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Abstract

This paper is concerned with the exponential stability of a class of delayed neural networks described by nonlinear
delay differential equations of the neutral type. In terms of a linear matrix inequality (LMI), a sufficient condition
guaranteeing the existence, uniqueness and global exponential stability of an equilibrium point of such a kind of
delayed neural networks is proposed. This condition is dependent on the size of the time delay, which is usually
less conservative than delay-independent ones. The proposed LMI condition can be checked easily by recently
developed algorithms solving LMIs. Examples are provided to demonstrate the effectiveness and applicability of
the proposed criteria.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the past decades, neural networks have received a great deal of interest due to their extensive appli-
cations in image processing, quadratic optimization, fixed-point computation, and other areas[3,8,9,15].
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Among the different proposed neural network schemes, cellular neural network and Hopfield neural
network are the two important types, which have been widely studied in the literature. Now, it has been
shown that applications of neural networks rely heavily on the dynamical behaviors of the networks.
Therefore, stability analysis for neural networks has been investigated and various approaches have been
proposed; see, e.g.,[10,12,18]and the references therein.

In implementations of artificial neural networks, time delays are unavoidable due to finite switching
speeds of the amplifiers. The existence of time delays may cause oscillations and instability of neural net-
works. Therefore, it is important to investigate the stability of delayed neural networks. In[1,6,11,16,19],
global asymptotic stability conditions for different classes of delayed neural networks were proposed
under some assumptions. In the design of neural networks, however, one is not only interested in global
stability, but also in some other performances. Particularly, it is often desirable to have a neural network
that converges fast enough in order to achieve fast response. Considering this, many researchers have
studied the exponential stability analysis problem for delayed neural networks and a great number of
results on this topic have been reported in the literature; see, e.g.,[2,5,7,14,20]and the references therein.

In this paper, we consider a class of neural networks with time delays described by a nonlinear delay
differential equation of neutral type. Attention is focused on the derivation of global exponential stability
for such a class of delayed neural networks. In terms of a linear matrix inequality (LMI), a sufficient
condition for global exponential stability is proposed; this condition is delay-dependent; that is, the
condition depends on the size of time delays. It is worth pointing out that delay-dependent stability
conditions are usually less conservative than delay-independent ones, especially in the case when the
delay size is small[13]. Also, it should be noted that the proposed LMI condition can be checked
numerically very efficiently by resorting to recently developed interior-point methods, and no tuning of
parameters will be involved[4]. This is in contrast to the stability results in[1,2,6,7,11,16,19], which are
often difficult to check. The maximum bound for the time delay which ensures that the delayed neural
network is globally exponentially stable can be obtained by solving a quasi-convex optimization problem.
Finally, we provide examples to demonstrate the effectiveness and applicability of the proposed method.

Notation. Throughout this paper, for real symmetric matricesX andY, the notationX�Y (respec-
tively,X>Y ) means that the matrixX− Y is positive semi-definite (respectively, positive definite). The
superscript “T” represents the transpose. We use�min(·) and�max(·) to denote the minimum and max-
imum eigenvalue of a real symmetric matrix, respectively. The notation‖x‖ denotes a vector norm
defined by‖x‖ = (

∑n
i=1 x

2
i )

1/2 wherex is a vector, while‖A‖ denotes a matrix norm defined by
‖A‖ = (�max(A

TA))1/2 whereA is a matrix.�(·) denotes the spectral radius of a matrix. Matrices, if
not explicitly stated, are assumed to have compatible dimensions.

2. Problem formulation

Consider the following class of delayed neural networks described by a nonlinear neutral delay differ-
ential equation:

u̇i(t)= −aiui(t)+
n∑
j=1

wij1gj (uj (t))+
n∑
j=1

wij2gj (uj (t − �))+
n∑
j=1

dij u̇j (t − �)+ Ii , (1)

ui(t)= �i(t), −�� t�0, (2)
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wherei = 1,2, . . . , n, andn denotes the number of neurons in a neural network;ui(t) denotes the state
of the ith neuron at timet; gj is the activation function of thejth neuron; the scalarai >0 is the rate
with which theith unit will reset its potential to the resting state in isolation when disconnected from the
network and external inputs at timet; wij1, wij2, dij , i, j = 1,2, . . . , n, are known scalars; the scalar
�>0 represents the transmission delay;Ii is the external bias on theith neuron at timet. The functions
�i(t) denote the initial conditions.

Denote

u(t)= [u1(t) u2(t) · · · un(t)]
T,

g(u(t))= [g1(u1(t)) g2(u2(t)) · · · gn(un(t))]
T,

I = [I1 I2 · · · In]
T,

�(t)= [�1(t) �2(t) · · · �n(t)]T.
Then, (1) and (2) can be re-written as

u̇(t)= −Au(t)+W1g(u(t))+W2g(u(t − �))+Du̇(t − �)+ I, (3)

u(t)= �(t), −�� t�0, (4)

where

A= diag(a1, a2, . . . , an)>0, W1 = {wij1}, W2 = {wij2}, D = {dij }.
Throughout the paper we assume that the activation function satisfies the following assumption.

Assumption 1(Arik [1] ). The activation functiong(u) is bounded and satisfies

0�
gi(�1)− gi(�2)

�1 − �2
��i , i = 1,2, . . . , n, (5)

for any�1, �2 ∈ R, �1 = �2, where�i >0 for i = 1,2, . . . , n.

Definition 1. A vectoru∗ ∈ Rn is said to be an equilibrium point of system (3) if it satisfies

−Au∗ + (W1 +W2)g(u
∗)+ I = 0.

By Assumption 1, it can be seen that there exists an equilibriumu∗ for DCNN (4) [6]. Now, let

x(t)= u(t)− u∗. (6)

Then, it is easy to see that system (3) can be transformed to

ẋ(t)= −Ax(t)+W1f (x(t))+W2f (x(t − �))+Dẋ(t − �), (7)
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where

x(t)= [x1(t) x2(t) · · · xn(t)]
T

is the state vector of the transformed system, and

f (x(t))= [f1(x1(t)) f2(x2(t)) · · · fn(xn(t))]
T

with

fi(xi)= gi(xi + u∗
i )− gi(u∗

i ), i = 1,2, . . . , n.

Then, it is easy to see that

fi(0)= 0, i = 1,2, . . . , n

andfi(·) satisfies (5), that is,

0�
fi(�1)− fi(�2)

�1 − �2
��i , i = 1,2, . . . , n. (8)

We will also need the following definition.

Definition 2. System (7) is said to be exponentially stable if there exist scalarsk >0 and�>0 such that
for every solutionx(t) of (7),

‖x(t)‖��e−kt sup
−����0

{‖x(�)‖, ‖ẋ(�)‖}.

The problem to be addressed in this paper is to develop delay-dependent conditions such that the
delayed neural network in (7) is globally exponentially stable. More specifically, for a given scalar�̄>0,
our purpose is to determine whether the system in (7) is globally exponentially stable for any delay
0< �� �̄.

3. Main results

We first introduce the following lemma, which will be used in the proof of our main results.

Lemma 1(Xu et al.[17] ). LetD,S andP be real matrices of appropriate dimensions withP>0.Then
for any vectors x and y with appropriate dimensions,

2xTDSy�xTDPDTx + yTSTP−1Sy.

Now, we are in a position to give an exponential stability condition for the delayed neural network
in (7).

Theorem1. Theorigin of the delayedneural network in(7) is the unique equilibriumpoint and is globally
exponentially stable for any delay0< �� �̄ if there exist matricesP >0,Q1>0,Q2>0,Q3>0 and
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two diagonal matricesS >0 andY >0 such that the following LMI holds:




−PA− AP + AQ̃A (P − AQ̃)W1 + 1
2 S	 (P − AQ̃)W2 + Y (P − AQ̃)D 0

WT
1 (P − Q̃A)+ 1

2 	S WT
1 Q̃W1 +Q1 − S WT

1 Q̃W2 WT
1 Q̃D 0

WT
2 (P − Q̃A)+ Y WT

2 Q̃W1 WT
2 Q̃W2 − 2Y	−1 −Q1 WT

2 Q̃D −�̄Y

DT(P − Q̃A) DTQ̃W1 DTQ̃W2 DTQ̃D −Q2 0

0 0 −�̄Y 0 −�̄Q3



<0, (9)

where

	 = diag(�1, �2, . . . , �n), (10)

Q̃=Q2 + �̄Q3 (11)

and�i >0, i = 1,2, . . . , n are given in Assumption1.

Proof. To show the global exponential stability of an equilibrium point of (7), we first note that (9)
implies

DTQ2D −Q2<0.

Therefore,

�(D)<1. (12)

Considering (9), it is easy to see that there exists a scalar
 simultaneously satisfying

0< 
<min

{
1

16‖A‖4 ,
1

16‖W1‖4 ,
1

16‖W2‖4

}
(13)

and




−PA− AP + AQ̃A (P − AQ̃)W1 + 1
2 S	 (P − AQ̃)W2 + Y (P − AQ̃)D 0

WT
1 (P − Q̃A)+ 1

2 	S WT
1 Q̃W1 +Q1 − S WT

1 Q̃W2 WT
1 Q̃D 0

WT
2 (P − Q̃A)+ Y WT

2 Q̃W1 WT
2 Q̃W2 − 2Y	−1 −Q1 WT

2 Q̃D −�̄Y

DT(P − Q̃A) DTQ̃W1 DTQ̃W2 DTQ̃D −Q2 0

0 0 −�̄Y 0 −�̄Q3




+



(
 + √


)I 0 0 0 0
0

√

I 0 0 0

0 0
√


I 0 0
0 0 0 4
‖D‖2I 0
0 0 0 0 0


<0. (14)
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It can be verified that (14) can be rewritten as


−PA− AP PW1 + 1
2 S	 PW2 + Y PD 0

WT
1 P + 1

2 	S Q1 − S 0 0 0
WT

2 P + Y 0 −2Y	−1 −Q1 0 −�̄Y
DTP 0 0 −Q2 0

0 0 −�̄Y 0 −�̄Q3




+




−A
WT

1

WT
2

DT

0


 Q̃




−A
WT

1

WT
2

DT

0




T

+



(
 + √


)I 0 0 0 0
0

√

I 0 0 0

0 0
√


I 0 0
0 0 0 4
‖D‖2I 0
0 0 0 0 0


<0.

Then, it follows that for any 0< �� �̄ we have

� + diag((
 + √

)I,

√

I,

√

I,4
‖D‖2I,0)<0, (15)

where

� =




−PA− AP PW1 + 1
2 S	 PW2 + Y PD 0

WT
1 P + 1

2 	S Q1 − S 0 0 0
WT

2 P + Y 0 −2Y	−1 −Q1 0 −�Y
DTP 0 0 −Q2 0

0 0 −�Y 0 −�Q3


 +




−A
WT

1

WT
2

DT

0


 Q̂




−A
WT

1

WT
2

DT

0




T

,

(16)

with

Q̂=Q2 + �Q3. (17)

Now, define a Lyapunov–Krasovskii functional candidate for system (7) as

V (xt )= x(t)TPx(t)+ V1(xt )+ V2(xt )+ V3(xt ), (18)

where

xt = x(t + �), −����0, (19)

V1(xt )=
∫ t

t−�
f (x(�))TQ1f (x(�))d�, (20)

V2(xt )=
∫ t

t−�
ẋ(�)TQ2ẋ(�)d�, (21)

V3(xt )=
∫ 0

−�

∫ t

t+
ẋ(�)TQ3ẋ(�)d� d. (22)
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Then, the time-derivative ofV (xt ) along the solution of (7) gives

V̇ (xt )= 2x(t)TP [−Ax(t)+W1f (x(t))+W2f (x(t − �))+Dẋ(t − �)]
+ V̇1(xt )+ V̇2(xt )+ V̇3(xt ), (23)

where

V̇1(xt )= f (x(t))TQ1f (x(t))− f (x(t − �))TQ1f (x(t − �)), (24)

V̇2(xt )= ẋ(t)TQ2ẋ(t)− ẋ(t − �)TQ2ẋ(t − �), (25)

V̇3(xt )= �ẋ(t)TQ3ẋ(t)−
∫ t

t−�
ẋ(�)TQ3ẋ(�)d�. (26)

By the Newton–Leibniz formula, it is easy to see that

x(t − �)= x(t)−
∫ t

t−�
ẋ(�)d�. (27)

It then follows from (23)–(27) that

V̇ (xt )= 2x(t)TP [−Ax(t)+W1f (x(t))+W2f (x(t − �))+Dẋ(t − �)]
+ f (x(t))TQ1f (x(t))− f (x(t − �))TQ1f (x(t − �))+ ẋ(t)TQ̂ẋ(t)
−

∫ t

t−�
ẋ(�)TQ3ẋ(�)d� − ẋ(t − �)TQ2ẋ(t − �)

= 1

�

∫ t

t−�
{2x(t)TP [−Ax(t)+W1f (x(t))+W2f (x(t − �))+Dẋ(t − �)]

+ f (x(t))TQ1f (x(t))− f (x(t − �))TQ1f (x(t − �))+ ẋ(t)TQ̂ẋ(t)− ẋ(�)T�Q3ẋ(�)

+ 2f (x(t − �))TY [x(t)− x(t − �)] − 2f (x(t − �))T�Y ẋ(�)

− f (x(t))TSf (x(t))+ f (x(t))TSf (x(t))− ẋ(t − �)TQ2ẋ(t − �)} d�, (28)

whereQ̂ is given in (17). Taking into account (8), we can deduce

−f (x(t − �))TYx(t − �)� − f (x(t − �))TY	−1f (x(t − �)), (29)

f (x(t))TSf (x(t))�f (x(t))TS	x(t). (30)

Therefore, by (28)–(30), it can be shown that

V̇ (xt )�
1

�

∫ t

t−�
�(t, �)T��(t, �)d�, (31)

where� is given in (16), and

�(t, �)= [x(t)T f (x(t))T f (x(t − �))T ẋ(t − �)T ẋ(�)T]T.
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By (15) and (31), we have

V̇ (xt )� − (
 + √

)‖x(t)‖2 − √


‖f (x(t))‖2 − √

‖f (x(t − �))‖2 − 4
‖D‖2‖ẋ(t − �)‖2. (32)

Thus, by Theorem 1.6 in Ref.[13, p. 129], it follows from (12) and (32) that the delayed neural network
in (7) is globally asymptotically stable. To show the global exponential stability of the delayed neural
network in (7), we further note that from (7) and (8), it follows that

‖ẋ(t)‖2 = ‖ − Ax(t)+W1f (x(t))+W2f (x(t − �))+Dẋ(t − �)‖2

�4‖A‖2‖x(t)‖2 + 4‖W1‖2‖f (x(t))‖2 + 4‖W2‖2‖f (x(t − �))‖2 + 4‖D‖2‖ẋ(t − �)‖2.

Therefore,

−‖ẋ(t − �)‖2� − 1

4‖D‖2‖ẋ(t)‖2 + ‖A‖2

‖D‖2‖x(t)‖2 + ‖W1‖2

‖D‖2 ‖f (x(t))‖2

+ ‖W2‖2

‖D‖2 ‖f (x(t − �))‖2. (33)

Now, considering (18), it is easy to see that

V (xt )��max(P )‖x(t)‖2 + �max(Q1)�
2
∫ t

t−�
‖x(�)‖2 d�

+ �max(Q2)

∫ t

t−�
‖ẋ(�)‖2 d� + �max(Q3)

∫ 0

−�

∫ t

t+
‖ẋ(�)‖2 d� d, (34)

where

� = max
i=1,...,n

{�i}.

Note that∫ 0

−�

∫ t

t+
‖ẋ(�)‖2 d� d =

∫ t

t−�

∫ �−t

−�
‖ẋ(�)‖2 d d���

∫ t

t−�
‖ẋ(�)‖2 d�. (35)

Then, it follows from (34) and (35) that

V (xt )��max(P )‖x(t)‖2 + �max(Q1)�
2
∫ t

t−�
‖x(�)‖2 d�

+ (�max(Q2)+ ��max(Q3))

∫ t

t−�
‖ẋ(�)‖2 d�

�a
(

‖x(t)‖2 +
∫ t

t−�
‖x(�)‖2 d� +

∫ t

t−�
‖ẋ(�)‖2 d�

)
, (36)

where

a = max{�max(P ), �max(Q1)�
2, �max(Q2)+ ��max(Q3)}.



24 S. Xu et al. / Journal of Computational and Applied Mathematics 183 (2005) 16–28

By using (32), (33) and (36), we have that for any scalar�>0,

d

dt
(e�tV (xt ))= e�t [�V (xt )+ V̇ (xt )]

�e�t
[
�a

(
‖x(t)‖2 +

∫ t

t−�
‖x(�)‖2 d� +

∫ t

t−�
‖ẋ(�)‖2 d�

)
− (
 + √


)‖x(t)‖2 − √

‖f (x(t))‖2 − √


‖f (x(t − �))‖2

− 4
‖D‖2‖ẋ(t − �)‖2
]

�e�t
[
�a

(
‖x(t)‖2 +

∫ t

t−�
‖x(�)‖2 d� +

∫ t

t−�
‖ẋ(�)‖2 d�

)
− 
‖x(t)‖2 − 
‖ẋ(t)‖2 + (4
‖A‖2 − √


)‖x(t)‖2 + (4
‖W1‖2 − √

)

× ‖f (x(t))‖2 + (4
‖W2‖2 − √

)‖f (x(t − �))‖2

]
.

Using this and (13) we have

d

dt
(e�tV (xt ))�e�t

[
(�a − 
)‖x(t)‖2 + �a

∫ t

t−�
‖x(�)‖2 d�

+ �a

∫ t

t−�
‖ẋ(�)‖2 d� − 
‖ẋ(t)‖2

]
. (37)

Integrating both sides of (37) from 0 toT >0 results in

e�T V (xT )− V (x0)�(�a − 
)

∫ T

0
e�t‖x(t)‖2 dt + �a

∫ T

0

∫ t

t−�
e�t‖x(�)‖2 d� dt

+ �a

∫ T

0

∫ t

t−�
e�t‖ẋ(�)‖2 d� dt − 


∫ T

0
e�t‖ẋ(t)‖2 dt. (38)

Observe that∫ T

0

∫ t

t−�
e�t‖x(�)‖2 d� dt =

∫ 0

−�

∫ �+�

0
e�t‖x(�)‖2 dt d�

+
∫ T−�

0

∫ �+�

�
e�t‖x(�)‖2 dt d� +

∫ T

T−�

∫ T

�
e�t‖x(�)‖2 dt d�

��

∫ T

−�
e�(�+�)‖x(�)‖2 d�

= �e��
∫ 0

−�
e��‖x(�)‖2 d� + �e��

∫ T

0
e��‖x(�)‖2 d� (39)

and ∫ T

0

∫ t

t−�
e�t‖ẋ(�)‖2 d� dt��e��

∫ 0

−�
e��‖ẋ(�)‖2 d� + �e��

∫ T

0
e��‖ẋ(�)‖2 d�. (40)
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Then, from (38) to (40), we obtain

e�T V (xT )�(�a − 
 + �a�e��)

∫ T

0
e�t‖x(t)‖2 dt + (−
 + �a�e��)

∫ T

0
e�t‖ẋ(t)‖2 dt

+ �a�e��
∫ 0

−�
e�t‖x(t)‖2 dt + �a�e��

∫ 0

−�
e�t‖ẋ(t)‖2 dt + V (x0). (41)

Now, choose�>0 satisfying

�a − 
 + �a�e�� = 0.

This together with (41) implies

e�T V (xT )��a�e��
∫ 0

−�
e�t‖x(t)‖2 dt + �a�e��

∫ 0

−�
e�t‖ẋ(t)‖2 dt + V (x0).

By this and (36), we have

V (xT )�2e−�T (a + a� + �a�2e��) sup
−����0

{‖x(�)‖2, ‖ẋ(�)‖2}. (42)

Using this and noting (18), we obtain

‖x(T )‖��e−kT sup
−����0

{‖x(�)‖, ‖ẋ(�)‖},

where

� =
√

2a(1 + � + ��2e��)

�min(P )
, k = �

2
.

Finally, by Definition 2 and (42), it is easy to see an equilibrium point of the delayed neural network in
(7) is globally exponentially stable, which further implies that the origin of the delayed neural network
in (7) is the unique equilibrium point. This completes the proof.�

Remark 1. Theorem 1 provides a sufficient condition for the global exponential stability of the delayed
neural network in (7). This condition is delay-dependent, therefore, such a condition will be less conser-
vative than delay-independent ones. It is also worth pointing out that the LMI condition in Theorem 1
can be checked efficiently numerically by recently developed algorithms in solving LMIs, and no tuning
of parameters is required[4].

The maximum bound for the time delay�̄ in the context of Theorem 1 can be computed by solving a
quasi-convex optimization problem inP ,Q1,Q2,Q3, S,Yand�̄, which is given as follows:

maximize �̄
subject to �̄>0, P >0,Q1>0,Q2>0,Q3>0,

diagonal matricesS >0, Y >0,and (9).

We now provide an example to show the effectiveness of the result in Theorem 1.
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Example 1. Consider a delayed neural network in (7) with parameters as

A=
[2.7644 0 0

0 1.0185 0
0 0 10.2716

]
, W1 =

[0.2651 −3.1608 −2.0491
3.1859 −0.1573 −2.4687
2.0368 −1.3633 0.5776

]
,

W2 =
[−0.7727 −0.8370 3.8019

0.1004 0.6677 −2.4431
−0.6622 1.3109 −1.8407

]
, D =

[ 0.2076 0.0631 0.3915
−0.0780 0.3106 0.1009
−0.2763 0.1416 0.3729

]
.

In this example, we assume

�1 = 0.1019, �2 = 0.3419, �3 = 0.0633.

By Theorem 1, it can be found that this delayed neural network is globally exponentially stable for all
0< ��1.0344. In the case when� = 1.0344, we use the Matlab LMI Control Toolbox to solve the LMI
in (9), and obtain the solution as follows:

P =
[ 30.1640 9.9581 −23.1018

9.9581 34.5003 −9.7952
−23.1018 −9.7952 89.7873

]
, Q1 =

[ 190.0885 −85.9188 206.2056
−85.9188 217.2680 48.9076
206.2056 48.9076 336.8813

]
,

Q2 =
[ 7.8223 −1.9300 −0.5617

−1.9300 14.3633 3.7471
−0.5617 3.7471 4.1243

]
, Q3 =

[ 2.5392 3.4567 −2.8379
3.4567 10.7688 −6.4549

−2.8379 −6.4549 5.8970

]
,

S =
[832.2551 0 0

0 832.2551 0
0 0 832.2551

]
, Y =

[22.8971 0 0
0 22.8971 0
0 0 22.8971

]
.

Now, consider a special case withD = 0; that is, the delayed neural network in (7) reduces to[1]:

ẋ(t)= −Ax(t)+W1f (x(t))+W2f (x(t − �)). (43)

Then, by Theorem 1, we have the following result.

Corollary 1. The origin of the delayed neural network in(7) is the unique equilibrium point and is
globally exponentially stable for any delay0< �� �̄ if there exist matricesP >0,Q1>0,Q2>0 and
two diagonal matricesS >0 andY >0 such that the following LMI holds:


−PA− AP + �̄AQ2A (P − �̄AQ2)W1 + 1

2 S	 (P − �̄AQ2)W2 + Y 0
WT

1 (P − �̄Q2A)+ 1
2 	S �̄WT

1Q2W1 +Q1 − S �̄WT
1Q2W2 0

WT
2 (P − �̄Q2A)+ Y �̄WT

2Q2W1 �̄WT
2Q2W2 − 2Y	−1 −Q1 −�̄Y

0 0 −�̄Y −�̄Q2


<0,

(44)

where	 is given in(10).

To show the reduced conservatism of Corollary 1, we provide the following example.
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Example 2. Consider a delayed cellular neural network in (43) with parameters

A=
[1.1110 0 0

0 2.0592 0
0 0 2.9015

]
, W1 =

[−3.3497 0.0899 0.3752
−3.8446 4.8332 1.8954
−0.8733 −0.6198 −1.0514

]
,

W2 =
[−3.3468 0 0

0 −4.7770 0
0 0 3.5245

]
.

We also assume

�1 = 0.2051, �2 = 0.2342, �3 = 0.1593.

Then, it can be verified that the delay-dependent conditions of Theorems 2 and 6 in[2] cannot be satisfied
for any �>0. Thus, they cannot provide any results on the maximum allowed delay�̄. However, by
Corollary 1, it is computed that the maximum allowed delay�̄ = 1.9382. Therefore, Corollary 1 is less
conservative than the delay-dependent results in[2].

4. Conclusions

This paper has investigated the exponential stability of a class of delayed neural networks described by
nonlinear delay differential equations of neutral type. In terms of an LMI, a delay-dependent condition has
been proposed, which ensures the existence, uniqueness of an equilibrium point and its global exponential
stability. This LMI condition can be checked easily by resorting to recently developed standard algorithms
solving LMIs. It has been shown that the maximum bound for the time delay which ensures that the delayed
neural network is globally exponentially stable can be obtained by solving a quasi-convex optimization
problem, which involves no tuning of parameters. Examples have been provided to demonstrate the
effectiveness of the proposed method.
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