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Learning From Experience, Simply 

Abstract 

There is substantial academic interest in modeling consumer experiential learning. How-

ever, (approximately) optimal solutions to forward-looking experiential learning problems are 

complex, limiting their behavioral plausibility and empirical feasibility. We propose that con-

sumers use cognitively simple heuristic strategies. We explore one viable heuristic – index strat-

egies, and demonstrate that they are intuitive, tractable, and plausible. Index strategies are much 

simpler for consumers to use but provide close-to-optimal utility. They also avoid exponential 

growth in computational complexity, enabling researchers to study learning models in more-

complex situations. 

Well-defined index strategies depend upon a structural property called indexability. We 

prove the indexability of a canonical forward-looking experiential learning model in which con-

sumers learn brand quality while facing random utility shocks. Following an index strategy, con-

sumers develop an index for each brand separately and choose the brand with the highest index. 

Using synthetic data, we demonstrate that an index strategy achieves nearly optimal utility at 

substantially lower computational costs. Using IRI data for diapers, we find that an index strate-

gy performs as well as an approximately optimal solution and better than myopic learning. We 

extend the analysis to incorporate risk aversion, other cognitively simple heuristics, heterogene-

ous foresight, and an alternative specification of brands. 

 
Keywords:  forward-looking experiential learning, index strategies, structural models, cogni-

tive simplicity, heuristics, multi-armed bandit problems, restless bandit problems, 

indexability.



Learning from Experience, Simply 

1 
 

1. Introduction and Motivation 

Considerable effort in marketing is devoted to studying the dynamics by which consum-

ers learn from their consumption experience (e.g., Roberts and Urban 1988; Erdem and Keane 

1996; Ching, Erdem and Keane 2013a). As an example, imagine new parents who have to shop 

for diapers, perhaps with little pre-existing knowledge about this category. As these parents find 

out more about diaper brands through usage experience, they face a strategic choice. They can 

exploit their knowledge to date and select the most appealing brand. They can also explore fur-

ther, which may entail sampling a currently-less-than-ideal brand, so that they can make a more-

informed decision in the future.  

Researchers have developed theory-rich models of optimizing forward-looking consum-

ers who balance exploitation with exploration. Pillars of these models include an explicitly speci-

fied description of consumer utility and an explicitly specified process by which consumers 

learn. Most models assume consumers choose brands by solving a dynamic program which max-

imizes expected total utility taking learning into account. Researchers argue that theory-based 

models are more likely to uncover insight and be invariant for new-domain policy simulations 

(Chintagunta et al. 2006, p. 604). However, these advantages often come at the expense of diffi-

cult problems and time-consuming solution methods. 

The dynamic programs for forward-looking experiential learning models are, themselves, 

extremely difficult to solve optimally. We cite evidence below that the problems are PSPACE-

hard – they are at least as hard to solve as any problem that requires PSPACE computational 

memory.1 This intractability presents both practical and theoretical challenges. Practically, re-

                                                 
1 PSPACE is the set of problems which use polynomial-sized memory—memory proportional to |Ω|, where |Ω| is 
a measure of the size of the problem and ݊ can be extremely large. PSPACE-hard problems are at least as hard as 
NP-hard problems, which are themselves suspected of being unsolvable in polynomial time. 
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searchers have had to rely on approximate solutions. Without explicit comparisons to the optimal 

solution, we do not know the impact of the approximations on estimation results. Moreover, the 

well-known “curse of dimensionality” prevents researchers from investigating problems with 

moderate or large numbers of brands or marketing variables, whereby even approximate solu-

tions may not be feasible. Theoretically, it is reasonable to posit that a consumer cannot solve op-

timally in his or her head a dynamic problem that requires vast amounts of memory and compu-

tation. In fact, well-developed theories in marketing, psychology, and economics suggest that ob-

served consumer decision rules are often cognitively simple (e.g., Payne et al. 1988, 1993; 

Gigerenzer and Goldstein 1996). 

We propose that consumers use cognitively simple heuristics to solve learning problems. 

As an example of the class of cognitively simple heuristics, we investigate an attractive candi-

date heuristic, index strategies, whereby a consumer develops a numerical score, or an index, for 

each brand separately and then chooses the brand with the largest index. Index strategies are a 

solution concept that decomposes an intractable problem into a set of tractable sub-problems. We 

retain basic pillars of structural modeling such as an explicit description of the decision process 

and an assumption that consumers seek to optimize. We posit in addition a cost to solving com-

plex problems (e.g., Shugan 1980; Johnson and Payne 1985). We assume the consumer chooses 

a strategy that optimizes expected discounted utility minus this cognitive cost. While the cost of 

cognitive complexity might be observable in the laboratory, say through response latency, it is 

unobservable in vivo. Instead, we identify domains where index strategies are nearly optimal in 

the sense of maximizing expected discounted utility. If, in such domains, index strategies are 

substantially simpler for the consumer to implement, then it is likely that savings in cognitive 

costs exceed the slight deviation from optimality and, hence, provide the consumer with greater 
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utility net of cognitive costs. In the special cases where index strategies provide optimal expected 

utility, we argue that index strategies are superior as a description of forward-looking learning. 

Following the same logic, we establish conditions where myopic learning strategies (i.e., exploit-

ing posterior beliefs without exploration) suffice to model consumer behavior. 

To motivate the viability of index strategies as a descriptive model of consumers we (1) 

establish whether well-defined index strategies exist, (2) explain why they are intuitive and 

hence might be used by consumers, (3) investigate when index strategies are (near) optimal solu-

tions to the reduced problem of utility maximization, and whether they are computationally sim-

pler than the approximately optimal solution,2 and (4) test whether index strategies explain ob-

served consumer behavior at least as well as alternative models.  

We address #1 analytically by proving the “indexability” property of canonical forward-

looking experiential learning models. (Indexability is hard to establish in general.) We address 

#2 by examining the form and properties of index strategies and arguing they are behaviorally in-

tuitive relative to the approximately optimal solution assumed in most forward-looking learning 

models. We address #3 using synthetic data. We address #4 by estimating alternative models us-

ing IRI data on the purchase of diapers, a product category where we expect to see forward-

looking experiential learning.  

Our basic hypothesis is that consumers can use a cognitively simple index strategy to 

solve forward-looking experiential learning problems. Figure 1 is a conceptual summary of our 

hypothesis. We demonstrate viability by showing that there exists a well-defined index that satis-

fies the four criteria. We do not argue that consumers actually use this well-defined index. Rather 

we argue that the well-defined index is a better “as if” description than the (approximately) op-

                                                 
2 We use computational simplicity as a surrogate for cognitive simplicity in this paper. 
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timal solution strategy.3  

We first describe a canonical learning problem. We next review briefly literatures that 

address learning dynamics, cognitive simplicity, and related optimization problems. We then ex-

amine index strategies from the perspectives of theory, synthetic data, and empirical estimation. 

We close with extensions. 

[Insert Figure 1 about here.] 

2. Canonical Forward-Looking Experiential Learning Problem 

 We consider the following canonical forward-looking experiential learning problem. A 

consumer sequentially chooses from a set ܣ containing ܬ brands. Let ݆ index brands and ݐ index 

purchase occasions. The consumer’s utility, ݑ௧, from choosing ݆ at ݐ has three components. The 

first component is quality, ݍ௧, which can be defined to include enjoyment, fit with needs, 

weighted sum of brand features, etc. Quality is drawn independently from a distribution 

;௧ݍሺܨ   distributions are independent across ݆. This independenceܨ . Theߠ ሻ with parametersߠ

assumption rules out learning about a brand by choosing another. The consumer, however, does 

not know the value of the parameters ߠ and observes quality draws to infer the value of ߠ. A 

quality draw of a brand is only realized after the consumer has chosen that brand.        

 The second component of utility is a set of observable shocks, ݔԦ௧, such as advertising, 

price, promotion, and other control variables that are observable to the researcher and consumer.4 

For simplicity, we assume that observable shocks affect utility directly, although the model is ex-

tendable to indirect effects through the quality component as in Erdem and Keane (1996), Ack-
                                                 
3 An empirical search among heuristics would risk exploiting random variation in the data. Instead we demonstrate 
that an index strategy, and at least one other cognitively simple heuristic, perform well on the data. 
4 Our consumer learning model treats observable utility shocks as exogenous. However, the same insight applies to 
endogenous observable utility shocks as long as (1) each “atomic” consumer’s learning does not affect these shocks 
(e.g., a brand’s advertising expenditure), and (2) these shocks do not directly convey quality information.  
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erberg (2003), and Narayanan et al. (2005). The third component of utility is an unobservable 

shock, ߳௧, which represents random fluctuations in realized utility that are observed by the con-

sumer, but not by the researcher.  

 Consumer decision-making depends on quality and the weighted sum of observable and 

unobservable shocks, ߚԦ′ݔԦ௧ 	 ߳௧, where ߚԦ is a vector of weight parameters. We refer to this 

weighted sum as utility shocks. We let utility shocks be drawn from a joint distribution, 

,Ԧ௧ݔሺܪ ߳௧; ߶ሻ, independently over purchase occasions with parameters, ߶.5 The ܪ’s are inde-

pendent across ݆. The consumer knows the distribution ܪ and the value of ߶, observes the cur-

rent utility shocks prior to making a purchase decision, but does not know future realizations of 

the shocks. Notice that, unlike the quality draws, the utility shocks of a brand are realized regard-

less of whether the consumer has chosen that brand. We make the conservative assumption that 

utility shocks are independent of ݍ௧ and thus do not help the consumer learn quality directly. 

However, utility shocks do shape learning indirectly by varying the consumer’s utility from ex-

ploitation, which in turn affects incentive for exploration.  

In summary, we write the consumer’s utility from choosing brand ݆ at purchase occasion 

 :as follows ݐ

௧ݑ (1) ൌ ௧ݍ  Ԧ௧ݔ′Ԧߚ  ߳௧ . 

For ease of exposition, in the main analysis, we assume that the consumer is risk neutral. We ex-

tend the model to incorporate risk aversion in §8.1. 

We model each consumer as if the consumer uses Bayes Theorem to update beliefs about 

                                                 
5 Observable shocks can be independently distributed over purchase occasions for a number of reasons. For exam-
ple, firms may intentionally randomize price promotions in response to competition. Such “mixed strategies” can 
generate observed prices that appear to be independently drawn at each purchase occasion from a known distribution 
(Narasimhan 1988).  
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the quality parameter ߠ after each consumption experience (assumed to occur after choice but 

before the next choice). Let ݏ௧ be the information set that summarizes the consumer’s beliefs 

about ߠ at purchase occasion ݐ. At ݐ ൌ 0, beliefs about ߠ are summarized by a prior distribu-

tion, ܤሺߠ;  ௧ consumptionݐ  is based on all relevant prior experience. After theݏ ሻ, whereݏ

experience the consumer’s posterior beliefs are summarized by ܤ௧ሺߠ;   andܨ ௧ሻ. When bothݏ

prior beliefs are normal, Bayesian updating is naturally conjugate. We obtain ݏ௧ ൌ ሺ̅ߤ௧, -ത௧ሻ usߪ

ing standard updating formulae. The parameters of posterior beliefs, ݏ௧ ∈ Ω and the realized util-

ity shocks, ݔԦ௧ ∈ and ߳௧ ߕ ∈  summarize the state of information about brand ݆. The collection ,ܧ

of brand-specific states, ሺݏԦ௧, ,Ԧ௧ݔ Ԧ߳௧ሻ ൌ ሺݏଵ௧, ,ଶ௧ݏ … , ,௧ݏ ,Ԧଵ௧ݔ ,Ԧଶ௧ݔ … , ,Ԧ௧ݔ ߳ଵ௧, ߳ଶ௧, … , ߳௧ሻ represents 

the set of states relevant to the decision problem at ݐ.  

 We seek to model a decision strategy, Π: ሺΩ ൈ ߕ ൈ ሻܧ →  that maps the state space to ,ܣ

the choice set. Without further assumptions, the consumer must choose a decision strategy to 

maximize expected discounted utility: 

(2) ܸሺݏԦ௧, ,Ԧ௧ݔ Ԧ߳௧ሻ ൌ max
ஈ

ॱஈ ߜఛି௧൫ݍఛ  Ԧఛݔ′Ԧߚ  ߳ఛ൯

ஶ

ఛୀ௧

|ሺݏԦ௧, ,Ԧ௧ݔ Ԧ߳௧ሻ൩	, 

where ߜ is the discount factor. The expectation ॱ is taken over the stochastic process generated 

by the decision strategy (in particular, the transition between states that may depend on the con-

sumer’s brand choice). The infinite horizon can be justified either by consumption over a long 

horizon or by the consumer’s subjective belief that the decision problem will end randomly. 

 The optimal solution to the consumer’s decision problem can be characterized as the so-

lution to the Bellman equation  

(3) ܸሺݏԦ௧, ,Ԧ௧ݔ Ԧ߳௧ሻ ൌ max
∈

൛ߚԦ′ݔԦ௧  ߳௧  ॱሾݍ௧  ,Ԧ௧ାଵݏሺܸߜ ,Ԧ௧ାଵݔ Ԧ߳௧ାଵሻ|ݏԦ௧, ݆ሿൟ	. 
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While the Bellman equation is conceptually simple, the full solution is computationally difficult 

because, even after integrating out the utility shocks ݔԦ௧ and Ԧ߳௧, it evolves on a state space of size 

|Ω|, where |Ω| is the number of elements in Ω. Not only is |Ω| exponential in the number of 

brands ܬ, it becomes extremely large if Ω contains many elements, even when the optimal solu-

tion is approximated by choosing discrete points to represent Ω, as is common in the literature. 

We provide an illustrative example in §4. 

3. Related Literatures 

 Before we introduce index strategies, it is helpful to review concepts from literatures on 

learning dynamics, cognitive simplicity, and related optimization problems. 

3.1. Learning Dynamics 

 Many influential papers study consumer learning dynamics and apply learning models to 

explain or forecast consumer choices in problems related to the canonical learning problem. For 

example, using data from automotive consumers, Roberts and Urban (1988) estimate a model in 

which consumers use Bayesian learning to integrate information from a variety of sources to re-

solve uncertainty about brand quality. Erdem and Keane (1996) build upon the concept of Bayes-

ian learning and include forward-looking consumers who tradeoff exploitation with exploration. 

For frequently-purchased goods, their model fits data better than a no-learning model (reduced 

form of Guadagni and Little 1983) and the myopic learning model of Roberts and Urban.  

These papers stimulated a line of research that estimates the dynamics of consumer learn-

ing – for a comprehensive review see Ching et al. (2013a). Some models focus on myopic con-

sumers with Bayesian learning (e.g., Narayanan et al. 2005; Mehta et al. 2008; Chintagunta et al. 

2009; Narayanan and Manchanda 2009; Ching and Ishihara 2010, 2012), while others explicitly 

model forward-looking consumers (e.g., Ackerberg 2003; Crawford and Shum 2005; Erdem et 
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al. 2005, 2008). The computational complexity of forward-looking learning has been one of the 

reasons that some applications assume myopic learning. However, if a theory is accurately de-

scriptive, more-complex forward-looking models should improve policy simulations. 

Because forward-looking choice problems that involve continuous state space generally 

cannot be solved optimally, significant effort has been spent on developing approximate solu-

tions. For example, Keane and Wolpin (1994) use Monte Carlo integration and interpolation, 

Rust (1997a) introduces a randomization approach, and Imai et al. (2009) develop an estimator 

that combines dynamic programming solutions with a Bayesian Markov chain Monte Carlo algo-

rithm.6 While these solution methods vary in speed, all attempt to approximate the Bellman 

equation to the overall problems and thus may suffer from the curse of dimensionality (|Ω|).  

At the same time of technical developments, there is a growing recognition of the need 

for richer theories of consumer behavior. For example, Chintagunta et al. (2006, p. 614) suggest 

that “the future development of structural models in marketing will focus on the interface be-

tween economics and psychology.”  

3.2. Cognitive Simplicity 

 Parallel literatures in marketing, psychology, and economics provide evidence that con-

sumers use decision rules that are cognitively simple. In marketing, Payne et al. (1988, 1993) and 

Bettman et al. (1998) present evidence that consumers use simple heuristic decision rules to 

evaluate products. For example, under time pressure, consumers often use conjunctive rules (re-

quire a few “must have” features) rather than more complicated compensatory rules. Using simu-

lated thinking costs with “elementary information processes,” Johnson and Payne (1985) illus-

                                                 
6 There is a related literature on neuro-dynamic programming, which uses neural networks and other approximation 
architectures to overcome the curse of dimensionality (Bertsekas and Tsitsiklis 1996). 
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trate how heuristic decision rules can be rational when balancing utility and thinking costs. 

Methods to estimate the parameters of cognitively simple decision rules vary, but such rules of-

ten predict difficult consumer decisions as well as or better than compensatory rules (e.g., Bröder 

2000; Gilbride and Allenby 2004; Kohli and Jedidi 2007; Yee et al. 2007; Hauser et al. 2010). 

 Building on Simon’s (1995, 1956) theory of bounded rationality, researchers in psychol-

ogy argue that human beings use cognitively simple rules that are “fast and frugal” (e.g., 

Gigerenzer and Goldstein 1996; Martignon and Hoffrage 2002). Fast and frugal rules evolve 

when consumers learn decision rules from experience. Consumers continue to use the decision 

rules because they lead to good outcomes in familiar environments (Goldstein and Gigerenzer 

2002). For example, when judging the size of cities, “take the best” often leads to sound judg-

ments.7 In 2010-2011, two issues of Judgment and Decision Making were devoted to the recog-

nition heuristic alone (e.g., Marewski et al. 2010).  

 The costly nature of cognition has also received attention in economics (see Camerer 

2003 for a review). A line of research looks to extend or revise standard dynamic decision-

making models with the explicit recognition that cognition is costly. For example, Gabaix and 

Laibson (2000) empirically test a behavioral solution to decision-tree problems, whereby deci-

sion-makers actively eliminate low-probability branches to simplify the task. Gabaix et al. (2006) 

develop a “directed cognition model,” in which a decision-maker acts as if there is only one 

more opportunity to search. In the laboratory, the directed cognition model explains subjects’ 

behavior better than a standard search model with costless cognition. Houser, Keane, and McCa-

be (2004) provide further evidence that consumers might use heuristic rules to solve dynamic 

programs.  

                                                 
7 The take-the-best rule is, simply, if you recognize one city and not the other it is likely larger; if you recognize 
both use the most diagnostic feature to make the choice. 
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 Cognitive process mechanisms are debated in the marketing, psychology, and economics 

literatures. Our hypothesis, that consumers use heuristics such as index strategies, need only the 

observation that consumers favor decision rules that are cognitively simple and that such rules 

often lead to good outcomes. The simplicity hypothesis assumes that consumers trade off utility 

gains versus cognitive costs, but does not require explicit measurement of cognitive costs.  

3.3. Cognitively Simple Solutions to Complex Optimization Problems 

 If a ball player wants to catch a ball that is already high in the air and traveling directly 

toward the player, then all the player need do is gaze upon the ball, start running, and adjust his 

or her speed to maintain a constant gaze angle with the ball (Hutchinson and Gigerenzer 2005, p. 

102).8 The gaze heuristic is an example where a cognitively simple rule accomplishes a task that 

might otherwise involve solving difficult differential equations. But the principle is more gen-

eral: simple solutions often perform well in complex optimization problems. 

 There are many examples in marketing and economics where descriptive decision rules 

solve more-complex problems.9 In domains such as consumer-budget allocation, the choice of 

which information source to search, and the evaluation of products via agendas, heuristic solu-

tions appear to describe consumer behavior well (Hauser 1986; Hauser and Urban 1986; Hauser, 

et al. 1993). Rust (1997b) argues that it is likely consumers solve problems requiring an “infeasi-

bly large number of calculations” by using heuristic solutions such as decomposition into sub-

problems. He states that “[t]he challenge is to recognize whether or not a problem is nearly de-

composable, and if so, to identify its approximately independent sub-problems, [and] determine 

whether they can be solved separately (p. 18).” This view is closely related to our index approach 

                                                 
8 Professional athletes use more-complicated heuristics that give them greater range, for example, in baseball, pre-
positioning based on prior tendencies and the expected pitch, and the sound as the bat hits the ball. 
9 Of course, the empirical performance of descriptive solutions is not guaranteed. Gilovich et al. (2002) provide a 
comprehensive survey of human decision heuristics and their possible biases. 
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to complex forward-looking learning problems.  

3.4. Related Optimization Problems: Bandit Problems and Index Solutions 

 The model we formulate in §2 is closely related to the multi-armed bandit problem, a 

prototypical problem that illustrates the fundamental tradeoff between exploration and exploita-

tion in sequential decision making under uncertainty. In a bandit problem, the decision-maker 

faces a finite number of choices, each of which yields an uncertain payoff. The decision-maker 

must make choices, observe outcomes, and update beliefs with a sequential decision rule. The 

decision-maker seeks to maximize expected discounted values.  

 The bandit problems was first formulated by the British in World War II, and, for over 

thirty years, no simple solution was known. Then Gittins and Jones (1974) demonstrated a sim-

ple index solution – develop an index for each “arm” (i.e., each choice alternative) by solving a 

sub-problem that involves only that arm, then choose the arm with the largest index. This index 

solution reduces an exponentially complex problem to a set of one-dimensional problems. Gittins 

and Jones (1974) proved the surprising result that the index solution is the optimal solution to the 

classic bandit problem.10 

 However, the Gittins-Jones’ striking result comes at the cost of a strict assumption that 

the states of the non-chosen choice alternatives do not evolve. When this assumption is violated, 

say due to random shocks, Gittins’ index is no longer guaranteed to be optimal. Such problems 

are known as restless bandits (Whittle 1988) and, in general, are computationally intractable 

(Papadimitriou and Tsitsiklis 1999). In his seminal paper, Whittle (1988) proposed a tractable 

                                                 
10 Hauser et al. (2009) apply Gittins’ index to derive optimal “website morphing” strategies that match website de-
sign with customers’ cognitive styles. Urban et al. (2014) field-test morphing for AT&T’s banner advertising on 
CNET and General Motors’ banner advertising on a variety of websites. Other well-known applications of index 
strategies include job-match-learning (Jovanovic 1979; Miller 1984) and pharmaceutical-product learning (Dickstein 
2012). See Ching et al. (2013a) for a survey. 
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heuristic solution. The solution generalizes Gittins’ index such that the problems can be solved 

optimally or near optimally by associating an index, referred to as Whittle’s index, separately 

with each alternative and choosing the alternative with the largest index.  

 The existence of well-defined index solutions relies on a structural property called index-

ability, which is not guaranteed for all restless bandit problems. Whittle (1988, p. 292) wrote that 

“One would very much like to have simple sufficient conditions for indexability; at the moment, 

none are known” (see also Niño-Mora 2001). Gittins et al. (2011, p. 154) also lament that “the 

question of indexability is subtle, and a complete understanding is yet to be achieved.” 11 In an 

important class of marketing models, choice models, consumer utility tends to be restless over 

purchase occasions. For example, in most random-utility choice models there is an idiosyncratic 

“error term” as well as other changes in the choice environment (e.g., McFadden 1986).12 With-

out further study, we do not know whether an index strategy is a good solution to such restless 

problems. 

We recognize that the canonical forward-looking experiential learning problem belongs 

to the general class of restless bandits because of the presence of utility shocks. In §5 we prove 

that the problem is indexable and, thus, a well-defined index solution exists in the sense of Whit-

tle (1988). Moreover, we explore the key properties of such an index, which shed light on how 

consumers may behave in solving the learning problem.  

4. An Index Strategy in the Absence of Utility Shocks 
                                                 
11 The indexability of restless bandits is problem-specific. For example, Niño-Mora (2001) takes the achievable re-
gion approach (Bertsimas and Niño-Mora 2000) and establishes the indexability of a class of restless bandit prob-
lems with linear performance measures (e.g., queue input control). Glazebrook, et al. (2006) show that a special 
class of restless bandit problems – stochastic scheduling – is indexable. To our knowledge, no general result analo-
gous to Gittins’ Index Theorem exists as of today. 
12 The error term has been modeled as an unobserved (to the researcher) state variable in structural applications 
(Rust 1994, Chapter 51, Sections 3.1 to 3.2). This modeling approach “provides a natural way to ‘rationalize’ dis-
crepancies between observed behavior and the predictions of the discrete decision process model” (Rust 1994, p. 
3101). This is different from the “optimal choice plus noise/measurement error” approach. 
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 The learning problem we examine includes utility shocks, but it is easier to illustrate the 

intuition of index strategies using a problem without utility shocks. Temporarily assume 

Ԧ௧ݔ ൌ ߳௧ ൌ 0 for all ݆ and ݐ, although the same result holds when there is no intertemporal varia-

tion in ݔԦ௧ and ߳௧. In this special case, the consumer’s decision problem is a classic multi-arm 

bandit. 

 Gittins’ insight is as follows. To evaluate a brand ݆, the consumer thinks as if he or she is 

choosing between this brand and a reward ߣ that is fixed for all future purchase occasions. The 

consumer thus solves a sub-problem at each purchase occasion – the consumer can either sample 

this brand to gain more information about it, or exploit the fixed reward ߣ. In the latter case, the 

consumer’s belief about brand ݆ ceases to evolve, such that ݏ,௧ାଵ ൌ  ௧. The optimal solution toݏ

this sub-problem is determined by a greatly simplified version of the Bellman equation:  

(4) ܸ൫ݏ௧, ൯ߣ ൌ max൛ߣ  ,௧ݏ൫ܸߜ ,൯ߣ ॱൣݍ  ,,௧ାଵݏሺܸߜ  .	௧൧ൟݏ|ሻߣ

Notice that each sub-problem only depends on the state evolution of a single brand, ݆. The sub-

problem is much simpler than the full problem specified in Equation 3.  

 Gittins’ index, ܩሺݏ௧ሻ, is defined as the smallest value of ߣ such that the consumer at 

purchase occasion ݐ is just indifferent between experiencing brand ݆ and receiving the fixed re-

ward. That is, we obtain ܩሺݏ௧ሻ by equating the two terms inside the maximization operator of 

Equation 4. Gittins proposed that ܩሺݏ௧ሻ could be used as a measuring device for the value of ex-

ploring brand ݆ – if there is more uncertainty about a brand left to explore, the consumer will 

demand a higher fixed reward to be willing to stop exploration. Naturally, Gittins’ index is up-

dated when new information arrives. 

 Gittins’ surprising result is the Index Theorem. The optimal solution is to choose the 
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brand with the highest index at each purchase occasion. A computationally difficult problem has 

thus been decomposed into ܬ simpler sub-problems. 

Index Theorem (Gittins and Jones 1974). The optimal decision strategy when there are 

no utility shocks is ΠீሺݏԦ௧ሻ ൌ  .௧൯ݏ൫ܩ∈ݔܽ݉݃ݎܽ

Figure 2 illustrates intuitive properties of Gittins’ index. We consider one brand. The sol-

id line plots one realization of Gittins’ index as it evolves when the brand is chosen repeatedly. 

The dashed line plots the consumer’s posterior mean quality belief. It is updated by brand expe-

rience and converges toward the true brand quality. Myopic consumers would exploit experience 

and choose the brand that yields the highest posterior mean quality. Forward-looking consumers 

may want to explore further. The dotted curve, which is simply the difference between Gittins’ 

index and the posterior mean quality, measures the value of exploration. This curve declines 

smoothly with experience because the value of exploration decreases as the consumer learns 

more about brand quality. When we plot Gittins’ index as a function of the consumer’s posterior 

quality uncertainty ߪത௧ (not shown), it is also intuitive – the index increases with ߪത௧ because the 

value of exploration increases with the remaining amount of quality uncertainty. Figure 2 and the 

simple relationship between Gittins’ index and posterior quality beliefs suggest that a consumer 

might intuit something close to the dotted curve if there were no utility shocks.  

[Insert Figure 2 about here.] 

5. An Index Strategy in the Presence of Utility Shocks 

 We now allow utility shocks. Observable shocks ݔԦ௧ include effects that researchers ob-

serve and model, such as changes in advertising, promotion, or price. Unobservable shocks ߳௧ 

include effects that researchers do not observe and which do not provide a signal about quality. 
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The presence of unobservable shocks is central to many empirical consumer choice models. Be-

cause shocks enter the utility function regardless of the consumer’s decisions, the consumer may, 

in any purchase occasion, switch among brands.13  

 When the model includes utility shocks, the Gittins-Jones Index Theorem no longer ap-

plies because the states of non-chosen brands do not remain constant. With shocks, the consum-

er’s problem belongs to the class of restless-bandit problems as introduced by Whittle (1988). In 

general, such optimization problems are PSPACE-hard (Papadimitriou and Tsitsiklis 1999, The-

orem 4) making the problem extremely difficult, if not infeasible, to solve and making it implau-

sible that the consumer would use a solution strategy based on Equation 3. Among other difficul-

ties, PSPACE-hard problems require extremely large memory – a particularly scarce resource for 

consumers (e.g., Bettman 1979, p. 140; Lindsay and Norman 1977, p. 306). We develop a theo-

retical solution to this problem in this section. We will show that the canonical forward-looking 

experiential learning problem is indexable and index strategies have intuitive properties.  

5.1. The Canonical Forward-Looking Experiential Learning Problem is Indexable 

 Whittle (1988) proposed a solution that generalizes Gittins’ index. At each purchase oc-

casion, to evaluate a brand ݆, the consumer thinks as if he or she must choose between brand 

݆	and a reward ߣ that is fixed for all future purchase occasions. The Bellman equation for the ݆௧ 

sub-problem, which now includes utility shocks, becomes 

(5) ܸ൫ݏ௧, ,Ԧ௧ݔ ߳௧, ൯ߣ ൌ

                                                 
13 Even when there is no learning, a typical empirical model of consumer choices may include a shock, or an idio-
syncratic error, ߳௧, that is treated as unobservable by researchers. Without this shock, the model would predict that 
the consumer makes the same choice over purchase occasions if all other observable factors remain constant. In the 
context of learning, incorporating this shock allows for switching among brands even when the consumer has 
learned much about brand quality.   
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			max൛ߣ  ,௧ݏॱൣܸ൫ߜ ,Ԧ,௧ାଵݔ ߳,௧ାଵ, ,൯൧ߣ Ԧ௧ݔ′Ԧߚ  ߳௧  ॱൣݍ  ,,௧ାଵݏሺܸߜ ,Ԧ,௧ାଵݔ ߳,௧ାଵ, ௧൧ൟݏ|ሻߣ .  

The index is defined as the smallest value of ߣ such that the consumer at purchase occasion ݐ is 

just indifferent between choosing brand ݆ and receiving the fixed reward. For such an index to be 

well-defined and meaningful, the indexability condition need to be satisfied (Whittle 1988). Let 

ܵ௧ሺߣሻ ⊆ Ω ൈ ߕ ൈ  :is optimal ݐ  at purchase occasionߣ be the set of states for which choosing ܧ

(6) ܵ௧൫ߣ൯ ൌ 	 ൛൫ݏ௧, ,Ԧ௧ݔ ߳௧൯ ∈ Ω ൈ ߕ ൈ :ܧ ߣ  ,,௧ݏॱൣܸ൫ߜ ,Ԧ,௧ାଵݔ ߳,௧ାଵ, ൯൧ߣ

 Ԧ௧ݔ′Ԧߚ	  ߳௧  ॱൣݍ  ,,௧ାଵݏሺܸߜ ,Ԧ,௧ାଵݔ ߳,௧ାଵ,  .	௧൧ൟݏ|ሻߣ

Indexability is defined as follows: 

Definition: A brand ݆ is indexable if, for any ݐ, ܵ௧൫ߣ൯ ⊆ ܵ௧ሺߣ
ᇱሻ for any ߣ ൏ ߣ

ᇱ. 

 Indexability requires that, as the fixed reward increases, the collection of states for which 

the fixed reward is optimal does not decrease. In other words, if in some state it is optimal to 

choose the fixed reward, it must also be optimal to choose a higher fixed reward. Indexability 

implies a consistent ordering of brands for any state, so an index strategy is meaningful. Howev-

er, indexability need not always hold in general and can not be taken for granted (Whittle 

1988).14 Thus, before we can posit an index strategy as a consumer heuristic, we must establish 

indexability for a model that includes utility shocks. In Online Appendix A we prove the follow-

ing proposition. 

 Proposition 1. The canonical forward-looking experiential learning problem defined in 

§2 is indexable. 

                                                 
14 For example, Whittle (1988, p. 297) provides a simple example where indexability fails.  



Learning from Experience, Simply 

17 
 

 Once the indexability condition is established, then a well-defined strategy is to choose at 

each purchase occasion the brand with the largest index. The index strategy breaks the curse of 

dimensionality by decomposing a problem with exponential complexity into ܬ much-simpler sub-

problems, each on a state space of |Ω| after integrating out the utility shocks ݔԦ௧ and ߳௧. With 

this simplification, it is more plausible that the consumer might use the index strategy. As a bo-

nus, estimation is much faster. The difference in the size of the state space can be dramatic. For 

example, suppose we were interested in the mean and variance of quality and discretized them 

with ܯ and ܰ grid points, respectively. With ܬ brands, the state space for index strategies is 

ܯ ൈܰ for each brand, rather than ሺܯ ൈ ܰሻ for the original optimization problem given in 

Equation 3. For ܯ ൌ ܰ ൌ 10 and ܬ ൌ 6, this is the difference between a state space of 100 (for 

each of six brands) and 1,000,000,000,000.   

5.2. The Index Strategy is Invariant to Scale and Behaves Intuitively 

 Index strategies dramatically simplify the solution, but can the consumer intuit (perhaps 

approximately) an index strategy? We expect future laboratory experiments to address this issue 

empirically. In this paper, we argue that index strategies have intuitive properties and that it is 

not unreasonable for the consumer to intuit those properties.  

 An index strategy would be difficult for the consumer to use if the strategy were not in-

variant to permissible scale transformations. If it is invariant the consumer can intuit (or learn) 

the basic shape of the index function and use that intuited shape in many situations. Invariance 

facilitates ecological rationality.15 The following results hold for fairly general distributions of 

quality, ܨሺݍ௧;  Ԧ௧ and ߳௧, as long as they have scaleݔ ሻ, and joint distributions of utility shocksߠ

and location parameters and the quality belief ܤ௧ሺߠ;  ௧ሻ is conjugate. To ease interpretation, weݏ

                                                 
15 Gittins’ index exhibits invariance properties (Gittins 1989). 
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assume that ܨ and ܤ௧ are normal distributions with parameters defined earlier: ߤ and ߪ for true 

quality; ̅ߤ௧ and ߪത௧ for posterior beliefs about quality; and ߤ
௫,ఢ and ߪ

௫,ఢ for utility shocks. In 

Online Appendix B we prove the following proposition. 

 Proposition 2. Let ෙܹ  be Whittle’s index for the canonical forward-looking experiential 

learning problem computed when the posterior mean quality (̅ߤ௧) is zero, the mean utility 

shock (ߤ
௫,ఢ) is zero, and the inherent variation of quality (ߪ) is 1. Whittle’s index for any 

values of these parameters is the following simple function of ෙܹ . 

ܹ൫̅ߤ௧, ,ത௧ߪ Ԧ௧ݔ′Ԧߚ  ߳௧, ,ߪ ߤ
௫,ఢ, ߪ

௫,ఢ, ൯ߜ ൌ ௧ߤ̅  ߤ
௫,ఢ 		ߪ ෙܹሺ0,

ఙഥೕ
ఙೕ
,
ఉሬሬԦᇱ௫Ԧೕାఢೕିఓೕ

ೣ,ച

ఙೕ
, 1, 0,

ఙೕ
ೣ,ച

ఙೕ
,  .ሻߜ

Proposition 2 implies that the consumer can simplify his or her mental evaluations by de-

composing the index for each brand into (1) the mean utility gained from myopic learning, 

௧ߤ̅  ߤ
௫,ఢ, which reflects the exploitation of posterior beliefs, and (2) the incremental benefit of 

looking forward, ߪ ෙܹ , which captures quality information gained through exploration. To assess 

the value of exploration, the consumer need only intuit the shape of ෙܹ  for a limited range of pa-

rameter values and scale it by ߪ. Proposition 2 also helps researchers understand which parame-

ters can be identified in the index-strategy model. 

To provide further intuition, we prove the following proposition in Online Appendix C. 

The proposition shows that Whittle’s index behaves as expected when the parameters of the 

problem vary. The consumer likes increases in quality and utility shocks, dislikes inherent uncer-

tainty in quality and utility shocks, but values the ability to learn and, hence, resolve the uncer-

tainty in posterior beliefs about quality. 
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Proposition 3. Whittle’s Index for the canonical forward-looking experiential learning 

problem (1) increases with the posterior mean of quality (̅ߤ௧), the observable utility 

shocks (ߚԦ′ݔԦ௧), and the unobservable utility shock ( ߳௧), (2) weakly decreases with the in-

herent uncertainty in quality (ߪ) and the magnitude of uncertainty in the utility shocks 

ߪ)
௫,ఢ), and (3) increases with the consumer’s posterior uncertainty about quality (ߪത௧). 

Figure 3 illustrates Whittle’s index where we set the posterior mean quality to zero, so 

that the curve represents the value of exploration. (More generally, Whittle’s index fluctuates 

with the posterior mean quality in a way similar to Figure 2.) As was the case for Gittins’ index, 

the value-of-exploration component of Whittle’s index is a smooth decreasing function of expe-

rience because experience reduces posterior quality uncertainty. With sufficient experience, the 

value of exploration converges toward zero implying that, asymptotically, the value of a brand is 

based on the posterior mean of quality (Proposition 2). Unlike Gittins’ index, Whittle’s index is a 

function of the magnitude of utility shocks (ߪ
௫,ఢ). As the magnitude of utility shocks becomes 

larger, it is less important for the consumer to explore, and the value of exploration deceases as 

shown in Figure 3. These properties and the shape of the curve itself, are intuitive.  

[Insert Figure 3 about here.] 

Figure 3 and Proposition 3 suggest that, other things being equal, when the magnitude of 

the uncertainty in utility shocks is larger, the realized utility shocks are more likely to be the de-

ciding factor in consumers’ brand choices. For example, as the depth of price promotions in-

creases, consumers are more likely to base their purchase decisions on price. When ߪ
௫,ఢ ൌ 5 

(compared with inherent quality uncertainty normalized as ߪ ൌ 1), Whittle’s index is almost flat 

implying an almost myopic strategy. To formalize this insight, we state the following Corollary 
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to Proposition 3: 

Corollary.  (1) As the consumer’s posterior uncertainty in quality increases relative to 

the magnitude of the utility shocks, the value to the consumer from looking forward in-

creases. (2) As the magnitude of the utility shocks increases relative to the consumer’s 

posterior uncertainty in quality, the value from looking forward decreases. In this latter 

case, a myopic leaning strategy (i.e., exploiting posterior beliefs) may suffice, and could 

be the optimal strategy if it is cognitively simpler than a forward-looking learning strate-

gy. 

These results highlight the intricate relationship between the consumer’s uncertainty in 

quality and uncertainty caused by utility shocks. The two types of uncertainty complement each 

other in driving the consumer’s value of exploitation, but may compete with each other in shap-

ing the consumer’s value of exploration. The index solution offers an intuitive description of this 

relationship. In §6 and §7, we examine the empirical performance of the index strategy. 

6. Examination of the Near Optimality of an Index Strategy (Synthetic Data) 

 We now examine whether an index strategy implies a reasonable tradeoff between opti-

mality and simplicity. Indexability guarantees existence of a well-defined index strategy but does 

not guarantee its optimality.16 For the canonical forward-looking experiential learning problem, 

the performance of the index strategy is an empirical question. Cognitive costs remain unobserv-

able, but §4 and §5 suggest that an index strategy could be substantially simpler than the direct 

solution of the Bellman equation to the overall problem. To examine whether the loss in utility is 

small, we switch from analytic derivations to synthetic data because the loss in utility is an issue 

                                                 
16 Many performance bounds have been developed under different contexts and conditions. See Gittins et al. (2011) 
for a review of recent developments.  
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of magnitude rather than direction. Synthetic data establish existence (rather than universality) of 

situations where index strategies are close to optimal. 

For concreteness we examine the special case when ܨ and ܤ௧ are normal distributions. 

From the perspective of consumer decision-making, what matters is the joint distribution of ob-

servable shocks (ݔԦ௧) and unobservable shocks ( ߳௧). Therefore, for the synthetic-data analysis we 

set observable shocks to zero without loss of generality. Practically, even if there are no observa-

ble shocks (e.g., no price promotions), unobservable shocks (e.g., idiosyncratic taste fluctuations) 

are still likely to prevail in most choice models. We allow for both observable and unobservable 

shocks in the field-data analysis. 

We compare four decision strategies that the consumer might use.  

1. No Learning. In this strategy the consumer chooses the brand based only on the consum-

er’s prior beliefs of quality and the current utility shocks. This strategy provides a base-

line to evaluate the incremental value of learning. 

2. Myopic Learning. In this strategy the consumer chooses the brand based only on the 

consumer’s posterior quality beliefs and the current utility shocks. This strategy exploits 

the consumer’s posterior knowledge about brand quality. The Corollary predicts that this 

strategy will suffice when the magnitude of utility shocks is relatively high compared 

with posterior quality uncertainty. 

3. Index Strategy. This strategy assumes the consumer can intuit the shape of Whittle’s in-

dex. As per Proposition 2, this strategy improves on the myopic learning strategy to take 

into account the exploration value of learning. Brand choices reflect the consumer’s 

tradeoff between exploitation and exploration.  

4. Approximately Optimal. The PSPACE-hard forward-looking experiential learning prob-
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lem cannot be solved optimally, hence researchers resort to approximate solutions (e.g., 

Keane and Wolpin 1994; Erdem and Keane 1996; Rust 1997a; Ackerberg 2003; Craw-

ford and Shum 2006; Imai et al. 2009; Ching 2010; Ching et al. 2013b). Although ap-

proximation methods vary (see Online Appendix G for a review), discrete optimization is 

a representative method and should converge to the optimal solution with a larger number 

of grids (Chow and Tsitsiklis 1991; Rust 1996).  

We choose parameters that illustrate the phenomena and are empirically plausible. The 

simulation requires a finite horizon; we select ܶ ൌ 50 purchase occasions. If the discount factor 

is	ߜ ൌ 0.90, truncation to a finite horizon is negligible. We discretize the state space, ݏ௧ ൌ

ሺ̅ߤ௧, ܯ ത௧ሻ into a set ofߪ ൈܰ grid points for each of ܬ brands. We choose ܯ ൈܰ ൌ 200 ൈ 50 ൌ

10ସ, which should be close to optimal in the continuous problem.17 To simplify integration we 

draw the utility shocks from a Gumbel distribution with parameters ሺߤ
ఢ, ߪ

ఢሻ and normalize the 

location parameter such that the utility shocks have zero unconditional means (Rust 1987, 1994). 

Inherent uncertainties in quality for both brands, ߪ, are equal and normalized to 1. 

The index strategy evolves on a state-space of size (ܯ ൈܰ) for each of the ܬ brands, 

whereas the approximately optimal solution evolves on a state-space of size ሺܯ ൈ ܰሻ. We 

choose ܬ ൌ 2 for a conservative test of the relative simplicity of the index strategy. 

We vary the parameter values to capture three possibilities: (1) the means and uncertainty 

both favor one brand, (2) the means are the same but uncertainty favors one brand, and (3) the 

means and uncertainty favor different brands. Because quality beliefs are relative, we fix the pri-

                                                 
17 We choose ܯ ൌ 200 grid points for the posterior mean quality. Meanwhile, we fix each brand’s prior quality var-
iance. Posterior quality variance evolves deterministically following Bayesian updating formulae. Because there are 
ܶ ൌ 50 purchase occasions, a brand’s posterior quality variance has ܰ ൌ ܶ ൌ 50 possible values, depending on how 
many times this brand has been chosen. Therefore, the size of the state space for the index strategy is ܯ ൈܰ ൌ
200 ൈ 50 ൌ 10ସ. 
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or mean quality belief of Brand 1 as ̅ߤଵ ൌ 0 and vary the prior mean quality belief for Brand 2 

as ̅ߤଶ ∈ ሼെ0.3, 0, 0.3ሽ. We normalize the standard deviation of Brand 2’s prior quality belief as 

തଶߪ ൌ 1 and the standard deviation of Brand 1’s prior quality belief as ߪതଵ ൌ 0.5. Finally, to test 

the Corollary we allow the uncertainty in shocks to vary from relatively small to relatively large: 

ଵߪ
ఢ ൌ ଶߪ

ఢ ∈ ሼ0.1, 1ሽ. 

We compute the indices and the consumer’s expected total utilities for 50 purchase occa-

sions under the four decision strategies. Details are provided in Online Appendices D and E. Ta-

ble 1 summarizes the results.  

[Insert Table 1 about here.] 

 We first examine computation times as surrogates for cognitive complexity. As expected, 

the no-learning and myopic learning strategies impose negligible computation time, the index 

strategy requires moderate computation time, and the approximately optimal solution is substan-

tially slower – 600 times as time-consuming as the index strategy even for this basic problem. 

Faster approximation algorithms would reduce the computational time for the approximately op-

timal solution (Keane and Wolpin 1994; Rust 1997a; Imai, et al. 2009), but they would also ex-

pedite the index strategy because we use the same algorithm for solving the Bellman equations in 

both models (see Online Appendix G for implementation details). Moreover, faster approxima-

tion algorithms do not address the curse of dimensionality. The ratio of computational times in 

Table 1 could be made arbitrarily large with finer grid points or with a larger number of brands. 

 We next examine the consumer’s expected utilities. In all cases, the no-learning strategy 

leads to the lowest utility, which suggests that learning is valuable. Furthermore, the index strat-

egy is statistically indistinguishable from the approximately optimal strategy. As long as cogni-

tive simplicity matters even a little, the index strategy will be better on utility minus complexity. 



Learning from Experience, Simply 

24 
 

 Finally, the results are consistent with the Corollary. When there is relatively low uncer-

tainty in utility shocks (upper panel of Table 1), the index strategy and the approximately optimal 

strategy generate higher utility than myopic learning, and, in two of the three cases, significantly 

higher utility. When there is relatively high uncertainty in utility shocks (lower panel of Table 1), 

the myopic learning model performs virtually the same as either the index strategy or the approx-

imately optimal strategy. The differences are not significant. In this case, the consumer might 

achieve the best utility minus complexity with a myopic strategy, among the models tested.  

 Analysis of synthetic data never covers all cases. Table 1 is best interpreted as providing 

evidence that (1) there exist reasonable situations where an index solution is better than the ap-

proximately optimal solution on utility minus complexity and (2) there exist domains where my-

opic learning is best on utility minus complexity. We now examine field data. 

7. Field Estimation of an Index Strategy (IRI Data on Diaper Purchases) 

 We examine how an index solution fits and predicts behaviors compared with an approx-

imately optimal solution and myopic learning. As a first test, we seek a product category and 

sample where consumers are likely to be forward-looking. Even if an index solution does no bet-

ter than an approximately optimal solution, we consider the result promising because an index 

solution is cognitively simpler. As a test of face validity, we expect learning strategies to outper-

form no-learning strategies and, because we focus on a situation that favors forward-looking be-

havior, we expect forward-looking strategies to outperform myopic learning.  

7.1. IRI Data on Diaper Purchases 

 We select the diaper category from the IRI Marketing Dataset that is maintained by the 
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SymphonyIRI Group and available to academic researchers (Bronnenberg, et al. 2008).18 Diaper 

consumers are likely to be learning and forward-looking. Parents typically begin purchasing dia-

pers based on a discrete birth event, and their entry to the category is arguably exogenous (Ching 

et al. 2010, 2012). Even if the birth is a second or subsequent child, diaper quality may have 

changed. Informal qualitative interviews suggest that parents learn about whether diaper brands 

match their needs through experience (with often more than one purchase), that diapers are suffi-

ciently important that parents take learning seriously, and that parents often try multiple brands 

before settling on a favorite brand. In fact, Ching et al. (2012) find that diaper consumers con-

duct strategic trials of various brands.19 There are observable shocks due to price promotions and 

shocks due to unobservable events. For example, a baby might go through a stage where a differ-

ent brand is best suited to the parent/child’s needs. Finally, diapers have the advantage of being 

regular purchases, where the no-choice option is less of a concern, and consumers tend to be in 

the market for many purchase occasions.  

 To isolate a situation favoring forward-looking learning, we apply the following sample 

screening criteria. First, to focus on consumers whose purchases are likely triggered by a birth 

event, we select households whose first purchase occurs 30 weeks after the start of data collec-

tion (73% of the entire sample). Second, we focus on frequent buyers. Compared with occasional 

buyers who might be shopping for a baby shower, frequent buyers are more likely to have both 

the motivation and the opportunity to explore different diaper brands. Therefore, we select 

households who have made at least 5 purchases during the observation window (39% of the en-
                                                 
18 In comparison, durable goods may induce different learning dynamics. Because of the low purchase frequency, 
consumers may not have the opportunity to learn by sampling. Also, because the stakes are often high, consumers 
may have the motivation to acquire other types of information (e.g., Consumer Reports reviews) prior to purchase. 
The ISMS durables goods dataset (Ni et al. 2012) provides a good resource to study these learning dynamics. 
19 Ching et al. (2012) use a quasi-structural approach, where they model the consumer’s expected future payoffs as a 
function of state variables. Their model detects strategic trial if the coefficients of expected future payoffs are signif-
icant and if model fit improves significantly over the myopic model. 
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tire sample).20 Third, to focus further, we eliminate any consumers who have purchased private 

labels and restrict attention to consumers who buy exclusively branded products (64% of the en-

tire sample). To the extent that private label buyers are more price sensitive (Hansen, Singh, and 

Chintagunta 2006), they may be less interested in learning about product quality. (In §8.4, we re-

analyze the data by including private labels.) After applying these screening criteria, the data 

contain 262 households who made 3,379 purchases (13 purchases per household on average).21 

We randomly select 131 households for estimation and 131 households for validation. 

 The market is dominated by three major brands, Pampers, Huggies, and Luvs. We aggre-

gate all other branded purchases as “Other Brands” and do not model the no-purchase option. As 

a first-order view, Table 2a compares market-shared-weighted switching behavior during the 

first 13 purchases with that after the first 13 purchases.22 There is a noticeable change in switch-

ing patterns. For example, the relative brand loyalty of Huggies increases after 13 purchases. 

This suggests that consumers may learn about brand quality over purchases. Although the cate-

gory is chosen as a likely test-bed for consumer learning, high brand loyalty, even during the ini-

tial 13 purchases, suggests that there is no guarantee a forward-looking strategy will fit the data. 

[Insert Table 2 about here.] 

                                                 
20 Analyses based on a random selection of buyers rather than frequent buyers are available from the authors. Likely 
because infrequent buyers have less incentive or opportunity to learn, the myopic learning model does better on this 
random selection of buyers than on frequent buyers. 
21 The data only record the week, as opposed to the exact time, of purchase. Therefore, if a consumer makes multiple 
purchases during the same week, we do not observe the sequence of brands purchased. Rather than make potentially 
erroneous assumptions about the data, we remove consumers who make multiple-brand purchases in any week of 
the observation window (11% of the entire sample). An alternative analysis strategy might have been to randomize 
purchase orders. However, there is no reason to expect that removing consumers who make multiple purchases a 
week will affect the comparison between the index strategy and the approximately optimal solution. We also do not 
model purchase quantity decisions. Instead we assume that consumers update their quality beliefs after each pur-
chase (and consumption) occasion. 
22 We define market share at the purchase level across the observation window, so that market shares before and af-
ter the first 13 purchases add up to 100%. For readers who wish to normalize Table 2 in other ways, the raw counts 
are obtained by multiplying the percentages in Table 2 by 1,407, the total number of purchases in the estimation 
sample except the last purchase of each household. 
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7.2. Empirical Specification 

 We denote households by ݅ and denote by ܶ household ݅’s purchase-occasion horizon. 

We assume that the quality and quality-belief distributions, ܨ and ܤ௧, are normal and that un-

observable shock distributions are Gumbel. For this initial test of an index solution, we limit ݔԦ௧ 

to the weekly average prices. The decision strategies are specified below (ߚ and ݔ௧ are now sca-

lars).   

No Learning: Πே ൌ ߤ൛̅ݔܽ݉݃ݎܽ  ௧ݔߚ  ߳௧ൟ , 

Myopic Learning: Πெ ൌ ௧ߤ൛̅ݔܽ݉݃ݎܽ  ௧ݔߚ  ߳௧ൟ , 

Index Strategy: Πௐ ൌ ݔܽ݉݃ݎܽ ൜̅ߤ௧  ߤ
௫,ఢ  ߪ ෙܹ ൬0,

ఙഥೕ
ఙೕ
,
ఉ௫ೕାఢೕିఓೕ

ೣ,ച

ఙೕ
, 1, 0,

ఙೕ
ೣ,ച

ఙೕ
,  , ൰ൠߜ

Approximately 

Optimal: 
Π ൌ ௧ߤ൛̅ݔܽ݉݃ݎܽ  ௧ݔߚ  ߳௧  ,Ԧ,௧ାଵݏॱሾܸሺߜ ,Ԧ௧ାଵݔ Ԧ߳,௧ାଵሻ|ݏԦ௧, ݆ሿൟ . 

7.3. Issues of Identification 

 Although we would like to identify all parameters of the various models, we cannot do so 

from choice data alone because utility is only specified to an affine transformation, and because 

the parameters that matter are relative parameters. For the no-learning model we can identify on-

ly the relative means of prior beliefs, as well as the price sensitivity parameter ߚ. For the myopic 

learning model we can identify only the relative means of prior beliefs, the relative uncertainties 

of prior beliefs, the true means of quality, and price sensitivity. For the no-learning and myopic 

learning models time discounting does not matter. 

For the index strategy and approximately optimal strategy we set the mean prior belief of 

one brand (̅ߤଵ) to zero and normalize its variance of quality (ߪଵ) to one to set the scale of quali-

ty. (Only ߪത ⁄ߪ  matters.) We cannot simultaneously identify a brand-specific mean of quality 

and a brand-specific mean of the unobservable shock, so we set the latter to zero (ߤ
ఢ ൌ 0). The 
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standard deviation of ݔ௧ is observed in the data. We can then compute ߪ
ఢ from ߪ

௫,ఢ because the 

observable and unobservable shocks are independent. As in most dynamic discrete choice pro-

cesses (Rust 1994), the discount factor ߜ is difficult to estimate; we set it to 0.90.23 

Finally, as in Erdem and Keane (1996), we suppress “parameter heterogeneity” among 

households. We continue to allow each household’s quality beliefs to evolve idiosyncratically, 

but we do not attempt to estimate heterogeneity in prior beliefs, true mean quality, or the magni-

tude of utility shocks. We abstract away from parameter heterogeneity for the following reasons. 

First, there are, on average, only 13 purchases per household. We would overly strain the model 

by attempting to estimate heterogeneity in all of the parameters.24 Second, we wish to focus on 

behavioral heterogeneity that arises endogenously from forward-looking learning. Even if 

households start with exogenously homogeneous prior beliefs, different quality realizations and 

utility shocks lead to different posterior beliefs, different exploitation-versus-exploration 

tradeoffs, and different learning paths (e.g., Ching, et al. 2013a). We seek to evaluate heteroge-

neous learning dynamics based on the data, rather than using heterogeneous parameters to fit the 

data. For an initial test of an index strategy, this simplification is conservative because it biases 

against a good model fit.  

 We estimate each model’s parameters with maximum simulated likelihood estimation. 

Estimation details are provided in Online Appendices F and G.  

7.4. Estimation Results  

                                                 
23 Sensitivity analyses with other discount rates (e.g., 0.95 and 0.99) yield almost identical log-likelihood statistics 
and similar parameter estimates for the index strategy model. Anticipating the results of §7.4, we expect a similar 
lack of sensitivity for the approximately optimal strategy. The ease with which such sensitivity checks can be run is 
a benefit of the computational tractability of the index strategy model. 
24 Doing so is technically feasible, but would likely over-parameterize the model and exploit noise in the data. More 
importantly, our goal is to demonstrate that an index solution is a viable representation of cognitive simplicity and 
that cognitive simplicity is a phenomenon worth studying in structural models. We leave explicit modeling of pa-
rameter heterogeneity to future research. §8.3 explores foresight heterogeneity. 
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 Table 3 summarizes the fit statistics for the 1,538 diaper purchases in the in-sample esti-

mation and the 1,841 purchases in the out-of-sample validation. ܷଶ is an information-theoretic 

measure that calculates the percent of uncertainty explained by the model (Hauser 1978); AIC 

and BIC attempt to correct the likelihood function based on the number of parameters in the in-

sample estimation, BIC more so than AIC. (There are no free parameters in the out-of-sample 

validation.)  

For comparability, we estimated the index strategy in two ways. The first estimation dis-

cretizes the state space in the same manner as the approximately optimal model ሺܯ ൌ ܰ ൌ 5). 

This enables an “apples-to-apples” comparison. Then, because the index model does not suffer 

from the curse of dimensionality, we re-estimate the model with a finer grid (ܯ ൌ 200,ܰ ൌ 75). 

There were only trivial differences. For example, ܷଶ ൌ 88.18% for both estimations, and pa-

rameter values are not significantly different (nor different from the approximately optimal mod-

el). We will report the results associated with the finer grid for the rest of the paper. 

[Insert Table 3 about here.] 

 First, on all measures there are sizable gains to learning – all learning models explain and 

predict brand choices substantially better than the no-learning strategy. Second, the index strate-

gy improves in-sample fit and out-of-sample predictions relative to myopic learning. The likeli-

hood is significantly better (Vuong test significance is  ൌ 0.0002 in-sample and 0.0429	out-of-

sample).25 This result is consistent with our expectation that frequent buyers of branded diapers 

are forward-looking. Third, the index strategy performs as well as the approximately optimal so-

lution in terms of both in-sample fit and out-of-sample predictions. This result is consistent with 

the synthetic-data analysis – when two strategies yield almost the same expected utilities and 
                                                 
25 We use the Vuong test to compare non-nested models (Vuong 1989). 
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hence predict almost the same brand choices, they are observationally equivalent and statistically 

indistinguishable. 

 As a further visualization of model fit, Table 2b reports the predicted market-share-

weighted switching patterns. The predicted switching patterns are qualitatively similar to actual 

switching patterns in Table 2a. For example, the index strategy model picks up the fact that con-

sumers are more loyal to Huggies than to the other brands because, as we will discuss below, the 

true mean quality is higher for Huggies and it is likely more rewarding to learn about Huggies 

ߪ)
௫,ఢ being relatively small). Although predictions are not perfect and could be improved if other 

 variables were observed, the overall MAE is within 0.8% of actual switching. Moreover, the-ݔ

predicted switching patterns from the index strategy model are virtually identical to those from 

the approximately optimal solution model (reported in Online Appendix H). The market-share-

weighted mean absolute error (MAE) is approximately 3/100୲୦ୱ of 1%.  

 Table 4 summarizes the estimated parameter values. As expected, the price sensitivity 

coefficient is negative in every model. Across all learning models, all four brands increase in 

mean quality relative to prior beliefs, which implies that diaper buyers learn to purchase these 

brands more through experience. These results are consistent with the switching patterns in Table 

2a.  

[Insert Table 4 about here.] 

Forward-looking models identify the magnitude of utility shocks relative to inherent 

quality uncertainty (last panel of Table 4). Because the relative shock uncertainty varies across 

brands, the index curve implies different behavior than myopic learning for those brands. This 

explains why forward-looking models fit and predict better than myopic learning. For example, 

Huggies has lower relative shock uncertainty than other brands, which may provide greater in-
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centives for consumers to explore Huggies. Because the myopic learning model ignores this dif-

ference, it compensate by overestimating the mean prior belief of Huggies. Managerially, Hug-

gies has a higher true mean quality than Pampers and Luvs, but also higher inherent relative un-

certainty in quality across consumption. (The table reports the ratio of shock uncertainty to quali-

ty uncertainty – a smaller number means higher relative quality uncertainty.)  

Both the index strategy and the approximately optimal strategy lead to similar parameter 

estimates. Parameter estimates of either model are usually within confidence regions of the alter-

native model. This result is consistent with the synthetic-data analysis, which suggests that both 

strategies lead to near optimal utility. The index strategy will be a more plausible description of 

consumer behavior if it is cognitively simpler. We explore this last point below. 

 Computation time in the embedded optimization problem is one surrogate for cognitive 

complexity. The last row of Table 3 reports the time necessary to compute one likelihood func-

tion in each model. For the index strategy model we report the computation time for both the 

original grid (ܯ ൌ ܰ ൌ 5) and the finer grid (ܯ ൌ 200,ܰ ൌ 75) – the latter is in parentheses. 

Consistent with the synthetic-data analysis, the index strategy is substantially faster than the ap-

proximately optimal strategy (74-to-1 ratio based on the same grid density of ܯ ൌ ܰ ൌ 5).  

 The size of the state space is another surrogate for cognitive complexity (e.g., a consum-

er’s memory). The state space for the approximately optimal strategy is 15,625 times as large as 

the state space for the index strategy given the same grid density of ܯ ൌ ܰ ൌ 5. Computational-

time ratios are not equal to state-space ratios due to computational overhead. Nonetheless, if we 

were to attempt to use the finer grid of ܯ ൌ 200,ܰ ൌ 75 for the approximately optimal strategy, 

we would increase the state space of the approximately optimal solution by a factor of 130 bil-

lion. It is unlikely that approximately optimal computations would be feasible for the finer grid. 
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Detailed calculations are presented in Online Appendix G.   

 In summary, using IRI data on diaper purchases we find that (1) learning models fit and 

predict substantially better than the no-learning model; (2) forward-looking learning models fit 

and predict significantly better than the myopic learning model; (3) the index strategy and the 

approximately optimal solution achieve similar in-sample fit and out-of-sample forecasts, as well 

as reasonably close parameter estimates; and (4) computational (and cognitive) simplicity favors 

the index strategy model relative to the approximately optimal model. 

8. Further Explorations 

We have shown that the canonical forward-looking experiential learning model is index-

able and that an index strategy performs well. We now extend the analysis to explore consumer 

risk aversion, other cognitively simple heuristics, heterogeneous consumer foresight, and private-

labels. 

8.1. Risk Aversion 

For ease of exposition, in previous sections we assumed that consumers are risk neutral. 

However, risk aversion can be an important issue for decision-making under uncertainty (see 

Ching et al. 2013a for a review). We generalize our model to incorporate risk aversion following 

the standard discounted-utility approach (e.g., Samuelson 1937; Erdem and Keane 1996). At 

each purchase occasion ݐ, the consumer maximizes ∑ ఛሻஶݓሺݑఛି௧ߜ
ఛୀ௧ , where ݓఛ is the net payoff 

the consumer receives at purchase occasion ߬, and ݑሺ⋅ሻ is the consumer’s utility function. Utility 

increases with net payoff (i.e., ݑᇱ  0). In addition, the curvature of the utility function captures 

general risk preferences: the consumer is risk neutral if ݑᇱᇱ ൌ 0, risk averse if ݑᇱᇱ ൏ 0, and risk 

seeking if ݑᇱᇱ  0. The Bellman equation for the sub-problem of the ݆௧ brand (Equation 5) is 

generalized as: 



Learning from Experience, Simply 

33 
 

(7) ܸ൫ݏ௧, ,Ԧ௧ݔ ߳௧, ൯ߣ 	ൌ max ቊ
൯ߣ൫ݑ  ,௧ݏॱൣܸ൫ߜ ,Ԧ,௧ାଵݔ ߳,௧ାଵ, ,൯൧ߣ

ॱൣݑ൫ߚԦ′ݔԦ௧  ߳௧  ௧൧ݏ|൯ݍ  ,,௧ାଵݏॱൣܸ൫ߜ ,Ԧ,௧ାଵݔ ߳,௧ାଵ, ௧൧ݏ|൯ߣ
ቋ  

We prove in Online Appendix A.2 that the generalized canonical forward-looking experiential 

learning model is indexable. This is true for all consumer utility functions satisfying ݑᇱ  0. 

The indexability result allows us to test for risk aversion at low computational costs. We 

do so using the diaper data. To parameterize the test, we assume that consumers exhibit constant 

absolute risk aversion: ݑሺݓሻ ൌ 1 െ ݁ି௪, where ݎ  0 measures the degree of risk aversion 

(e.g., Roberts and Urban 1988).26 Based on this utility function, we re-estimate the index strategy 

model. In addition, we re-estimate the myopic learning model to see whether general risk prefer-

ences as opposed to the exploration incentive suffice to explain consumer choices.27 

Table 3 reports the fit statistics. Allowing for risk aversion brings little improvement to 

the likelihood and ܷଶ, and worsens the AIC and BIC because of the extra risk-aversion parame-

ter. Table 4 reports the parameter estimates. The risk-aversion parameter is insignificant for the 

myopic learning model; it is marginally significant for the index strategy model but the magni-

tude is small. Diaper buyers in our sample do not seem to be strongly risk averse. Because the 

approximately optimal model provides parameter estimates that are close to the index model for 

the risk neutral case, we expect similar results if we were to estimate the approximately optimal 

model for the risk averse case.  

8.2. Other Cognitively Simple Heuristics 

The canonical forward-looking experiential learning model assumes that consumers have 

perfect foresight. But the degree of foresight is an empirical question. Ho and Chong (2003) find 

                                                 
26 For constant risk aversion, 	ݑሺݓሻ → ݎ as ݓ → 0. Erdem and Keane (1996) express risk aversion with a quadratic 
utility function. 
27 The risk aversion parameter cannot be separately identified from the mean prior beliefs in the no-learning model. 
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that a parsimonious myopic model accurately describes and predicts SKU demand.28 Models in 

which the decision-maker looks one period ahead sometimes explain choices well (Hauser et al. 

1993; Gabaix et al. 2006; Che et al. 2007). In the bandit literature, Ny and Feron (2006) explore 

one-period look-ahead heuristics as approximate solutions to restless bandits with switching 

costs. A one-period look-ahead model is arguably simpler than the full dynamic optimization 

problem, and is a heuristic consumers might use. For a one-period look-ahead model, the Bell-

man equation (Equation 3) is modified as: 

(8) ܸሺݏԦ௧, ,Ԧ௧ݔ Ԧ߳௧ሻ ൌ max
∈

ቄߚԦ′ݔԦ௧  ߳௧  ॱ ቂݍ௧  maxߜ
∈

൛ݍ,௧ାଵ  Ԧ,௧ାଵݔ′Ԧߚ  ߳,௧ାଵൟቚݏԦ௧, ݆ቃቅ . 

Tables 3 and 4 report the empirical results. The one-period look-ahead model has worse 

in-sample fit than the index strategy model (Vuong test  ൌ 0.0244) and approximately the 

same out-of-sample prediction (Vuong test  ൌ 0.2529). The one-period look-ahead model fits 

better than the myopic learning model both in-sample (Vuong test  ൌ 0.0033) and out-of-

sample (Vuong test  ൌ 0.0009). These results suggest that diaper consumers are not myopic, 

although they may not be perfectly forward-looking.  

We could easily estimate a variety of cognitively simple heuristics including ܶ-period 

look-ahead models for ܶ ൏ ܶ, Gittins’-index models modified to allow for utility shocks,29 and 

various heuristics such as those proposed by Bertsimas and Niño-Mora (2000). For example, a 

modified-Gittins’-index model (ܷଶ ൌ 88.09% in-sample; ܷଶ ൌ 88.84% out-of-sample) does 

better than myopic learning, but not as well as the index strategy model (which is based on Whit-

tle’s index). We strongly caution against choosing a best-predicting model based on a single da-

                                                 
28 The model was used by Procter & Gamble to predict SKU purchases. 
29 Specifically, the modified Gittins’ index assumes that the consumer ݅ at purchase occasion ݐ chooses the brand 
with the highest value of ܩ൫ݏ௧൯  Ԧ௧ݔ′Ԧߚ  ߳௧, where ܩ൫ݏ௧൯ is Gittins’ index derived from the optimization problem 
in the absence of utility shocks (see §4). The modified Gittins’ index is an ad hoc solution compared with the Whit-
tle’s-index model.  
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taset. Unrestricted search among models would likely exploit random variation. However, from 

the good fit and predictive ability of the three tested heuristics (Whittle’s index, one-period look-

ahead, and modified Gittins’ index), we are comfortable in our hypotheses that (1) cognitively 

simple heuristics are plausible alternatives to modeling forward-looking behavior and (2) an in-

dex strategy is one viable model.  

8.3. Heterogeneous Foresight 

In an alternative approach we allow for heterogeneous consumer foresight. We assume 

there are two latent consumer segments that represent the two “extremes” of the foresight spec-

trum. One segment engages in myopic learning and the other segment has perfect foresight. Be-

cause the index strategy and the approximately optimal solution are observationally indistin-

guishable, we assume that the perfect-foresight segment follows the computationally favorable 

index strategy. We use the latent class method (Kamakura and Russell 1989) to estimate the frac-

tion of consumers belonging to each segment, as well as the set of parameters associated with 

each segment. 

Not surprisingly, as Table 3 shows, the latent class model generates higher likelihood and 

ܷଶ than both the myopic learning model ( ൏ 0.0001 in-sample;  ൏ 0.0001 out-of-sample) 

and the index strategy model ( ൌ 0.0003 in-sample;  ൌ 0.018 out-of-sample). The flexibility 

of the latent class model comes at the cost of extra parameters. It produces a slightly better AIC 

but a worse BIC than the index strategy model. 

The last two columns of Table 4 report the parameter estimates of the latent class model. 

The parameter estimates associated with the respective segments are comparable to values in the 

homogeneous models. Meanwhile, 77% of diaper buyers are forward-looking. This finding ech-

oes the result from the one-period look-ahead model that the average diaper buyers is neither 

myopic nor perfectly forward-looking.  
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8.4.  Private Labels 

 Our primary analyses eliminated any consumer who purchased a private label during the 

observation window. This restriction allowed us to focus on a case where we expected forward-

looking learning. The decision was also driven by the curse of dimensionality inherent in the ap-

proximately optimal solution – adding another brand increases the size of the state space by 

ܯ ൈܰ ൌ 25 times. As a robustness check, we repeat our estimations replacing “other brands” 

with private labels. Table 5 presents the fit statistics. The relative fit and predictive accuracies 

are the same as in Table 3. Furthermore, the (unreported) parameter estimates for Pampers, Hug-

gies, and Luvs are not significantly different when comparing the index strategy and approxi-

mately optimal models in Tables 3 and 5.   

9. Summary, Conclusions, and Future Research 

Models of forward-looking experiential learning are important to marketing. These theo-

ry-driven models examine how consumers make tradeoffs between exploiting and exploring 

brand information. Managerially, these models enable researchers to investigate effects due to 

quality uncertainty, learning, and the variation in utility shocks. However, the consumer problem 

in these models is computationally intractable  (PSPACE-hard). Existing solutions via the Bell-

man equation require vast computational resources (time and memory) that may contradict cog-

nitive simplicity theories of consumers.   

In this paper we propose that consumers use cognitively simple heuristics to solve for-

ward-looking experiential learning problems. We explore one viable heuristic – index strategies. 

Index strategies represent a solution concept that decomposes a complex problem into a set of 

much simpler sub-problems. We prove analytically that an index strategy exists for canonical 

forward-looking experiential learning models and that the index function has simple properties 
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that consumers might intuit. Using synthetic data, we demonstrate that a well-defined index solu-

tion achieves near optimal expected utility and is fast to compute. Using IRI data on diaper pur-

chases, we show that at least one index solution fits the data and predicts out-of-sample signifi-

cantly better than either a no-learning model or a myopic learning model. Compared with an ap-

proximately optimal solution, the index strategy fits equally well, produces similar estimation re-

sults (and hence managerial implications), requires significantly lower computational costs and, 

we believe, is more likely to describe consumer behavior. 

We address many issues, but many issues remain. We do not model advertising as a qual-

ity signal (the IRI dataset for the diaper category does not track advertising). The consequence of 

incorporating advertising signals depends on how consumers learn. We abstract away from in-

ventory problems. Inventory effects are found to be insignificant in previous research (Ching et 

al. 2012), but nevertheless add a dimension to consumers’ dynamic planning. We study standard 

settings where consumers do not learn from non-chosen alternatives. It would be interesting to 

model correlated learning or extend index strategies to incorporate hypothetical reinforcement of 

non-chosen options (Camerer and Ho 1999). Technically, it would also be interesting to examine 

the indexability of learning models when there are switching costs.30 

Diaper buyers are likely forward-looking, but consumers in other product categories may 

not be. Our theory suggests that consumers are most likely to be forward-looking when shock 

uncertainty is small compared to quality uncertainty; we expect myopic learning models to do 

well when shock uncertainty is large. This prediction is testable using cross-category analysis. 

For instance, shock uncertainty may be large in hedonic goods categories where consumption 

                                                 
30 Bank and Sundaram (1994) prove that there is no consistent way to define an optimal index in the presence of 
switching costs among choice alternatives. However, a bandit problem with switching cost can be re-formulated as a 
restless bandit problem, which could be indexable (Glazebrook et al., 2006, Niño-Mora 2008). 
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value swings with idiosyncratic mood. Shock uncertainty may also be dominant in markets char-

acterized by volatile marketing mix variables. The recent rise of flash sales introduced remarka-

ble price volatility to categories such as food, gadgets, and apparel. It will be interesting to study 

whether this change serves to promote myopic purchase behaviors.  

Finally, an index solution appears to be a reasonable tradeoff for diaper consumers, but 

our basic hypothesis is that consumers use cognitively simple heuristic strategies. Other cogni-

tively simple heuristics might explain consumer behavior even better than index strategies. §8.2 

suggests testable alternatives. Future research can explore these and other heuristics using either 

field data or laboratory experiments.  
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Table 1. Comparing Decision Strategies on Utility and Simplicity (Synthetic Data) 

 Expected Discounted Utility (standard errors in parentheses) 

 No Learning Myopic Learning Index Strategy Approximately 
Optimal 

Size of state space n/a n/a 104 108 

Computation time (surrogate for cognitive complexity) † negligible negligible 102 seconds 6 x 104 seconds 

     
Relatively low uncertainty in utility shocks (ߪଵఢ ൌ ଶߪ

ఢ ൌ 0.1)     
     

     Mean of prior quality beliefs (Brand 1, Brand 2)     

,ଵߤ̅)       ଶ) = (0.0, – 0.3) 0.041 1.801 1.992 1.996ߤ̅

 (0.003) (0.043) (0.045) (0.045) 

,ଵߤ̅)       ଶ) = (0.0,    0.0) 0.618 3.352 3.544 3.547ߤ̅

 (0.003) (0.049) (0.052) (0.052) 

,ଵߤ̅)       ଶ) = (0.0, + 0.3) 3.036 5.298 5.323 5.327ߤ̅

 (0.003) (0.056) (0.056) (0.056) 

     
Relatively high uncertainty in utility shocks (ߪଵఢ ൌ ଶߪ

ఢ ൌ 1)     
     

     Mean of prior quality beliefs (Brand 1, Brand 2)     

,ଵߤ̅)       ଶ) = (0.0, – 0.3) 4.919 5.762 5.767 5.768ߤ̅

 (0.026) (0.047) (0.047) (0.047) 

,ଵߤ̅)       ଶ) = (0.0,    0.0) 6.182 7.150 7.190 7.190ߤ̅

 (0.027) (0.050) (0.052) (0.052) 

,ଵߤ̅)       ଶ) = (0.0, + 0.3) 7.946 8.912 8.911 8.912ߤ̅

 (0.026) (0.054) (0.054) (0.054) 
† This is the time required to compute one utility function using a university computing system based on Sun Grid Engine (SGE) and Red Hat Enterprise Linux.
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Table 2. Switching among Diaper Brands 

(a) Actual Switching Matrix 

 Percent of Times that Row Brand is Purchased at Occasion ݐ and 
Column Brand is Purchased at Occasion ݐ  1† 

Pampers Huggies Luvs Other Brands 

Within the first 13 purchases     

      Pampers 20.3% 3.9% 2.9% 0.5% 

      Huggies 3.8% 21.5% 1.6% 0.2% 

      Luvs 2.5% 2.4% 12.6% 0.3% 

      Other Brands 0.6% 0.4% 0.3% 1.0% 

After the first 13 purchases     

      Pampers 6.3% 0.9% 0.7% 0.1% 

      Huggies 0.7% 11.2% 0.2% 0.1% 

      Luvs 0.9% 0.0% 4.0% 0.0% 

      Other Brands 0.1% 0.1% 0.0% 0.0% 

 

(b) Predicted Switching Matrix – Index Strategy Model 

 Percent of Times that Row Brand is Purchased at Occasion ݐ 
and Column Brand is Purchased at Occasion ݐ  1† 

Pampers Huggies Luvs Other Brands 

Within the first 13 purchases     

      Pampers 20.3% 3.0% 1.9% 0.2% 

      Huggies 2.0% 26.1% 1.3% 0.1% 

      Luvs 1.6% 1.6% 15.2% 0.1% 

      Other Brands 0.3% 0.1% 0.1% 0.9% 

After the first 13 purchases     

      Pampers 4.6% 0.5% 0.4% 0.0% 

      Huggies 0.3% 15.0% 0.1% 0.0% 

      Luvs 0.5% 0.2% 3.4% 0.0% 

      Other Brands 0.0% 0.0% 0.0% 0.1% 
† Switching percentages are weighted by market share so that the percentages in the same table add up to 100%.
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Table 3. In-Sample and Out-of-Sample Fit Statistics for Diaper Data 

 
         

 No  

Learning 

Myopic  

Learning 

Index  

Strategy 

Approxi-

mately  

Optimal 

Myopic 

Learning 

with Risk 

Aversion 

Index 

Strategy 

with Risk 

Aversion 

One-Period 

Look-ahead 

Heterogene-

ous 

Foresight 

Calibration sample        

  Log likelihood -1760.26 -1051.39 -1008.19 -1008.95 -1051.39 -1008.01 -1023.30 -989.06 

  U2  79.36% 87.67% 88.18% 88.17% 87.67% 88.18% 88.00% 88.40% 

  AIC 3528.53 2126.77 2048.39 2049.89 2128.77 2050.02 2072.61 2036.12 

  BIC 3549.88 2190.83 2133.80 2135.31 2198.17 2140.77 2142.00 2190.93 

  # parameters 4 12 16 16 13 17 13 29 

  # observations 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 

Hold-out sample        

  Log likelihood -1998.25 -1165.47 -1126.87 -1127.35 -1165.47 -1124.31 -1115.04 -1113.96 

  U2  80.43% 88.58% 88.96% 88.96% 88.58% 88.99% 89.08% 89.09% 

  # observations 1,841 1,841 1,841 1,841 1,841 1,841 1,841 1,841 

Computation time in 

seconds † 

negligible 2 1.4 (22) 104 2 23 11 22 

† This is the time required to compute one likelihood function using a university computing system based on Sun Grid Engine (SGE) and Red Hat Enterprise Linux. 
For the index strategy model, the computation time is 1.4 seconds for the original grid (ܯ ൌ ܰ ൌ 5) and 22 seconds for the finer grid (ܯ ൌ 200,ܰ ൌ 75). 
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Table 4. Parameter Estimates for Diaper Data 

 No  
Learning 

Myopic  
Learning 

Index  
Strategy 

Approximately 
Optimal 

Relative mean of prior beliefs (̅ߤ)
 1     

     Pampers 0.000 0.000 0.000 0.000 

– – – – 

     Huggies 0.095 0.079 -0.798 -0.198 

(0.059) (0.156) (0.717) (0.194) 

     Luvs -0.716 -0.641 -2.351 -1.381 

(0.081) (0.177) (1.626) (0.534) 

     Other Brands -3.223 -2.761 -3.143 -2.978 

(0.190) (0.321) (2.107) (0.853) 

Uncertainty of prior beliefs (ߪത) relative to inherent quality uncertainty (ߪ) 
  

     Pampers – 0.734 0.694 0.724 

– (0.099) (0.118) (0.119) 

     Huggies – 0.476 0.455 0.494 

– (0.066) (0.294) (0.153) 

     Luvs – 0.773 1.126 1.394 

– (0.139) (0.730) (0.600) 

     Other Brands – 1.332 1.428 1.394 

– (0.491) (1.750) (0.818) 

True mean quality (ߤ)
 2      

     Pampers – 3.902 3.686 3.551 

– (0.329) (2.092) (0.844) 

     Huggies – 5.852 8.438 7.850 

– (0.688) (5.088) (2.192) 

     Luvs – 3.666 2.724 2.544 

– (0.502) (1.544) (0.704) 

     Other Brands – 1.630 1.343 1.364 

– (0.820) (1.080) (0.856) 

Magnitude of utility shocks (ߪ
௫,ఢ) 3 relative to inherent quality uncertainty (ߪ) 

  

     Pampers – – 0.837 0.836 

– – (0.508) (0.221) 

     Huggies – – 0.138 0.151 

– – (0.084) (0.040) 

     Luvs – – 0.316 0.347 

– – (0.192) (0.092) 

     Other Brands – – 1.272 1.347 

– – (0.772) (0.357) 

Price Sensitivity (ߚ) -0.153- 0.152- 0.128- 0.126 

(0.020) (0.026) (0.094) (0.048) 
For identification: 1 ̅ߤଵ ൌ ߤ 2 .0

ఢ ൌ ߪ 3 .0
௫ observed in the data, ߪ

ఢ computed from ߪ
௫,ఢ via independence. 
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Table 4. Parameter Estimates for Diaper Data (Continued) 

 Myopic  
Learning  
with Risk 
Aversion 

Index  
Strategy  
with Risk 
Aversion 

One-Period 
Look- 
ahead 

Heterogeneous 
Foresight  
(Myopic  

Learning) 

Heterogeneous 
Foresight  

(Index  
Strategy) 

Relative mean of prior beliefs (̅ߤ) 
1      

     Pampers 0.000 0.000 0.000 0.000 0.000

– – – – –

     Huggies 0.007 -0.346 -0.014 -0.479 -1.169

(0.151) (0.036) (0.092) (0.774) (1.776)

     Luvs -0.627 -1.941 -0.819 -1.686 -3.926

(0.163) (1.079) (0.224) (1.412) (5.717)

     Other Brands -2.474 -3.211 -2.744 -7.169 -2.253

(0.488) (2.566) (0.300) (3.195) (2.419)

Uncertainty of prior beliefs (ߪത) relative to inherent quality uncertainty (ߪ)
   

     Pampers 0.734 0.699 0.564 0.142 0.887

(0.099) (0.116) (0.038) (0.018) (0.356)

     Huggies 0.476 0.463 0.424 3.404 0.545

(0.066) 0.362 (0.074) (2.898) (0.237)

     Luvs 0.773 1.215 0.740 0.623 1.397

(0.138) (0.940) (0.064) (0.428) (1.806)

     Other Brands 1.333 1.423 0.779 0.666 1.391

(0.487) (1.931) (0.146) (11.452) (5.697)

True mean quality (ߤ) 
2       

     Pampers 3.777 3.585 3.991 11.660 3.954

(0.361) (2.571) (0.182) (1.905) (0.841)

     Huggies 5.728 8.189 6.374 0.226 9.083

(0.703) (5.914) (1.404) (3.164) (3.164)

     Luvs 3.542 2.569 2.956 2.774 2.908

(0.499) (1.857) (0.276) (2.460) (0.974)

     Other Brands 1.504 1.293 1.985 2.247 2.058

(0.824) (1.239) (0.961) (9.340) (0.921)

Magnitude of utility shocks (ߪ
௫,ఢ) 3 relative to inherent quality uncertainty (ߪ)

   

     Pampers – 1.081 0.273 – 0.885

– (0.813) (0.021) – (0.219)

     Huggies – 0.141 0.271 – 0.128

– (0.106) (0.020) – (0.032)

     Luvs – 0.317 0.275 – 0.227

– (0.238) (0.022) – (0.057)

     Other Brands – 1.090 0.275 – 1.156

 (0.820) (0.022)  (0.289)

Price Sensitivity (ߚ)  -0.152- 0.128 -0.160 -0.274 -0.081

(0.026) (0.115) (0.028) (0.077) (0.045)

Risk Aversion (ݎ)  0.084 0.463  

(0.305) (0.039)  

% Forward-Looking    0.773

  (0.091)
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Table 5. In-Sample and Out-of-Sample Fit Statistics for Diaper Data (Private Labels Included) 

 
         

 No  

Learning 

Myopic  

Learning 

Index  

Strategy 

Approxi-

mately  

Optimal 

Myopic 

Learning 

with Risk 

Aversion 

Index 

Strategy 

with Risk 

Aversion 

One-Period 

Look-ahead 

Heterogene-

ous 

Foresight 

Calibration sample        

  Log likelihood –3301.57 –1955.16 –1853.22 –1857.04 -1955.16 –1852.43 –1862.60 –1814.66 

  U2  76.58% 86.13% 86.85% 86.83% 86.13% 86.86% 86.79% 87.13% 

  AIC 6611.14 3934.33 3738.45 3746.08 3936.33 3738.86 3751.20 3687.31 

  BIC 6634.50 4004.41 3831.90 3839.53 4012.26 3838.15 3827.12 3856.69 

  # parameters 4 12 16 16 13 17 13 29 

  # observations 2,542 2,542 2,542 2,542 2,542 2,542 2,542 2,542 

Hold-out sample        

  Log likelihood –3173.91 –1935.58 –1855.17 –1859.30 –1935.59 –1852.32 –1861.23 –1870.81 

  U2  76.87% 85.90% 86.48% 86.45% 85.90% 86.50% 86.44% 86.37% 

  # observations 2,475 2,475 2,475 2,475 2,475 2,475 2,475 2,475 

Computation time in 

seconds † 

negligible 1 1.5 (23) 146 1 24 6 24 

† This is the time required to compute one likelihood function using a university computing system based on Sun Grid Engine (SGE) and Red Hat Enterprise Linux. 
For the index strategy model, the computation time is 1.5 seconds for the original grid (ܯ ൌ ܰ ൌ 5) and 23 seconds for the finer grid (ܯ ൌ 200,ܰ ൌ 75). 
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Figure 1. Index Strategies Balance Utility and Simplicity 

(Conceptual Diagram) 
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Figure 2. Gittins’ Index, Posterior Mean Quality, and the Value of Exploration 

 

 

 

 

 

Figure 3. Whittle’s Index as Experience and Utility Shock Magnitude Vary 

 
Notes. Posterior mean quality is set to zero in this figure, so that Whittle’s index captures the value of exploration. 
Inherent quality uncertainty ߪ is normalized as 1. 
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