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Abstract

Several remote sensing studies have discussed the potential of satellite im-

agery as an alternative for extensive field sampling to quantify fire-vegetation

impact over large areas. Most studies depend on Landsat image availability

with infrequent image acquisition dates and consequently are limited for as-

sessing intra-annual fire-vegetation dynamics or comparing different fire plots

and dates. The control pixel based regeneration index (pRI) derived from

SPOT-Vegetation (VGT) normalized difference vegetation index (NDVI) is

used in this study as an alternative to the traditional bi-temporal Landsat

approach based on the normalized burn ratio (NBR). The major advantage

of the pRI is the use of unburnt control plots which allow to express the intra-

annual variation due to regeneration processes without external influences.

In the comparison of Landsat and VGT data, (i) the inter-annual differences

between the bi-temporal and control plot approach were contrasted and (ii)
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metrics of pRI were derived and compared with the inter-annual dynamics

of both VGT and Landsat data. Results of these comparisons, demonstrate

the overall similarity between NBR and NDVI data, stress the importance of

the elimination of external influences (e.g., phenological variations), and em-

phasize the failure of including post-fire vegetation responses in bi-temporal

Landsat assessments, especially in quickly recovering ecotypes with a strong

annual phenological cycle such as savanna. This highlights the importance

of using high frequent multi-temporal approaches to estimate fire-vegetation

impact in temporally dynamic vegetation types.

Key words: wildfires, burn severity, savanna woodland, fire-vegetation

impact, time series analysis, remote sensing, SPOT Vegetation
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1. Introduction1

Wildfires play an essential role in several ecological processes since they2

partially or completely remove the vegetation layer. This biomass burning3

has several effects at a variety of spatial and temporal scales. At the micro-4

scale level, fires affect soil structure, plant nutrition, species composition5

and competition (Reilly et al., 2006; Kokaly et al., 2007; Fox et al., 2008),6

whereas at the landscape level, fire disturbances result in changes in compo-7

sition, structure and function of ecosystems (Eva and Lambin, 2000; Viedma,8

2008). On regional to global scales fire can result in changes in vegetation dis-9

tribution and in atmospheric chemistry as they represent a significant source10

of trace gases and aerosol particles (Hoelzemann et al., 2004; Van Der Werf11

et al., 2003). As such, they have a major influence on the global ecosystem12

distribution (Ehrlich et al., 1997) and affect the global climate (Running,13

2008). Besides the different effects across spatial scales, the temporal impact14

of fires can also vary considerably. For example, in savanna ecosystems veg-15

etation can completely recover in a matter of weeks (Eckhardt et al., 2000;16

Eva and Lambin, 2000), whereas forest regeneration after burning can take17

years to centuries (Nepstad et al., 1999). This also shows how fire impact18

and vegetation growth are closely related (Levick et al., 2009; Sturtevant19

et al., 2009). The vegetation type influences the fire impact, whereas the20

fire impact largely determines the post-fire growth (van Langevelde et al.,21

2003; White et al., 2008). Knowledge of the spatio-temporal distribution22

of fire-vegetation impact is therefore essential to estimate the fire effects on23

ecological dynamics and to understand the fire-climate interactions.24
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1.1. Assessment of fire effects based on remote sensing25

Fire-vegetation interactions typically operate at broad temporal and spa-26

tial scales, that are unsuitable for field sampling. Therefore satellite imagery27

is often used to derive estimates of the spatio-temporal variability of fire-28

vegetation dynamics. One qualitative indicator used in this context is burn29

severity which quantifies the degree to which an ecosystem has changed owing30

to the fire and incorporates both short- and long-term post-fire effects, re-31

lated to the direct fire impact and vegetation regrowth respectively (Lentile32

et al., 2006). Burn severity is defined as the absolute magnitude of envi-33

ronmental change caused by a fire (Morgan et al., 2001; Key and Benson,34

2006).35

Despite the wide use of satellite imagery for burn severity assessment36

and the current discussion on the temporal dimension in these assessments37

(Keeley, 2009), relatively few studies have addressed the influence of timing38

on the assessment of post-fire effects. Therefore, the aim of this paper is i)39

to illustrate the importance of the intra-annual fire-vegetation dynamics in40

comparison with inter-annual burn severity estimates, and ii) to illustrate the41

use coarse to moderate spatial resolution satellite data as a complementary42

alternative for monitoring these intra-annual fire-vegetation dynamics.43

1.1.1. Fire effects based on Landsat data44

Several studies have demonstrated the utility of the use of vegetation45

indices (VI) derived from Landsat imagery for mapping burn severity (for46

overview see French et al. (2008)). Most of this work was based on the corre-47

lation between burn severity mapped in the field and the normalized burn ra-48

tio (NBR) or bi-temporal differenced normalized burn ratio (dNBR) derived49
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from Landsat imagery, leading to suggestions that NBR and dNBR maps50

derived from fine spatial resolution imagery provide a transferable means to51

measure burn severity in several ecosystem types (French et al., 2008). A52

major drawback of the Landsat based methodologies, however, is the de-53

pendency on image availability (Ju and Roy, 2008), which is limited due its54

temporal resolution (every 16 days) and cloud cover. This drawback is even55

more exaggerated in bi-temporal studies as they require image-to-image nor-56

malization (Coppin et al., 2004), including the removal of phenological, atmo-57

spheric and bi-directional reflectance function (BDRF) effects (Song, 2002;58

Verbyla et al., 2008; Veraverbeke et al., 2010e). As a result, dNBR analysis59

is practically limited to anniversary image acquisition dates to reduce shifts60

in the phenological state of the vegetation between data acquisition times.61

Consequently, NBR and dNBR maps are valuable for obtaining inter-annual62

information of burn severity over specific fires, but fail to provide a multi-63

temporal overview of the intra-annual variability of fire-vegetation dynamics64

on regional to global scale (Michalek et al., 2000). Moreover, cloud-free65

multiple images from different years on anniversary dates are frequently not66

available (Song, 2002). Another consequence of these infrequent image acqui-67

sitions is the dependence of dNBR estimates on acquisition date. For example68

Key (2006) and Veraverbeke et al. (2010c) illustrated the importance of the69

time lag since the fire and seasonal timing of a Landsat acquisition on dNBR70

change and variability. This dNBR dependence on acquisition date inhibits71

the comparison of dNBR assessments between different fire dates and fire72

plots (Eidenshink et al., 2007; French et al., 2008; Verbyla et al., 2008).73

5



1.1.2. Fire effects based on coarse to moderate spatial resolution satellite data74

The use of coarse to moderate spatial resolution satellite data (e.g., SPOT-75

Vegetation (VGT), MODIS, etc.) has the potential of providing sound alter-76

natives to NBR and dNBR estimates at the local scale, given their synoptic77

coverage and repeated temporal sampling. At these coarse spatial scales, time78

series can be analyzed that allow to assess the intra-annual fire-vegetation79

dynamics (Geerken, 2009) and the comparison between different fire dates.80

In this context, several time series have been proposed based on the evo-81

lution of post-fire VIs without any reference to the situation prior to the82

fire event (Fiorella and Ripple, 1993), the difference or ratio in VIs before83

and after the fire occurrence (White et al., 1996; Viedma et al., 1997; Henry84

and Hope, 1998; Kushla, 1998; Hicke et al., 2003) and the use of a regener-85

ation index (RI) that employs information of control plots located close to86

but unaffected by the fire, to correct for external influences and phenological87

variation (Dı́az-Delgado et al., 1998; Dı́az-Delgado and Pons, 2001; Riaño88

et al., 2002; Dı́az-Delgado et al., 2003). The latter approach is founded on89

the assumption that the vegetation growth of the control plots can serve90

as an indicator of vegetation growth in case the fire had not occurred. As91

such, external influences (radiometric calibration uncertainty, errors in the at-92

mospheric correction, bidirectional reflectance distribution function (BRDF)93

effects, topographic impact, and shifts in the phenological state of the vege-94

tation between data acquisition) can be masked out and the variation in RI95

can be interpreted solely due to regeneration processes. Song (2002) high-96

lighted the reduction of these kinds of image noise as the primary challenge97

when using multi-temporal imagery to monitor forest regrowth. Moreover,98
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Viedma et al. (1997) and Song (2003) stressed the need for phenological and99

seasonal corrections to interpret long-term regrowth of the vegetation com-100

munities. A drawback of the RI approach, however, is its dependence of static101

reference data and inability to quantify heterogeneity within a fire plot. To102

overcome these limitations Lhermitte et al. (2010) proposed the control pixel103

regeneration index (pRI) that allows to quantify the vegetation regrowth for104

each fire pixel within a fire plot using selected control pixels based on time105

series similarity and spatial context. The pRI analysis provides a valuable106

alternative to study the intra-annual fire-vegetation dynamics.107

1.2. Paper overview108

In the framework of this paper, a savanna pilot study area was selected109

for its coexistence of woody and herbaceous vegetation, which reflect dif-110

ferent intra- and inter-annual vegetation dynamics and vegetation greenness111

(Scanlon et al., 2002) where (i) green leaf cover of woody vegetation follows112

a weaker annual wave with low amplitude variations and (ii) green leaf cover113

of the herbaceous vegetation follows a strong annual phenological wave with114

high amplitude variations (Fuller et al., 1997; Scanlon et al., 2002). Conse-115

quently, differences in intra- and inter-annual fire-vegetation dynamics and116

vegetation greenness can be expected for the burn plots. To assess the impor-117

tance of these intra- and inter-annual fire-vegetation dynamics in this paper,118

firstly the inter-annual fire-vegetation dynamics derived from Landsat and119

VGT imagery were analyzed. This allows to establish a baseline to compare120

both data sets. Secondly, metrics of intra-annual dynamics were derived from121

the VGT data using the control pixel based pRI approach and these metrics122

were contrasted with the inter-annual dynamics of both VGT and Landsat123
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data.124

2. Data125

2.1. Study area126

The pilot study area covered Landsat ETM+ scene 168/077 between 23-127

25◦S and 30-32◦E in the low-lying savanna of the northeastern part of South128

Africa and southern Mozambique (see Fig. 1). Elevations range from 260-129

839 m above sea level, and mean annual rainfall varies between 350 mm in130

the north and 750 mm in the south. The rainfall regime within the annual131

climatic season can be confined to the summer months (November to April),132

and over a longer period can be defined by extended wet and dry seasons.133

Most fires occur in the dry season, from approximately May to October,134

when herbaceous vegetation is either dead or dormant, and when deciduous135

trees have shed their leaves, thereby contributing to an accumulation of dry136

and fine fuels that are easily combustible.137

The study area comprises mainly tropical grassland with scattered thorny,138

fine-leafed trees. In general, three dominant vegetation types are present in139

the fire affected area. In the west, the fire affected area on granite substrate140

shows a woody vegetation cover of ±20% (red bushwillow (Combretum apicu-141

latum), knobthorn (Acacia nigrescens), tamboti (Spirostachys africana) and142

marula (Sclerocarya birrea) (Eckhardt et al., 2000)). Here grasses accumulate143

during the growing season due a relatively low-grazing pressure. In the mid-144

dle next to the Mozambican border, on basalt substrates, the woody cover145

is less (±5%) and grasses are more palatable and tend to be heavily grazed.146

Important tree species here include the knobthorn, leadwood (Combretum147
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imberbe) and marula. In the eastern part of the study area (Mozambique),148

woody cover is much higher (up to 50%). The distribution of tree cover is149

also visible in Fig. 1, that displays the fraction tree cover per pixel derived150

from MODIS vegetation continuous fields (VCF) for the year 2000. The151

VCF data were generated based on a regression tree algorithm from monthly152

composites of 500 m resolution MODIS data (Hansen et al., 2002, 2003).153

2.2. Burnt pixel data154

Fire scar data of the year 2000 were identified from the Globscar product155

(Simon et al., 2004) developed by the European Space Agency (ESA) using156

Along Track Scanning Radiometer (ATSR-2) daytime data of the year 2000.157

The product combines the result of two algorithms for burnt area detection:158

the K1 algorithm based on the geometrical characteristics of the burnt pixels159

in the NIR and thermal infrared (TIR) space, and the E1 algorithm derived160

from four different spectral channels (Simon et al., 2004). The final product161

is available with a 1 km spatial resolution at monthly intervals, but provides162

for each burnt pixel also the date of fire detection.163

Additionally, burnt pixels were identified from the Global Burnt Area164

2000 (GBA2000) initiative (Grégoire et al., 2003), not for analysis but to ex-165

clude errors in control pixel data. This approach was chosen since GBA2000166

does not provide fire date and cannot be used for pRI calculations, but allows167

to exclude possible burnt pixels in the control pixel selection approach as it168

has higher estimates burnt area (Boschetti et al., 2004).169
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2.3. Control pixel data170

Control pixels were selected for input in the pRI approach proposed by171

Lhermitte et al. (2010). The pRI approach employs a pixel-based selection172

methodology to correct for external influences and phenological variation173

based on the Dı́az-Delgado et al. (1998) logic. To obtain these control pixels174

that represent the temporal profile of the fire pixel in case the fire had not175

occurred, the pRI approach combines time series similarity and spatial con-176

text. The time series similarity condition allows to select control pixels with177

similar pre-fire vegetation characteristics as the burnt pixel, whereas the spa-178

tial context condition maximizes similar post-fire environmental conditions.179

Both these constraint allow the selection of control pixels that can be used180

to forecast the temporal behavior of each burned pixel if the fire would not181

have occurred.182

In this study, the pRI procedure of Lhermitte et al. (2010) is followed to183

select control pixels from unburnt pixels in both the Globscar and GBA2000184

data sets. The procedure uses the root mean square distance (RMSD) as185

time series similarity measure applied one year NDVI time series before the186

fire (TSSRMSD) and four out of eight candidate control pixels as the spatial187

context constraint. Based on these constraints, each fire pixel is consid-188

ered individually as seed pixel. Based on this seed pixel p, a first run is189

started that compares p with its Nt spatial adjacent pixels that did not burn190

(i.e., candidate control pixels). If Nt < 8, the spatial neighborhood window191

around is gradually increased (e.g., from a 3 by 3 to a 5 by 5 window) until192

Nt ≥ 8. Subsequently, the mean time series of the x = 4 most similar candi-193

date control pixels (based on TSSRMSD) are used to represent the vegetation194

10



growth of each burnt pixel in case the fire had not occurred without external195

influences such as phenology, atmospheric disturbances, etc. .196

Fig. 2 shows the burnt pixels (reflected by their RMSD in the TSSRMSD197

methodology in cyan-yellow-red), the selected control pixels (in green) and198

the original NBR image at 30 m resolution in October 2000 at the end of the199

fire season (in purple-dark blue). Comparison of the Globscar burnt pixels200

and the underlying NBR image, shows that the Globscar data effectively201

succeeded in detecting large burnt areas in the study area. It is also clearly202

visible that the amount of under-detection of burnt pixels is high, but that203

these undetected fire pixels are not selected as control pixels. These errors204

of under-detection, for example, can be seen on the north-western side where205

large fires are visible in the NBR image that are not detected by the Globscar206

project. However, as we focus in this paper on the variability in post-fire207

vegetation regrowth, the accurate amount of burnt pixels is not important208

and the study can be repeated as soon as better fire inventories become209

available.210

2.4. Satellite data211

2.4.1. Fine spatial resolution212

Several studies have demonstrated the utility of spectral indices derived213

from Landsat imagery to quantify the fire-vegetation dynamics. Although a214

considerable amount of these studies focused on the use of the normalized215

difference vegetation index (NDVI), the normalized burn ratio (NBR) has216

become an operational spectral index for fire effects (for a comprehensive217

review of remote sensing techniques to assess wildfire severity using Landsat,218

see French et al. (2008)). The NBR relates to vegetation vigor and moisture219
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by combining TM/ETM+ band 4 (NIR: 0.76-0.90 µm) and band 7 (SWIR:220

2.08-2.35 µm):221

NBR = (NIR− SWIR)\(NIR + SWIR) (1)

In most cases, the NBR reliably separates burnt from unburnt surfaces, and222

optimally identifies a broad gradient of fire-effect levels within the burn.223

However, when using mono-temporal post-fire imagery, unburned sparsely224

vegetated areas and burned areas are often confounded (Key and Benson,225

2005). Therefore, pre- and post-fire NBR images are generally bi-temporally226

differenced, resulting in the differenced NBR (dNBR), which permits a clear227

contrast between burned and unburned regions and correlates with burn228

severity mapped in the field, where exact definitions of burn severity vary229

but all relate to the degree of environmental change caused by fire (Roy et al.,230

2006).231

In this research, the Landsat NBR data were selected as reference layers232

to describe the inter-annual fire-vegetation dynamics of the 2000 burn scars.233

The selection of the NBR was based on data availability, cloud cover and234

the necessity for anniversary image acquisition dates. As such two anniver-235

sary date images were selected (4 April 2000 and 28 April 2001) before the236

Landsat SLC failure (Pringle et al., 2009). Both scenes were geometrically237

corrected based on control points and a first order nearest neighbor algorithm.238

Subsequently, the images were atmospherically corrected and converted from239

digital numbers to reflectance values using the ATCOR2 algorithm developed240

by Richter (2006). Finally, the reflectance values were used to calculate NBR241

and dNBR by subtracting the 2001 and 2000 NBR images and the NBR an242
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dNBR images were resampled to averaged NBR and dNBR values per 1 km2
243

for each Globscar burnt pixel.244

2.5. Coarse spatial resolution245

Time series of intra-annual fire-vegetation dynamics were constructed us-246

ing NDVI time series derived from ten-daily NDVI image composites (S10)247

from the SPOT-VEGETATION (VGT) sensor over the study area. NDVI248

data derived from the red (0.61-0.68 µm) and near infrared (0.78-0.89 µm)249

bands were used since the NBR cannot be calculated due to the absence of the250

2.08-2.35 µm band onboard of VGT. Preprocessing of the NDVI data was per-251

formed by the Vlaamse Instelling voor Technologisch Onderzoek (VITO, Mol,252

Belgium) in the framework of the Global Vegetation Monitoring (GLOVEG)253

preprocessing chain. It consisted of the Simplified Method for Atmospheric254

Correction (SMAC) (Rahman and Dedieu, 1994) and compositing of daily im-255

ages at ten-day intervals based on the Maximum Value Compositing (MVC)256

criterion (Holben, 1986). The final NDVI data set consisted of ten-daily, 1257

km resolution S10 composites for the period 1999-2004 with cloud affected258

pixels masked as missing data.259

3. Methodology260

To illustrate the importance of the intra-annual fire-vegetation dynamics261

in comparison with inter-annual burn severity estimates derived from Landsat262

imagery, (i) the inter-annual fire-vegetation dynamics of both Landsat and263

VGT images were contrasted to establish a inter-comparison baseline and264

(ii) metrics of intra-annual dynamics were derived from the VGT data using265
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the pRI approach and these metrics were compared with the inter-annual266

dynamics of both VGT and Landsat data.267

3.1. Inter-annual fire-vegetation dynamics268

Two different approaches were applied to compare the inter-annual fire-269

vegetation dynamics of both Landsat and VGT data. Firstly, a comparison270

was performed between the bi-temporally differenced Landsat dNBR data271

and the bi-temporally differenced VGT NDVI values (dNDVI) of correspond-272

ing dates. Secondly, a comparison was established between the control pixel273

approach for both Landsat and VGT images for 28 April 2001. This was274

done by calculating the pRI:275

pRI = VIburn/VIcontrol (2)

where VIburn is the NBR and NDVI for burnt pixels of the Landsat and276

VGT data, respectively, and VIcontrol is the mean NBR and NDVI for the277

selected control pixels of the Landsat and VGT data for each burnt pixel,278

respectively. Both approaches allow to assess the inter-annual fire-vegetation279

dynamics as they compare unburnt and burnt pixels, but the former approach280

is performed on a bi-temporal basis where external differences should be281

removed using anniversary dates, whereas the latter approach removes these282

differences using control pixels that reflect the vegetation growth in case283

the fire had not occurred. The combination of both approaches therefore284

allows to intercompare Landsat and VGT data, but also permits to assess285

the influence of external differences on the estimation of inter-annual fire-286

vegetation dynamics.287
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3.2. Intra-annual fire vegetation dynamics288

To assess the importance of intra-annual dynamics, an integrated change289

approach was used, represented by integrated metrics of intra-annual dynam-290

ics derived from the VGT data using pRI time series (pRIt; see Eq. 2) The291

integrated change was selected since it incorporates the combined effect of292

fire impact and recovery (Ricotta et al., 1999). This approach is relatively293

robust to noise in pRI time series as it removes random noise. The integral294

was calculated between the ideal post-fire time series pRIt = 1 (when the fire295

did not occur) and the actual pRIt time series:296

IpRI =

t1∑
t=t0

(1− pRIt) (3)

where t0 and t1 define the integration starting and ending dates. These297

dates are defined as the moments when pRIt = 1. For IpRI1 this implies298

that t0 is the burning date and t1 is the relative recovery date related to299

the number of post-fire observations before the pRIt reaches one (i.e, when300

pRIt = 1 for the first time in Fig. 3, which corresponds to the moment when301

VIburn = VIcontrol ). For IpRI2, t1 of pRI1 is used as t0, whereas t1 is derived302

from the subsequent moment when pRIt reaches one (i.e, when pRIt = 1 for303

the second time in Fig. 3). For the subsequent IpRIs, this procedure can be304

repeated as t1 of the previous is as t0, and t1 is derived from the subsequent305

moment when pRIt reaches one. In total, three metrics (IpRI1, IpRI2 and306

IpRI3) were calculated and the selection of t0 and t1 was limited to one year307

after fire to avoid incorporating fire pixels of the 2001 fire season.308

The computation of t0 and t1, based on the moments when pRIt equals309
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one, is crucial in the calculation of IpRI values. Therefore, a smoothed310

pRI curve based on a cubic spline with two knots per year was used to311

remove outlier values in the estimation of t0 and t1. The cubic spline is based312

on piecewise polynomial functions (between the knots) that are designed to313

minimize a weighted combination of the average squared approximation error314

over observed data (Harrell, 2001). As a result, the smoothed curve provides315

an approximation of the original pRIt time series that is more robust to outlier316

values and that can be used to calculate t0 and t1 with higher accuracy.317

The calculation of the IpRIs is illustrated in Fig. 3, where the dot-dash318

line represents the cubic spline fitted on the post-fire pRIt time series. When319

the cubic spline reaches one, the moments t0 and t1 (represented by the320

dashed lines) are derived and the three IpRI estimates are calculated based321

on Eq. 3 from the shaded area using the original pRIt values. As such, the322

IpRI provides a measures of combined changes due to the fire event.323

IpRI1 estimates will show large positive values for high fire-vegetation324

impact. This can be attributed to the large decrease over time in VIs after325

fire occurrence (Pereira, 2003; Silva et al., 2003), resulting in pRIt below one326

and positive IpRI1 values in Eq. 3. Positive IpRI1 values close to zero, on327

the other hand, will be associated with pixels that show only a small fire328

impact or contain a very fast recovery, whereas negative values will originate329

from pixels that are falsely detected or recover before the fire is detected,330

resulting in pRIt above one and negative IpRI1 values in Eq. 3. IpRI2 values,331

on the other hand, will show large negative values when the post-fire pRI332

reflects an increased vegetation greenness some time after the fire impact333

due to the nutrient availability, whereas IpRI3 values will show large positive334
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values when the pRIt drops again after a short period of increased vegetation335

greenness.336

4. Results337

4.1. Inter-annual fire-vegetation dynamics338

Fig. 4 illustrates the comparison of the bi-temporal estimates of fire-339

vegetation impact by Landsat dNBR and VGT dNDVI data. Fig. 4a shows340

the bi-temporal Landsat dNBR data represented by averaged dNBR val-341

ues per 1 km2 for the Globscar burnt pixels, whereas Fig. 4b shows the342

bi-temporal VGT dNDVI data for the same burnt pixels. In both figures,343

yellow-red colors indicate positive values, associated with decreased NBR344

and NDVI values one year after the fire. Cyan-blue colors, on the other345

hand, reflect negative dNBR and dNDVI values, indicating a higher NBR or346

NDVI values one year after the fire. Comparison of both figures shows that,347

although local differences occur, dNBR and dNDVI detect broadly identical348

spatial patterns when comparing unburnt and burnt pixels. For example,349

it is clear that both data sets reflect positive dNBR and dNDVI values and350

high fire-vegetation impact for points 1-3, whereas they show very low or351

even negative dNBR and dNDVI values for points 4-5. This is also clear352

when performing a linear regression analysis between Landsat dNBR and353

VGT dNDVI (not shown), which indicates a statistically significant linear354

relationship (p = 0.01) with a R2 = 0.39.355

Fig. 5 reflects the comparison of the control pixel estimates of fire-356

vegetation impact of Landsat NBR and VGT NDVI data, where357

Fig. 5a-b show the control pixel based pRI of Landsat NBR and VGT NDVI,358
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respectively. Here, yellow-red colors indicate negative values, associated with359

decreased NBR and NDVI values in comparison with the unburnt control pix-360

els. Cyan-blue colors, on the other hand, reflect positive dNBR and dNDVI361

values, indicating a higher NBR or NDVI values for the burnt than for the362

unburnt control pixels. Again it is clear that both pRI of NBR and NDVI363

reflect broadly identical spatial patterns, although the maps are more speck-364

led and less smooth than for dNBR and dNDVI. This is also apparent when365

performing a linear regression analysis between Landsat pNBR and VGT366

pNDVI data (not shown), which again indicates a statistically significant367

linear relationship (p = 0.01) but with a lower R2 = 0.10.368

Although Figs. 4-5 demonstrate agreement between Landsat NBR and369

VGT NDVI data, comparison of the spatial patterns between both figures re-370

veals the differences in fire-vegetation impact when using either a bi-temporal371

approach or a control pixel approach. For example, its is clear that several372

points which show a high fire-vegetation impact in the bi-temporal approach373

(e.g., points 2), show a less pronounced fire-vegetation impact when deter-374

mined by the control pixel approach. This difference illustrates the impor-375

tance of external differences on the estimation of inter-annual fire-vegetation376

dynamics. This is also clear from Fig. 6, which shows the difference in mean377

VGT NDVI (dNDVI) for the 1999-2000 and 2000-2001 November to April378

growing seasons for both burnt and control pixels. This difference in mean379

NDVI can be considered an indicator of the phenological difference in to-380

tal greenness of vegetation between growing seasons (Defries et al., 1995).381

This difference in total greenness between growing seasons indicates that the382

spatial patterns of increased and decreased greenness equally affect the fire383

18



and control pixels. Moreover, contrasting of Figs. 4 and 6 reveals that the384

spatial patterns of increased-decreased greenness between growing seasons385

affects the bi-temporal fire-vegetation approach, as areas of increased green-386

ness show a smaller fire-vegetation dNBR-dNDVI impact than areas with387

a decreased greenness. However, as this difference in increased-decreased388

greenness is similar for the corresponding control pixels, it is evident that389

the bi-temporal approach does not properly account for changes in phenol-390

ogy between years.391

4.2. Intra-annual fire vegetation dynamics392

Figs. 7 show the three IpRI metrics derived from the VGT NDVI pRIt
393

time series, where Fig. 7a reflects the initial fire-vegetation impact (IpRI1),394

Fig. 7b illustrates the increased vegetation greenness some time after the fire395

(IpRI2), and Fig. 7c shows the subsequent pRIt drop after a short period of396

increased vegetation greenness. Comparison of these derived metrics reflects397

the importance the intra-annual dynamics, as many pixels show large posi-398

tive IpRI1 values, indicating a severe NDVI decrease after fire, but also large399

negative IpRI2 values, indicating increased vegetation greenness some time400

after the fire, followed again by large positive IpRI3 values, indicating a new401

NDVI decrease after the growing season. This is also clear when looking at402

the pRIt time series in Figs. 8 of the example points highlighted in Figs. 7.403

These example points were selected randomly to represent different tempo-404

ral patterns of fire-vegetation. From Figs. 7 different temporal patterns of405

fire-vegetation impact can be derived, that show pronounced intra-annual re-406

growth dynamics. For example, point 1 shows a large fire-vegetation impact,407

showing large positive IpRI1 values where both pRIt time series don’t reach408
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the pre-fire level of pRIt = 1 and thus IpRI2=IpRI3= 0. Point 2, on the other409

hand, shows a large fire-vegetation impact but reaches pRIt = 1 within one410

year after the fire, but doesn’t show a decrease afterwards, whereas point 3411

reaches pRIt = 1 rapidly, followed by a period of increased vegetation green-412

ness and a subsequent drop below pRIt = 1 at the end of the growing season.413

This drop does not occur for point 4 that shows a large period of increased414

vegetation greenness after a short fire impact. Point 5 finally shows less pro-415

nounced intra-annual dynamics, as its variability reaches pRIt = 1 after some416

time and then show little deviation from pRIt = 1.417

Moreover, Figs. 8 illustrate the moments of the April 2000 and 2001 Land-418

sat image acquisition, represented by a small triangle. Since these acquisition419

dates coincide with the end of the growing season, the importance of the an-420

nual phenological variations related to the growing season can be inferred.421

For most points, for example, this annual phenological cycle within the pRIt
422

time series is clearly apparent as it shows different, often higher pRI values423

during the growing season and than at the end of the growing season. These424

increased values pRI values during the growing season can also be related to425

the amount of tree-grass cover (Fig. 1), since all these points typically occur426

in regions with relative high grass abundance and lower tree fractions.427

5. Discussion428

5.1. Comparison of inter- and intra-annual fire vegetation dynamics429

The comparison of inter-annual fire-vegetation dynamics of both Land-430

sat and VGT data illustrates two major topics often discussed in literature.431

Firstly, it demonstrates the similarity of spatial patterns between NBR and432
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NDVI data, although the correlation at pixel level is low. This similarity of433

spatial patterns with differences at the pixel level can also be observed in the434

study of Fox et al. (2008), who compared dNDVI and dNBR values in a het-435

erogeneous forest-scrubland-vineyard environment. These low correlations at436

pixel level could be explained when i) looking at the study of Veraverbeke437

et al. (2010a,c) who already established moderate R2 values due to sensor438

and scale differences when focusing only on dNBR data, and ii) the expected439

decrease in R2 when dNBR data are compared to a different index such as440

dNVDI. The lower R2 for pNBR and pNDVI values can moreover be justified441

by the wider probability distribution function when studying a ratio based442

index (e.g., pNBR and pNDVI) in comparison with a difference based index443

(e.g., dNBR and dNDVI) (Marsaglia, 1965). Although this low correlations444

at pixel level indicate that NBR and NDVI cannot be used interchangeably445

due to high variations at pixel level, the similarity in spatial patterns suggests446

that the use of the NDVI index at coarse to moderate spatial resolution may447

provide a valuable alternative for NBR, when the 2.08-2.35 µm wavelength448

is not available. This was also established by Epting et al. (2005), Escuin449

et al. (2008), Hoy et al. (2008),Veraverbeke et al. (2010b), and Veraverbeke450

et al. (2010d) who determined the dNBR as the optimal index to assess wild-451

fire impact based on field measurements, but also found high correlations452

for dNDVI. Epting et al. (2005) studied the efficiency of single date imagery453

to determine the wildfire impact and again the NBR outperformed NDVI,454

but also high correlations for NDVI were obtained. Nevertheless, when fire455

specific wavelengths are available at coarse to moderate spatial resolution456

(e.g., MODIS) the use of fire adapted vegetation indices, such as NBR, may457

21



provide a better alternative, since NDVI time series never were designed to458

capture specific vegetation variation after fire (Lasaponara, 2006).459

Secondly, the comparison of inter-annual fire-vegetation dynamics indi-460

cates the importance of the elimination of external influences (e.g., plant461

phenology) when using multi-temporal Landsat imagery, stressed by Song462

(2003), Schroeder et al. (2006), Vicente-Serrano et al. (2008), and Verbyla463

et al. (2008). In this context, the use of the higher temporal frequency of im-464

agery, (e.g., coarse to moderate resolution imagery such as VGT or MODIS465

data (Veraverbeke et al., 2010c)) can be a vital complement to traditional466

Landsat dNBR analysis. Although these coarser data sets fail to express467

small scale spatial heterogeneity available in Landsat imagery (Key, 2006)468

and are complex to analyze at the sub-pixel scale (Eckmann et al., 2008)469

when fires affect vegetation differently within a coarse pixel, they can serve470

as complementary data to analyze the temporal dimension and provide an471

alternative for the assessment of burn severity at continental to global scales472

(e.g., Verbesselt et al. (2010)). When using coarse to moderate spatial resolu-473

tion data, the control plot approach proposed by Dı́az-Delgado et al. (1998)474

and adapted by Lhermitte et al. (2010) may provide a valuable alternative475

to represent vegetation regrowth into one index pRIt that expresses the vari-476

ation due to regeneration processes without external influences. Bi-temporal477

assessments can only partly contribute to this interpretation of burn severity478

as they fail to include intra-annual post-fire vegetation responses.479

5.2. Consequences for bi-temporal assessments480

The failure of including these intra-annual post-fire vegetation responses481

in bi-temporal assessments is clearly apparent when looking at the intra-482
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annual fire-vegetation dynamics represented in Figs. 7-8, where annual and483

other regeneration processes can be observed. Due to this intra-annual vari-484

ability, the timing of Landsat image acquisition will greatly influence the485

derived Landsat measures. This is evident, when looking at the moment of486

Landsat acquisition in Fig. 8, where the moment of the April 2000 and 2001487

image acquisition are represented by a small triangle. In this figure, small488

changes in acquisition dates will lead to different conclusions on post-fire veg-489

etation interaction due to two main effects. Firstly, fire-induced change de-490

creases with vegetation recovery (Allen and Sorbel, 2008; Veraverbeke et al.,491

2010c), especially in quickly recovering ecotypes such as savanna. Allen and492

Sorbel (2008), for example, established large differences due to fast recov-493

ery when the image acquisition timing differed in bi-temporal burn severity494

assessments. Secondly, the seasonal timing determines the vegetation pro-495

ductivity and wetness of both the control and burned plots which influences496

the annual phenological cycle and affects the absolute magnitude of change in497

any bi-temporal data set (Key and Benson, 2006; Veraverbeke et al., 2010c).498

Verbyla et al. (2008), on the other hand, reported large differences in dNBR499

values due to a combined seasonality effect of senescing vegetation and chang-500

ing illumination conditions.501

The senescing effect in combination with tree-grass interaction plays a502

crucial role in our study area, as can be seen by looking at the annual phe-503

nological cycle within the pRIt time series for the pixel that show low tree504

fractions in Fig. 1. The importance of this annual phenological cycle was505

stressed by Fuller et al. (1997), Scanlon et al. (2002), and Lu et al. (2003)506

who suggested that in savanna ecosystems the grass layer dominates annual507
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cycle of the NDVI signal throughout most of the seasonal cycle, and that only508

during the senescent dry season the contribution of the tree is relatively more509

important. This difference can be explained by looking at the strategies for510

water use, where grasses are considered to be intensive exploiters while trees511

and shrubs are extensive exploiters (Burgess, 1995). As such, trees, which512

have root systems that penetrate both the shallow and deeper soil layers,513

have a more persistent supply of soil water than grasses, which have dense,514

shallow root systems and depend on water that is ephemerally available in515

the upper layer of the soil. Relative to trees, grasses exhibit a greater areal516

expansion of biomass in response to rainfall in savanna ecosystems, whereas517

short-term greening of trees is restricted by the standing woody biomass. All518

these factors contribute to greater expected VI response to precipitation by519

grasses than by trees (Lu et al., 2003). The effects of annual phenological520

cycle and fast recovery have however severe implications for the use of the re-521

generation indices in mixed ecosystems with herbaceous cover. For example,522

pRI observations at certain moment in the growing season tend to indicate523

a complete vegetation recovery or even increased greenness, whereas this is524

not necessarily true for the woody vegetation component. All together, these525

effects limit any comparison of two bi-temporal fire-vegetation impact assess-526

ments and link closely to the recent confusion in post-fire effects terminology527

(fire severity, burn severity, ecosystem response, etc.) (Keeley, 2009).528

One of the main interests of estimating the spatio-temporal variability529

of fire-vegetation dynamics is the categorization of the fire-affected pixels in530

severity classes (Epting et al., 2005; Key and Benson, 2005). This classifica-531

tion is however not straightforward due to the difficulty to compare dNBR532
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assessments between different fire dates and ecosystems (Eidenshink et al.,533

2007; Lentile et al., 2007; Miller and Thode, 2007). Miller and Thode (2007)534

proposed a relative version of the dNBR that allows the comparison among535

different land cover types, especially in heterogeneous landscapes. This ap-536

proach does not handle timing differences which may be present among dif-537

ferent assessments. Consequently, the absolute values of bi-temporal dNBR538

maps are highly dependent on the timing of the assessment and caution is539

advised when using the bi-temporal values to monitor and compare trends in540

fire-vegetation impact in time or across regions. The use of pRIt time series,541

however, shows to have potential as a input parameter to spatio-temporally542

compare trends in fire-vegetation impact.543

In this study, we proposed a metric IpRI that integrates this temporal544

variability. This approach was selected to average individual errors over545

time and remove random noise (the expected integral of random noise is546

zero). IpRI estimates are therefore robust random noise and are moreover547

relatively independent to small errors in the determination of t0 and t1. This548

can be explained by the fact the pRIt values at the end of the recovery only549

minimally contribute to the total IpRI. This integrative approach is as such a550

first step to a spatio-temporal approach to assess severity, which can also be551

applied on different data sets (e.g., Veraverbeke et al. (2010a)), but it should552

also be tested and refined in different ecosystems with other environmental553

and fire characteristics where, for example, a vegetation greenness increase554

some time after the fire impact followed by a new greenness drop after a555

short period are not expected. Therefore, interpretation of IpRI signals in556

these ecosystems will be different, but the integration of temporal variability557
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can still provide a valuable approach due to its robustness to noise.558

6. Conclusion559

Wildfires play an essential role in several ecological processes and affect560

the vegetation regrowth at a variety of spatial and temporal scales. Several561

studies have investigated the potential of satellite imagery to quantify the562

spatio-temporal fire-vegetation impact over large areas. Most studies how-563

ever depend on Landsat image availability, for which image acquisition dates564

are limited, resulting in a reduced capacity to capture the intra-annual fire-565

vegetation dynamics and the difficulty to compare different fire plots and566

dates. The objective of this paper was to illustrate the importance of the567

intra-annual fire-vegetation dynamics in comparison with inter-annual burn568

severity estimates derived from Landsat imagery. In this context, a savanna569

pilot study area was selected based on its combination of woody and herba-570

ceous vegetation, which show different intra- and inter-annual vegetation571

dynamics and vegetation greenness.572

Four main conclusions can be derived from this analysis on intra-annual573

fire-vegetation dynamics based on the comparison of Landsat NBR and VGT574

NDVI data:575

• It demonstrated the similarity in spatial patterns when using NBR and576

NDVI data in both a bi-temporal and control pixel approach.577

• It revealed the importance of the elimination of external influences (e.g.,578

phenological variations) when using bi-temporal Landsat imagery. This579

confirmed the importance of the control pixel approach (pRI) which580
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provides a valuable alternative to represent vegetation regrowth into581

one index pRIt that without the effect of external influences.582

• The use of the pRI and the integrated metric IpRI confirmed the failure583

of including intra-annual post-fire vegetation responses in bi-temporal584

assessments, especially in quickly recovering ecotypes such as savanna585

where the grass layer dominates the annual NDVI cycle throughout586

most of the season.587

• It illustrated the potential of pRIt time series to operate as a input pa-588

rameter to spatio-temporally compare trends in fire-vegetation impact.589
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Captions & figures857

Fig. 1: Location of the study area and fraction tree cover per pixel (in858

percent) derived from MODIS vegetation continuous fields (VCF) of the year859

2000. Additionally, the location of points discussed in Fig. 8 is indicated.860

Fig. 2: Image overlay of (i) original Landsat NBR image at 30 m resolution861

at 10 October 2000 at the end of the fire season ( purple-dark blue), (ii) burnt862

pixels reected by their RMSD in the TSSRMSD approach (cyan-yellow-red)863

and (iii) the set of selected control pixels (green) for all fire pixels.864

Fig. 3: Illustration of the IpRI calculation, where (i) the dot-dash line865

represents the cubic spline fitted on the post-fire pRIt time series, (ii) the866

moments t0 and t1 are displayed as dashed lines and (iii) the three IpRI867

estimates (IpRI1, IpRI2, IpRI3) are calculated from the shaded area using868

the original pRIt values and pRIt = 1.869

Fig. 4: Comparison of the bi-temporally differenced Landsat dNBR and870

VGT dNDVI data: a) Landsat bi-temporal averaged dNBR values per 1 km2
871

for the Globscar burnt pixels, b) VGT bi-temporal dNDVI data for the same872

burnt pixels. In both figures, yellow-red colors indicate positive values, asso-873

ciated with decreased NBR and NDVI values one year after the fire. Cyan-874

blue colors, on the other hand, reflect negative dNBR and dNDVI values,875

indicating a higher NBR or NDVI values one year after the fire. Addition-876

ally, the location of points discussed in Fig. 8 is indicated.877

Fig. 5: Comparison of the control pixel based estimates of fire-vegetation878

impact based on pRI for Landsat NBR and VGT NDVI data: a) pRI for879

Landsat NBR values, b) pRI for VGT NDVI data. In both figures, yellow-880

red colors indicate negative values, associated with decreased NBR and NDVI881

40



values with respect to the control pixels. Cyan-blue colors, on the other hand,882

reflect positive pRI values, indicating a higher NBR or NDVI values for the883

burnt pixels than for the control pixels. Additionally, the location of points884

discussed in Fig. 8 is indicated.885

Fig. 6: Illustration of the difference in mean VGT NDVI (dNDVI) for the886

1999-2000 and 2000-2001 November to April growing seasons for both burnt887

and control pixels, where control pixels are delineated in blue.888

Fig. 7: Map of the three derived IpRI metrics derived from the VGT NDVI889

pRIt time series: a) the initial fire-vegetation impact (IpRI1), b) the increased890

vegetation greenness some time after the fire (IpRI2), c) the subsequent pRIt
891

drop after a short period of increased vegetation greenness (IpRI3).892

Fig. 8: Illustration of the IpRI calculation for individual points in Figs. 1,4-893

5, 7, where (i) the dot-dash line represents the cubic spline fitted on the894

post-fire pRIt time series, (ii) the moments t0 and t1 are displayed as dashed895

lines and (iii) the IpRI estimates are calculated from the shaded area using896

the original pRIt values and pRIt = 1, and (iv) the April 2000 and 2001897

Landsat image acquisition are represented by a small triangle: a) pt.1, b)898

pt.2, c) pt.3 , d) pt.4, e) pt.5 .899



Figure 1: Location of the study area and fraction tree cover per pixel (in percent) derived
from MODIS vegetation continuous fields (VCF) of the year 2000. Additionally, the
location of points discussed in Fig. 8 is indicated.



0.02

Figure 2: Image overlay of (i) original Landsat NBR image at 30 m resolution at 10
October 2000 at the end of the fire season ( purple-dark blue), (ii) burnt pixels reected
by their RMSD in the TSSRMSD approach (cyan-yellow-red) and (iii) the set of selected
control pixels (green) for all fire pixels.
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Figure 3: Illustration of the IpRI calculation, where (i) the dot-dash line represents the
cubic spline fitted on the post-fire pRIt time series, (ii) the moments t0 and t1 are displayed
as dashed lines and (iii) the three IpRI estimates (IpRI1, IpRI2, IpRI3) are calculated from
the shaded area using the original pRIt values and pRIt = 1.



(a)

(b)

Figure 4: Comparison of the bi-temporally differenced Landsat dNBR and VGT dNDVI
data: a) Landsat bi-temporal averaged dNBR values per 1 km2 for the Globscar burnt
pixels, b) VGT bi-temporal dNDVI data for the same burnt pixels. In both figures, yellow-
red colors indicate positive values, associated with decreased NBR and NDVI values one
year after the fire. Cyan-blue colors, on the other hand, reflect negative dNBR and dNDVI
values, indicating a higher NBR or NDVI values one year after the fire. Additionally, the
location of points discussed in Fig. 8 is indicated.



(a)

(b)

Figure 5: Comparison of the control pixel based estimates of fire-vegetation impact based
on pRI for Landsat NBR and VGT NDVI data: a) pRI for Landsat NBR values, b) pRI
for VGT NDVI data. In both figures, yellow-red colors indicate negative values, associated
with decreased NBR and NDVI values with respect to the control pixels. Cyan-blue colors,
on the other hand, reflect positive pRI values, indicating a higher NBR or NDVI values for
the burnt pixels than for the control pixels. Additionally, the location of points discussed
in Fig. 8 is indicated.



Figure 6: Illustration of the difference in mean VGT NDVI (dNDVI) for the 1999-2000 and
2000-2001 November to April growing seasons for both burnt and control pixels, where
control pixels are delineated in blue.



(a)

(b)

Figure 7: Map of the three derived IpRI metrics derived from the VGT NDVI pRIt time
series: a) the initial fire-vegetation impact (IpRI1), b) the increased vegetation greenness
some time after the fire (IpRI2). Additionally, the location of points discussed in Fig. 8 is
indicated.



(c)

Figure 7: Map of the three derived IpRI metrics derived from the VGT NDVI pRIt time
series [cont.]: c) the subsequent pRIt drop after a short period of increased vegetation
greenness (IpRI3). Additionally, the location of points discussed in Fig. 8 is indicated.
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Figure 8: Illustration of the IpRI calculation for individual points in Figs. 1,4-5, 7, where
(i) the dot-dash line represents the cubic spline fitted on the post-fire pRIt time series,
(ii) the moments t0 and t1 are displayed as dashed lines and (iii) the IpRI estimates are
calculated from the shaded area using the original pRIt values and pRIt = 1, and (iv) the
April 2000 and 2001 Landsat image acquisition are represented by a small triangle: a)
pt.1, b) pt.2
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Figure 8: [Cont.] Illustration of the IpRI calculation for individual points in Figs. 1,4-5,
7, where (i) the dot-dash line represents the cubic spline fitted on the post-fire pRIt time
series, (ii) the moments t0 and t1 are displayed as dashed lines and (iii) the IpRI estimates
are calculated from the shaded area using the original pRIt values and pRIt = 1, and (iv)
the April 2000 and 2001 Landsat image acquisition are represented by a small triangle: c)
pt.3 , d) pt.4.
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(e)

Figure 8: [Cont.] Illustration of the IpRI calculation for individual points in Figs. 1,4-5,
7, where (i) the dot-dash line represents the cubic spline fitted on the post-fire pRIt time
series, (ii) the moments t0 and t1 are displayed as dashed lines and (iii) the IpRI estimates
are calculated from the shaded area using the original pRIt values and pRIt = 1, and (iv)
the April 2000 and 2001 Landsat image acquisition are represented by a small triangle: e)
pt.5


