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Abstract 

The progressive application of Information and Communication Technologies to industrial processes 

has increased the amount of data gathered by manufacturing companies during last decades. 

Nowadays some standardized management systems, such as ISO 50.001 and ISO 14.001, exploit 

these data in order to minimize the environmental impact of manufacturing processes. At the same 
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time, microgrid architectures are progressively being developed, proving to be suitable for supplying 

energy to continuous and intensive consumptions, such as manufacturing processes. 

In the merge of these two tendencies, industrial microgrid development could be considered a step 

forward towards more sustainable manufacturing processes if planning engineers are capable to 

design a power supply system, not only focused on historical demand data, but also on 

manufacturing and environmental data. The challenge is to develop a more sustainable and 

proactive microgrid which allows identifying, designing and developing energy efficiency strategies 

at supply, management and energy use levels. 

In this context, the expansion of Internet of Things and Knowledge Discovery in Databases 

techniques will drive changes in current microgrid planning processes. In this paper, technical 

literature is reviewed and this innovative approach to microgrid planning is introduced. 

1. Introduction 

During 2008, the world's companies processed 63 terabytes of information annually on average and 

the world's servers processed 12 gigabytes of information daily for the average worker (about 3 

terabytes of information per worker per year) [1]. For sure Internet has changed the amount of data 

available for companies. Following this technological evolution (towards data acquisition, 

transmission and storage) new concepts have appeared around computer-based science in business 

environments. Internet of things (IoT) is perhaps one of the trending topics in this field nowadays. 

Many authors have approached it since this term arose in 1999. For example F. Mattern and C. 

Floerkemeier affirm in [2] that IoT represents a vision in which the Internet extends into the real 

world embracing everyday objects. Physical items are no longer disconnected from the virtual world, 

but can be controlled remotely and can act as physical access points to Internet services. 

Hence, it can be expected that the progressive connection of everyday objects to internet will be 

used to remotely determine their state so that information systems can collect up-to-date 

information on physical objects and processes [2]. Also devices should be able to communicate each 

other, and to develop a certain level of intelligence. The IoT vision is grounded in the steady 

advances in electronics, communications and information technologies. Due to their diminishing size 

[3], falling price and declining energy consumption, processors, communications modules and other 

electronic devices are being increasingly integrated into everyday objects. Main objectives of the 

integration of this kind of devices are data gathering, measuring and communication. C. Perera et al. 
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identify smart grid, smart homes and smart industries between main contributors to smart products 

sales market by 2016 [4]. 

As J. Short et al. point out in [1], there exist some differences between two related concepts: data 

and information. Since data are collections of numbers, characters, images or other outputs from 

devices that represent physical quantities as artificial signals intended to convey meaning, they 

define information as a subset of data, considering data as the lowest level of abstraction from 

which information and knowledge are derived. During the period from 1986 to 2007, general-

purpose computing capacity grew at an annual rate of 58%, and the world’s capacity for 

bidirectional telecommunication grew at 28% per year, closely followed by the increase in globally 

stored information (23%) [5]. 

KDD is essentially the process of discovering useful knowledge from a collection of data. A. Berstein 

et al. also define KDD as the result of an exploratory process involving the application of various 

algorithmic procedures for manipulating data, building models from data, and manipulating the 

models [6]. The exponential grow of the amount of data in many systems, no longer allows the 

manual search of underlying patterns, as it used to be. The main objective of KDD is to extract high-

level knowledge from these low-level information, or in other words, to automatically process 

large quantities of raw data, identify the most significant and meaningful patterns, and present these 

as knowledge appropriate for achieving the user's goals.[7]. Relationship between KDD, IoT and Data 

Mining (DM) is described in an accurate way by N. Ramakrishan in [8]: 

• IoT collects data from different sources, which may contain data for the IoT itself. 

• KDD, when applied to IoT, will convert the data collected by IoT into useful information that 

can then be converted into knowledge.  

• DM is responsible for extracting patterns or generating models from the output of the data 

processing step and then feeding them into the decision making step, which takes care of 

transforming its input into useful knowledge. 

There are critical steps along a KDD process. J.P. Yoong and L. Kerschberg asserts in [9] that 

knowledge discovery critically depends on how well a database is characterized and how 

consistently the existing and discovered knowledge is evolved. The step definition of the KDD 

process can also have a strong impact on the final results of mining. For example, not all the 

attributes of the data are useful for mining. The consequence is that DM algorithms may have a hard 

time to find useful information if the selected attributes cannot fully represent the characteristics of 

the data [8]. DM is described by Fayad et al. in [10] as a step in the KDD process that consists of 
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applying data analysis and discovering algorithms that produce a particular enumeration of patterns 

(or models) over the data. But every DM process requires a previous data processing step, also 

defined by Fayad et al. as data warehousing (DW). DW refers to collecting and cleaning transactional 

data to make them available for online analysis and decision support. DW helps set the stage for KDD 

in two important ways: data cleaning and data access. 

Typical KDD process includes five general stages: selection, pre-processing, transformation, data 

mining and evaluation. But, instead of being based in the same principles, different authors propose 

different KDD processes. Fayad et al. [10] define KDD as an iterative and interactive process based in 

nine steps such as:  

• Developing an understanding of the application domain and the relevant prior knowledge 

and identifying the goal of the KDD process from the customer’s viewpoint.  

• Creating a target data set.  

• Data cleaning and pre-processing. 

• Data reduction and projection 

• Matching the goals of the KDD process to a particular data-mining method. 

• Exploratory analysis and model and hypothesis selection. 

• Data mining. 

• Interpreting mined patterns. 

• Acting on the discovered knowledge. 

M. Last et al. introduce a specific time series data bases KDD process [11] based on seven stages: 

data pre-processing, feature extraction, transformation, dimensionality reduction, prediction and 

rule extraction. A review on time series DM techniques is also presented by T.Fu [12]. Between 

mining tasks he highlights pattern discovery and clustering but also classification, rule discovery, 

summarization and other recent research directions. Finally, a deep review of 13 different KDD 

process models is presented by L.A Kurgan and P. Musilek in [13]. Analyzing these KDD 

methodologies, data preparation can be considered the foundation, while DM can be considered as 

the pillar of KDD. The existence of similar, but at the same time different KDD methodologies makes 

sense since: 

• KDD techniques have not been widely applied to manufacturing processes, neither 

standardized yet. 

• KDD techniques are based on optimization problems between different alternatives, 

under different constraints and towards different goals depending not only on the 
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characteristics of the manufacturing process, but also on environmental, social and legal 

conditions: there are some aspects in a KDD-based approach that might not be 

standardized. 

On the basis of KDD, a growing body of emerging applications is changing the landscape of business 

decision support [14] such as: risk analysis, targeted marketing, customer retention [15], portfolio 

management and brand loyalty [16]. Traditional DM approaches have proven to be efficient on 

modeling variables of interest, so that these variables may be forecasted in future scenarios, and 

effective decisions taken based on that forecast. DM technologies are reviewed, described and 

classified in [8] into clustering, classification, and frequent patterns mining technologies, from the 

perspective of infrastructures and from the perspective of services by C. Tsai et al. They point out that 

most KDD systems available today and most traditional mining algorithms cannot be applied directly 

to process the large amount of data of IoT. In this line of work, they define three key considerations 

in choosing the applicable mining technologies for the problem to be solved by the KDD technology: 

objective, characteristics of data, and mining algorithm. In other words, whether or not to develop 

a new mining algorithm can be easily justified by using these factors. Regarding mining algorithms, 

heuristic [17] [18] [19] [20] and metaheuristic algorithms [21] are called to be trending techniques in 

order to solve a variety of mining and optimization problems in [22].  

Perhaps one of the most important aspects in DM problems is how to evaluate a candidate model, 

and, obviously, this question depends on the type of DM task at hand. Thus, most of the DM 

problems can be thought of as optimization problems, where the aim is to evolve a candidate 

model that optimizes certain performance criteria. However, the majority of DM problems have 

multiple criteria to be optimized. Hence, most of the DM problems are multiobjective in nature. 

Multiobjective evolutionary algorithms for DM are surveyed in [23] and [24] into different categories 

regarding the DM task they face : feature selection, classification, clustering, association rule mining 

and other tasks. A collection of stages for a general KDD-process is summarized in Figure 1.  

In addition, it must be highlighted that the application of KDD strategies not only requires technical 

but also human resources (qualified workers). It can be an intensive process regarding time and 

resources, and sometimes some of the optimal solutions can result obvious or simply incompatible 

with the manufacturing process (even with maintenance criteria or environmental goals). For 

example, the fewer units manufactured the less energy spent and the less environmental impact it is 

caused. Another possible recommendation could be to switch off a manufacturing process with a 

high thermal inertia, following energy saving criteria. But this action can sometimes be incompatible 

with manufacturing and quality goals, for example. Thus, the identification of effective scenarios for 
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the application of these techniques (regarding costs and benefits) is one of the main areas of 

development nowadays. 

KDD field is in continuous evolution towards the direction pointed out by K. Cios y L. Kurgan in [25]. 

The future of KDD and DM process models is in achieving overall integration of the entire process 

through the use of other popular industrial standards. Another currently very important issue is to 

provide interoperability and compatibility between different software systems and platforms, which 

also concerns KDD and DM models.  

As a conclusion, it can be asserted that KDD systems will help in achieving a higher-level automation 

of manufacturing processes, less assisted by manpower with higher professional qualification. 

Nowadays every manufacturing company has adopted ICT-based architectures. But, as it will be 

described below, the growing application of IoT-based strategies in manufacturing companies will be 

a valuable source of additional data, also regarding microgrid (MG) planning. Hence, combined 

planning approaches for energy supply and manufacturing process are expected to be able to reduce 

environmental impact, under economic profitability conditions. This paper introduces a MG 

planning approach for industrial companies from a Knowledge Discovery in Databases (KDD) point 

of view. 

2. KDD techniques applied to manufacturing processes 

Industrial production accounts for 16% of Europe’s gross domestic product and remains a key driver 

for innovation, productivity, growth and job creation. In 2009, 31 million people were employed in 

the European Union manufacturing sector, and each job in manufacturing generates at least an 

additional job in services. [26]. Research on manufacturing processes improvement is a critical 

issue for European Union government. The point of departure of recent approaches is technological 

evolution in Information and Communication Technologies (ICTs). Data acquisition, communication, 

and decision-making based on the acquired data are essential functions in modern manufacturing 

processes nowadays. That is the reason why Z. Bi et al. affirms that the IoT is able to provide 

solutions to planning, scheduling, and controlling of manufacturing systems at all levels, due to the 

close relations of the components in a manufacturing enterprise and the architecture of IoT [27].  

New manufacturing-oriented IoT architectures have been proposed in recent years. O. Said and M. 

Masud review in [28] IoT architectures pointing a three and a five level architecture, including:  

• Business layer defines IoT applications charge, management and users privacy. 
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• Application layer: determining the type of applications that will be used in the IoT. 

• Processing layer is the responsible of processing the information gathered by perception 

layer. 

• Transport layer receives and transmits the information from the perception layer to the 

processing layer and vice versa. 

• Perception layer contains the technology used in the IoT, gathering information from field 

devices and transforming this data to signals. 

A similar IoT architecture is illustrated in [27], classifying manufacturing components in three 

different levels and comparing them to IoT levels: machines and devices (ubiquitous computing), 

enterprise application (grid computing) and virtual enterprise and enterprise alley (cloud 

computing). Analyzing these architectures, it can be asserted that the future vision of industrial IoT 

is yet to be defined. 

Based in these non-standardized architectures, IoT-based industrial applications are growing up 

strongly. For example, a farm operation monitoring system is proposed by T. Fukatsu and T. Nanseky 

in [29]. This system is based in “Field Servers” and a wearable device equipped with an RFID reader 

and motion sensors. They not only monitor the field environment, but also crop growth, insect 

infestation, and simple field operations controlling and measuring various sensors including some 

cameras. L. Da et al. also review some industrial applications for IoT, such as vigilance of workplace 

safety and food supply chain. They also cite some worksite safety management tasks such as disaster 

signals supervision in order to make warning, risk forecasting, and safety improvement of production 

in the mining field. In the food industry some IoT applications have been developed in order to add 

traceability capacities to the food supply chain: from precise agriculture, to food production, 

processing, storage, distribution, and consuming [30]. A novel enabling-approach of IoT for 

manufacturing processes is the virtual factory approach, in which different manufacturing processes 

can be modeled and executed as if they are being carried out in a single factory. Virtual factory 

management involves 4 steps: process definition, process forecasting and simulation, process 

execution and real-time monitoring. ICTs and IoT support is essential to success [31] in this process.  

Under this context, data use is expected to grow in manufacturing processes, but only under cost 

efficiency criteria and goal-oriented. Several information from productive process variables remains 

in data bases, which at the end, store huge amounts of historical data. As a consequence, KDD 

techniques have a growing market in the field of manufacturing processes optimization and 

decision-making. A framework for implementation of KDD projects in firms is applied to the Indian 

company Ramco [32]. Authors divide this process into 10 steps, shaping 3 stages: strategic 
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groundwork, data analytics and implementation. Knowledge from databases should not only be 

extracted, but also capitalized: efforts should be oriented towards cost critical issues and KDD 

process should be embedded into every company daily procedures. Following this guidelines, a 

novel KDD methodology is developed towards modeling the knowledge requirements and the 

associated tasks for collecting the knowledge simultaneously in a company by T. Tseng and C.Huang 

in [33].  

The concept of networking devices to achieve higher levels of automated interaction is also driving 

changes in industrial networking. In addition to DM, (which is more focused on the automated 

analysis of large data in order to discover patterns and models that can be applied to forecasting and 

decision-making tasks), other mathematical disciplines, such as Machine Learning (ML), can help 

manufacturing industries to raise their performance. ML is focused on the construction and study of 

algorithms that can learn from data in order to adapt the behavior of a device to their environment 

(including their users). Main differences and similarities between these subfields are presented in 

[34]. S. Pan and Q. Yang summarize the relationship between traditional ML and various transfer 

learning settings and categorize transfer learning under three sub-settings, inductive transfer 

learning, transductive transfer learning, and unsupervised transfer learning [35]. Additionally, a 

combination of DM and ML approaches (cycle-time factor identifying and predicting) in 

semiconductor manufacturing is presented in [36] with decision support purposes. 

KDD applications to manufacturing processes have been reviewed in some papers such as [37–40]. 

Specially S-H.Liao et al. present a deep review on papers published from 2000 to 2011. Some of the 

most common applications and techniques will be mentioned below, allowing the reader to make a 

quick overview of this field. 

KDD techniques application to manufacturing processes usually address the search of correlations 

between process variables [41–44] among production process data and control parameters. The 

discoveries of these correlations allow planners to incorporate the generated knowledge into a 

model of the manufacturing process, which can be exploited with multiple purposes. Since a 

manufacturing process is controlled in order to obtain a product with defined characteristics, a 

common application of these models is to identify critical parameters in order to get a better control 

of (and even forecast) the results of the manufacturing process. For example, DM techniques are 

proposed to study product variances in [45–48]. Moreover, the results of different control strategies 

or parameters are finally verified by quality control department. 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Learning
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Due to advances in data collection systems and analysis tools, DM has widely been applied for 

quality improvement in manufacturing and have been reviewed in [49] by G. Köksal et al.. Many 

papers afford quality issues using DM techniques [50–63]  . Among them, semiconductor and 

electronics manufacturing can be considered a hot topic [51,53,58,59,61,63]. Quality problems 

together with new capabilities usually influence the design process of new products. DM techniques 

are used this process, such as it is described in [64] for a case of a motherboard design and assembly 

in a personal computer manufacturing process. 

Not only quality but also energy and requirements for manufacturing processes have been 

addressed with DM techniques. The research on the process control and the energy saving of the 

aluminum electrolysis industry have inspired new specific DM algorithms [65]. Also A. Kusiak and Z. 

Shong describe the existence of three different DM-based approaches to optimization of combustion 

efficiency: analytical models based on thermodynamics and chemistry, soft computing and hybrid 

systems [66]. Optimization DM-based models for improvement of a boiler–turbine system 

performance are formulated in [67] and [68]. In both papers historical process data are mined and 

the discovered patterns are selected for performance improvement of the system. 

There is no doubt about the development or the innovative combination of techniques, enabling 

new approaches to KDD problems. Demand for real-time processing, on-demand processing as well 

as the in-transit processing of standard remote sensing data products are some of the development 

opportunities[69] in this field. At the same time, new manufacturing equipment is expected to be 

capable of (at least) reading and storing some basic data about their activity related with production, 

energy, time and other process-related parameters. This connected approach to manufacturing 

process management is very suitable to the IoT strategies application. Among manufacturing 

companies, the growing use of condition-based monitoring is widely accepted (if not always 

implemented) with different purposes such as maintenance, production quality and energy 

management optimization. Taking the idea a step further, manufacturers are looking forward to 

connect all these devices with higher decision-making levels [32]. This plant (or even multiple plant) 

connectivity from the device (or field) level to the enterprise (or decision-making) level connection 

involves connecting industrial devices to Manufacturing Execution Systems (MESs), Energy 

Management Systems (EMSs) or Enterprise Resource Planning systems (ERPs). 

The challenge for the application of DM and ML techniques (as it is for the optimization techniques 

they are based on) is on achieving an optimal solution under not only technical and economical 

constraints, but also fulfilling environmental, social and other constraints of the manufacturing 

process. As it has been described in the previous section, data mining optimization processes 
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sometimes results in non-viable or incompatible solutions. That is the main reason why constraints 

for manufacturing process have a very important role along the planning process. Following Figure 1, 

constraints must be defined during objective definition stage and their fulfillment must be evaluated 

at Knowledge extraction and evaluation stage.  

Some of the state, control variables and decision-making variables included in Figure 2 will be 

processed as constrains along an optimization process (usually multi-objective optimization as it has 

been cited in section 2). Among this variables there can be highlighted: 

• Manufacturing equipment: units available, load status, maintenance status, energy 

consumption and environmental impact. 

• Ancillary services: units available, load status, maintenance status, energy consumption and 

environmental impact. 

• Production control: short term demand, production schedule and goals achievement. 

• Quality control: data related with the fulfillment of quality standards. 

• Environmental impact: exhaust gas emissions, waste materials and water consumption. 

• Climatic and renewable resources data: potential wind capacity, solar irradiation, 

temperature and humidity. 

• Energy market: power grid prices and energy costs for different microgrid planning 

scenarios. 

• Warehouse status: raw materials and final product availability regarding short-term 

requirements of manufacturing process. 

• Legal and financial: future policies can make optimal scenarios for a manufacturing process 

change. Fund availability can also oscillate in order to face regular costs or additional 

investments. 

• Sales and purchasing: raw materials supply regarding present and future sales (forecasting). 

• Human resources: manpower planning, availability and costs. 

Environmental and Energy Management Systems (ENMSs and EMSs) have claimed their role in 

industrial companies during last decades, mainly due to changes in environmental policies and to the 

raise of energy costs. More than 4.800 EMSs based in ISO 50.001 were certificated (a growth of 116 

% in a year) in 78 countries up to the end of December 2013 [70]. During 2014 the certification of 

this kind of systems raised up to 6.788, and additional 40%. At the same time, certified ENMSs based 

on ISO 14.000 grew in 2014 up to 324.148, (a 7% in a year) as the consolidated standard it is for 

evaluation and improvement of environmental policies. A new version of ISO 14.000 standard has 
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been released in 2015. Certificated EMSs could be expected to keep growing during next years 

between a 15-20% per year, since they have many points in common with other quality or 

environmental international standards (such as ISO 14.000) and energy represents a major cost for 

many manufacturing processes (up to 80% for frozen processed food industry, or up to 70% for 

glass bottle manufacturing, for example). 

Both ENMSs and EMSs are based on ICTs and software tools which track the use of energy and raw 

materials. At the same time, ENMSs quantify environmental impact using data, for example, of 

water consumption or emission of exhaust gas. The key performance indicators (KPIs) used by both 

systems support managers along the process of defining the environmental and energy performance 

of the manufacturing process, and also identifying improvement and saving opportunities. The 

aforementioned appearance of innovative architectures and techniques (such as IoT and DM) makes 

it possible for these systems to evolve quickly towards forecasting, modeling and optimizing 

capabilities. Correspondingly, the point of smart industries is not only on connecting smart devices 

each other, but also on using gathered information in order to model and optimize a 

manufacturing process. This is the natural evolution of manufacturing management systems such as 

MES, EMS and ERPs. In a short period of time, data acquisition, communication and analysis tools 

are expected to become essential functions for these systems, and KDD techniques are expected to 

take part of integrated manufacturing management systems, assisting company managers along 

decision-making processes. Some tries of DM-based applications have been developed regarding 

energy efficiency for industrial companies, such as an energy audit web-based application in [71]. 

But there is a still a lot of work to do in order to integrate KDD techniques into future manufacturing 

management systems. 

3. MG as sustainable energy supply system for manufacturing 

processes 

The power grid, it is widely agreed, is the next big thing in computing [72]. Nowadays, it can be said 

that the traditional electrical grid has achieved quality and quantity supply goals (from the 

conventional and renewable generation of electricity, to power transportation and distribution), but 

it has to improve substantially from the end user point of view and the functionalities expected of it. 

At each step along the way, large (and growing) data volumes are created by energy-related 

industrial or even domestic equipment. In this context, KDD techniques are suitable to improve the 

overall efficiency of an energy supply, or additionally to support the development of new services for 

energy consumers. This concept can be applied not only to improve electrical networks performance 
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but also to manage the actions of all the systems connected to them (those which generate 

electricity, which use electricity and which take both actions). Therefore, IoT architectures and KDD 

techniques are expected to drive the evolution of power systems into smart systems. Moreover, the 

visions of smart grids and IoT have recently been combined into the concept Internet of Energy (IoE) 

[73]. There is a global effort to incorporate sensors, actuators and data networks into power grids. 

This IoT application to power grids offers deep monitoring and controls, but needs advanced 

analytics over millions of data streams for efficient and reliable operational decisions [74]. 

Analytic tools and applications have a growing importance in every power system. The analytics 

layer covers the new solutions that vendors are bringing to the market [75]. In the smart grid space, 

there are three domains that will increasingly rely on analytics: the enterprise, grid operations and 

consumer analytics. 

• Enterprise analytics are focused on moving from traditional historical analytics to real-time 

predictive analytics, complete situational awareness, business intelligence, real time 

visualization and simulation of the grid  

• Grid operations analytics are focused on grid optimization and operational intelligence, asset 

management analytics, crisis management analytics, decision-making analytics, outage 

management analytics, weather and location data, mobile workforce management and 

energy theft. 

• Consumer analytics are focused on behavioral, demand response, load flow and distributed 

generation analytics, and social media data integration. 

At the same time, data infrastructure and data management enables smart capabilities for power 

systems, providing data to analytics. A cloud-based software platform for data-driven smart grid 

management is presented in [74] by Y. Simmhan et al. But cloud services to smart things may face 

latency and intermittent connectivity. In this context fog devices are introduced in [76], between 

cloud and smart devices. Their main advantage is the high-speed Internet connection to the cloud, 

and physical proximity to users, enabling real time applications. For example, a demand response 

management algorithm can be implemented with a cloud computing approach, but the bandwidth 

cost would be high if each supplier and customer communicates directly with the cloud. 

As it has been cited before, analytics are the foundation of some advanced features development, 

such as self-healing, mutual operation and participation of the users, electricity quality, distributed 

generations and demand response, sophisticated market and effective asset management [77]. KDD 

applications to power systems based in those analytics have been reviewed by different authors in 
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1997 [78], 2006 [79], 2009 [80] y 2014 [81]. A comparison between these papers regarding year, 

number of references and applications is presented in Table 1. Perhaps the most complete review 

among them is the one by Kazerooni et.al. [81]. They present a classification of four major areas of 

data mining and related works in power systems: visualization, clustering, outliers detection and 

classification. At the same time these applications could be divided into utility-side (electricity 

generation and distribution) and demand-side (energy consumption). Not only utility managers are 

willing to be able to exploit KDD-based cost-saving opportunities. Customers are also willing to use 

friendly control devices, and to consume and control energy generation from environmental-friendly 

distributed energy resources (DER). Following this approach a wireless communication network to 

sense, estimate and control DER states is proposed in [82] by M. Rana and L. Li. Smart meters are a 

key element in order to develop this demand-based approach, since they are a powerful source of 

consumption data. These meters are increasingly replacing traditional meters and measuring a 

detailed profile of consumption data. With such data, utility companies are in possession of the raw 

material needed to improve efficiencies and customer services [83]. Intelligent use of data from 

smart meter allow power grid planners to develop deeper electricity consumption analysis [84]. A 

wide range of modeling, simulation and forecasting tasks can be applied in order to develop 

scheduling strategies, making power equipment work at higher performance levels: identifying low 

efficiency scenarios and supporting improvement strategies.  

Environmental impact of manufacturing processes can be minimized developing advanced MG 

systems, not only due to the improvement of energy efficiency. Energy consumption for some 

critical ancillary services o manufacturing equipment could be supported by renewable power 

sources in order to increase the reliability and minimize the environmental impact of the systems. 

There can be found profitable applications for renewable power sources regarding environmental 

and economical aspects in almost every manufacturing process, especially under self consumption 

strategies. Net metering strategies could also be studied in some special cases such as 

manufacturing processes with low power capacity demands, photovoltaic or wind power potential 

and space availability, or either equipped with small combined heat and power systems. 

Nowadays energy consumption has a very significant role in inputs cost of manufacturing 

companies. Furthermore power outages can cause substantial economical losses in some 

manufacturing processes. As a consequence, innovative energy supply and backup architectures 

and systems are being developed together with this cost rising for industrial companies. Following 

this line of research, recent approaches to MG planning for industrial facilities  have been published 

in technical literature. M. Pipattanasompor et al analyze in [85] the optimal DG mix at various facility 
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outage costs with and without an emission restriction. They also discuss the impact of varying the 

grid reliability and the capital costs of DG units on the decision to invest in backup power. B Leif et al. 

in [86] propose a technique for sizing and scheduling electricity supply at industrial sites with 

combined heat and power and wind generation. An industrial size MG is scheduled in [87] and 

evaluated regarding different performance indicators such as technical, economic and 

environmental. The techno-economic potential for a predominantly renewable electricity-based MG 

serving an industrial-sized drink water plant in the Netherlands is studied in [88] by M Soshinskaya et 

al.  

EMSs are ready to gather and manage data, not only from the manufacturing process, but also from 

power supply equipment: power generation machines (from conventional to renewable power 

sources), distribution substations, power transformers and grids and smart meters (that control and 

monitor power consumption at the point of delivery). An example of EMS based on microgrid 

architecture is presented in [89]. Furthermore, an integrated analysis of stored data from different 

units of the manufacturing process can reveal several opportunities to exploit at different layers in 

order to improve the global efficiency (such as energy generation, energy distribution, energy 

consumption, production planning, resources planning and environmental impact planning). As a 

consequence, production and energy supply could be planned in an aggregated way towards 

achieving higher sustainability and energy efficiency goals for a manufacturing company. This 

could be considered a suitable framework for industrial MG planning, modifying other traditional 

approaches [90]. A scheme of this innovative approach is presented in Figure 2. 

4. KDD-based approaches to industrial MG planning problems 

MGs could definitely be considered a modern, small-scale version of centralized electricity systems. 

A MG is defined by CERTS as clusters of generators, including heat recovery, storage, and loads, 

which are operated as single controllable entities. P. Lilienthal highlights in [91] different criteria for 

MG classification such as: types of energy generation, voltage level of distribution system, peak load, 

generation capacity, energy production, number of customers served, other grids interconnection, 

load management and metering. Regardless of their classification, the operation of a MG is closely 

tied to energy economics. This includes both the financials of interacting with the main grid and the 

cost of self-generation [92] and transmission. Moreover, MGs can operate in islanded mode and 

sustain the power supply in the event of a grid outage. Benefits from MGs should not only be 

economical. MGs can also be viewed as a means of creating zero net-energy communities and 

meeting other environmental goals established by states or regulatory agencies. The 
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establishment of a MG can make possible to achieve specific goals such as carbon emission 

reduction, diversification of energy sources, increase of reliability and cost reduction.  

MG planning problems, as the energy community systems it is, must be approached from a cost 

minimization point of view [93]. But in a real microgrid, other goals should be considered, such as 

total environmental impact, power quality and reliability [94]. Regarding technical literature, some 

common problems could be defined for a MG planning process, even though each process has its 

own constraints and specific goals [90]. There can be considered five main stages such as power 

generation and storage technology selection, sizing, siting, scheduling and pricing. Among these 

planning problems, an additional critical stage can be also considered in order to test the final design 

of both architecture and control strategies for a microgrid. This additional stage is called sensitivity 

analysis and consists on determining how different values of an independent variable will impact a 

particular dependent variable, under a given set of assumptions. It is addressed towards predicting 

the outcome of a decision, if a situation turns out to be different compared to the key prediction 

[95]. The application of this analysis usually results on more robust planning results. 

But MG planning does not finish with de definition of an optimal scheduling for the equipment. A 

MG, as the power systems it is, must be supervised and able to respond quickly and coherently to 

unexpected operational conditions. The control and supervision layer is implemented in a 

management system called EMS, such as it is for manufacturing processes.  In fact, this system is the 

main source of synergies between manufacturing processes and MGs. But an EMS for a MG also 

incorporates a plan against unexpected events, which can be defined as contingency planning. KDD 

techniques are able to make a significant contribution to supervision and contingency planning for 

power systems. Some references of KDD-based techniques to power systems have been introduced 

in Table 2.  

A growing number of new advances are progressively developing the conventional electrical energy 

supply, and among them, the application of KDD techniques is expected to make life easier to power 

companies but also to consumers. But up to now, these advances have generated a great deal of 

enthusiasm, as well as a considerable amount of confusion [75]. Grid intelligence for MG relies on 

data infrastructure, data management and data analytics layers. Since most manufacturing 

processes have already implemented data infrastructure and data management layers, only data 

analytics layer is left towards developing smart industrial microgrids. The quick expansion of 

manufacturing management systems such as MESs, EMSs and ERPs allows the increase of available 

historical data about manufacturing processes (such as energy consumption, environmental impact, 

production planning, quality keeping, risk prevention, resources planning, financial planning, etc.). In 
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this context KDD techniques are ready not only to analyze, but also to capitalize these data [33]. 

Hence, analytics can combine data management with the knowledge of energy efficiency and 

production process experts to uncover hidden saving potential, thereby contributing effectively in 

making better business decisions. Indeed, the full potential of energy saving for a manufacturing 

process can only be defined through a holistic and integrated analysis of the complete value chain of 

the plant. Thus, MGs can solve the problem on energy alternative and compatible use, integrating 

system data to optimize operation and management. 

Following this approach, a MG can be considered as a suitable energy supply system for a 

manufacturing process. The core of this system would be, without any doubt, the EMS. It is expected 

to manage the systems, gathering and analyzing information about how systems work in a day-by-

day (even hour-by hour) basis. In fact, the use of KDD-based techniques on industrial MG planning 

involves a different approach to the manufacturing process planning, on the basis that a large 

amount of raw data about it is available. These data will be used to develop aggregated models for 

the industrial process, which can be addressed to effective decision-making. As a result, it can be 

asserted that KDD techniques are ready to help energy planners to define economically feasible 

MG architectures for industrial processes. 

Among future capacities for these industrial MGs will be, without any doubt, the identification of 

optimal energy efficiency and sustainability scenarios for every state of the manufacturing process. 

In addition, EMS should help energy planners to identify the most efficient working parameters for 

the manufacturing process, even suggest them different strategies to exploit different energy 

efficiency improvement opportunities, which could also be developed under supervision, supported 

by ML techniques.  

Innovative energy efficiency and sustainability approaches to industrial microgrid planning allowed 

by the application of KDD techniques, are described below. In fact, techniques described below 

could be applied by a single planning engineer, but the real challenge is developing software 

applications and EMSs able to develop these approaches under DM and ML techniques. 

4.1. Sizing approaches 

Typical goals of the sizing stage in a MG planning process are cost efficiency (low investment and 

operational costs), energy efficiency (low power losses and high renewable power sources 

penetration) and high reliability. Energy planners have usually sized a microgrid considering peak 

and base demand of the whole process, and oversizing power capacities in order to achieve 

reliability goals. Traditionally, the point of departure of a microgrid planning process has been the 
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demand curve (on an hourly or quarter-hourly basis). A typical demand curves for a manufacturing 

process is shown in figure 4. Some characteristic points can be identified in them, such as peak 

demand, base demand. A power capacity histogram (as the one showed in Figure 5) is also a 

valuable source of information to consider towards defining most common power capacity levels of 

a system. In addition, demand oscillations can be related with specific events in the manufacturing 

process, but the identification of these relationships could not be a simple task depending on the 

process and the way it is operated. KDD techniques are can nowadays address these and other 

potential  tasks described below:  

• New bottom-up approach to sizing:  the existence of field data allows energy planners to 

adopt more complex strategies. Different models can be generated and validated using raw 

data, not only for the whole manufacturing process but also for different sub-processes or 

ancillary services. These models can be applied in order to define the optimal architecture 

and size for the MG. The analysis of raw data [83] makes it possible to define different 

power demand intervals and levels regarding different power capacity usage scenarios for 

manufacturing equipment. Once every power capacity level is characterized for every 

manufacturing unit and ancillary service, optimal technologies, sizes and power regulation 

capacities for generation equipment can be accurately defined.  

• Capacity charge saving opportunities: an optimally sized MG can considerably minimize 

capacity charges from utilities. In order to achieve these savings, an optimal mix of power 

technologies and power capacities must be defined for MG. These power capacity reduction 

savings are based again into power consumption data analysis (from the manufacturing 

process), but also into additional information from electrical company such as capacity costs, 

peak and off peak periods schedule, or even additional signals based on demand side 

management or demand response strategies. A detailed cost-benefit analysis on power 

capacity should be done in order to achieve a long-term economic viability for a grid-

connected MG.  

• Energy storage capacity definition: some MG aspects such as quality keeping and renewable 

energy resources penetration are highly depend on energy storage capacity and scheduling. 

Real field data can help in the task of developing accurate models for the MG in order to 

optimize the technology selection, size (and allocation) of storage devices according to 

economic and environmental constraints. In fact, the economic viability of applications 

based on renewable power sources strongly depends on the required quantity and capacity 

of associated energy storage devices, due to their high initial and replacement costs. 
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• Other advanced modeling capabilities: the availability of raw data about a real process is a 

clear advantage in order to design, even to redesign an industrial power supply system. For 

example, an empirical analysis using real energy use data for smart grid planning, customer 

education and demand response strategies design is presented in [96]. In [97] the trade-off 

between the accuracy and the transparency of data-mining-based models in the context of 

catastrophe predictors for power grid response-based remedial action schemes are studied. 

Regarding manufacturing processes, not every process keep design conditions along its 

entire lifecycle. Manufacturing facilities are usually modified in order to process new 

materials of even to manufacture new products. Hence, EMSs at industrial MGs should at 

least be able to identify optimal opportunities for power systems redesign, towards continue 

fulfilling the same (or even new) objectives about renewable power sources penetration, 

energy consumption, net-metering capacities and combined heat and power integration. 

Depending on the type of manufacturing process and its constraints, some demand side 

management and demand response strategies could be successfully applied. 

 

4.2. Siting approaches 

As it has been cited in the previous section, power quality and reliability are the main goals of siting 

problems in MG planning. The previous existence of electricity consumption and quality data about 

the manufacturing process is a clear advantage. Power quality problems will be, for sure, well 

defined since they cannot be only modeled, but also these models can be validated using real field 

data. In other words, the capacity and allocation requirements both for storage and power 

generation systems can be defined using optimization techniques on previously developed models. 

Moreover, siting is also a critical problem in MG expansion. Considering a multi-plant supply or a 

competitive power market environment, consumption data that includes spatial and temporal 

characteristics is quite useful for power networks development and marketing strategies planning. 

The proposed spatial modeling approach is an exploratory data analysis, trying to discover useful 

patterns in spatial data that are not obvious to the data user and are useful in the spatial load 

forecast. For example, a modified form of the mountain method is adopted for cluster estimation in 

[98]. In addition, other approaches to siting problems are solved using KDD-techniques. Locational 

Marginal Pricing (LMP) is a mechanism for using market-based prices for managing transmission 

congestion. LMP resulting from bidding competition represents electrical and economical values at 

nodes or in areas that may provide economical indicator signals to the market agents. In [99] a data-

mining-based methodology that helps characterizing zonal prices in real power transmission 
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networks is proposed. A two-step and k-means clustering algorithms are used in order to extract 

knowledge to support the investment and network-expansion planning. 

4.3. Scheduling approaches 

Perhaps the most powerful source of cost and environmental emissions savings, regarding MG 

planning and following a KDD approach, is resources scheduling. Real data from a manufacturing 

process is the basis of a robust manufacturing process model development. Once this model is 

developed, forecasting capabilities have proven to be very useful for scheduling tasks and savings 

achievement. Simulation and sensitive analysis could be used in order to find optimal work 

conditions both for power supply and manufacturing equipment. As it has been cited in the previous 

sections, the future of systems such as ERPs and EMSs is in integration and analytics. A combined 

analysis tool both for energy supply and manufacturing processes will allow the company to identify 

new performance improvement scenarios. Some of these future capacities for EMSs are:  

• On-line monitoring and scheduling is also a desirable capability to integrate in these 

systems. Total time required to manufacture an item includes some specific intervals such 

as order preparation time, queue time, setup time, run time, move time, inspection time, 

and put-away time.  Some of these times can be considered stand-by times from energy 

consumption point of view. Some stand-by periods could be considered wasted energy and 

should be avoided or minimized, if possible. Hence, start and stops for manufacturing and 

power equipment must be scheduled, turn off and turn on protocols must be followed and 

monitored. An example of unsupervised stops is shown in Figure 6. It can be highlighted 

that usually power capacity during stand-by periods is never the same or even similar. In 

this line, a novel approach to the identification of the devices present in an electrical 

installation based on the measurement of current at the incoming supply point is 

presented in [100]. This new approach performs a black-box analysis to determine what 

devices are possibly present, just by taking measurements from the electrical wiring that 

leads to the black box. Several neural network-based models were developed and tested 

for signature identification (pattern recognition) of electrical devices based on the current 

harmonics, even under noisy conditions.  Once main consumptions are identified, power 

supply requirements can be modeled together with production process requirements. So, 

the whole system could be scheduled and results forecasted. For example, a real time 

energy management problem is faced up in [101] and [102]. A research platform driven by 

an existing campus MG for developing (DM-based) predictive analytics for real-time energy 

management is presented in [102]. Meanwhile Y. Wang et al. present in [101] an online 

http://www.businessdictionary.com/definition/required.html
http://www.businessdictionary.com/definition/manufacture.html
http://www.businessdictionary.com/definition/order.html
http://www.businessdictionary.com/definition/preparation.html
http://www.businessdictionary.com/definition/queue-time.html
http://www.businessdictionary.com/definition/setup-time.html
http://www.businessdictionary.com/definition/run-time.html
http://www.businessdictionary.com/definition/inspection.html
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algorithm for optimal real-time energy distribution. Four data-mining approaches for wind 

turbine power curve monitoring are compared in [103]. An optimal voltage control is 

proposed in for a MG [104] using data mining techniques: regression rules to estimate the 

optimum reactive power of the wind farms and classification trees to estimate the 

optimum transformer taps.  

• Optimal supervision and control parameters: perhaps the most valuable knowledge that 

can be extracted from process data is partial and full load ratios regarding energy 

consumption. These real ratios can be calculated from raw data, but in some occasions 

some experiments must be forced in order to complete the scope of every sub-process. In 

a manufacturing process it is critical important to know performance ratios at the most 

common load percentages for every sub-process and ancillary service, including power 

generation equipment. Further relationship with other variables such as quality 

parameters should be studied in order to reject working parameters that do not fulfill 

process constraints. This data would allow energy planners to develop more effective 

scheduling. High percentages of energy savings could be reached, especially in oversized 

manufacturing and power equipment if additional quality and production constraints are 

fulfilled in time. Also equipment must allow load regulation. Following these guidelines, a 

supervision system could be designed in order to verify that some critical variables and 

index remains in a range of efficiency values and different constraints are fulfilled. If the 

system is working under inefficient scenarios, automatic (M2M) or semiautomatic (H2M) 

control strategies are suitable to be developed [105]. In [106] a formulation for energy 

management of a microgrid is proposed using ML techniques jointly with linear-

programming-based multiobjective optimization, aiming to minimize the operation cost 

and the environmental impact of a microgrid. An artificial neural network ensemble is 

developed with demand and generation forecasting purposes, based on short term load 

forecasting and using a self-supervised adaptive neural network [107]. In [108] four time 

series models for different prediction horizons for a wind farm are built by data mining 

algorithms. 

Among all the articles reviewed in order to write this paper, only M. Overturf et al. in [109] combine 

DER (energy supply) an manufacturing process (production) planning for industrial companies. They 

develop a continuous improvement approach (which they call Sufficiency Kaizen) and conclude that 

taking control over the allocation and production of energy, corporations can obviate energy cost 

impact and risk, with relief immediate, and absolute impact over time.  
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4.4. Pricing approaches 

Forecasting not only power generation, but also electricity prices plays a significant role in making 

optimal scheduling decisions in competitive electricity markets. Predominantly, price forecasting 

looks for the exact values of future prices. However, in some applications, such as demand-side 

management, operation decisions are based on certain price thresholds. Thus, it can be focused as 

an electricity price classification problem. [110]. Energy price spike forecasting is studied in [111]. 

Support vector machine and probability classifier algorithms are chosen to be the spike occurrence 

predictors and realistic market data are used to test the proposed model. In [112] the application of 

classical techniques towards forecasting energy prices in combination with data mining neural 

networks yields a more accurate and realistic performance than conventional forecasting 

techniques.  

Instead of reacting to changing market conditions system managers can adopt a fix price or a time of 

use tariff. But also they can be proactive in their approach to energy efficiency and management 

adopting demand side management and demand response strategies [113] [114]. Advanced energy 

efficiency strategies such as net metering could also be studied in order to generate profits for the 

company. As it has been mentioned in the previous section, some of these opportunities can derive 

on automatic or semi-automatic control strategies in order to reduce energy costs. But a 

manufacturing company must verify carefully the application of pricing strategies. Production 

planners look for a stable environment for their process, and that is the reason why dynamic 

pricing and demand response strategies are not usually attractive for them, unless cost savings are 

high. Additionally some energy efficiency scenarios can cause other cost rising, e.g. work at night will 

increase salaries in spite of decreasing energy costs. 

4.5. Contingency planning and security assessment 

KDD techniques can help not only to detect contingence situations but also to manage a system in 

an unexpected environment. ML techniques applied to power systems security assessment are 

described in [115]. Indeed security assessment is a very important task in MGs, and there exist 

several KDD-based applications in this field, summarized and referenced in Table 2. 

5. Conclusions and future trends 

Although manufacturing processes are among the most monitored and supervised, IoT development 

is pushing this tendency nowadays. Data gathered by manufacturing companies is strongly 
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increasing, but, on the other side, software management tools are not usually able to make a deep 

analysis of this data. In other words, KDD techniques are not widely extended, and companies are 

not exploiting the full potential from their gathered data yet, especially regarding knowledge 

acquisition. As it has been addressed by K.Cios y L. Kurgan in [25], the future of KDD techniques is in 

achieving overall integration into other popular industrial standards. Another very important issue is 

to provide interoperability and compatibility between different software systems and platforms, 

which also concerns KDD-based applications. Such systems would serve end-users in automating, or 

more realistically semi-automating, work with the development of innovative DM and ML-based 

applications [105]. Recent advances in innovative architectures and techniques, such as IoT and DM, 

make it possible for manufacturing management systems to evolve quickly towards forecasting, 

modeling and optimizing capabilities. These capabilities are expected to take part of manufacturing 

management systems software, such as MES, EMS and ERPs, soon.  

From an energy efficiency point of view, it could be asserted that the full potential of energy saving 

for a manufacturing process can only be defined through a holistic and integrated analysis of the 

complete value chain of the plant: not only from a generation and distribution point of view, but also 

from consumption and manufacturing process requirements. Following this approach, KDD 

techniques and specially DM techniques can exploit data gathered by MES, EMS and ERPs. The 

discovered information can be combined with the knowledge of industrial experts to uncover 

hidden saving potential, thereby contributing effectively in making better business decisions.  

At the same time, MGs are proving to be reliable and sustainable alternatives to traditional power 

systems. They are also called to be the evolution of the present power systems due to their 

scalability and their potential for smart capabilities integration. In this context, MG architectures 

must be considered in order to provide more reliable and cleaner energy to manufacturing 

processes, including the most energy-intensive ones. Manufacturing processes and microgrid 

systems share a common layer, the EMS. EMSs are expected to be under a strong development in 

future years due to the integration with KDD and artificial intelligence techniques and technologies. 

Actually, manufacturing processes and MGs have many goals in common such as quality keeping, 

environmental impact minimization, cost minimization and energy efficiency. Under these 

circumstances, the integration of MG architectures with manufacturing processes under a KDD 

approach has not been deeply analyzed. Many synergies are present, especially regarding the 

integration of both EMSs based on IoT and KDD techniques. This innovative approach is expected, at 

least, to reveal innovative cost saving and environmental impact minimization opportunities for the 
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whole system.  At the same time, traditional planning process for an industrial microgrid could be 

modified regarding innovative KDD-based techniques, as it is proposed in Figure 3. 

Industrial processes have been selected for this approach due to they are among the most data-

intensive and energy-intensive applications, and they are usually controlled by a single entity 

(usually a company). This same approach could be applied to other MG potential applications less 

intensive in data gathering or energy consumption, such as military and university campus, airports 

and hospitals. The results of viability studies will be conditioned by social, environmental and legal 

factors but specially by those regarding initial investment on data gathering, energy costs and energy 

consumption (such as type of facility, size, working hours in a year and location). The search of 

suitable, sustainable and profitable scenarios for this integration, and specially the development 

of advanced EMSs (friendly and integrated software tools with smart capabilities) are some of the 

following stages for this line of research.  
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Figure 1. A general KDD process scheme 
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Figure 2. Microgrid planning process scheme 
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Figure 3. A KDD-based approach to microgrid planning process scheme 
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Figure 4. Demand curve for a continuous manufacturing process 
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Figure 5. Frequency histograms of a welding area in a heat exchanger manufacturing process.
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Figure 6. Power capacity/energy consumption during stop and stand-by states in a manufacturing process. 
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AUTHORS CITATION  
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S.Madam, W.Son and K. Bollinger [78] 1997 9 PREDICTION (FORECASTING) 
SYSTEM DESCRIPTION (MODELING) 

H.Mori [79] 2006 50 

SECURITY ASSESMENT 
ECONOMIC FEASIBILITY 
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LOAD PROFILING 
POWER SYSTEM CONTROL 
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DATA DEBBUGING 
NETWORK EXPANSION PLANNING 
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SECURE ECONOMIC DISPATCH 
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Table 1. KDD applications to power systems in review papers since 1997 

 

 

CATEGORY OBJECTIVE METHOD PAPER 

STATE STIMATION Dynamic security assessment Decision tree 116, 125 

 
Data debugging Clustering 128 
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Condition assessment Correlation analysis 127 

 
Non technical losses detection Classification 137 

 
Sensitivities of some indices at a target location to prescribed credible events Patterns classification 131, 132 

SUPERVISION AND FORECASTING 
Predicting-aided state estimation including bad data  

Clustering 
117 

 
118 

 
Correlation analysis 118 

 
Disturbance classification Pattern recognition 122 

 Power quality assessment 
Clustering 

129, 130 

 
130 

 
Classification 130 

 
Online prediction of power system transient stability Decision tree 133 

FAULT DETECTION AND 
CLASSIFICATION 

Fault detection 

Pattern learning 119, 134 

 
Correlation analysis 120 

 
Decision tree 123, 136 

 
Classification 124 

PROTECTION SCHEME 
CONFIGURATION 

Protection scheme configuration 

Decision tree 121 , 128, 135 

 
Rough set theory 121, 126 

  Classification 134 
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