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ABSTRACT 16 

This study is an attempt to seek a relatively optimal data-driven model for rainfall forecasting from three aspects: 17 

model inputs, modeling methods, and data preprocessing techniques. Four rain data records from different 18 

regions, namely two monthly and two daily series, are examined. A comparison of seven input techniques, 19 

either linear or nonlinear, indicates that linear correlation analysis (LCA) is capable of identifying model inputs 20 

reasonably. A proposed model, modular artificial neural network (MANN), is compared with three benchmark 21 

models, viz. artificial neural network (ANN), K-nearest-neighbors (K-NN), and linear regression (LR). 22 

Prediction is performed in the context of two modes including normal mode (viz., without data preprocessing) 23 

and data preprocessing mode. Results from the normal mode indicate that MANN performs the best among all 24 

four models, but the advantage of MANN over ANN is not significant in monthly rainfall series forecasting. 25 

Under the data preprocessing mode, each of LR, K-NN and ANN is respectively coupled with three data 26 
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preprocessing techniques including moving average (MA), principal component analysis (PCA), and singular 27 

spectrum analysis (SSA). Results indicate that the improvement of model performance generated by SSA is 28 

considerable whereas those of MA or PCA are slight. Moreover, when MANN is coupled with SSA, results 29 

show that advantages of MANN over other models are quite noticeable, particularly for daily rainfall 30 

forecasting. Therefore, the proposed optimal rainfall forecasting model can be derived from MANN coupled 31 

with SSA.  32 

KEYWORDS 33 

Rainfall prediction, Modular artificial neural network, Moving Average, Principal component analysis, Singular 34 

spectral analysis, Fuzzy C-Means clustering, K-nearest-neighbors 35 

 36 

1. Introduction 37 

Accurate and timely rainfall forecasting is crucial for reservoir operation and flooding 38 

prevention because it can provide an extension of lead-time of the flow forecasting, larger 39 

than the response time of the watershed, in particular for small and medium-sized 40 

mountainous basins. 41 

Many studies have been conducted for the quantitative precipitation forecasting using 42 

diverse techniques including numerical weather prediction models and remote sensing 43 

observations (Yates et al., 2000; Ganguly and Bras, 2003; Sheng, et al., 2006; Doomede et al., 44 

2008), statistical models (Chu and He, 1995; Chan and Shi, 1999; DelSole and Shukla, 2002; 45 

Munot, 2007; Li and Zeng, 2008; Nayagam et al., 2008), chaos theory-based approach 46 

(Jayawardena and Lai, 1994), K-nearest-neighbor (K-NN) method (Toth et al, 2000), and soft 47 

computing methods including artificial neural network (ANN), support vectors regression 48 

(SVR) and fuzzy inference system  (Venkatesan et al., 1997; Silverman and Dracup, 2000; 49 
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Toth et al., 2000; Pongracz et al., 2001; Sivapragasam et al., 2001; Brath et al., 2002; Lin and 50 

Chen, 2005; Chattopadhyay and Chattopadhyay, 2007; Guhathakurta, 2008; Lin et al., 2009). 51 

Venkatesan et al. (1997) employed ANN to predict all India summer monsoon rainfall with 52 

different meteorological parameters as model inputs. Toth et al. (2000) applied three data-53 

driven models, auto-regressive moving average, ANN and K-NN, to short-term rainfall 54 

predictions. Results showed that ANN performed the best in terms of the accuracy of runoff 55 

forecasting when the predicted rainfalls by the three models were used as inputs of a rainfall-56 

runoff model. Pongracz et al. (2001) applied fuzzy inference to monthly rainfall prediction. 57 

Chattopadhyay and Chattopadhyay (2007) constructed an ANN model to predict monsoon 58 

rainfall in India depending on the rainfall series alone.       59 

Recently, the concept of coupling different models has attracted more attention in 60 

hydrologic forecasting. They can be broadly categorized into ensemble models and modular 61 

(or hybrid) models. The basic idea behind ensemble models is to build several different or 62 

similar models for the same process and to integrate them together (Shamseldin et al., 1997; 63 

Shamseldin and O’Connor, 1999; Xiong et al., 2001; Abrahart and See, 2002; Kim et al, 64 

2006). For example, Xiong et al. (2001) used a Takagi-Sugeno-Kang fuzzy technique to 65 

couple several conceptual rainfall-runoff models. Coulibaly et al. (2005) employed an 66 

improved weighted-average method to coalesce forecasted daily reservoir inflows from K-67 

NN, conceptual model and ANN. Kim et al. (2006) investigated five ensemble methods for 68 

improving stream flow prediction.  69 

Physical processes in rainfall and/or runoff are generally composed of a number of 70 

sub-processes. Their accurate modeling by building of a single global model is sometimes not 71 

possible (Solomatine and Ostfeld, 2008). Modular models were therefore proposed where 72 
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sub-processes were first of all identified and then separate models (also called local or expert 73 

model) were established for each of them (Solomatine and Ostfeld, 2008). Different modular 74 

models were proposed depending on the soft or hard splitting of training data. Soft splitting 75 

means the dataset can be overlapped and the overall forecasting output is the weighted-76 

average of each local model (Zhang and Govindaraju, 2000; Shrestha and Solomatine, 2006; 77 

Wu et al., 2008). Zhang and Govindaraju (2000) examined the performance of modular 78 

networks in predicting monthly discharges based on the Bayesian concept. Wu et al. (2008) 79 

employed a distributed SVR for daily river stage prediction. On the contrary, there is no 80 

overlap of data in the hard splitting and the final forecasting output is explicitly from only 81 

one of local models (See and Openshaw, 2000; Hu et al., 2001; Solomatine and Xue, 2004; 82 

Sivapragasam and Liong, 2005; Jain and Srinivasulu, 2006; Wang et al., 2006; Corzo and 83 

Solomatine, 2007; Lin and Wu, 2009). Hu et al. (2001) developed a range-dependent network 84 

which employs a number of multilayer perceptron neural networks to model the river flow in 85 

different flow bands of magnitude (e.g. high, medium and low). Their results indicated that 86 

the range-dependent network performed better than the conventional global ANN. 87 

Solomatine and Xue (2004) used M5 model trees and neural networks in a flood-forecasting 88 

problem. Sivapragasam and Liong (2005) divided the flow range into three regions, and 89 

employed different SVR models to predict daily flows in high, medium and low regions. 90 

Wang et al. (2006) used a crisp modular ANN to make soft or crisp predictions for validation 91 

data where each local network was trained using the subsets achieved by either a threshold 92 

discharge value or a clustering of input spaces. Lin and Wu (2009) proposed a hybrid ANN 93 

model for event-based hourly rainfall prediction where self-organizing map networks are 94 
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used for data cluster analysis and multilayer conceptron networks are employed to serve each 95 

cluster to construct mapping between input and output.  96 

A hydrological time series can be actually regarded as an integration of stochastic (or 97 

random) and deterministic components (Salas et al., 1985). Once the stochastic (noise) 98 

component is appropriately eliminated, the deterministic component can then be easily 99 

modeled. For the purpose of cleaning hydrological series, many data preprocessing 100 

techniques, including Principal component analysis (PCA), wavelet analysis (WA), and 101 

singular spectrum analysis (SSA), have been employed in hydrology field by researchers 102 

(Sivapragasam et al., 2001; Marques et al., 2006; Hu et al., 2007; Partal and Kişi, 2007; 103 

Sivapragasam et al., 2007;Wu et al., 2009). Hu et al. (2007) employed PCA as an input data 104 

preprocessing tool to improve the prediction accuracy of the rainfall-runoff neural network 105 

models. The use of WA to improve rainfall forecasting was conducted by Partal and Kişi 106 

(2007). Their results indicated that WA was promising. SSA has also been recognized as an 107 

efficient preprocessing algorithm to avoid the effect of discontinuous or intermittent signals, 108 

coupled with neural networks (or similar approaches) for time series forecasting (Lisi et al., 109 

1995; Sivapragasam et al., 2001; Baratta et al., 2003). For example, Lisi et al. (1995) applied 110 

SSA to extract the significant components in their study on southern oscillation index time 111 

series and used ANN for prediction. They reconstructed the original series by summing up 112 

the first “p” significant components. Sivapragasam et al. (2001) proposed a hybrid model of 113 

support vector machine (SVM) and SSA for rainfall and runoff predictions. The hybrid 114 

model resulted in a considerable improvement in the model performance in comparison with 115 

the original SVM model. A comparison between WA and SSA in Wu et al. (2009) indicated 116 

that SSA performed better than WA.  In addition, moving average (MA) is used for data 117 
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preprocessing to improve the performance of ANN by de Vos and Rientjes (2005). They 118 

argued that one of reasons on lagged predictions of ANN was due to the use of previous 119 

observed data as ANN inputs and suggested that an effective solution was to obtain new 120 

model inputs by MA over the original data series.  121 

In this paper, one of the main purposes is to develop a modular ANN (MANN) 122 

coupled with appropriate data-preprocessing techniques to improve the accuracy of rainfall 123 

forecasting. MANN consists of three local models which are associated with three subsets 124 

clustered by the fuzzy C-means (FCM) clustering method. To evaluate MANN, LR, K-NN 125 

and ANN are employed for comparison. ANN is first used to choose the best model inputs by 126 

seven candidate model inputs techniques. Once all forecasting models are established, three 127 

data-preprocessing methods (i.e., MA, PCA, and SSA) can be examined. To ensure wider 128 

application of the conclusions, four cases consisting of two monthly rainfall series and two 129 

daily rainfall series from India and China, are investigated. The remaining part is structured 130 

as follows. Methodology is detailed in Section 2 where case studies are first described, and 131 

then data-preprocessing techniques and forecasting models are introduced. Section 3 presents 132 

modeling methods and their applications to four rainfall series. The optimal model input 133 

method and the best data preprocessing can be identified. In Section 4, principal results are 134 

shown along with relevant discussions. The last section presents main conclusions.  135 

2.  Methodology 136 

2.1 Study Area and Data 137 

Two daily mean rainfall series from Daning and Zhenshui river basins of China, and 138 

two monthly mean rainfall series from India and Zhongxian of China, are analyzed.  139 
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The Daning River, a first-order tributary of the Yangtze River, is located at the 140 

northeastern side of Chongqing city. The daily rainfall data from Jan. 1, 1988 to Dec. 31, 141 

2007 were measured at six raingauges located at the upstream of the study basin (Figure 1). 142 

The upstream part is controlled by Wuxi hydrology station, with a drainage area of around 2 143 

000 km2. The mean areal rainfall series is calculated by the Thiessen polygon method 144 

(hereafter the averaged rainfall series is referred to as Wuxi).  145 

The Zhenshui basin is located at the northern side of Guangdong Province and 146 

adjoined by Hunan Province and Jianxi Province. The basin belongs to a second-order 147 

tributary of the Pearl River and has an area of 7,554 km2. The daily rainfall time series of 148 

Zhenwan raingauge was collected between January 1, 1989 and December 31, 1998 149 

(hereafter the averaged rainfall series is referred to as Zhenwan).  150 

The all Indian average monthly rainfall is estimated from area-weighted observations 151 

at 306 land stations uniformly distributed over India.  The data, with period spanning from 152 

January 1871 to December 2007, are available at the website http://www.tropmet.res.in run 153 

by the Indian Institute of Tropical Meteorology.  154 

The other monthly rainfall series is from Zhongxian raingauge which is located at 155 

Chongqing city, China. The catchment containing this raingauge belongs to a first-order 156 

tributary of the Yangtze River. The monthly rainfall data were collected from January 1956 157 

to December 2007.  158 

Figure 2 shows hyetographs of four rainfall series. A linear fit to each hyetograph is 159 

denoted by the dashed line. All series appear stationary at least in a weak sense since these 160 

linear fits are close to horizontal.  161 
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In this study, each of data series is partitioned into three parts as training set, cross-162 

validation set and testing set. The training set serves the model training and the testing set is 163 

used to evaluate the performances of models. The cross-validation set has dual functions: one 164 

is to implement an early stopping approach in order to avoid overfitting of the training data 165 

and another is to select some best predictions from a number of ANN’s runs. In the present 166 

study, 10 best predictions are selected from a total of 20 ANN’s runs. The same data partition 167 

is adopted for each series: the first half of the entire data as training set and the first half of 168 

the remaining data as cross-validation set and the other half as testing set. 169 

Table 1 presents pertinent information about watersheds and some descriptive 170 

statistics of the original data and three data subsets, including mean (µ), standard deviation 171 

(Sx), coefficient of variation (Cv), skewness coefficient (Cs), minimum (Xmin), and maximum 172 

(Xmax). As shown in Table 1, the training set cannot fully include the cross-validation or 173 

testing data. Owing to the weak extrapolation ability of ANN, all data are scaled to the 174 

interval [-0.9, 0.9] instead of [-1, 1] whilst hyperbolic tangent sigmoid functions are 175 

employed as transfer functions in hidden and output layers.  176 

2.2 Data preprocessing techniques 177 

(1)  MA 178 

MA smoothes data by replacing each data point with the average of the k   179 

neighboring data points, where k  may be termed the length of memory window. The method 180 

is based on the idea that any large irregular component at any point in time will exert a 181 

smaller effect if we average the point with its immediate neighbors (Newbold et al., 2003). 182 

The equally weighted MA is the most commonly-used, in which each value of the data 183 

carries the same weight in the smoothing process. There are three types of moving modes 184 
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including centering, backward and forward. In a forecasting scenario, only the backward 185 

mode is used since the other two modes may necessitate future observed values. For a time 186 

series 1 2, , , Nx x x , when the backward moving mode is adopted (Lee et al., 2000), the 187 

-k term unweighted moving average *
ty is written as 188 

 1*

0

k

t t ii
y y k




       (1) 189 

where , ,t k N  . The choice of the window length k  is by a trial and error procedure with 190 

a minimization of the loss of the objective function.  191 

(2)  PCA 192 

PCA was first introduced by Pearson (1901) and developed independently by 193 

Hotelling (1933), and has now well entrenched as an important technique in data analysis. 194 

The central idea is to reduce the dimensionality of a data set consisting of a large number of 195 

interrelated variables, while retaining as much as possible of the variation present in the data 196 

set. The PCA approach uses all of the original variables to obtain a smaller set of principal 197 

components (PCs) which can be used to approximate the original variables. PCs are 198 

uncorrelated and are ordered so that the first few retain most of the variation present in the 199 

original set.  200 

Consider a data matrix X which has n rows (observations) and p column (variables). 201 

Let the covariance matrix of X  be  , where cov( ) ( )TE  X X X . The linear transformed 202 

orthogonal matrix Z  is presented as 203 

    Z XA       (2) 204 
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where Z  is the PCs with elements ( ,i j ) of thi  observation and thj principal component; A  205 

is a ( p p ) matrix with eigenvector elements of the covariance of X , and having 206 

T T A A AA I . 207 

Because matrix TX X  is real and symmetric, it can be expressed as T  TX X AΛA  208 

where Λ  is a diagonal matrix whose nonnegative entries are the eigenvalues (λ , 1, ,i i p  ) 209 

of TX X . The total variance of the data matrix X  is represented as 210 

  
1

trace( ) trace( ) trace( )= λ
p

i
i

   TAΛA Λ     (3) 211 

On the other hand, the covariance matrix of principal components Z  is expressed as  212 

   cov( ) ( ) ( )T T TE E  Z Z Z A X XA Λ     (4) 213 

   
1

trace( ) trace( )= λ
p

i
i

 Z Λ      (5) 214 

Therefore, the total variance of the data matrix X  is identical to the total variance after PCA 215 

transformation Z .  216 

The solution of PCA, using singular value decomposition (SVD) or determinants of 217 

the covariance matrix of X , can provide the eigenvectors A  with their 218 

eigenvalues, λ , 1, ,i i p  , representing the variance of each component after PCA 219 

transformation.  If the eigenvalues are ordered by 1 2 3λ λ λ λ 0p     , the first few PCs 220 

can capture most of the variance of the original data while the remaining PCs mainly 221 

represent the noise in the data. The percentage of total variance explained by the first thm  222 

PCs is 223 

   
1 1

λ λ 100%
pm

i i
i i

V
 

        (6) 224 
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The higher is the selection of the total data variance, V , the better the properties of the data 225 

matrix are preserved. For the sake of the reduction of dimensionality, a small number of PCs 226 

are selected, though most of the data variance in selected components still remain. If the 227 

transformation is to prevent the collinearity of regression variables, the selected component 228 

number m  in Eq. (6) can be set for a higher total variance, such as 95% 99%V  �  (Hsu et 229 

al., 2002).  230 

The original data matrix A  can be reconstructed by a reverse operation of Eq. (2) as 231 

    TX ZA       (7) 232 

By choosing suitable m  ( p ) PCs from Z  and accompanying m  eigenvectors from A , the 233 

original data can be filtered.   234 

(3)  SSA 235 

According to Golyandina et al. (2001), the basic SSA consists of two stages: 236 

decomposition and reconstruction. The decomposition stage involves two steps: embedding 237 

and SVD; the reconstruction stage also comprises two steps: grouping and diagonal 238 

averaging. Consider a real-valued time series
  1 2, , , NF x x x  of length ( 2)N  . Assume 239 

that the series is a nonzero series, viz. there exists at least one i  such that 0ix  . Four steps 240 

are briefly presented as follows.  241 

1st step: embedding 242 

The embedding procedure maps the original time series to a sequence of multi-243 

dimensional lagged vectors. Let L  be an integer (window length), 1 L N  , and   be the 244 

delayed time at a multiple of the sampling period. The embedding procedure forms 245 

( 1)n N L     lagged vectors  2 ( 1), , , ,
T

i i i i i Lx x x x     X  , where R L
i X , and 246 
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1,2, ,i n  . The ‘trajectory matrix’ of the time series is denoted by [ ]1 i n X X XX    247 

having lagged vectors as its columns. In other words, the trajectory matrix is 248 

  

1 2 3

1 2 3

1 2 2 2 3 2 2

1 ( 1) 2 ( 1) 3 ( 1)

n

n

n

L L L N

x x x x
x x x x
x x x x

x x x x

   

   

  

   

   

     

 
 
   
  
 

X





    


   (8) 249 

If 1  , the matrix X  is called Hankel matrix since it has equal elements on the 250 

‘diagonals’ where the sum of subscripts of
 
row and column is equal to constant. If 1  , the 251 

equal elements in X  are not definitely in the ‘diagonals’.  252 

2nd step: SVD 253 

Let TS XX , 1 2λ ,λ , ,λL  denote the eigenvalues of S  taken in the decreasing order 254 

of magnitude ( 1 2 3λ λ λ λ 0L     ) and 1 2, , , LU U U  denote the orthonormal system of 255 

the eigenvectors of the matrix S  corresponding to these eigenvalues. If we denote 256 

λT
i i i iV UX ( 1, ,i L  ) (equivalent to the thi eigenvector of TX X ), then the SVD of the 257 

trajectory matrix X  can be written as  258 

    1 L  X X X      (9) 259 

where λ T
i i i i U VX . The matrices iX  have rank 1; therefore they are elementary matrices. 260 

The collection ( λ , ,i i iU V ) is called the thi eigentriple of the SVD. Note that iU  and iV  are 261 

also the thi  left and right singular vectors of X , respectively. 262 

3rd step: grouping 263 

The purpose of this step is to identify appropriately the trend component, oscillatory 264 

components with different periods, and structureless noises by grouping components. This 265 
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step can be skipped if one does not want to precisely extract hidden information by 266 

regrouping and filtering of components. 267 

The grouping procedure partitions the set of indices {1, , }L  into m  disjoint subsets 268 

1, , mI I , so that the elementary matrix in Eq. (9) is regrouped into m  groups. Let 269 

1{ , , }pI i i  . Then the resultant matrix IX  corresponding to the group I  is defined as 270 

1 pI i i  X X X . These matrices are computed for 1, , mI I . By substituting into the 271 

expansion (9), one obtains the new expansion 272 

    
1 mII  X X X      (10) 273 

The procedure of choosing the sets 1, , mI I  is called the eigentriple grouping.  274 

4th step: Diagonal averaging 275 

The last step in the basic SSA is the transformation of each resultant matrix of the 276 

grouped decomposition (10) into a new series of length N . The diagonal averaging is to find 277 

equal elements in the resultant matrix and then to generate a new element by averaging over 278 

them. The new element has the same position (or index) as the corresponding elements in the 279 

original series. As mentioned in the step 1, the concept of ‘diagonal’ is not true for 1  . 280 

Regardless of the value of   being larger than or equal to 1, the principle of reconstruction is 281 

the same. For 1  , the diagonal averaging can be carried out by the formula recommended 282 

by Golyandina et al. (2001). Let Y  be a ( L n ) matrix with elements ijy , 1 i L  , 1 j n  . 283 

Let * min( , )L L n , * max( , )n L n  and ( 1)N n L    . Let *
ij ijy y if L n and *

ij jiy y
 

284 

otherwise. Diagonal averaging transfers matrix Y  to a series 1 2{ , , , }Ny y y  by the following 285 

equation 286 
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*

*

*

* *
, - 1

1

* * *
, - 1*

1

- 1
* *

, - 1
- 1

1
1

1

1

- 1

k

m k m
m

L

k m k m
m

N K

m k m
m k K

y for k L
k

y y for L k K
L

y for L k N
N k










 


 


  


  









  (11) 287 

Eq. (11) corresponds to the averaging of the matrix elements over the ‘diagonals’ 1i j k   . 288 

The diagonal averaging, applied to a resultant matrix Ik
X , produces a N  length series kF , 289 

and thus the original series F  is decomposed into the sum of m series: 290 

     1 mF F F       (12) 291 

As mentioned above, these reconstructed components (RCs) can be associated with the trend, 292 

oscillations or noise of the original time series with proper choices of L  and the sets of 293 

1, , mI I . Certainly, if the third step (namely, grouping) is skipped, F can be decomposed 294 

into L RCs.  295 

2.3 Forecasting models 296 

 This section describes four candidate forecasting models. They are LR, K-NN, ANN 297 

and MANN.  They are usually called data-driven models because they capture the mapping 298 

between input (e.g. antecedent rainfall) and output variables (forecasted rainfall) without 299 

directly considering the physical laws that underlie the mechanism of rainfall (or 300 

precipitation). These models are purely based on the information retrieved from the collected 301 

rainfall data.  302 

(1)  Construction of input/output pairs 303 
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Let  1 2, , , Nx x x  stand for a rainfall time series. It can be reconstructed into a series 304 

of delay vectors as   t 2 ( 1), , , ,t t t t mx x x x     X  , where t RmX ,  is the delay time as a 305 

multiple of the sampling period and m  is the embedded dimension. Suppose that the rainfall 306 

( 1)t T mx     
at T -step lead is related to the vector tX , the available historical data may be 307 

summarized into a set of pairs as t ( 1), : 1, ,t T mx t n   X  , where n stands for  the number of 308 

pairs, and ( 1)n N m    .  309 

The functional relationship between the input vector tX  at time t and the predicted 310 

output ( 1)
F
t T mx     

at time t T can be written as follows: 311 

    ( 1) ( )F
t T m t tx f e    X                  (13)  312 

where te  is a typical noise term, ( 1)
F
t T mx     

is the prediction of ( 1)t T mx    , and ( )f   is the 313 

mapping function. The difference of various data-driven forecasting models used in the 314 

current study relies on the way of approximating ( )f   once model inputs are attained with 315 

the appropriate selection of ( , m ).   316 

(2)  LR 317 

  The linear regression model herein is actually called stepwise linear regression (SLR) 318 

model because the forward stepwise regression is used to determine optimal input variables. 319 

The basic idea of SLR is to start with a function that contains the single best input variable 320 

and to subsequently add potential input variables to the function one at a time in an attempt to 321 

improve the model performance. The order of addition is determined by using the partial 322 

-F test values to select which variable should enter next. The high partial -F value is 323 

compared to a (selected or default) -F to-enter value. After a variable has been added, the 324 
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function is examined to see if any variable should be deleted. Interested readers are referred 325 

to Draper and Smith (1998) and McCuen (2005) for more details. 326 

(3)  K-NN   327 

The prediction of ( 1)t T mx     by the K-NN method is formulated as:  328 

   ( 1) ( 1)
( , )

1F
t T m t T m

t S n

x x
K      



 
X

     (14) 329 

where S( , n)X  denotes the set of indices t of the K nearest neighbors to the feature vector 330 

(n)X . The meaning of “nearest neighbors” is generally interpreted in a Euclidean sense. 331 

Therefore, if i  belongs to S( , n)X  and j  is not in S( , n)X , then according to Euclidean 332 

distance - -n i n jX X X X . Intuitively speaking, the forecast ( 1)
F
t T mx     in Eq. (14) is the 333 

sample average of output rainfall of the K nearest neighbors to (n)X .  Obviously, a key task 334 

is to determine the parameter K in the K-NN method.  335 

(4)  ANN 336 

The multilayer perceptron network is by far the most popular ANN paradigm, which 337 

usually uses the technique of error back propagation to train the network configuration. The 338 

architecture of the ANN consists of a number of hidden layers and a number of neurons in 339 

the input layer, hidden layers and output layer. ANNs with one hidden layer are commonly 340 

used in hydrologic modeling (Dawson and Wilby, 2001; de Vos and Rientjes, 2005) since 341 

these networks are considered to provide enough complexity to accurately simulate the 342 

nonlinear-properties of the hydrologic process. Based on Eq. (13), the ANN forecasting 343 

model is formulated as 344 

 ( 1) 0 ( 1)
1 1

( , , , , ) ( )
j

h m
F out
t T m t ji t i j

j i

x f w m h w w x        
 

    X   (15) 345 
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where   denotes transfer functions;
 jiw  are the weights defining the link between the ith  346 

node of the input layer and the jth  node of the hidden layer; j  are biases associated to the 347 

jth  node of the hidden layer; 
j

outw
 
are the weights associated to the connection between the 348 

jth  node of the hidden layer and the node of the output layer; and 0  is the bias at the output 349 

node. To apply Eq. (15) to rainfall predictions, appropriate training algorithm is required to 350 

optimize w and  . 351 

(5)  MANN 352 

To construct MANN, the training data have to be divided into several clusters 353 

according to cluster analysis techniques, and then each single model is applied to each cluster. 354 

The FCM clustering technique is adopted in the present study (e.g., Bezdek, 1981, Wang et 355 

al., 2006). It is able to generate either soft or crisp clusters. ANN (or similar techniques) is 356 

unable to extrapolate beyond the range of the data used for training. Otherwise, poor 357 

forecasts or predictions can be expected when a new input data is outside the range of those 358 

used for training. Hard forecasting is, therefore, taken into consideration in this study.  359 

Figure 3 displays the schematic diagram of MANN where the training data is 360 

partitioned into three clusters which are based on an assumption that three magnitudes of 361 

rainfall (i.e., low, medium, and high) may be derived from different mechanisms. According 362 

to this flow chart, once input-output pairs are obtained, they are first split into three subsets 363 

by the FCM technique, and then each subset is approximated by a single ANN. The final 364 

output of the modular model results directly from the output of one of three local models. 365 

2.4 Implementation framework of rainfall forecasting  366 
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Figure 4 illustrates the implementation framework of rainfall forecasting where four 367 

prediction models can be conducted in two modes: without/with three data preprocessing 368 

methods (dashed box). These acronyms in the column of “methods for model inputs” 369 

represent seven methods to determine model inputs: LCA (linear correlation analysis, 370 

Sudheer et al., 2002), AMI (average mutual information, Fraser and Swinney, 1986), PMI 371 

(partial mutual information, May et al., 2008), FNN (false nearest neighbors, Kennel et al., 372 

1992), CI (correlation integral, Theiler, 1986), SLR, and MOGA (ANN based on multi-373 

objective genetic algorithm, Giustolisi and Simeone, 2006).  374 

2.5 Evaluation of model performances 375 

The Pearson’s correlation coefficient (r) or the coefficient of determination (R2 = r2), 376 

have been identified as inappropriate measures in hydrologic model evaluation by Legates 377 

and McCabe (1999). The coefficient of efficiency (CE) (Nash and Sutcliffe, 1970) is a good 378 

alternative to r or R2 as a “goodness-of-fit” or relative error measure in that it is sensitive to 379 

differences in the observed and forecasted means and variances. Legates and McCabe (1999) 380 

also suggested that a complete assessment of model performance should include at least one 381 

absolute error measure (e.g., root mean square error (RMSE)) as necessary supplement to a 382 

relative error measure. Besides, the Persistence Index (PI) (Kitanidis And Bras, 1980) was 383 

adopted here for the purpose of checking the prediction lag effect. Three measures are 384 

therefore used in this study. They are listed below. 385 

2 2

1 1

ˆCE 1- ( - ) / ( - )
n n

i i i
i i

y y y y
 

       (16) 386 

2

1

1
ˆRMSE ( - )

n

i ii
y y

n 
       (17) 387 
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2 2
-

1 1

ˆPI 1- ( - ) / ( - )
n n

i i i i l
i i

y y y y
 

       (18) 388 

In these equations, n is the number of observations, ˆiy  stands for the forecasted flow, 389 

iy represents the observed flow, y  denotes the average observed flow, and i ly  is the flow 390 

estimate from a so-call persistence model (or termed naïve model) that basically takes the last 391 

flow observation (at time i  minus the lead time l ) as a prediction. CE and PI  values of 1 392 

stands for perfect fits. A small value of PI may imply occurrence of lagged prediction.  393 

3. Applications of Models 394 

3.1 Determination of model inputs 395 

ANN, equipped with the Levernberg-Marquardt (L-M) training algorithm and 396 

hyperbolic tangent sigmoid transfer functions, is used as the benchmark model to examine 397 

aforementioned seven model input methods in terms of RMSE. Depending on the simplified 398 

algorithm from Yu et al. (2000) (downloaded at http://small.eie.polyu.edu.hk/), the four 399 

rainfall series are identified as non-chaotic since the correlation dimension does not display 400 

the property of convergence, in particular, for daily rainfall series. Results from remaining six 401 

methods are presented in Table 2. These results are based on one step lead prediction and let 402 

t+1X  be the target value at one-step prediction horizon. It can be seen from RMSE that most 403 

of these methods tend to be mutually alternative because their RMSE are close. Owing to the 404 

convenience of operation, the LCA method is preferred in this study. Furthermore, Figure 5 405 

shows identification of effective inputs in Table 2 for the LCA method. Taking Wuxi and 406 

Zhenwan as examples, model inputs should take the previous 5-day and 7-day rainfalls for 407 
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them respectively because the partial auto-correlation function (PACF) value decays within 408 

the confidence band around these time lags.   409 

3.2 Identification of models 410 

The model identification is to determine the structure of a candidate model by using 411 

training data to optimize relevant parameters of model control once model inputs have been 412 

obtained. The LR model is built by the SLR technique. In terms of one step prediction 413 

(viz., 1T  ), input variables can be found in Table 2. For example, the LR model for Wuxi 414 

can be expressed as 415 

 1 1 2 4 7 110.421 -0.043 0.044 0.025 0.036 0.03F
t t t t t t tx x x x x x x            (19) 416 

With respect to K-NN, the model identification consists in finding the optimal K if the 417 

m  dimensional input vector is determined. Sugihara and Mary (1990) suggested that the 418 

value of K  was taken as 1K m  . On the other hand, the choice of K should ensure the 419 

reliability of the forecasting (Fraser and Swinney, 1986). The check of robustness of 420 

1K m   in terms of RMSE is presented in Figure 6, where K  is in the interval of [2, 40]. 421 

Adopting the value of K as 1m   seems reasonable for the current study because the 422 

difference between its RMSE and the minimum RMSE is only 2.9% for Wuxi, 2.9% for 423 

Zhenwan, 2.6% for India, and 2.0% for Zhongxian, respectively. Consequently, the value of 424 

K  is 6 for Wuxi ( 5m  ), 8 for Zhenwan ( 7m  ), 13 for India ( 12m  ), and 14 for 425 

Zhongxian ( 13m  ), respectively. 426 

Based on Eq. (14), the formula for one-step lead prediction in the context of K-NN 427 

can be defined as   428 

    1 1
1

1
i

F
t t

K

iK
x x 


         (20) 429 
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where 1X
it 

stands for an observed value associated with a neighbor of the current state. For a 430 

T  step lead prediction, Eq. (20) becomes 431 

    
1

1
i

F
t T t T

K

i

x x
K 


         (21) 432 

The identification of ANN structure is to optimize the number of hidden nodes h in 433 

the hidden layer with the known model inputs and output. The optimal size h of the hidden 434 

layer is found by systematically increasing the number of hidden neurons from 1 to 10 until 435 

the network performance on the cross-validation set no longer improves significantly. Based 436 

on the L-M training algorithm and hyperbolic tangent transfer functions, the identified 437 

configurations of ANN are 5-5-1 for Wuxi, 7-4-1 for Zhenwan, 12-5-1 for India, and 13-3-1 438 

for Zhongxian, respectively. The same method is used to identify the structure of MANN, and 439 

the only difference is that the identification is repeated three times, with each time being for a 440 

local ANN. Consequently, MANN is obtained as 5-5/7/9-1 for Wuxi, 7-4/8/4-1 for Zhenwan, 441 

12-3/2/5-1 for India, and 13-1/1/1-1 for Zhongxian, respectively.    442 

It is worthwhile to notice that the standardization/normalization of the training data is 443 

very crucial in the improvement of the model performance. Two methods can be found in the 444 

literature (Dawson and Wilby, 2001; Cannas et al., 2002; Rajurkar et al, 2002; Campolo et al., 445 

2003; Wang et al., 2006).  The standardization (also termed rescaling in some papers) method, 446 

as adopted above for model input determination, is to rescale the training data to [-1, 1], [0, 1] 447 

or even more narrow interval depending on what kinds of transfer functions are employed in 448 

ANN. The normalization method is to rescale the training data to a Gaussian function with a 449 

mean of 0 and unit standard deviation, which is by subtracting the mean and dividing by the 450 

standard deviation. When the normalization approach is adopted, ANN uses the linear 451 

function (e.g. purelin) instead of the hyperbolic tangent sigmoid transfer function in the 452 
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output layer. In addition, some studies have indicated that considerations of statistical 453 

principles may improve ANN model performance (e.g. Cheng and Titterington, 1994).  For 454 

example, the training data was recommended to be normally distributed (Fortin et al., 1997). 455 

Sudheer et al. (2002) suggested that the issue of stationarity should be considered in the ANN 456 

development because the ANN cannot account for trends and heteroscedasticity in the data. 457 

Their results showed that data transformation to reduce the skewness of data was capable of 458 

significantly improving the model performance. For the purpose of obtaining better model 459 

performance, four data-transformed schemes are examined:  460 

 Standardizing the raw data (referred to as Std_raw); 461 

 Normalizing the raw data (referred to as Norm_raw); 462 

 Standardizing the n-th root transformed data (referred to as Std_nth_root);  463 

 Normalizing the n-th root transformed data (referred to as Norm_nth_root). 464 

Table 3 compares the ANN model performance of the four schemes in terms of 465 

RMSE and CE. The Norm_raw scheme is, on the whole, slightly more effective than the 466 

Std_raw method. It can also be seen that the effect of the n-th root scheme (3 is taken after 467 

trial and error) on the improvement of the performance is basically negligible. Therefore, the 468 

Norm_raw scheme is adopted for the later rainfall prediction in the present study.  469 

3.3 Rainfall data preprocessing  470 

(1) MA 471 

The MA operation entails the window length k in Eq. (1) to smooth the raw rainfall 472 

data. An appropriate k can be found by systematically increasing k from 1 to 10. The 473 

smoothed data is then used to feed into each forecasting model. The targeted value of k  474 

corresponds to the optimal model performance in terms of RMSE.  475 
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(2) PCA 476 

PCA is employed in two ways: one for reduction of the dimensionality or preventing 477 

collinearity (depending on Eq. (2)); second for noise reduction by choosing leading 478 

components (contributing most of the variance of the original rainfall data) to reconstruct 479 

rainfall series (depending on Eq. (7)). The percentage V of total variance (see Eq. (6)) is set 480 

at three horizons, 85%, 90%, and 95% for principal component selection.  481 

(3) SSA 482 

This approach of filtering a time series to retain desired modes of variability is based 483 

on the idea that the predictability of a system can be improved by forecasting the important 484 

oscillations in time series taken from the system. The general procedure is to filter the 485 

original record first and then to build the forecasting model based on the filtered series. To 486 

filter the raw rainfall series, the series needs to be decomposed into components with the aid 487 

of SSA. The decomposition by SSA requires identifying the parameter pair ( , L ). The value 488 

of an appropriate L  should be able to clearly resolve different oscillations hidden in the 489 

original signal. However, the present study does not require accurately resolving the raw 490 

rainfall signal into trends, oscillations, and noises. A rough resolution can be adequate for the 491 

separation of signals and noises where some leading eigenvalues should be identified.  492 

To select L , a small interval of [3, 10] is examined in the present study. Figure 7 493 

shows the relation between singular spectrum (namely, a set of singular values) and singular 494 

number L  for Wuxi, Zhenwan, India, and Zhongxian. It can be observed that the curve of 495 

singular values in each case except for Wuxi tends to level off with the increase of L . 496 

Generally, extraction of high-frequency oscillations becomes more difficult with the increase 497 

of singular number L  (or mode). L  is selected empirically by following the criterion that the 498 
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singular spectrum can be distinguished markedly under that L . According to this criterion, 499 

L  is set the value of 7 for India and Zhenwan, 6 for Zhongxian. For Wuxi, since all values in 500 

the interval satisfy the criterion, in order to reduce computational load in later filtering 501 

operation, L is set a small value of 5. The singular spectrum associated with the selected L  is 502 

highlighted by the dotted solid line in Figure 7. 503 

As regards , Figure 8 presents the results of sensitivity analysis of singular spectrum 504 

on the lag time  using SSA with the determined L . For daily rainfall series, the singular 505 

spectrum can be distinguished only when 1  . In contrast, the singular spectrum is 506 

insensitive to  in the case of monthly rainfall series. The final parameter pair ( , L ) in SSA 507 

are set as (1, 5) for Wuxi, (1, 7) for Zhenwan, (1, 7) for India, (1, 6) for Zhongxian, 508 

respectively.   509 

3.4 Filtering of RCs  510 

The subsequent task is to reconstruct a new rainfall series as model inputs by finding 511 

contributing RCs so as to improve the predictability of the rainfall series. There is no 512 

practical guide on how to identify a contributing or noncontributing component to the 513 

improvement of accuracy of prediction. Two proposed filtering methods, supervised and 514 

unsupervised, are herein examined. 515 

(1)  Supervised filtering (denoted by SSA1) 516 

Figure 9 depicts cross-correlation function (CCF) between RCs and the original 517 

Zhenwan rainfall series. The last plot in this figure presents the average of CCFs from all 7 518 

RCs. The average indicates an overall correlation between input and output at various lags 519 

(also termed prediction horizons). The plot of average CCF shows that the best correlation is 520 

positive and occurs at lag 1. Among all 7 RCs, RC1 exhibits the best positive correlation with 521 
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the original rainfall series. The CCF values for other RCs change alternatively between 522 

positive and negative with the increase of the lag. From the perspective of linear correlation, 523 

the positive or negative CCF value may indicate that the RC makes a positive or negative 524 

contribution to the output of model when the RC is used as the input of model. With the 525 

assumption, deleting RCs, which have negative correlations with the model output if the 526 

average CCF is positive, may improve the performance of the forecast model. This is the 527 

basic idea behind the supervised method.  528 

The procedure of the supervised method coupled with ANN is depicted in Figure 10. 529 

The aim is to find the optimal p ( L ) RCs from all L RCs for each prediction horizon. The 530 

procedure can be summarized into three steps: SSA decomposition, correlation coefficients 531 

sorting, and reconstructed components filtering. Operation in each step is bounded by the 532 

dashed box. It is worth noting that the filtering method is based on assumption that 533 

combination of components with the same sign in CCF ( or -) can strengthen the correlation 534 

with the model output.     535 

(2)  Unsupervised filtering (denoted by SSA2) 536 

There are some drawbacks on the supervised method. The salient one is that this 537 

method relies on linear correlation analysis, which disregards the existence of nonlinearity in 538 

meteorological processes. Also, random combinations among all RCs are not taken into 539 

account. To overcome these drawbacks, an unsupervised filtering method (also termed 540 

enumeration) is recommended where all input combinations are examined. There are 541 

2L combinations for L RCs. The unsupervised method may be computationally intensive if 542 

L is large.   543 
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4. Results and Discussions 544 

This section presents predictions using various models under two types of modes, 545 

namely “normal” and “data preprocessing”. The “data preprocessing” mode is separately 546 

described by MA, PCA, and SSA. To extend one-step-ahead prediction to multi-step-ahead 547 

prediction, a direct multi-step prediction method (by directly having the multi-step-ahead 548 

prediction as output, also termed static prediction method) is adopted in this study to perform 549 

two- and three-step-ahead predictions.  550 

4.1 Forecasting with normal mode 551 

Table 4 shows results of three prediction horizons by applying five models including 552 

naïve model to each case study. The naïve model is used as the benchmark in which the 553 

forecasted value is directly equal to the last observed value (namely, no change). The naïve 554 

model presents the poorest forecasting which can be explained by the fact that it is unlikely to 555 

capture any dependence relation. From the perspective of rainfall series, the monthly rainfall 556 

can be better predicted than the daily rainfall. Generally, a daily rainfall series, in particular 557 

in a semi-humid and semi-dry or dry region, tends to be intermittent and discontinuous due to 558 

a large number of no rain periods (dry periods). Two global modeling methods, LR and ANN, 559 

mainly capture the zero-zero (or similar extreme low-intensity) rainfall patterns in daily 560 

rainfall series because the type of pattern is overwhelmingly dominant in the daily rainfall 561 

series. As a consequence, poor performance indices in terms of RMSE, CE, and PI can be 562 

observed (depicted in Table 4 for Wuxi and Zhenwan). Nevertheless, Table 4 also shows that 563 

MANN performs the best in each case study. MANN adopts three local ANN models, one for 564 

each cluster generated by FCM, which can better capture the mapping relation than using a 565 

single global ANN. It can be noticed that MANN is more effective for daily rainfall series 566 
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than monthly rainfall data, which can be because daily rainfall data is more irregular (or non-567 

periodic) than monthly rainfall series. The use of K-NN for daily rainfall forecasting is even 568 

worse than LR although it employs a local prediction approach. Apart from the issue of the 569 

selection of K , the performance of K-NN is also influenced by the similarity of input-output 570 

patterns. The smooth monthly rainfall series easily construct similar patterns so that they are 571 

well predicted by K-NN. It is worth noting that negative values occasionally appear in the 572 

forecasts of ANN or MANN whereas this situation does not happen in the K-NN method.   573 

Take Wuxi and India data as representative examples, Figure 11 shows the scatter 574 

plots and hyetographs of the results at one-day-ahead prediction of ANN and MANN using 575 

the rainfall data of Wuxi, where the hyetograph is plotted in a selected range for better visual 576 

inspection. ANN seriously underestimates a number of moderate- and high-intensity rainfalls. 577 

The low values of CE and PI demonstrate that time shift between the forecasted and observed 578 

rainfall may occur, which is further verified by the hyetograph. MANN improves noticeably 579 

the accuracy of forecasting in terms of CE and PI. As shown by the scatter plots, the 580 

medium-intensity rainfall can be simulated better by MANN although high-intensity rainfalls 581 

(or peak values) are still underestimated. Figure 12 shows scatter plots and hyetographs of 582 

results at one-day-ahead prediction of ANN and MANN using the rainfall data of India. It 583 

can be seen from hyetograph graphs that both ANN and MANN reproduce well the 584 

corresponding observed rainfall data, which is further revealed by the scatter plots with a low 585 

dispersion around the exact fit line. 586 

Figure 13 shows the analysis of the lag effect between forecasted and observed 587 

rainfall series. The value of CCF at zero lag corresponds to the actual performance (i.e. 588 

correlation coefficient) of the model. A target lag is associated with the maximum value of 589 
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CCF, and is an expression for the mean lag for the forecast. It can be seen from Figure 16 590 

that ANN makes fairly obvious lagged predictions for daily rainfall series, and the lag effect 591 

can be overcome by MANN. There are 1, 2, and 3 days lag for Wuxi, which are respectively 592 

associated with one-, two-, and three-day-ahead forecasting. In contrast, there is no lag effect 593 

in monthly rainfall predictions of ANN or MANN.   594 

4.2 Forecasting with MA 595 

Table 5 presents forecasted results of ANN with the “backward” MA (hereafter 596 

referred to as ANN-MA) using the Wuxi rainfall data. The performance indices 597 

corresponding to 1k   are associated with the normal ANN. Results at each prediction 598 

horizon seem to be insensitive to the window length k in view of slight differences among 599 

each performance index for k from 1 to 10. Considering the fact that ANNs tend to generate 600 

unstable outputs, the influence of MA on the performance of ANN is negligible. Small values 601 

of PI also imply that MA cannot eliminate the lagged forecast from ANN.  602 

4.3 Forecasting with PCA 603 

As mentioned previously, PCA is used in two ways: one (denoted by PCA1) for 604 

reduction of dimensionality (also termed principal component regression) and the other one 605 

(denoted by PCA2) for noise reduction. Results from PCA1 are presented in Table 6. The 606 

scenario of V 100% stands for forecasting using models with the normal mode. Results 607 

show that PCA1 cannot improve the model performances in terms of RMSE, CE, and PI, 608 

which means that the reduction of dimensionality is unnecessary for the present case studies. 609 

Actually, the original inputs are characterized by a low dimension. Table 7 describes the 610 

results from PCA2. According to results from LR and K-NN (because results from ANN tend 611 

to be unstable), a marginal improvement in the model performances can be observed for the 612 
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Wuxi watershed whereas the model performances deteriorate for the India watershed with the 613 

decrease of the value of V .  614 

4.4 Forecasting with SSA 615 

Following the procedure in Figure 10, the supervised filtering (SSA1) using ANN for 616 

RCs of Wuxi and India is illustrated in Figure 14. The RMSE associated with the maximum 617 

number of p  (for instance 5p   for Wuxi) represents the performance of ANN with the 618 

normal mode. The optimal p  corresponds to the minimum RMSE, which can be found by 619 

systematically deleting RCs one at a time. Consequently, numbers of chosen optimal p  RCs 620 

in three forecasting horizons are 3, 2, and 1 for Wuxi, and 1, 3, and 5 for India, respectively. 621 

However, the unsupervised filtering method (SSA2) is based on enumeration of combinations 622 

of all RCs. Selection of the optimal p  RCs cannot be presented in a graphical form.  623 

Table 8 shows selected p  at various prediction horizons using LR, K-NN, and ANN 624 

in conjunction with SSA1 and SSA2. A large amount of information can be extracted from 625 

this Table. First of all, a considerable improvement in the model performance is achieved by 626 

each forecasting model in conjunction with SSA1 or SSA2, compared with results in Table 4. 627 

From the perspective of rainfall series, the accuracy of daily rainfall prediction is improved 628 

significantly in comparison to that in the normal mode. Secondly, as expected, results from 629 

SSA2 are superior to or at least equivalent to those from SSA1 since the former examines 630 

each combination of RCs in search of the optimal p . SSA2 is therefore considered as an 631 

efficient and effective method if the number L  of RCs is small. For the present four cases, 632 

SSA2 method is appropriate due to the small number of RCs. Once L  is large, say 40 or 50, 633 

SSA1 may be a good alternative where a relative optimal forecasting can be guaranteed. 634 
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Additionally, it should be noted that the optimal p  are different at three forecast horizons. 635 

Finally, Table 8 also shows that, among the three models, ANN performs the best with SSA1 636 

or SSA2, which is consistent with results in the normal mode. 637 

In the normal mode, MANN has been proved to be superior to ANN, in particular, for 638 

daily rainfall forecasting. As an attempt to improve the accuracy of rainfall forecasting, 639 

MANN is also coupled with SSA2. Table 9 demonstrates results in terms of RMSE, CE, and 640 

PI using MANN compared with those of ANN. Good accuracies of forecasting are made by 641 

both MANN and ANN. It can be seen from values of PI that the prediction lag effect is 642 

completely eliminated. The model performance does not deteriorate markedly with the 643 

increase of the forecasting lead. Results also show that MANN still maintains a salient 644 

superiority over ANN in the SSA2 mode for both daily and month rainfall series.  645 

One-step lead estimates of MANN and ANN with the help of SSA2 are shown in 646 

Figure 15 (Wuxi) and Figure 16 (India) in the form of hyetographs and scatter plots (the 647 

former is plotted in a selected range for better visual inspection). Compared with Figure 11, 648 

each scatter plot in Figure 15 is closer to the exact line, which means that the daily rainfall 649 

process is fitted appropriately. Nevertheless, some peak values still remain mismatched 650 

although MANN shows a better ability to capture the peak value than ANN. Regarding the 651 

monthly rainfall series, the scatter plots with perfect match of the diagonal indicates that the 652 

rainfall process is perfectly reproduced. The representative hyetograph shows that the peak 653 

times and peak values are also accurately predicted.  654 

Figure 17 presents the correlation analysis between observed and forecasted rainfall 655 

from ANN and MANN using the Wuxi and India series, respectively. Compared with Figure 656 
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13, the lagged prediction of ANN is completely eliminated by SSA2 since the maximum 657 

CCF occurs at zero lag. The larger the CCF at zero lag is, the better the model performance is.  658 

4.5 Discussions  659 

Some discussions regarding forecasting models and the effects of the SSA technique 660 

are made in the following. 661 

(1) About the investigation of effects of SSA 662 

Figure 18 shows that a large number of zeros and near zeros occur in the original 663 

Wuxi rainfall which makes the series discontinuous. Using the intermittent series is difficult 664 

to reconstruct similar input patterns for a forecasting model. Thus, depending on those 665 

reconstructed input patterns, data-driven models based on pattern training, for example, 666 

ANNs, tend to be unfeasible. In contrast, rainfall series preprocessed by SSA becomes 667 

smoother where most of zeros are replaced by nonzero values. New input vectors from the 668 

reconstructed rainfall series are characterized by better repetition of patterns so that they are 669 

easier reproduced.    670 

To investigate the influence of SSA on the ANN’s performance, correlation analyses 671 

between inputs and output of ANN and ANN-SSA2 are compared using the Wuxi data and 672 

are depicted in Figure 19. As the input and output series in ANN are both the raw rainfall 673 

series, the cross-correlation analysis is equivalent to the autocorrelation analysis of the raw 674 

rainfall series. At all three prediction horizons, cross-correlation coefficients (CCs) between 675 

reconstructed inputs by SSA2 and the raw rainfall data are improved significantly at most 676 

lags except for the lag of 3 at one-step lead. It should be recalled that model inputs are the 677 

previous five rainfall data for Wuxi. The “starting point” in Figure 19 represents the first 678 

previous rainfall of the five inputs, and the remaining inputs consist of four points after the 679 
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starting point. It can be observed that the CCF value between each new model input and 680 

output are far larger than that between the raw model input and output (seen at the same lag). 681 

Therefore, the improvement of a model’s performance by the SSA technique may be owing 682 

to the enhancement of the mapping relation of model input and output by deleting noises 683 

hidden in the raw signals.     684 

(2) About parameter L  in SSA 685 

The parameter L  in SSA has a significant impact on the performance of a forecasting 686 

model since the optimal p  RCs may be different with the change of L  when using the same 687 

forecasting model at the same prediction horizon. The selection of L  in this study is based on 688 

the interval of [3, 10] in conjunction with an empirical criterion (namely, a particular L  is 689 

selected only if the singular spectrum can be distinguished markedly under that L ). To check 690 

the robustness of the empirical method, each L  in [3, 10] is examined by the LR model with 691 

SSA2 using the Wuxi and Zhenwan data and presented in Table 10. As mentioned previously, 692 

the target L for Wuxi and Zhenwan are 5 and 7, respectively. The RMSE associated with 693 

them at each prediction horizon is highlighted in bold (shown in Table 10). In terms of Wuxi, 694 

the difference between the target RMSE and the minimum RMSE at the same prediction 695 

horizon is only 9.2% for one-step prediction, 1.4% for two-step prediction, 0.0% for three-696 

step prediction, respectively. Regarding Zhenwan, the three values are respectively 5.2%, 697 

7.5%, and 0.0%. These changes are slight and cannot influence the conclusions drawn 698 

previously. Therefore, the empirical method for the present rainfall data should be 699 

appropriate.  700 
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5. Conclusion  701 

This study suggests the use of modular artificial neural network (MANN) coupled 702 

with data preprocessing techniques for improving four rainfall predictions from India and 703 

China consisting of two monthly and two daily series. To reasonably evaluate MANN’s 704 

performance, three models, LR, K-NN and ANN, are used for the purpose of comparison. In 705 

the process of model development, model inputs and data preprocessing techniques are 706 

carefully analyzed and discussed. The following conclusions are reached based on this study: 707 

1. LCA is regarded as an effective and efficient method among all seven input 708 

techniques due to its simplicity of computation and comparable capability of forecasting.   709 

2. In the normal mode (without data preprocessing), MANN distinguishes from the 710 

other three models for both monthly and daily rainfall series forecasting. Whilst all four 711 

models reasonably forecast two monthly rainfall series, only MANN is able to simulate each 712 

daily rainfall series without obvious lag effect.  713 

3. In the data preprocessing mode, the effect of MA is negligible for the improvement 714 

of each forecasting model.  715 

4. PCA as a data preprocessing technique is discussed in two forms, i.e. PCA1 for the 716 

purpose of dimension reduction, and PCA2 for the purpose of noise reduction. Results show 717 

that PCA1 cannot improve model’s performance and PCA2 marginally improve model’s 718 

performance.  719 

5. Two filtering method, i.e. supervised (SSA1) and unsupervised (SSA2), are 720 

examined for SSA when coupled with forecasting models. It can be found that each model 721 

achieves considerable improvement in performance with the aid of SSA1 or SSA2. In terms 722 

of forecasting models, MANN still outperforms all other models.  723 
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6. As far as two filtering methods are concerned, SSA2 tends to be better if the 724 

number of raw RCs is small. Otherwise, SSA1 is a good alternative.   725 

7. A further discussion reveals that the essence of SSA in improving model 726 

performance is to strengthen the mapping relation of model input and output by deleting 727 

noises in the raw signal.    728 

8. There is still considerable room for improving forecasting of peak values although 729 

MANN coupled with SSA has made perfect overall predictions for daily rainfall series.   730 

 731 

Nomenclature 732 

ACF   Auto Correlation Function 733 

AMI   Average Mutual Information 734 

ANN   Artificial Neural Networks 735 

CC   Cross-correlation Coefficient 736 

CCF   Cross Correlation Function 737 

CE   Coefficient of Efficiency 738 

CI   Correlation Integral 739 

FCM   Fuzzy C-means 740 

FNN   False Nearest Neighbor 741 

K-NN   K-Nearest-Neighbors 742 

LCA   Linear Correlation Analysis 743 

L-M   Levenberg-Marquart 744 

LR   Linear Regression 745 

MA   Moving Average 746 
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MANN   Modular Artificial Neural Networks  747 

MOGA   ANN based on Multi-objective Genetic Algorithm 748 

PACF   Partial Auto Correlation Function 749 

PC   Principal Component 750 

PCA   Principal Component Analysis 751 

PMI   Partial Mutual Information 752 

PI   Persistence Index 753 

RC   Reconstructed Component 754 

RMSE    Root Mean Square Error 755 

SLR   Stepwise Linear Regression 756 

SSA   Singular Spectrum Analysis 757 

SVD   Singular Value Decomposition 758 

SVM   Support Vector Machine 759 

SVR   Support Vectors Regression 760 

WA   Wavelet Analysis 761 
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Figure Captions 946 

Figure1.  Location of Daning river basin (Map of Chongqing in the left panel, and Daning 947 

watershed in the dashed box) 948 

Figure 2. Rainfall series of (a) Wuxi, (b) India, (c) Zhenwan, and (d) Zhongxian 949 

Figure 3. Flow chart of hard forecasting using a modular model 950 

Figure 4.  Implementation framework of forecast models with/without data preprocessing 951 

Figure 5.  Plots of ACF and PACF of the rainfall series with the 95% confidence bounds (the 952 

dashed lines), (a) and (c) for Wuxi, and (b) and (d) for Zhenwan 953 

Figure 6.  Check of robustness of K in KNN method for (a) Wuxi, (b) India, (c) Zhenwan, 954 

and (d) Zhongxian. 955 

Figure 7. Singular Spectrum as a function of lag using various window lengths L for (a) Wuxi, 956 

(b) India, (c) Zhenwan, and (d) Zhongxian 957 

Figure 8.  Sensitivity analysis of singular Spectrum on varied  for (a) Wuxi, (b) India, (c) 958 

Zhenwan, and (d) Zhongxian 959 

Figure 9.  Plots of CCF between each RC and the raw rainfall data for Zhenwan 960 

Figure 10.  Supervised procedure for a forecast model with SSA 961 

Figure 3.  Scatter plots and hyetographs of one-step-ahead forecast using ANN and MANN 962 

for Wuxi ((a) and (c) from ANN, and (b) and (d) from MANN) 963 

Figure 4.  Scatter plots and hyetographs of one-step-ahead forecast using ANN and MANN 964 

for India ((a) and (c) from ANN, and (b) and (d) from MANN) 965 

Figure 5.  CCFs at three forecast horizons for various lags in time of observed and forecasted 966 

rainfall of ANN and MANN: Wuxi (left column) and India (right column) 967 

Figure 6. Performance of ANN with SSA1 in terms of RMSE as a function of p ( L ) 968 
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selected RCs at various prediction horizons: (a) Wuxi and (b) India 969 

Figure 7. Scatter plots and hyetographs of one-step-ahead forecast using ANN and MANN 970 

with SSA2 for Wuxi ((a) and (c) from ANN, and (b) and (d) from MANN) 971 
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Table 11.  Pertinent information for four watersheds and the rainfall data 1079 

Watershed and 
datasets 

Statistical parameters 
Watershed area and 
data period 

µ  Sx Cv Cs Xmin Xmax 
(mm) (mm)     (mm) (mm) 

Wuxi               
Original data 3.67  10.15  0.36  5.68  0.00  154  Area:  
Training  3.81  10.94  0.35  6.27  0.00  147  2 000 km2 
Cross-validation 3.42  8.87  0.39  4.96  0.00  102  Data period: 
Testing  4.03  11.60  0.35  5.46  0.00  154  Jan., 1988- Dec., 2007 
Zhenwan        
Original data 4.3  11.0  0.39  4.94  0.0  159  Area:  
Training  4.3  11.2  0.38  5.60  0.0  159  7554 km2 
Cross-validation 4.7  11.2  0.42  4.22  0.0  125  Data period: 
Testing  4.0  10.9  0.37  4.97  0.0  133  Jan., 1989- Dec., 1998 
India        
Original data 906.7  951.6  1.0  0.9  3.0  3460  Area:  

Training  904.8  955.7  0.9  0.9  3.0  3393  all India 

Cross-validation 918.2  969.5  0.9  1.0  8.0  3460  Data period: 

Testing  898.9  927.4  1.0  0.9  16.0  3232  Jan., 1871- Dec., 2007 
Zhongxian        
Original data 96.2  79.2  1.2  1.2  0.0  599  Area:  
Training  97.2  77.5  1.3  0.9  0.0  429   
Cross-validation 98.6  86.8  1.1  1.9  0.0  599  Data period: 
Testing  91.8  74.9  1.2  0.8  0.0  306  Jan., 1956- Dec., 2007 

 1080 
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Table 12. Comparison of methods to determine mode inputs using ANN model 1082 

Watershed Methods   m  Effective  inputsa 
Identifie
d ANN 

RMSE 

Wuxi       

 LCA 1 20 The last 5 (5-5-1) 10.74 

 AMI 1 12 Except for Xt-10,t-9 (10-3-1) 10.91 

 PMIb 1 12 Xt,t-1,t-3,t-5,t-7,t-10,t-4 (7-8-1) 10.85 

 FNN 1 20 The last 14 (14-3-1) 11.02 

 CI 4 20 Nil   

 SLR 1 12 Xt-11,t-7,t-4,t-2,t-1,t (6-3-1) 10.94 

 MOGA 1 12 Xt, t-1 (2-6-1) 10.55 

Zhenwan       

 LCA 1 20 The last 7 (7-4-1) 11.03 

 AMI 1 12 Except for Xt-11,t-10,t-9,t-8,t-2 (7-5-1) 10.95 

 PMI 1 12 Xt-4,t,t-1,t-3,t-11,t-5,t-10,t-6,t-9 (10-4-1) 10.98 

 FNN 1 20 Last 14 (14-3-1) 11.08 

 CI 3 20 Nil   

 SLR 1 12 Xt-11,t-7,t-6,t-3,t-1,t (6-3-1) 11.01 

 MOGA 1 12 Xt,t-4,t-7,t-9,t-11 (5-8-1) 10.43 

India       

 LCA 1 20 the last 12 (12-5-1) 256.22 

 AMI 1 12 the last 12 (12-5-1) 256.22 

 PMI 1 12 Xt-11,t-10,t-5,t (4-5-1) 275.06 

 FNN 1 20 the last 5 (5-9-1) 286.04 

 CI 4 20 nil   

 SLR 1 12 except for Xt-4 (11-9-1) 258.13 

 MOGA 1 12 Xt-11,t-9,t-7,t-5,t-4,t-1,t (7-1-1) 277.57 

Zhongxian       

 LCA 1 20 the last 13 (13-3-1) 51.70 

 AMI 1 12 Xt-11,t-10,t-6,t-5,t-4,t (6-5-1) 54.67 

 PMI 1 12 Xt-11,t,t-9,t-7,t-7 (5-9-1) 55.39 

 FNN 1 20 the last 4 (4-7-1) 59.78 

 CI 3 20 nil   

 SLR 1 12 Xt-11,t-7,t-6,t-5,t-3,t (6-6-1) 55.47 

 MOGA 1 12 Xt-11,t-10,t-6,t-3,t (5-2-1) 53.93 

Note:a for the convenience of writing down effective inputs, “Xt, t-1”stands for Xt, Xt-1; b effective inputs 1083 
from PMI are in descending order of priority.  1084 

1085 
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Table 13. Performance comparison of ANN with different data-transformed methods 1086 

Watershed 
Data 

Transformation 
RMSE  CE 

1 2 3 a  1 2 3 
Wuxi         
 Std_raw 10.77  11.54  11.62b   0.14  0.01  0.00  
 Norm_raw 10.57  11.49  11.59   0.17  0.02  0.00  
 Std_nth_root 11.00  12.02  12.10   0.10  -0.07  -0.09  
 Norm_nth_root 11.15  12.01  12.09   0.08  -0.07  -0.09  
Zhenwan         
 Std_raw 11.03  11.11  11.16   0.03  0.02  0.01  
 Norm_raw 10.72  11.06  11.14   0.09  0.03  0.02  
 Std_nth_root 11.25  11.68  11.75   -0.01  -0.09  -0.10  
 Norm_nth_root 11.34  11.70  11.74   -0.02  -0.09  -0.09  
Wuxi         
 Std_raw 256.22  250.51  249.46   0.92  0.93  0.93  
 Norm_raw 251.74  246.48  250.99   0.93  0.93  0.93  

 Std_nth_root 259.81  253.42  256.43   0.92  0.93  0.92  

 Norm_nth_root 252.75  251.95  259.00   0.93  0.93  0.92  

Zhongxian         
 Std_raw 54.26  54.23  53.91   0.48  0.48  0.48  
 Norm_raw 52.91  53.10  52.78   0.50  0.50  0.51  
 Std_nth_root 52.15  53.44  53.17   0.52  0.49  0.50  
  Norm_nth_root 52.27  53.37  54.30    0.51  0.49  0.48  

a Numbers of “1, 2, and 3” denote one-, two-, and three-day-ahead forecasting;  1087 
b Result is average over 10 best runs from total 20 runs; 1088 

1089 
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Table 14.  Model performances at three forecasting horizons under the normal mode 1090 

Watershed Model 
RMSE   CE   PI 

1* 2* 3*   1 2 3   1 2 3 

WuXi             

 Naïve 12.2  16.0  16.5   0.05  -0.61  -0.72   0.00  0.00  0.00  

 LR 10.9  11.9  12.0   0.12  -0.05  -0.07   0.28  0.41  0.43  

 K-NN 11.8  12.4  12.6   -0.03  -0.14  -0.18   0.16  0.36  0.38  

 ANN 10.6  11.5  11.6   0.17  0.02  0.00   0.32  0.45  0.47  

 MANN 8.2  9.2  9.0   0.50  0.38  0.40   0.60  0.65  0.68  

Zhenwan             

 Naïve 12.4  12.2  13.6   -0.53  -0.49  -0.84   0.00  0.00  0.00  

 LR 11.1  11.3  11.4   0.02  -0.02  -0.03   0.39  0.42  0.45  

 K-NN 12.7  12.7  12.8   -0.27  -0.28  -0.30   0.21  0.28  0.31  

 ANN 10.7  11.1  11.1   0.09  0.03  0.02   0.43  0.45  0.48  

 MANN 7.9  9.6  9.9   0.50  0.27  0.23   0.69  0.59  0.59  

India             

 Naïve 643.1  1084.5  1399.2  0.52  -0.37  -1.28   0.00  0.00  0.00  

 LR 286.8  301.6  302.7   0.90  0.89  0.89   0.80  0.92  0.95  

 K-NN 246.6  257.3  251.2   0.93  0.92  0.93   0.85  0.94  0.97  

 ANN 245.2  245.9  247.2   0.93  0.93  0.93   0.86  0.95  0.97  

 MANN 243.3  241.8  244.4   0.93  0.93  0.93   0.86  0.95  0.97  

Zhongxian             

 Naïve 75.7  91.9  109.2   -0.03  -0.51  -1.13   0.00  0.00  -0.02  

 LR 56.1  57.7  58.4   0.44  0.41  0.39   0.46  0.60  0.71  

 K-NN 55.0  56.0  57.2   0.46  0.44  0.42   0.48  0.63  0.72  

 ANN 52.5  54.4  54.3   0.51  0.48  0.48   0.52  0.65  0.75  

  MANN 50.3  50.2  53.2    0.55  0.55  0.50    0.56  0.70  0.76  
 * The number of “1, 2, and 3” denote one-, two-, and three-step-ahead forecasts  1091 

1092 
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 1093 

Table 15. Model performances of ANN-MA using the Wuxi data 1094 

Prediction 
horizons 

Performance 
index 

Window length (k) for MA 
1 2 3 4 5 6 7 8 9 10 

One-step            
 RMSE 10.60 10.70 10.63 10.72 10.77 10.70 10.83 10.83 10.72 10.68
 CE 0.17 0.15 0.16 0.15 0.14 0.15 0.13 0.13 0.15 0.15 
 PI 0.32 0.31 0.32 0.31 0.30 0.31 0.29 0.29 0.31 0.31 
Two-step            
 RMSE 11.50 11.51 11.51 11.50 11.53 11.56 11.55 11.47 11.45 11.45
 CE 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.03 0.03 
 PI 0.45 0.44 0.44 0.45 0.44 0.44 0.44 0.45 0.45 0.45 
Three-step            
 RMSE 11.60 11.58 11.58 11.55 11.61 11.58 11.56 11.51 11.52 11.52
 CE 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.02 0.01 0.01 
  PI 0.47 0.47 0.47 0.48 0.47 0.47 0.48 0.48 0.48 0.48 

1095 
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Table 6.  Multiple-step predictions for Wuxi and India series using LR, K-NN, and ANN 1096 

with PCA1 1097 

Watershed 
Performance 

index 
V (%)1 

LR K-NN ANN 
1* 2* 3* 1 2 3 1 2 3 

Wuxi            
 RMSE 85 11.0 11.9 12.0 12.1 12.5 12.7 10.6 11.5 11.6 
 90 11.0 11.9 12.0 12.1 12.5 12.7 10.7 11.5 11.6 
 95 10.9 11.9 12.0 11.8 12.4 12.6 10.6 11.5 11.6 
 100 10.9 11.9 12.0 11.8 12.4 12.6 10.6 11.5 11.6 
                       
 CE 85 0.12 -0.05 -0.07 -0.04 -0.15 -0.19 0.16 0.01 0.00 
 90 0.12 -0.05 -0.07 -0.04 -0.15 -0.19 0.16 0.02 0.00 
 95 0.12 -0.05 -0.07 -0.03 -0.14 -0.18 0.16 0.02 0.00 
 100 0.12 -0.05 -0.07 -0.03 -0.14 -0.18 0.17 0.02 0.00 
                       
 PI 85 0.27 0.41 0.43 0.12 0.34 0.36 0.32 0.44 0.47 
 90 0.27 0.41 0.43 0.12 0.34 0.36 0.31 0.45 0.47 
 95 0.28 0.41 0.43 0.16 0.36 0.38 0.32 0.45 0.47 
  100 0.28 0.41 0.43 0.16 0.36 0.38 0.32 0.45 0.47 
India            
 RMSE 85 410.9 320.6 457.7 275.9 262.7 281.1 250.4 256.1 247.0
 90 294.9 307.8 311.1 260.3 256.2 276.8 248.1 252.3 249.0
 95 291.6 305.0 304.6 255.3 256.5 265.0 247.7 254.2 251.4
 100 286.8 301.6 302.7 246.6 257.3 251.2 245.2 245.9 247.2
                       
 CE 85 0.81 0.89 0.78 0.91 0.91 0.90 0.93 0.92 0.93 
 90 0.90 0.89 0.89 0.92 0.91 0.91 0.93 0.93 0.93 
 95 0.90 0.89 0.89 0.92 0.91 0.91 0.93 0.92 0.93 
 100 0.90 0.89 0.89 0.93 0.92 0.93 0.92 0.92 0.93 
                       
 PI 85 0.61 0.92 0.90 0.81 0.93 0.96 0.85 0.94 0.97 
 90 0.79 0.92 0.95 0.83 0.94 0.96 0.85 0.95 0.97 
 95 0.80 0.92 0.95 0.84 0.94 0.96 0.85 0.95 0.97 
  100 0.80 0.92 0.95 0.85 0.94 0.97 0.84 0.94 0.97 

Note: * “1, 2, and 3” denote one-, two-, and three-step-ahead forecasts; 1 “V” stands for the percentage of 1098 
total variance. 1099 

1100 
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Table 16.  Multiple-step predictions for Wuxi and India series using LR, K-NN, and 1101 

ANN with PCA2 1102 

Watershed 
Performance 

index 
V (%)1 

LR K-NN ANN 
1* 2* 3* 1 2 3 1 2 3 

Wuxi            
 RMSE 85 10.8 11.6 11.6 11.5 12.2 12.7 10.6 11.5 11.6 
 90 10.8 11.6 11.6 11.5 12.2 12.7 10.6 11.5 11.6 
 95 10.9 11.9 12.0 11.8 12.4 12.6 10.6 11.5 11.6 
 100 10.9 11.9 12.0 11.8 12.4 12.6 10.6 11.5 11.6 
                       
 CE 85 0.14 0.01 0.00 0.02 -0.11 -0.19 0.16 0.02 0.00 
 90 0.14 0.01 0.00 0.02 -0.11 -0.19 0.16 0.02 0.00 
 95 0.12 -0.05 -0.07 -0.03 -0.14 -0.18 0.17 0.02 0.00 
 100 0.12 -0.05 -0.07 -0.03 -0.14 -0.18 0.16 0.02 0.00 
              
 PI 85 0.30 0.44 0.47 0.20 0.37 0.37 0.32 0.44 0.47 
 90 0.30 0.44 0.47 0.20 0.37 0.37 0.32 0.45 0.47 
 95 0.28 0.41 0.43 0.16 0.36 0.38 0.32 0.45 0.47 
  100 0.28 0.41 0.43 0.16 0.36 0.38 0.32 0.45 0.47 
India                     
 RMSE 85 482.9 413.0 800.6 254.7 248.9 253.1 241.7 247.2 249.8
 90 352.8 357.8 600.6 253.1 249.4 250.4 245.0 247.9 247.8
 95 326.5 331.9 376.1 247.8 246.1 246.1 243.5 249.0 244.8
 100 286.8 301.6 302.7 246.6 257.3 251.2 247.6 252.3 247.1
                       
 CE 85 0.73 0.80 -2.74 0.92 0.93 0.93 0.93 0.93 0.93 
 90 0.86 0.85 0.58 0.93 0.93 0.93 0.93 0.93 0.93 
 95 0.88 0.87 0.84 0.93 0.93 0.93 0.93 0.93 0.93 
 100 0.90 0.89 0.89 0.93 0.92 0.93 0.93 0.93 0.93 
              
 PI 85 0.44 0.86 -1.75 0.84 0.95 0.97 0.86 0.95 0.97 
 90 0.70 0.89 0.81 0.85 0.95 0.97 0.86 0.95 0.97 
 95 0.74 0.91 0.93 0.85 0.95 0.97 0.86 0.95 0.97 
  100 0.80 0.92 0.95 0.85 0.94 0.97 0.85 0.95 0.97 

 1103 
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Table 17. Optimal p RCs for model inputs at various forecasting horizons 1105 

Watershed Model 
Prediction 
horizons 

 Supervised filter (SSA1)  Unsupervised filter (SSA2)

 Optimal p RCs RMSE  Optimal p RCs RMSE 

Wuxi                 
 LR 1  1*  2* 6.01  1  2 6.01 
  2  1  5 7.73  1  5 7.73 
  3  1  8.40  1  8.40 
 K-NN 1  1  8.02  2  3 7.17 
  2  1  8.41  2  4 8.03 
  3  1  9.99  2   9.69 
 ANN 1  1  2  3 4.43  1  2  3 4.43 
  2  1  5 5.82  1  5 5.57 
    3   1  6.42   1   6.25 
Zhenwan         
 LR 1  1  2  3 7.19  1  2  3 7.19 
  2  1  7  2 7.99  1  2  7 7.99 
  3  1  5 8.81  1  5 8.81 
 K-NN 1  1  2  3  4  5 9.84  3  6 7.64 
  2  1  9.72  3  6 8.95 
  3  1  10.33  2  5 10.24 
 ANN 1  1  2  3  4 5.55  5  6  7 5.02 
  2  1  7  2 5.84  3  7 5.51 
    3   1  5 6.58   3  7 5.56 
India         
 LR 1  2  1  3  4 185.95  1  2  3  4 185.95 
  2  1  2 237.85  1  2 237.85 
  3  3  4  2  7  1 299.14  1  2  6 287.16 
 K-NN 1  2  1  3  4  5 236.90  1  2  5  6 236.39 
  2  1  2 247.44  1  2  5 242.65 
  3  3  4  2  7 249.43  1  2  5  6 243.86 
 ANN 1  2  166.58  1  7 164.70 
  2  1  2  7 173.57  1  2  7 166.30 
  3  3  4  2  7  1 235.59  1  5  7 172.56 
Zhongxian              
 LR 1  1  2 40.06  1  2 40.06 
  2  1  2  6 41.87  1  6 39.44 
  3  3  6  2  4  1 58.29  1  5 41.53 
 K-NN 1  1  2 51.78  1  2 51.78 
  2  1  2 53.86  1  2  3 53.32 
  3  3  6  2 54.15  2  3 53.16 
 ANN 1  1  2  3 38.39  1  5  6 34.09 
  2  1  44.49  1  5  6 39.45 
    3   3  6 46.14   1  5 34.94 

Note:* the numbers of “1,  2” stand for RC1 and RC2, and these numbers in the SSA1 column is in a 1106 
descending order of CCFs shown in Figure 6.12. 1107 

1108 
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Table 18. Model performances at three forecasting horizons using MANN and ANN with the 1109 

SSA2 1110 

Watershed Model 
RMSE  CE  PI 

1 2 3  1 2 3  1 2 3 

WuXi                         
 ANN 4.43 5.57 6.25  0.84 0.78 0.70  0.87 0.88 0.84 
 MANN 3.63 4.32 3.93  0.90 0.86 0.89  0.92 0.92 0.94 
Zhenwan             
 ANN 5.02 5.51 5.56  0.81 0.75 0.71  0.88 0.85 0.84 
 MANN 3.18 3.20 3.31  0.92 0.92 0.91  0.95 0.95 0.95 
India             
 ANN 164.7 166.3 172.6  0.97 0.97 0.97  0.95 0.98 0.99 
 MANN 144.2 145.1 157.4  0.98 0.98 0.97  0.95 0.98 0.99 
Zhongxian             
 ANN 34.09 39.45 34.94  0.84 0.71 0.83  0.84 0.80 0.92 
  MANN 28.58 32.24 32.69  0.86 0.82 0.82  0.86 0.88 0.91 

 1111 
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 1113 

Table 19. RMSE of the LR model coupled with SSA2 using various L  1114 

Watershed 
Prediction 
horizons 

L  in SSA 
3 4 5 6 7 8 9 10 

Wuxi          
 1 6.13 5.94 6.01 6.41 5.83 5.81 5.61 5.51 
 2 7.79 7.62 7.73 8.14 7.71 7.75 7.62 7.66 
 3 11.76 8.61 8.40 9.04 9.23 8.72 8.56 8.62 
Zhenwan          
 1 7.74 7.49 7.31 7.29 7.19 6.99 7.08 6.84 
 2 10.27 8.42 9.04 8.19 7.99 7.67 7.43 7.61 
  3 11.28 10.66 10.06 9.33 8.81 8.91 9.42 9.28 

 1115 

 1116 




