key (PSK) cipher suites,

DTLS can rely solely on symmetric encryption for providing end-to-end security. When

combined with the small memory footprint of DTLS, this makes DTLS an attractive

candidate for use in LLNs.

Finally, the IETF has identified the need for standardizing a set of DTLS parameters for

use in LLNs. To this end, the DTLS In Constrained Environments (DICE) working group

was formed in 2013. DICE is looking to standardize a LLN profile for DTLS, to overcome

some of the issues of DTLS in combination with multicast and to investigate practical

issues surrounding the DTLS handshake in LLNs. DICE explicitly states that it will not

alter the DTLS state machine.

Note that for GPRS equipped constrained devices, the 6LoWPAN and RPL standards

are less applicable. These types of device do however still benefit from the low commu-

nication overhead offered by DTLS/CoAP when compared to TLS/HTTP [4]. An overview

of the entire stack is shown in Fig. 7.

5 SFV in the Unconstrained Domain

As mentioned function virtualization enables us to extend constrained devices with new

functions without burdening the constrained device itself. This is achieved by offloading

Fig. 7 IETF protocol stack for low power and lossy networks in the Internet of Things

Sensor Function Virtualization to Support Distributed Intelligence

123

Author's personal copy

(or virtualizing) functionality to more powerful infrastructure (such as gateways, routers,

cloud-based infrastructure) in a way that is transparent to the constrained device and its

users. This section presents two scenarios that demonstrate SFV according to the archi-

tecture presented in Sect. 3. Note that these two scenarios serve as illustrations of SFV and

that SFV as a technique is not limited to what is shown here (for example SFV at the

network layer is not shown here). The scenarios are applied to the IETF IoT stack that was

detailed in the previous section.

The first case considers constrained devices that are only intermittently reachable via

the Internet. These devices usually sleep for prolonged periods of time in order to keep

energy consumption to a minimum. Every once in a while (e.g. after a certain period of

time has passed or after an event is triggered) the device wakes up, sends its sensor data to

a so-called mirror server, checks whether there is any incoming (configuration) data and

goes back to sleep. Users do not interact with the sleepy device, instead they communicate

with a mirror server that is always online. In CoAP this kind of functionality is known as a

CoRE Mirror Server [20]. One problem with this approach is that mirror servers host

mirrored resources on behalf of a multitude of sleepy devices. As a result, the user is

exposed to the mirrored resources belonging to all sleepy devices that are interacting with

the mirror server. This is problematic when the user in question is unfamiliar with and does

not support the mirror server client operation interface. As a solution, SFV hides this client

operation interface and instead provides a dedicated CoAP server for every device that is

mirrored on the mirror server. This dedicated CoAP endpoint is always online and hides

the underlying mirror server’s interfaces from CoAP clients.

Apart from hiding the mirror server’s client operation interface to clients, this scenario

also illustrates how SFV can extend a device by hosting new CoAP resources on behalf of

the device. In this case, SFV emulates CoAP resources via the dedicated CoAP endpoint

that provides semantic descriptions of the resources offered by the constrained device.

Because these descriptions are too large to store on the device itself, it is more efficient to

offer them by means of SFV.

In order to realize this scenario in accordance with the architecture presented in Fig. 4,

two SFV modules are needed. The MS module provides the dedicated CoAP endpoint that

hides the mirror server’s interface. The EMU module implements the CoAP resource

emulation. The matching component also has to be configured in order to match requests

Fig. 8 A CoAP request/response message exchange showing resource discovery and data retrieval

F. Van den Abeele et al.

123

Author's personal copy

for CoAP resources on the dedicated endpoint to the two modules. The result is shown in

Fig. 9. The constrained device (near the bottom in the figure) wakes up periodically to push

its sensor data to the mirror server in the cloud as per [20]. Users send their CoAP requests

to the mirrored devices, which reside in a subnet that is routed towards the cloud (aaaa::/64

in the figure). Requests are handled by the SFV matching component in the cloud (the

white box in the figure). The matching component passes the requests to the EMU module.

If this module does not generate a response, then the request is passed along to the MS

module. In the figure, the EMU module is configured to emulate one resource at coap://

[aaaa::1]/s/t for the content-type ‘‘text/n3’’. This emulated resource provides a semantic

description of a temperature sensor in the RDF Notation3 format. The response of the

resource (\RDFN3 [) is shown in the listing below.

<coap://[aaaa::1]/s/t> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://purl.oclc.org/NET/ssnx/ssn#Sensor>;
<http://spitfire-project.eu/ontology/ns/obs> <http://vmuss07.deri.ie:8182/ld4s/res/property/temperature>;
<http://spitfire-project.eu/ontology/ns/uom> <http://vmuss07.deri.ie:8182/ld4s/res/uom/centigrade>;
<http://purl.oclc.org/NET/ssnx/ssn#onPlatform> <coap://[aaaa::1]>;
<http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#hasLocation>
”Testbed iMinds;
<http://purl.oclc.org/NET/ssnx/ssn#featureOfInterest> ”iMinds Office”

Listing 1: RDFN3 description for a temperature CoAP resource

If the EMU module does not generate a response, then the request is handled by the MS

module. The MS module simply rewrites CoAP requests for mirrored devices to requests

for the mirror server. To accomplish this, it stores a mapping between the two. For

example, in the figure a request to coap://[aaaa::1]:/s/t will be mapped to coap://[::1]/ms/0/

s/t. The user is totally oblivious that its request is rewritten by the module. Responses sent

Fig. 9 Two SFV modules providing emulated resources (EMU) and a mirror server abstraction (MS)

Sensor Function Virtualization to Support Distributed Intelligence

123

Author's personal copy

to the user by the MS module use the destination address of the original request as the

source address, e.g. for the example responses come from aaaa::1.

The second case considers a Wireless Sensor and Actuator Network (WSAN) that

deploys the full IETF IoT stack from Fig. 7 and that relies on DTLS for end-to-end

security. In this network all constrained devices are accessible via their publicly routable

IPv6 address and users interact with the CoAP resources that are hosted on the constrained

devices. Optionally, devices employ radio duty cycling to prolong battery life. In such a

scenario, DTLS sessions with the sensors and actuators are typically restricted to cipher

suites that exclude any asymmetrical encryption due to the high complexity and compu-

tational cost of the algorithms involved. Furthermore, transporting and verifying certifi-

cates as is necessary in a Public Key Infrastructure (PKI) is also deemed too expensive for

sensors and actuators. Instead, the constrained devices rely on symmetrical encryption

algorithms (AES being a common choice) and Pre-Shared Key (PSK) cipher suites

(TLS_PSK_WITH_AES_128_CCM_8 is a popular suite) due to the relatively simple al-

gorithms (AES co-processors are common) and small amount of keying material that has to

be communicated respectively.

One issue in this scenario is that PSK cipher suites do not scale well as the number of

clients increases. A sensor and or actuator (sensa) has to share a unique pre-shared key with

every client. Obviously, this does not scale. A second issue arises due to the end-to-end

encryption (E2EE) itself. As one would expect in E2EE, intermediary systems are unaware

of the contents of the requests/responses between a client and the sensa. However, in

WSANs processing at the edge of the network by a trusted intermediary can significantly

improve response times and battery lifetimes. This consideration applies to techniques such

as caching and access control. Ideally, we would want a variant of E2E security where the

WSAN gateway (which is considered to be trusted by both the client and the sensa) is able

to decipher communications in order to provide caching, access control, etc. To summa-

rize, the low scalability of PSK cipher suites and the inability to perform any processing at

the edge of the network (e.g. caching) are two problems inherent to DTLS in WSANs

today.

SFV can provide a solution to these two problems by virtualizing asymmetrical en-

cryption and by extending the WSAN gateway up to the application layer (in effect

realizing an application-level gateway). SFV on the trusted gateway intercepts traffic and

terminates DTLS sessions between clients and sensas. As a result, the DTLS handshake of

the client is performed with the trusted gateway. Note that this happens completely

transparent to the client, i.e. the client still communicates with the public IPv6 address of

the sensa (as the gateway is assumed to be trusted, this is considered secure). The trusted

gateway performs a DTLS handshake with the sensa using a PSK cipher suite and all

DTLS traffic of the client is sent over this session. This way, the sensa only has to share a

unique PSK with the gateway. Furthermore, the gateway can offer a more extensive list of

supported cipher suites to the client. This list can include suites that rely on PKI, thereby

circumventing the scalability problem of the PSK suite offered by sensas. Finally, by

terminating DTLS sessions the trusted gateway is also able to perform edge processing

such as caching and access control.

Figure 10 presents an overview of this case. Preliminary results show that terminating

DTLS and re-using the same DTLS session in the WSAN for multiple clients can reduce

the energy consumption of the constrained device by more than 59 % when compared to

traditional end-to-end security where the trusted gateway does not terminate the session.

This large reduction in expended energy is primarily due to the fact that the constrained

device only has to setup one DTLS session with the trusted gateway for all clients. As a

F. Van den Abeele et al.

123

Author's personal copy

result, the expensive DTLS handshake is only executed once whereas in the traditional

end-to-end case the handshake has to be repeated for every separate client. Because the

gateway is able to see the contents of the CoAP requests, it can apply access control on a

per resource basis. For example, users that are authenticated with a specific certificate

might be able to reconfigure resources (i.e. PUT and POST methods are allowed for

specific resources), whereas others are only allowed to retrieve data (i.e. only the GET

method is allowed for specific resources). Furthermore, the DTLS termination module can

be configured to omit DTLS in the WSAN for certain requests that do not require au-

thentication and/or confidentiality in the WSAN. For the latter, consider an example where

retrieving a temperature value is done in plain-text in the WSAN, but is transferred in

cipher text over the public Internet. Note that these kinds of advanced scenarios are very

hard to realize without a distributed approach due to constraints of the IoT devices. This is

where SFV really shows its potential.

6 SFV in the Constrained Domain

In some cases, sensor function virtualization might be required on the constrained devices

themselves. For SFV on constrained devices the architecture from Fig. 6 is often not a

good fit, as their characteristics differ greatly from what is available on more powerful

hardware such gateways and the cloud. Nevertheless, in previous work we have shown that

some form of flexible distributed computing can be provided for constrained devices. Other

approaches that target reprogrammability of constrained devices can also achieve the

desired flexibility at a higher cost due to the expensive operation of transferring a pro-

gram’s memory contents.

Bindings [17] allow a third party to setup direct CoAP-based interactions between

sensors and actuators and other devices. One of the benefits is that the third party does not

have to be a message broker between the sensor and the actuator and therefor can go offline

after setting up the binding. Furthermore, this gives us the flexibility to link sensors to

actuators after they are deployed instead of when they are produced.

Fig. 10 SFV at a trusted gateway provides DTLS termination, access control and caching

Sensor Function Virtualization to Support Distributed Intelligence

123

Author's personal copy

Another concept that we have presented in previous work [18] are small REST web

services that fulfill common tasks such as filtering and (de)multiplexing of sensor data.

These web services can be deployed inside the constrained network (on the gateway but

also on constrained devices) and are called RESTlets. RESTlets have one or more inputs

and zero or more outputs. All in- and outputs are RESTful web services. RESTlets allow

decomposing parts of the data processing into smaller blocks that can be deployed close to

the data sources and their consumers. Because requests and responses do not have to

traverse the entire WSAN, response times and energy consumption are lowered in multi-

hop WSANs.

7 Related Work

Thirty-five years after Cerf and Kirstein [3] argued about the role of gateways in what was

then the early Internet, the authors revisit the same question at the advent of the Internet of

Things. Very similar to the early Internet, there exist a number of proprietary protocols for

connecting things to the Internet today. The authors argue that there will first be a period of

adaptation for connecting legacy technologies to the IoT, followed by period of adoption

where the IP will supersede these legacy technologies. In terms of adaptation, the authors

introduce repositories as the end-point for interactions of clients with things. These

repositories have direct access to sensors to gather data or to set configuration information.

Repositories act as a bridge between clients and sensors and apply adaptations where

necessary. The authors also mention that repositories can be part of a distributed system.

We envision that these repositories are deployment options for our SFV concept. Our work

does not only focus on adapting proprietary technologies for Internet integration, SFV also

enhances things that already deploy the IETF IP stack. This is necessary in order to bridge

the gap in processing power and capabilities between constrained devices and traditional

Internet devices.

Varakliotis et al. [19] build further on the vision presented by Cerf and Kirstein. The

authors describe which tasks are common for a gateway and decompose these into smaller

blocks that are situated at various layers in the protocol stack. These functional blocks are

very often required but need not be co-located on one and the same machine, e.g. they

could be distributed on multiple servers. The result is a distributed protocol stack, with a

minimal controller and external servers that hold most of the functional blocks. The IETF

stack is also considered as one of the potential technologies for IoT networks (i.e. the

DevNet). Our vision aligns closely to that of Varakliotis et al. However, the assumption

that a distributed approach will automatically lead to a stripped gateway with minimal

functionality and external servers doing the heavy-lifting does not hold in all cases.

Consider an example where things generate large amounts of data that cannot be trans-

ported in their raw format to external infrastructure. In such a case, it can be beneficial to

do some form of processing locally at the gateway. In contrast to the work of Varakliotis

et al. our SFV architecture does not exclude this possibility.

Another interesting work to mention in this content is the IPv6 addressing proxy by Jara

et al. In [8] an adaptation proxy is presented for mapping native addressing from legacy

technologies to the IPv6 Internet of Things. The authors provide extensive examples for

legacy technologies such as X10, EIB, CAN and RFID from the industrial, home automatic

and logistics domains. Our SFV concept is an ideal candidate for implementing such an

addressing proxy.

F. Van den Abeele et al.

123

Author's personal copy

In ‘‘Moving application logic from the firmware to the cloud’’ [9] Kovatsch et al. argue

that application development should be fully decoupled from the embedded domain.

Embedded devices are thin servers that export only elementary functionality by means of

REST resources. The approach relies on application servers that house the logic of ap-

plications. Our SFV concept can be seen as a distributed version of these application

servers. SFV also allows to transparently enhance embedded devices for all clients in-

volved, thus the virtualized functionality becomes available to all parties interacting with

the device and not only to the application server. As a result, our work should facilitate

easier reuse of application logic than the application servers presented by Kovatsch et al.

PyoT [2] is a programming framework for the IoT that claims to simplify IoT appli-

cation development by providing a number of common operations to developers. Sup-

ported operations include discovery, monitoring, storage and triggering of devices and their

data. The PyoT framework can reside on a gateway or in the cloud. Furthermore, PyoT also

integrates with T-Res [1], a framework enabling ‘‘in-network processing’’ in IoT-based

WSNs. The existence of the PyoT framework shows that extending constrained devices

with common operations can help to accommodate IoT application development. This is

also one of the objectives of SFV. T-Res is an alternative approach to SFV in the con-

strained domain, as discussed in Sect. 6, that relies on programmability via a minimal

python interpreter suitable for embedded systems (PyMite).

Finally, there are two other works that discuss the role of cloud computing in the

Internet of Things. In [12] Pereira et al. present a holistic network architecture for sup-

porting mobility in IoT applications. This service-oriented architecture can be deployed on

three levels: on the node itself (for resilience against lost Internet connectivity), on a SOA-

enabled gateway (when more processing than what a node can provide is necessary) and on

the Internet (where all limitations of processing power are mitigated). In [22], Zhou et al.

present a common architecture for integrating the Internet of Things with cloud computing

that is named CloudThings. The authors describe a cloud-based Internet of Things platform

for developing, deploying, running, and composing Things applications. CloudThings

differs from PyoT in that it focuses on providing a development platform (that supports

IaaS, PaaS but also SaaS) as opposed to a more rigid development framework. These two

works illustrate how distributed processing can extend constrained IoT devices, which is

one of the key concepts of SFV.

None of the identified related work considers reconfiguring the network to optimally

support an IoT application’s requirements as an integral part of their approach. In our work

this is an important aspect of distributed intelligence, as in some cases (cfr. Sect. 2.2.1) the

network has to be able to adapt in order to fulfill the requirements of the IoT application.

8 Conclusions

In this paper we presented some of the limitations that are present in today’s IoT systems.

We argued that some of these issues can be overcome by means of distributed intelligence.

In distributed intelligence the network and its infrastructure can be reconfigured to meet

application requirements and the resources offered by these systems can be leveraged to

provide processing and communication at the right place and time according to the re-

quirements of IoT applications. Sensor function virtualization is a technique that enables

distributed intelligence via modular functional blocks that can be deployed anywhere in the

network infrastructure. This way processing can be placed where it is most needed. Fur-

thermore, SFV can also be used to expose configuration interfaces for existing network

Sensor Function Virtualization to Support Distributed Intelligence

123

Author's personal copy

functionality (thus enabling the reconfiguration required in distributed intelligence). By

means of two extensive examples, we have illustrated some of the benefits that SFV can

bring to the table of IoT application development and distributed IoT systems.

In the future, we plan to evaluate our approach more thoroughly. The reduction in energy

consumption and latency in the DTLS termination use case already show that sensor function

virtualization can have a significant impact on important performance metrics for constrained

devices and IoT applications. However, more experiments are necessary. Furthermore, re-

configuring the communication network (e.g. routing, MAC protocols, etc.) in order to

support specific communication patterns required by an IoT application was only briefly

discussed. More work is needed to explore what is possible and how well this aligns with the

vision of distributed intelligence that was outlined in this paper.

Acknowledgments The authors would like to acknowledge that part of this research was supported by the
COMACOD project. The iMinds COMACOD project is co-funded by iMinds (Interdisciplinary institute for
Technology) a research institute founded by the Flemish Government. Partners involved in the project are
Multicap, oneAccess, Track4C, Invenso and Trimble, with project support of IWT.

References

1. Alessandrelli, D., Petraccay, M., & Pagano, P. (2013). T-Res: Enabling reconfigurable in-network
processing in IoT-based WSNs. In 2013 IEEE International conference on distributed computing in
sensor systems (pp. 337–344). IEEE. doi:10.1109/DCOSS.2013.75.

2. Azzara, A., Alessandrelli, D., Bocchino, S., Petracca, M., & Pagano, P. (2014). PyoT, a macropro-
gramming framework for the Internet of Things. In Proceedings of the 9th IEEE international sym-
posium on industrial embedded systems (SIES 2014) (pp. 96–103). doi:10.1109/SIES.2014.6871193.

3. Cerf, V., & Kirstein, P. (2013) Gateways for the Internet of Things—An old problem revisited. (pp.
2641–2647). http://discovery.ucl.ac.uk/1414930/

4. Daniel, L., Kojo, M., & Latvala, M. (2014). Experimental evaluation of the CoAP, HTTP and SPDY
transport services for Internet of Things. In 7th international conference on internet and distributed
computing systems (pp. 111–123).

5. Evans, D. (2011). The internet of things: How the next evolution of the internet is changing everything.
CISCO white paper. http://scholar.google.be/scholar?cluster=12792589873848912975&hl=nl&as_sdt=
2005&sciodt=0,5#0

6. Hui, J., & Thubert, P. (2011). RFC 6282: Compression format for IPv6 datagrams over IEEE 802.15.
4-based networks. https://tools.ietf.org/html/rfc6282.txt

7. Ishaq, I., Carels, D., Teklemariam, G. K., Hoebeke, J., Van den Abeele, F., De Poorter, E., et al. (2013).
IETF standardization in the field of the Internet of Things (IoT): A survey. Journal of Sensor and
Actuator Networks, 2(2), 235–287.

8. Jara, A. J., Moreno-Sanchez, P., Skarmeta, A. F., Varakliotis, S., & Kirstein, P. (2013). IPv6 addressing
proxy: Mapping native addressing from legacy technologies and devices to the Internet of Things
(IPv6). Sensors, 13(5), 6687–6712. doi:10.3390/s130506687.

9. Kovatsch, M., Mayer, S., & Ostermaier, B. (2012). Moving application logic from the firmware to the
cloud: Towards the thin server architecture for the internet of things. Mobile and Internet. http://
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6296948

10. Light-Weight Implementation Guidance (lwig)—Charter (2011). https://datatracker.ietf.org/wg/lwig/
charter/

11. Montenegro, G., Kushalnagar, N., Hui, J., & Culler, D. (2007). RFC 4944: Transmission of IPv6 packets
over IEEE 802.15. 4 networks. https://tools.ietf.org/html/rfc4944

12. Pereira, P.P., Eliasson, J., Kyusakov, R., Delsing, J., Raayatinezhad, A., & Johansson, M. (2013)
Enabling cloud connectivity for mobile Internet of Things applications. In 2013 IEEE seventh inter-
national symposium on service-oriented system engineering (pp. 518–526). doi:10.1109/SOSE.2013.33

13. Raza, S., Shafagh, H., Hewage, K., Hummen, R., & Voigt, T. (2013). Lithe: Lightweight secure CoAP
for the internet of things. IEEE Sensors Journal, 13, 3711–3720. doi:10.1109/JSEN.2013.2277656.

14. Rescorla, E., & Modadugu, N. (2012). RFC 6347: Datagram transport layer security version 1.2. https://
tools.ietf.org/html/rfc6347

F. Van den Abeele et al.

123

Author's personal copy

http://dx.doi.org/10.1109/DCOSS.2013.75
http://dx.doi.org/10.1109/SIES.2014.6871193
http://discovery.ucl.ac.uk/1414930/
http://scholar.google.be/scholar?cluster=12792589873848912975&hl=nl&as_sdt=2005&sciodt=0,5#0
http://scholar.google.be/scholar?cluster=12792589873848912975&hl=nl&as_sdt=2005&sciodt=0,5#0
https://tools.ietf.org/html/rfc6282.txt
http://dx.doi.org/10.3390/s130506687
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6296948
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6296948
https://datatracker.ietf.org/wg/lwig/charter/
https://datatracker.ietf.org/wg/lwig/charter/
https://tools.ietf.org/html/rfc4944
http://dx.doi.org/10.1109/SOSE.2013.33
http://dx.doi.org/10.1109/JSEN.2013.2277656
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc6347

15. Shelby, Z. (2012). RFC 6690: Constrained RESTful environments (CoRE) link format. https://tools.ietf.
org/html/rfc6690

16. Shelby, Z., Hartke, K., Bormann, C., & Frank, B. (2014). RFC 7252: Constrained application protocol
(CoAP). https://tools.ietf.org/html/rfc7252

17. Teklemariam, G.K., Hoebeke, J., Moerman, I., & Demeester, P. (2014). Flexible, direct interactions
between CoAP-enabled IoT devices. In The eighth international conference on innovative mobile and
internet services in ubiquitous computing (IMIS-2014).

18. Teklemariam, G.K., Hoebeke, J., Van den Abeele, F., Moerman, I., & Demeester, P. (2014). Simple
RESTful sensor application development model using CoAP. In 9th IEEE workshop on practical issues
in building sensor network applications (IEEE SenseApp 2014) (pp. 552–556).

19. Varakliotis, S., Kirstein, P.T., Jara, A., & Skarmeta, A. (2014) A process-based Internet of Things. In
2014 IEEE world forum on Internet of Things (WF-IoT) (pp. 73–78). IEEE. doi:10.1109/WF-IoT.2014.
6803123

20. Vial, M. (2013) CoRE Mirror Server (draft-vial-core-mirror-server-01). http://tools.ietf.org/html/vial-
core-mirror-server-01

21. Winter, T., & Thubert, P. (2012). RFC 6550: RPL: IPv6 routing protocol for low-power and lossy
networks. https://tools.ietf.org/html/rfc6550

22. Zhou, J., Leppanen, T., Harjula, E., Ylianttila, M., Ojala, T., Yu, C., & Jin, H. (2013). CloudThings: A
common architecture for integrating the Internet of Things with Cloud Computing. In Proceedings of
the 2013 IEEE 17th International conference on computer supported cooperative work in design,
CSCWD 2013 (pp. 651–657). doi:10.1109/CSCWD.2013.6581037

Floris Van den Abeele In 2012 Floris Van den Abeele graduated from
Ghent University and received a Master of Science degree in Computer
Science Engineering with a master’s thesis on low latency audio over
wireless networks. Since September 2012 he has been active at the
Internet Based Communication Networks and Services research group
(IBCN) that belongs to the Department of Information Technology of
Ghent University and is part of the Internet Technologies Department
of iMinds. Floris is currently pursuing a PhD on network protocols for
constrained and embedded devices. His research interests include the
Internet of Things, security, the web of things and wireless sensor
networks. More information and a bibliography are available at http://
www.vdna.be.

Jeroen Hoebeke In 2002, Jeroen Hoebeke received the Masters degree
in engineering (Computer Science) from the University of Ghent.
Since August 2002, he has been affiliated with the Internet Based
Communication Networks and Services research group (IBCN) that
belongs to the Department of Information Technology of Ghent
University and is part of the Internet Technologies Department of
iMinds. He obtained a PhD in 2007 on adaptive ad hoc routing and
Virtual Private Ad Hoc Networks. Since 2014, he is assistant professor
at IBCN where he is conducting research on mobile and wireless
networks, personal networks, self-organizing virtual networks, Future
Internet and sensor networks. Currently he focusses on solutions for
realizing the Internet of Things including sensor technology, IETF
CoAP, IPv6, distributed intelligence, robust wireless communication,
deployment and self-organization of smart objects.

Sensor Function Virtualization to Support Distributed Intelligence

123

Author's personal copy

https://tools.ietf.org/html/rfc6690
https://tools.ietf.org/html/rfc6690
https://tools.ietf.org/html/rfc7252
http://dx.doi.org/10.1109/WF-IoT.2014.6803123
http://dx.doi.org/10.1109/WF-IoT.2014.6803123
http://tools.ietf.org/html/vial-core-mirror-server-01
http://tools.ietf.org/html/vial-core-mirror-server-01
https://tools.ietf.org/html/rfc6550
http://dx.doi.org/10.1109/CSCWD.2013.6581037
http://www.vdna.be
http://www.vdna.be

Girum K. Teklemariam received his Bachelors degree in Computer
Science from Addis Ababa University, Ethiopia in 1999 and his
Masters degree from University of Hyderabad, India in 2005. He is
currently doing his PhD on Internet of Things at Ghent University,
Belgium. Since 1999, he has been working as a lecturer in Jimma
University, Ethiopia. He is also working as ICT Director of the
university.

Ingrid Moerman received her degree in Electrical Engineering (1987)
and the Ph.D degree (1992) from the Ghent University, where she
became a part-time professor in 2000. She is a staff member of the
research group on Internet-Based Communication Networks and Ser-
vices, IBCN (www.ibcn.intec.ugent.be), where she is leading the re-
search on mobile and wireless communication networks. Since 2006
she joined iMinds, where she is coordinating several interdisciplinary
research projects. Her main research interests include: Sensor Net-
works, Cooperative and Cognitive Networks, Wireless Access, Self-
Organizing Distributed Networks (Internet of Things) and Ex-
perimentally-supported research. Ingrid Moerman has a longstanding
experience in running national and EU research funded projects. At the
European level, Ingrid Moerman is in particular very active in the FP7
FIRE (Future Internet Research and Experimentation) research area,
where she is coordinating the CREW project and further participating
in IP Fed4FIRE, STREP EVARILOS, STREP FORGE and IP FLEX.

In the FP7 research area on Future Networks, she is involved in IP LEXNET and STREP SEMAFOUR.
Ingrid Moerman is author or co-author of more than 600 publications in international journals or conference
proceedings. She is associate editor of the EURASIP Journal on Wireless Communications and Networking
and president of the expert panel on Informatics and Knowledge Technology of the Research Foundation
Flanders (FWO).

Piet Demeester is professor in the faculty of Engineering at Ghent
University. He is head of the research group ‘‘Internet Based Com-
munication Networks and Services’’ (IBCN, Ghent University) and
leading the Internet Technologies Department of the strategic research
centre iMinds. He is Fellow of the IEEE.

F. Van den Abeele et al.

123

Author's personal copy

	Sensor Function Virtualization to Support Distributed Intelligence in the Internet of Things
	Abstract
	Introduction
	The Need for Distributed Intelligence
	Generic IoT System
	Open Challenges
	Act in Time
	Work Offline
	Serve Many
	Move and Sleep
	Monoglot

	Distributed Intelligence

	Sensor Function Virtualization for the Internet of Things
	IETF Protocol Stack for the Internet of Things
	SFV in the Unconstrained Domain
	SFV in the Constrained Domain
	Related Work
	Conclusions
	Acknowledgments
	References

