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Besides the often-quoted complexity of cellular networks, the prevalence of uncertainties about
components, interactions, and their quantitative features provides a largely underestimated hall-
mark of current systems biology. This uncertainty impedes the development of mechanistic math-
ematical models to achieve a true systems-level understanding. However, there is increasing
evidence that theoretical approaches from diverse scientific domains can extract relevant biological
knowledge efficiently, even from poorly characterized biological systems. As a common denomina-
tor, the methods focus on structural, rather than more detailed, kinetic network properties. A dee-
per understanding, better scaling, and the ability to combine the approaches pose formidable
challenges for future theory developments.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

It is a key concept of systems biology to iteratively combine
large-scale experimental analysis with mathematical modeling in
order to eventually elucidate how biological systems operate [1].
This concept, per se, is not new – similar approaches have been fol-
lowed for decades in physiology and theoretical biology [2].
Unprecedented developments of high-throughput, large-scale
experimental technologies – such as genomics, proteomics, meta-
bolomics – however, have opened realistic opportunities for sys-
tem-wide analyses in biology, at least at the cellular level.
Mathematical modeling can employ this data to generate qualita-
tive or quantitative predictions and, thereby, evaluate biological
hypotheses, suggest new experiments for validation, and ulti-
mately increase our systems-level understanding [3]. Transcrip-
tional regulatory networks provide one example where this
combination of experimentation and modeling has been particu-
larly successful [4].

The complexity of cellular systems constitutes an obvious chal-
lenge for mathematical modeling in systems biology. For instance,
it is unclear how detailed dynamic models of small-scale systems
could eventually be scaled to entire cells, or joined with coarser-
grained but large-scale models [4]. Uncertainty is another impor-
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tant and less appreciated factor that requires new theory develop-
ment to increase the power of mathematical models as systems
analysis tools. Probabilistic models cope with uncertainty by de-
sign, but they often do not respect first principles such as mass
conservation, do not cover dynamic processes, and yield only lim-
ited insight into mechanistic detail. Hence, it is important to con-
sider the effect of uncertainty on mechanistic models.

Uncertainties fall into two broad categories [5]. Aleatoric uncer-
tainty stems from the inherent randomness in the behavior of the
system under examination. In biology, for example, noise in gene
expression induces uncertainty in the model output. Since the
noise stems from physical principles, this uncertainty cannot be
avoided and needs to be addressed by stochastic analysis. This
highly active research area is summarized in recent reviews [6–
8]. Here, we focus on the second type of uncertainty, epistemic
uncertainty, which results from our lack of knowledge on the sys-
tem. In current mechanistic mathematical models of biological sys-
tems, epistemic uncertainty is profoundly present due to practical
limitations, such as lack of understanding of the underlying mech-
anisms, incomplete coverage and measurement errors in various
modeling quantities and, most commonly, parameters derived
from noisy or incoherent data sets. A recent study of coverage in
shotgun proteomics illustrates such technical limitations quantita-
tively [9] for one type of data required for mathematical modeling.

For future perspectives, consider the example of budding yeast
as a best-case scenario. S. cerevisiae is arguably the most intensely
studied eukaryotic model organism of ‘manageable’ complexity.
lsevier B.V. All rights reserved.
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Yet, ten years after sequencing the genome in 1996, roughly 1/6 of
the organism’s genes still remained un-annotated [10], and only
very recently, it was possible to establish growth phenotypes for
all individual genes using chemical genomics approaches [11].
Hence, ever accumulating perfect quantitative knowledge on bio-
logical systems for epistemic uncertainty to cease currently seems
unrealistic.

Incomplete knowledge affects mathematical models based on
first principles in different ways. Here, we consider ordinary differ-
ential equation (ODE) models derived from mass balances of n
individual components in a biochemical network with r reactions.
The general form of such an ODE system is:

dcðtÞ
dt
¼ N � vðcðtÞ;uðtÞ;kÞ; cðt0Þ ¼ c0 ð1:1Þ

with the n � 1 vector of time-dependent concentrations c(t), the
n � r stoichiometric matrix N, and the r � 1 vector function of reac-
tion rates – or fluxes – v(�). The fluxes depend on the system state
c(t), on potentially time-varying inputs u(t), and on kinetic param-
eters k such as affinity constants. Finally, c0 denotes the initial state
of the system, for instance, absolute protein concentrations. Uncer-
tainty enters in the form of unknown or poorly estimated parameter
values k and initial conditions c0. Moreover, missing or incorrect
reactions affect the model structures, namely stoichiometries N
and reaction rate laws v(�). The resulting nested model uncertainties
are difficult to handle [12].

To cope with the combination of complexity and uncertainty in
biological systems, it is important to realize that mathematical
models need to be adapted to the phenomena of interest as well
as to the scientific questions they are intended to answer. Or, as
a lesson from other complex systems: ‘‘Don’t model bulldozers
with quarks” [13]. In particular, it is not always necessary to spec-
ify ODE-based models completely. Using advanced computational
methods for exploiting the existing knowledge to the largest pos-
sible extent provides a pragmatic approach to gain biological
knowledge and to reduce the experimental efforts. However, it
poses important theory challenges. Here, we discuss methods that
can potentially cope with increasing levels of uncertainty; they
originate from different long-term theory developments that start
to converge.

2. Structural network analysis

Network structures, especially the stoichiometries of biochem-
ical reactions, are relatively well-characterized and therefore suit-
able starting points to analyze the largely unknown relationships
between structure, function and control in complex cellular
networks.

2.1. Concepts

Horn and Jackson were the first to study the effects of stoichi-
ometric coupling in (chemical) reaction networks on their behavior
[14]. They realized that – even without knowing parameter values
k and component concentrations c – the stoichiometry imposes
important constraints on network fluxes. Considering only steady
states and neglecting the dynamics, Eq. (1.1) simplifies to:

dc
dt
¼ 0 ) N � v ¼ 0 ð1:2Þ

Now, the space of feasible fluxes v is only determined by properties
of the stoichiometric matrix N and potentially other constraints on
v such as reaction reversibilities and capacities as illustrated in
Fig. 1. The approach rapidly gained importance for biology after
Palsson and colleagues proposed the flux balance analysis (FBA)
method in 1992. FBA determines a specific flux distribution in a
metabolic network by additionally considering optimality of, for
example, biomass production [15]. The method and its extensions
have found numerous applications in biology to analyze specific
properties and behaviors of genome-scale metabolic networks;
see [16,17] for recent reviews. However, it might be even more
rewarding to characterize all possible behaviors of a network, which
is the domain of metabolic pathway analysis.

2.2. Metabolic pathways

Formal metabolic pathways – as opposed to conceptual ‘glycol-
ysis’, ‘TCA cycle’, etc. – have well-defined mathematical structures.
Two such concepts are elementary flux modes (EFMs) and extreme
pathways (EPs); they both originate from Clarke’s early work on
convex analysis of stoichiometric networks [18,19]. Since EFMs
and EPs are closely related, we only consider EFMs in the following.
Importantly, EFMs correspond to minimal (that is, non-decompos-
able) subnetworks that can operate a network at steady state while
fulfilling all constraints that are imposed by reaction stoichiome-
tries and reversibilities. They open up a constructive inroad for
characterizing network behavior: all feasible flux distributions,
and only those, are obtained by non-negative (convex) combina-
tions of EFMs (see [20] for technical details). Hence, pathway anal-
ysis, in principle, allows one to comprehensively investigate the
space of all states of (metabolic) networks that are meaningful
for the cell.

Early applications of EFM analysis considered small-scale net-
works such as parts of canonical monosaccharide metabolism,
thereby recovering text book pathways as well as proposing new
network operation modes [21]. The first larger-scale analysis of
Escherichia coli central metabolism showed the potential of EFM
analysis for characterizing phenotypes and robustness of metabolic
networks [22]. Primarily due to increased capabilities for comput-
ing EFMs, applications are now becoming possible for genome-
scale networks. Recent studies indicated remarkable variability of
fluxes within a narrow region of growth optimality [23], and
helped uncover optimal, but rather counter-intuitive modes of net-
work operation [24].

Importantly, large-scale analyses showed that focusing on ‘core
metabolism’, while neglecting the peripheral network, can be very
misleading [23,25]. This implies important challenges for EFM-
based network analysis. First, it is not yet possible to analyze net-
works larger than �300 reactions because of the high computa-
tional demands for determining EFMs. High-performance
computing approaches and parallelization are options for further
scaling. In addition, already now, EFM computations result in up
to 107 pathways for large networks. Even simple statistical analysis
such as determining the distribution of path lengths thus becomes
non-trivial, and more advanced methods for clustering and other
analyses at this scale are needed [23].

2.3. Network structure and regulation

While structural network analysis traditionally focuses on met-
abolic networks, several theories and computational methods have
been proposed to infer (transcriptional) regulatory network struc-
tures and behavior from metabolic network structures. This is dif-
ferent from designing hybrid models that abstractly represent
known genetic control mechanisms, for instance, via Boolean logic
to more accurately predict the metabolic phenotype [26]. Reverse-
engineering of the control network, at least in microorganisms, ap-
pears feasible because the control structures are sparse – only few
metabolites directly control each regulator and vice-versa – and
hierarchical [27]. In addition, there is increasing evidence that met-
abolic networks operate in a limited number of dominant func-
tional modes in steady-state. Additional assumptions on optimal



Fig. 1. Relations between spaces in a dynamical system model. In the parameter space (A), constraints such as non-negativity of constants in mass-action kinetics and upper
bounds on reaction rates (red lines) make only certain parameter values feasible (shaded area). The flux space (B) permits only sets of steady-state fluxes that are compatible
with the stoichiometries (null space, light area), and with reaction reversibilities and capacities (dark area). The system dynamics takes places in the concentration space
(state space, C). The vector field of concentration changes for an example system is indicated by arrows and states with zero velocity in one of the directions (nullclines) are
shown as red and blue lines, respectively. The system has three steady states (red dots); two steady states are stable and the trajectories (green lines) converge to them with
time. The steady states map to three different flux distributions in (B), but to a single set of kinetic constants in (A), as illustrated by the red dots.
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control, such as most efficient allocation of resources using a min-
imal set of regulators could enable predictions of metabolic net-
work regulation. For instance, by comparison of experimental
data on gene expression with EFM-derived predictions derived
from metabolic network structures alone, the existence of correla-
tions between metabolic fluxes and genetic control has been dem-
onstrated [22].

Other methods assume optimal rejection of perturbations in the
sense of a minimal deviation from a given operating point. They
use continuous (‘minimization of metabolic adjustment’, MOMA;
[28]) or discrete (‘regulatory on/off minimization’, ROOM; [29])
distance metrics to quantify the deviation between original and
perturbed state. Similarly, sensitivity analysis based on the net-
work structure alone (and using EFMs to construct flux distribu-
tions) provided evidence of a close link between network
topology and gene expression control [30]. Further developments
could not only allow for making specific, experimentally testable
predictions, but also for revealing more general design principles
of cellular control.

3. Chemical reaction network theory

While the structural network analysis methods rely solely on
the network stoichiometry, other methods additionally take into
account the algebraic structure of the kinetic rate laws v(�) and
physical constraints such as non-negativity of concentrations c
and parameters k. Thereby, they extend the analysis to dynamic
features of a network, despite uncertainties in the kinetic
parameters.

3.1. Concepts

Chemical reaction network theory (CRNT) was developed by
Horn and Jackson [14,31] in the 1970s, and extended by Feinberg
[32,33] in the 1980s. It allows establishing or excluding the exis-
tence of multiple steady states for all physically feasible sets of ki-
netic rate constants in certain very restricted classes of chemical
reaction networks captured by mass-action kinetics (see Fig. 1
for an illustration). Most results of CRNT exploit that taking the
logarithm of such a mass-action rate law yields a linear equation
in the logarithms of the species concentrations.

Given a set of reactions among chemical species, each left- and
right-hand side of a reaction is replaced by a new variable, called a
‘complex’, such that each reaction can be interpreted as one direc-
ted edge connecting two complexes in a reaction graph. For exam-
ple, consider the network given in Fig. 2A. This Michaelis–Menten
like network consists of four species E, P, S, C, and m = 6 complexes
C0–C5, namely 0, P, S, E+S, E�S, E+P. Balancing all fluxes in the graph
results in a ‘complex balancing’ [14]; CRNT provides the means to
analyze the interplay of complex balancing and steady states on
the species level. For this, the ‘deficiency’ d of the network de-
scribes the degree of linear dependencies among complexes. It
can be computed solely from the stoichiometry of the network as
d = m � l � s, where m is the number of complexes, l the number
of connected components of the complex graph, and s the rank of
the stoichiometric matrix. Our example (Fig. 2A) consists of l = 2
linkage classes L1–L2, and the stoichiometric matrix has rank
s = 3. Hence, the network’s deficiency is d = 1.

Key results of CRNT show that for a deficiency zero network,
species and complex steady states coincide. For the notion of single
and multiple steady states, CRNT introduces so-called compatibil-
ity classes which define an equivalence relation among steady
states; two steady states are equivalent if their corresponding ini-
tial conditions lead to trajectories confined in the same subspace.
Under further conditions on the strongly connected components
of the complex graph, the existence of at most one steady state
per compatibility class can be guaranteed by the Deficiency-1-The-
orem for all positive rate constants, provided the deficiency of each
connected component is zero or one. If these deficiencies are all
equal to zero, the Deficiency-0-Theorem additionally guarantees
the existence and asymptotic stability of the steady state [33].
For a different set of regularity conditions on the complex graph,
the Deficiency-1-Algorithm applies. It determines if the network
can exhibit multiple steady states and subsequently computes
one corresponding set of positive rate constants [32]. For the net-
work in Fig. 2A the Deficiency-1-Theorem applies; this establishes
the existence of at most one steady state, regardless of the kinetic
rate constants. Similarly, CRNT shows potential bistability of the
network in Fig. 2B, which is again enzyme catalysis, but with
mixed inhibition [34].

3.2. Qualitative dynamics for biology

Despite the theory’s elegance and fundamental nature, it has
found relatively few applications in (systems) biology. Neverthe-
less, CRNT is a very good illustration for new theory development
induced by biological problems. Feinberg employed examples from
biochemistry such as the examples in Fig. 2 to re-formulate central
elements of CRNT in terms of the reaction networks’ graph struc-
tures [34]. The analysis of kinetic proof-reading of T-cell receptors



Fig. 2. Chemical reaction networks and multistationarity. (A) Enzyme catalysis following a Michaelis–Menten like scheme with three species, five complexes (C) and two
connected components (L). The substrate is produced with constant rate; both substrate and product are degraded with rate proportional to their concentration. (B) Enzyme
catalysis with mixed inhibition consisting of four species, eleven complexes and four connected components. The inhibitor I is additionally produced with constant rate and
degraded with rate proportional to its concentration.
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Fig. 3. Example interaction network. Nodes represent components (1–4) and
directed links indicate positive (+) or negative (�) interactions between them.
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(a deficiency-zero network) lead Sontag to extend the theory to
certain classes of non-mass action kinetics, and to incorporate
robustness analysis, which deals with the network’s resilience to
perturbations in parameters [35]. More recently, fundamental the-
orems for classes of biochemical networks that show (near) robust
adaptation – as observed in the classical E. coli chemotaxis example
– have been proposed [36]. Corresponding insights into ‘first prin-
ciples’ of biological network functions are clearly needed.

CRNT’s main current limitations, however, concern the theory’s
applicability to broader classes of realistic networks as well as its
scalability to larger systems. Two approaches have begun to ad-
dress these issues, both by sacrificing the generality of CRNT to a
certain extent. One approach considers the detailed relations be-
tween parameter space and behavior (see Fig. 1 for an illustration).
More precisely, formulation of an optimization problem allows to
investigate the network dynamics in regions of parameter space
with qualitatively different behavior [37]. Similarly, considerations
of a systems ‘design space’ (a compressed version of the parameter
space) by Savageau et al. focus on the tolerance of systems in dif-
ferent regions of this space [38].

Another approach aims at decomposing a complex network into
smaller subunits, namely EFMs as discussed in the previous sec-
tion. Each EFM of a network has either deficiency zero or one, such
that the Deficiency-1-Algorithm can be applied on each EFM, pos-
sibly with relaxed regularity conditions as provided in [39]. If an
EFM is found to exhibit multiple steady states, it is often possible
to extend this finding to the whole network [40]. On the contrary,
multiple steady states cannot be excluded from the fact that each
EFM only exhibits a single steady state. With this analysis, CRNT al-
lows discrimination of model variants of a network without knowl-
edge of the kinetic rate constants [41]. Overall, different directions
of theory development are being pursued – but we understand
their deeper connections only poorly.

4. Monotone systems

The theory of monotone input/output systems, developed re-
cently by Angeli and Sontag [42–44], is founded in engineering
control theory. It assumes less about the model structures, which
makes it appealing for the analysis of biological systems.

4.1. Concepts

In contrast to CRNT, the theory of monotone systems [45] does
not rely on a particular type of kinetic rate law. It linearizes the
system of ODEs describing the reactions (Eq. (1.1)) around a steady
state c* and uses the structure of the Jacobian matrix

J ¼ N � @vðc;u;kÞ
@c

�
�
�
�
c�

ð1:3Þ

to determine properties of interest. The i,jth entry of the Jacobian
describes the amount of change in species i induced by a unit
amount of change in species j with a positive or negative entry cor-
responding to an activation or inhibition, respectively. The Jacobian
can be interpreted as an adjacency matrix of a graph with one node
per chemical species and connecting edges labeled by �1 or +1 for
inhibition or activation, respectively. A system is monotone if there
is a vertex labeling {�1,+1} of the species such that the product of
each edge label and its adjacent vertex labels results in +1. The exis-
tence of such a labeling guarantees that there is no situation in
which the increase of a species leads to an activation of another spe-
cies via one reaction path and an inhibition of the same species via
another path. Consider the example network shown in Fig. 3.
Assigning activation (+1) to node 1, this activation is propagated
to an activation of node 2 and an inhibition of node 3. Then, the re-
sponse of node 4 on the initial activation of node 1 would depend
on the kinetic parameters of the network and, hence, this network
is not monotone. However, if the edge 1–2 would be an inhibition,
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an activation of node 1 would unambiguously lead to an inhibition
of node 4 and the network would be monotone.

Sontag and co-workers extended the concept to biological sys-
tems with inputs and outputs and examined the system response
to constant input signals [44]. The characteristic of a system then
describes the steady-state of the output as a function of the con-
stant input. Stimulating a biological system with constant input
concentrations of increasing value and measuring the steady-state
output concentrations, such a characteristic can be determined by
interpolation; an obvious example of a characteristic would be a
dose–response curve. The concept of a characteristic also extends
to multiple inputs and outputs. Further, analysis of monotone sys-
tems can also be applied for revealing multiple steady states.

4.2. Modular network decomposition

As a single chemical species is always a monotone system in it-
self, a chemical reaction system can always be decomposed into
interconnected monotone systems such that the output of one sys-
tem provides the input to another system. An example of a decom-
position is ‘pulling out’ a negative feedback loop, resulting in a
monotone system with the negative feedback connecting its out-
put and input. Sontag and co-workers argue that biological sys-
tems are near-monotone, i.e., only few parts have to be pulled
out to make the resulting system monotone. Steady states of two
connected monotone systems can be determined by the two char-
acteristics alone. Hence, decomposition into monotone subsystems
allows characterization of the steady-states of the full system
without explicit knowledge of the kinetic rate constants.

Knowing only that the system is monotone, it has been possible
to derive the full bifurcation diagram of a simplified MAPK cascade
model by using only the characteristic. Similarly, Sontag [44]
established the existence of a single, globally attractive, stable
steady state in three other examples: a MAPK cascade model with
negative feedback, a testosterone model and a simplified model of
the Lac operon, by applying a small-gain theorem for monotone in-
put/output systems. In particular, oscillatory behavior could be ex-
cluded for the MAPK cascade and the Lac operon feedbacks even
for arbitrary delays in the feedback loop. The theory thus provides
an important tool for analyzing networks with a high degree of
structural uncertainty, as the only knowledge required is the
monotonicity of the system and its characteristic, which can both
be established without explicit knowledge of the kinetic rate laws
and constants.
5. Uncertain dynamics

The theoretical approaches discussed above cover the classes of
problems encountered in systems biology, however, only partially.
Typically, one is also interested in systems where parameter values
(k) and model structures (N, v(�)) are uncertain, even regarding
monotonicity for the latter. In addition, the behavior of interest
can be a dynamic behavior, for example, the detailed activity pro-
file of a signal transduction pathway. This leads to hard problems
of model selection and discrimination [12].

5.1. Concepts

One aspect of model selection concerns the identification of
parameters for a model structure that is assumed to be correct. Gi-
ven a set of experimental data and their variances, model parame-
ters are estimated using one of the optimization algorithms
available under a maximum likelihood criterion [46]. Subsequent
analyses based on simulation of the parametrized model estimate
the likelihood that the model generated the data, the accuracy of
the estimated parameters, and other relevant statistical quantities
(see [47] for a recent review).

For instance, to address the issue of parametric uncertainty, one
can approximate the parameter errors either by combining parame-
ter sensitivities – which measure the change in model output upon
parametric perturbations – with experimental measurement errors
via the Fisher Information Matrix, or by a quadratic expansion of the
estimation error functional involving the Hessian matrix [48]. It is
important to note that these methods imply several simplifications
(e.g., linearization of the dynamic system for the sensitivity calcula-
tion) such that the resulting, symmetric confidence intervals for the
parameters only approximate the real distributions.

Alternatively, Monte Carlo methods are the traditional statistical
tools for uncertainty quantification [49]. These approaches evaluate
the model multiple times by sampling from probability distributions
of the model’s quantities (such as parameters), responsible for the
system’s uncertainty. However, except for constraints derived from
thermodynamics [12] it is not clear which type of distribution should
be used for sampling. Common choices such as the log-normal, nor-
mal, or uniform distribution have only weak heuristic justification. A
further crucial step involves the selection of a sampling strategy;
popular choices are the quasi-Monte Carlo (QMC) method, the Latin
hypercube sampling, and various Markov Chain Monte Carlo meth-
ods [50]. As illustrated in Fig. 4, simulation results then approximate
the effect of uncertainties on model outputs by computing corre-
sponding empirical probability density functions (PDFs). Alterna-
tively, a bootstrap approach [51] can be employed by randomizing
the experimental data and re-estimating parameters. However, in
large biochemical networks, the repeated simulations together with
the high dimension of the parameter space make simple sampling-
based approaches extremely computationally demanding and
therefore practically infeasible. Hence, even for a known model
structure, quantifying the uncertainties associated with a model’s
parameters involves important trade-offs between computational
efficiency and accuracy.

In addition, when the network topology is ill-characterized, it is
necessary to rank and discriminate possible models (biological
hypotheses) based on their consistency with the experimental
observations. The key problem in structure identification is the
infeasibility of enumerating all (exponentially many) possible net-
work topologies for large systems when compute-intensive param-
eter estimation for each dynamic model is needed. Hence,
structure identification for dynamic models is conceptually and
computationally difficult. It has often been confined to small reac-
tion networks [52] or to aspects of reaction kinetics [53].

5.2. Uncertainty quantification and model selection

Uncertainty analysis plays a crucial role in establishing the
credibility of a computational model, since it quantifies the effect
of various uncertainties on the model output. Simple sampling-
based strategies do not scale well, as discussed above. Therefore,
applications of uncertainty quantification in large-scale biological
systems are not yet available, but efforts have been made for smal-
ler systems. For example, uncertainty analysis was performed in a
subset of parameters of an ODE model of M. tuberculosis infection
in humans [54]. It was also used for the discrimination of kinetic
models by maximizing the overlap between the densities reflecting
the model’s variability and the experimental data’s variability [55]
(see Fig. 4C and D for an illustration). Note that various other mod-
el selection criteria such as the Akaike Information Criterion (AIC)
and the Bayesian Information Criterion (BIC) exist; they utilize
maximum likelihood scores as a measure of fit and regularize for
model complexity at the same time [56]. In addition, it might be
worthwhile to adapt methods from other domains to biology.
Probabilistic bounds for an acceptable performance of engineering
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Fig. 4. Parametric uncertainty effect on a simple dynamical system’s output. (A) Schematic representation of a simple ODE dynamic system. Initially protein A is converted to
B. Then protein B is converted to C, which is finally exerting a feedback to A. Michaelis–Menten and mass-action kinetics are employed for the corresponding conversions. (B)
A typical view of the simulation results for the time evolution of the three protein concentrations (solid lines) is shown, together with perturbed synthetic experimental data
points (dots) and their standard deviations as typically given by experimentalists. (C) 3D view of the underlying probability density functions (PDFs) of the experimental data
points corresponding to protein B, assuming that measurement noise follows a Gaussian distribution. (D) PDFs of the simulated concentration values of protein B, at the time
points where experimental data were provided. To assemble each PDF reflecting the variability of protein B at every time point, 10000 Monte Carlo (MC) runs were performed
after uniformly sampling the four-dimensional parametric space.
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systems, for example, are provided by concentration-of-measure
inequalities [57].

To reduce prediction errors, analyzing ensembles of mathemat-
ical models with variations in parameter values has proven power-
ful when applied to, for instance, protein folding. However, this
type of ensemble modeling does not account for uncertainties of
model structures. Kauffman was the first to introduce the idea of
using constraints on network structures to define ensembles of
structurally different models; Boolean model ensembles, for in-
stance, may thereby enable the analysis of ‘typical’ qualitative
dynamics in gene regulatory networks [58]. These ideas have been
extended to investigate metabolic networks by local approxima-
tions of the kinetics in parameter space and subsequent sampling
of Jacobians similar to the form used for monotone systems. This
‘structural kinetic modeling’ approach, for instance, uncovered dy-
namic features of the Calvin cycle such as oscillations and multis-
tationarity [59]. Capitalizing on thermodynamics and on
experimentally measured steady states to constrain model ensem-
bles, another approach of approximate metabolic network model-
ing demonstrated the possibility of reducing the candidate
ensemble size by iterations with targeted experiments [60]. Final-
ly, a case study for the TOR (Target of Rapamycin) signaling path-
way in budding yeast recently demonstrated that a comparative
analysis of differently structured models may yield new, funda-
mental insights into signaling processes also, even with highly
uncertain biological mechanisms and few quantitative experimen-
tal data. The iterative approach combined a systematic re-casting
of (possibly conflicting) biological hypotheses into a model ensem-
ble with highly targeted experimentation [61]. However, it con-
tains heuristic elements – such as the selection of hypotheses to
be modeled – that introduce biases and may prohibit scaling to lar-
ger systems.

Addressing the hard problem of structure identification, how-
ever, has a long tradition in machine learning, and concepts from
this domain could be combined with dynamic modeling. Machine
learning methods usually rely on large-scale datasets and employ
discrete-time grey box models. Probabilistic models such as Bayes-
ian network methods help elucidate causal couplings between the
network components by formulating the identification of a net-
work topology as a coherent estimation problem. However, the
models do not enable direct mechanistic insight and quantitative
predictions, and standard Bayesian models cannot cope with the
ubiquitous feedback in cellular networks [62]. In addition, cor-
rectly identifying network topologies is not sufficient for predictive
mathematical models because – depending on parameter values –
the dynamic behavior may differ widely. New paradigms combin-
ing probabilistic and deterministic methods are therefore needed.
One possible framework might be a coherent probabilistic selec-
tion of appropriate mathematical structures of dynamic models.

6. Conclusions and perspectives

Uncertainty about network components, interactions, and
their quantitative features is found in all areas of current sys-
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tems biology. Although increasing experimental data coverage
will improve the situation, we argue that epistemic uncertainty
will remain a challenge for mathematical methods that aim at
increasing our systems-level understanding in biology. Conse-
quently, it is a key challenge to devise theoretical methods that
enable the development and analysis of mechanistic mathemat-
ical models and that can cope with uncertainties resulting from
limited knowledge.

Although the approaches discussed in this review originate
from very different scientific disciplines, they all emphasize the
importance of structures of cellular networks. These structural fea-
tures outweigh the potentially critical fine tuning of rate laws or
parameters, which can be attributed to widespread robustness in
biology [63]. Notably, the methods’ predictive power, in principle,
goes well beyond that of the well-established structural analysis of
metabolic networks at steady state. Complementary theory devel-
opments extend the concepts to other types of biological networks
as well as to dynamic network capabilities such as
multistationarity.

Notably, many links exist between the approaches discussed in
this review – for instance, regarding a modular analysis of complex
networks. However, our current understanding of these connec-
tions is very limited and needs to be improved. Other challenges
concern the scaling and generalization of the methods, such that
ultimately biological networks of realistic complexity can be ana-
lyzed, for instance, using CRNT or the theory of monotone systems.
The most generally applicable concept, ensemble modeling, also is
the least mature; to a certain extent, this results from another ‘cul-
tural’ gap in systems biology – here, the very different traditions in
dynamical systems theory and probabilistic approaches - that
eventually needs to be overcome. Structure-oriented analysis of
biological systems, thus, does not only open broad perspectives
for uncovering the organization and functionality of cellular net-
works, but it also implies challenging problems in the theory
domain.
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