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This study, which was influenced a lot by Gestalt ideas, extends our prior work on the role of a priori con-
straints in the veridical perception of 3D shapes to the perception of 3D scenes. Our experiments tested
how human subjects perceive the layout of a naturally-illuminated indoor scene that contains common
symmetrical 3D objects standing on a horizontal floor. In one task, the subject was asked to draw a top
view of a scene that was viewed either monocularly or binocularly. The top views the subjects recon-
structed were configured accurately except for their overall size. These size errors varied from trial to
trial, and were shown most-likely to result from the presence of a response bias. There was little, if
any, evidence of systematic distortions of the subjects’ perceived visual space, the kind of distortions that
have been reported in numerous experiments run under very unnatural conditions. This shown, we pro-
ceeded to use Foley’s (Vision Research 12 (1972) 323–332) isosceles right triangle experiment to test the
intrinsic geometry of visual space directly. This was done with natural viewing, with the impoverished
viewing conditions Foley had used, as well as with a number of intermediate viewing conditions. Our
subjects produced very accurate triangles when the viewing conditions were natural, but their perfor-
mance deteriorated systematically as the viewing conditions were progressively impoverished. Their per-
ception of visual space became more compressed as their natural visual environment was degraded. Once
this was shown, we developed a computational model that emulated the most salient features of our
psychophysical results. We concluded that human observers see 3D scenes veridically when they view
natural 3D objects within natural 3D environments.
� 2015 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction Recently, one of us (Pizlo, 2008) picked this problem up when
There is a long tradition of applying Gestalt ideas to the inter-
pretation of 2D retinal images (see Wagemans, Elder et al., 2012;
Wagemans, Feldman et al., 2012, for recent reviews). In most of
this work, two-dimensional Rules of Perceptual Organization were
studied in an effort to discover how ambiguities inherent in our 2D
retinal images are resolved by our visual system. Much less effort
has been devoted to 3D shapes and 3D scenes. Hochberg and
McAlister (1953) were an exception. They took the first important
step over 60 years ago, when they showed that a simplicity princi-
ple operated in the perception of 3D shape. Unfortunately, this
important work stimulated little interest in the human vision com-
munity at that time. There were only a few follow up studies,
including Attneave and Frost (1969) and Perkins (1972, 1976).
he published a book devoted entirely to the history of research
on 3D shape perception. This book emphasized the important role
a priori simplicity constraints (aka priors) had in the perception of
3D shape. A priori constraints1 are essential because vision in gen-
eral, and 3D vision in particular, is an ill-posed inverse problem
(Pizlo, 2001). By ‘‘inverse problem”, we mean that the task of pro-
ducing accurate interpretations of the 3D geometrical and physical
properties of objects ‘‘out there” requires an inference based on 2D
retinal image(s). By ‘‘ill-posed”, we mean that there are many possi-
ble interpretations, but only one of which is correct. The only way
we know to solve such problems (i.e., to produce accurate interpre-
tations) is to impose constraints on the family of possible interpreta-
tions. These constraints represent the visual system’s knowledge of
the physical world.

This knowledge can be acquired in two quite different ways;
namely it could come from our personal experience with objects
e Gestalt
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and scenes accumulated over our lifespan, or from our innate intu-
itions about regularities in the physical world. Emphasizing expe-
rience with concrete objects and scenes is represented by the
empiristic school in perception. This school has traditionally
viewed perception as a recognition task driven by Pavlovian stimu-
lus–response learning (Helmholtz, 1867). The Gestalt Psychologists
were nativists. They emphasized the importance of innate intu-
itions about regularities characterizing objects and scenes. More
specifically, they viewed perception as a reconstruction task driven
by abstract regularities they called Prägnanz, or a simplicity principle
(Koffka, 1935; Wertheimer, 1923) (see also Leeuwenberg, 1969, for
his use of a simplicity principle in his Structural Information
Theory).2 Note that models based on learning and familiarity tend
to be fairly simple because they call for little more than using look-
up tables to perform template matching. Performing 3D reconstruc-
tion based on abstract regularities as priors, an approach derived
from the Gestalt Psychologists’ approach to vision, requires quite
elaborate models that actually solve the inverse problem.

But, once we accept that the visual system solves the inverse
problem of recovering a 3D shape based on 2D images, the concept
of a ‘‘veridical” interpretation must be brought into the discussion.
By ‘‘veridical”, we mean that the perceptual representation of an
object ‘‘out there” agrees with (is identical to) this object. Why
do we need this concept here? This concept is needed because
the very essence of solving inverse problems in science, medicine
and engineering is to produce, or guess, the correct solution, the
truth. This is the case when someone is required to detect a cancer
in a chest X-ray, predict the outcome of a presidential election,
estimate the location of the center of an Earthquake or recover a
3D shape from a single 2D image.

Now one must ask whether it is possible for visual representa-
tions of objects to be veridical. The answer seems uncertain with a
number of the perceptual correlates of physical attributes, such as
the color of a surface. Color simply does not exist in the physical
world. There are only wavelengths of light and reflectances of sur-
faces in the world ‘‘out there”. Color is produced by the human
visual system. There is only one characteristic of an object that per-
mits certainty about veridicality, namely shape. Shape is unique
precisely because it is easy to verify the veridicality of its percep-
tual representation. Why is it easy? It is easy because shape refers
to relational characteristics, spatial similarities, called ‘‘symme-
tries”, inherent in real 3D objects. When you look at an animal,
say a horse, and you see that this horse is mirror-symmetrical, your
percept is veridical, that is, the symmetry perceived agrees with
the geometrical symmetry ‘‘out there.” If I show you a square
and you say that you see a quadrilateral with four axes of
mirror-symmetry, I know that you see a square and that your per-
cept is veridical. So, the veridicality of shape can be verified, and
our recent experimental results show that human observers really
do see the shapes of 3D objects veridically. Furthermore, we suc-
ceeded in developing a computational model that can recover
shapes veridically, too (Li, Sawada, Shi, Kwon, & Pizlo, 2011).3

The reader is surely aware of the numerous studies of shape
perception performed with unnatural objects and impoverished
viewing conditions where the percept was observed to be far from
veridical (see Pizlo, 2008, for a review of these studies). But note
that such failures would be of interest only if a computational
model could correctly solve the inverse problem of 3D shape recov-
ery with the same unnatural objects and impoverished viewing
conditions. If it could, one would be entitled to say that the visual
space of the human observer is distorted; a conclusion often pro-
2 Prägnanz in German means succinctness, conciseness or terseness.
3 With other attributes, such as color, one can always verify that there is

‘‘perceptual constancy”, which simply means that the identity of physical attributes
is perceived veridically.
posed in the past. But, if the recovery is impossible from a compu-
tational point of view, the failure of the observer to solve the same
recovery problem accurately does not allow one to draw any
strong conclusions about the nature of observer’s visual space.
The failure of the observer in such cases is more likely to represent
the difficulty of the computational task, rather than some property
of the underlying perceptual mechanisms. It follows that computa-
tional models are absolutely essential when studying inverse prob-
lems in vision. Ideally, computational models should be developed
before a specific psychophysical experiment is conceived. A great
deal of effort can be wasted if this is not done.

We first demonstrated how this kind of approach works in our
studies of the veridicality of 3D shape perception by monocular
and binocular observers. We started by formulating a computa-
tional model of monocular 3D shape recovery that was based on
only 3 constraints, namely, mirror-symmetry, compactness and
planarity. This model was able to recover a 3D shape nearly per-
fectly. It only showed systematic errors in the recovered aspect
ratios, and these only when the viewing directions were close to
‘‘degenerate” (a degenerate viewing direction is either parallel or
orthogonal to the plane of symmetry of the object). It was impos-
sible to eliminate the systematic errors made by this model, so, it
came as no surprise when nearly identical errors were observed
in our monocular human observers when they were tested with
the same viewing directions (Li, Pizlo, & Steinman, 2009). This per-
mitted us to say with confidence that we understood what was
going on. Namely, systematic errors in perceived aspect ratios of
mirror-symmetrical objects, when they are viewed from directions
close to degenerate, is a natural consequence of the operation of
several a priori constraints that are absolutely essential for seeing
3D shapes nearly perfectly from a single 2D retinal image. Without
the contribution of these constraints, there would not even be a 3D
shape percept. Without our computational model, it would not
have been possible to understand or explain why Biederman and
Gerhardstein (1993) had observed nearly perfect shape constancy
with objects composed of symmetrical parts they called ‘‘geons”,
while Rock and DiVita (1987) observed a complete failure of shape
constancy with amorphous bent wires.

Shortly after collecting these data on monocular 3D shape
recovery, we were able to conclude, without running any new
experiments or simulations, that binocular shape recovery is as
good as monocular shape recovery, but not better (Pizlo, Li, &
Steinman, 2008). We did not expect that binocular shape recovery
would be much better than monocular recovery simply because
the voluminous literature on binocular vision showed that it is nei-
ther accurate nor precise (Howard & Rogers, 1995). But later, after
actually testing our own human subjects, we discovered that
binocular 3D shape recovery is actually perfectly veridical when
tested under appropriate conditions (Li, Sawada et al., 2011). Here,
the computational model of binocular 3D shape recovery was for-
mulated after the subjects were tested, so a model explaining a
given 3D visual function fully may be made before or after the psy-
chophysical experiments are performed. The order is not critical,
but the psychophysical experiments must be accompanied by a
comprehensive modeling effort. We took our own advice when
we conducted the present study.

With this background, it becomes timely to ask whether the per-
ception of a 3D scene ismore like the perception of 3D shape, ormore
like the perception of color. Three dimensional scenes may or may
not have mirror-symmetrical configurations of objects (imagine
twochairs facing eachother or standing side-by-side), butwhenever
similar, or identical, objects are present in the scene (now imagine
several identical chairs in a haphazard configuration), all of these
chairs can be described by using symmetry (invariance) under a
rigidmotion, amore general symmetry thanmirror-symmetry. This
raises the question of whether these kinds of symmetries will be



4 The subject could rotate the icons to represent the orientation of the objects but
e icon’s orientation data were not analyzed.
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sufficient to allow veridicality to be achieved in the perception of 3D
scenes. More generally, do natural 3D scenes contain a sufficient
number of effective a priori constraints to solve the inverse problem
required to recover3D scenes accurately?Note that these are impor-
tant theoretical and computational questions, and answering them
before designing and conducting psychophysical experiments is
obviously useful, and in our view, absolutely necessary. It turned
out that the inverse problem of 3D scene recovery can be solved
accurately, providing only that the scene contained symmetrical
objects that resided on a common horizontal ground with their
planes of symmetry being orthogonal to the groundbecause of grav-
ity. Howdowe know this?We know it becausewe had formulated a
computational model of 3D scene recovery, implemented it in a
binocular robot (named ‘‘Čapek”) and tested it with real scenes (Li,
Sawada, Latecki, Steinman, & Pizlo, 2012). Furthermore, note that
if symmetrical objects are perceived as symmetrical, and standing
on a common ground, there is little room for distortions of an obser-
ver’s or a model’s 3D visual space. The slant of the floor cannot be
underestimated perceptually because this would either destroy
the right angles formed by the planes of symmetry of objects and
the floor, or the symmetry of the objects would be destroyed. What
is being suggested here is that the symmetry of the objects within the
physical 3D space, in conjunction with the presence and direction of
gravity, calibrate the3Dvisual space,making theperceptionof the space
aswell as the objects containedwithin it veridical. Visual distortions of
the 3D space are likely to occur when the viewing conditions are
impoverished by: (i) using an empty 3D scene, or a nearly empty
one, (ii) using large viewing distances, distances larger than several
meters, or (iii) by eliminating visual information about the horizon-
tal ground. There is a large body of evidence showing that several
types of visual distortions of 3D space are commonplace in such
cases (e.g., Foley, 1972; He, Wu, Ooi, Yarbrough, & Wu, 2004;
Johnston, 1991; Li, Phillips, & Durgin, 2011; Loomis, Da Silva,
Fujita, & Fukusima, 1992; Loomis, Da Silva, Philbeck, & Fukusima,
1996; Ooi & He, 2007). These distortions probably represent the fact
that recovering a 3D scene veridically with impoverished viewing
conditions is simply impossible. So, the distortions reported in the lit-
erature are in the mathematics, not in the beholder’s eye. The goal of
this paper is to provide empirical and computational evidence that
3D scenes can be recovered veridically under relatively natural
viewing conditions. As far as the present authors know, the psy-
chophysical studies reported here are the first to show that human
observers can perceive a nearby indoor 3D scene containing several
pieces of furniture, veridically. The computational model presented
here is the first model that can detect nearby, real 3D objects in an
indoor 3D scene; and recover the entire 3D scene nearly perfectly,
as our subjects did. At this point in the model’s development, its
input is binocular. Extending this model to monocular input is the
subject of our future work on this problem.

The remainder of this paper is organized as follows: Section 2
describes an experiment in which human subjects used monocular
and binocular viewing to recover the geometry of 3D indoor scenes
that contained several pieces of furniture. Sections 3 and 4 used a
simpler configuration of objects to make it possible to test and fal-
sify prior claims that the visual space of a human observer had a
negative curvature. Section 5 provides a brief description of our
computational model along with tests of this model with the same
type of indoor scenes that were used by our subjects in experi-
ments 1–3. The paper is concluded with a General discussion.

2. Experiment 1: Recovering 3D scenes

2.1. Subjects

Three subjects (TK, YS, and XZ) participated in the experiments.
All had corrected-to-normal vision. TK was an author and XZ was a
naïve subject. This experiment was carried out in accordance with
the Code of Ethics of the World Medical Association (Declaration of
Helsinki). Informed consent was obtained for this experimentation
from all of our human subjects.

2.2. Stimuli and conditions

The experiment was performed in a 7.92 m � 8.53 m room illu-
minated by overhead fluorescent lights. The walls were white and
there were doors on opposite sides of the room. The floor was cov-
ered with a blue, texture-less carpet. An experimenter placed four
or five pieces of children’s furniture, including chairs
(32 cm � 29 cm � 67 cm), tables (59 cm � 38 cm � 51 cm), book-
shelves (47 cm � 30 cm � 62 cm), and garbage bins
(33 cm � 33 cm � 78 cm) at haphazardly-chosen positions within
the room. They were positioned before each trial to form a natural-
istic indoor scene without any occlusions of the objects from the
subject’s viewpoint. A typical scene is shown in Fig. 1.

The positions of the furniture were measured by a motion cap-
ture system (PhaseSpace – see Fig. 2). The system has 16 pairs of
cameras. Each pair consists of two orthogonally-oriented one-
dimensional cameras. This system computes the 3D positions of
multiple LEDs placed within a scene that are identified by their
flicker rates. Their position accuracy was better than 2 cm after cal-
ibration (see Appendix for details). An LED was put at the center of
each object to represent the position of each object used in this
experiment.

2.3. Procedure

Each subject was tested in 40 trials: 20 trials with binocular
viewing and 20 trials with monocular viewing. The subject stood
in a designated position in the room where he reconstructed a
top view of the scene by drawing its floor plan on a tablet com-
puter by dragging and dropping ready-made 2D icons, represent-
ing the top views of the 3D objects (Fig. 3). The subject was
instructed to use the sizes of the icons to judge the inter-object dis-
tances on the computer screen. The sizes of the icons were scaled
to their physical size.4 The frame of the tablet monitor, however,
was not a scaled version of the room. As pointed out by an anony-
mous reviewer, the aspect ratio and the size of the tablet monitor
could potentially influence the pattern of results.

Exposure duration was unlimited; the subject could look at the
scene until the drawing of the floor plan (top view) was finished.
After each trial, the experimenter put an LED on top of the center
of each object in the scene and recorded the LEDs’ position with
the motion capture system. It took about 5 min for the subject to
draw each floor plan and it took another 5 min for the experi-
menter to measure the objects’ positions and set up a new scene.

The subject viewed the scene with both eyes in half of the trials.
In the remaining half, only the right eye could see; the left eye was
patched. Head motion was not restricted.

2.4. Results and discussion

The pairwise distances among all of the 3D objects, including
the subject, were computed to evaluate how well the subject had
reconstructed the scene. Originally, we thought that the subject’s
position could be treated the same way as the positions of the
other objects. We found that this was not the case. Perhaps, not
surprisingly, judging geometrical relations, such as pairwise dis-
tances and angles in a triangle formed by 3 chairs, is easier than
judging the geometrical relations in a triangle formed by 2 chairs
th



Fig. 1. A typical scene used in Experiment 1. Four or five pieces of children’s
furniture were placed on a texture-free floor. The specific layout of the pieces was
varied from trial to trial.
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and one’s self. We said not surprisingly because the spatial rela-
tionships among objects in a stationary scene do not depend on
the position of the observer. But, the spatial relationships between
the observer and the rest of the stationary scene change constantly
whenever the observer’s position changes. Clearly, the coordinate
system ‘‘attached” to the scene is likely to be more useful for estab-
lishing and maintaining space constancy than the coordinate sys-
tem ‘‘attached” to the observer, himself. This is why the subject’s
position was excluded from these analyses (an analysis that did
include the subject’s position will be reported later). The actual
Euclidean distances among the centers of the objects were
obtained by the motion capture system that detected the positions
of LEDs attached to the center of each object. The distances recon-
structed by the subjects were obtained from the drawings they
made on the tablet computer. The mean squared error (MSE) for
pairwise distances was estimated to evaluate the accuracy of the
subject’s floor plan. The mean squared error is defined as follows:

MSE ¼ E
d0 � d
d

� �2" #
ð1Þ

where d0 is a reconstructed distance and d is an actual distance.
The MSE is equal to the sum of the variance of normalized distances
(d0/d) and the squared Bias:

MSE ¼ VARðd0
=dÞ þ Bias2 ð2Þ
Fig. 2. Motion capture system (PhaseSpace). The 16 pairs of cameras attached to the
ceiling measured the 3D positions of LEDs placed within the scene.
where Bias ¼ E d0�d
d

h i
. Taking the square root of MSE and VAR yields

the root mean square (RMS) error and standard deviation (STD)
which have the unit of % of actual distance:

RMS ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
ð3Þ

STD ¼
ffiffiffiffiffiffiffiffiffiffi
VAR

p
ð4Þ

Table 1 shows these errors calculated for each subject.5

The RMS of these pairwise-distances ranged from 13% to 31%.
The Bias was quite large in subjects YS and XZ. Both systematically
overestimated the distance. TK was different. His Bias, computed
over all of his 20 monocular and 20 binocular trials, was close to
zero. Note that this does not necessarily mean that his Bias was
close to zero in his individual trials, simply that it averaged out.
An analysis of the nature of each subject’s Bias is quite important
because it can shed light on whether the source of the Bias is per-
ceptual processing or a response bias. Here, we are using the con-
ventional distinction between a perceptual process and a response
bias as it is used in Signal Detection Theory (Green & Swets, 1966).

Recall that the subjects were asked to scale the distances on the
tablet by using the sizes of the icons representing the objects as a
reference for their distance scale. Note that the inter-object dis-
tances were an order of magnitude larger than the actual objects
themselves. This difference is similar to what obtains in a conven-
tional magnitude estimation method when applied to size. Magni-
tude estimation is known to cause large variability in the data
(Brunswik, 1944). It is possible that once the subject set his first
distance, he used this distance as a reference to make decisions
about the remaining distances. This would allow the subject to
avoid comparing distances and sizes of such different magnitudes.
If subjects actually did use this approach in reconstructing the
scene, all distances within a given trial should share the same sys-
tematic error. This implies that we would see large random fluctu-
ations of Bias across trials. This proved to be the case. Fig. 4 shows
distributions of the intra-trial Bias for monocular and binocular
viewing. The relationship between Table 1 and Fig. 4 is that the
mean values of the distributions in Fig. 4 are equal to the Bias val-
ues in Table 1.

The intra-trial Bias varied from �0.2 to 0.5 (�20% to +50% of the
physical distance). This variability of Bias from trial to trial con-
tributed to large values of MSE and VAR. There are two facts that
suggest that the Bias observed in individual trials was a response
bias. It was not caused by a perceptual distortion of visual space.
We can say this because: (i) the Bias varied a lot across trials,
and (ii) the Bias had the same values in both monocular and binoc-
ular viewing.

The intra-trial Bias was removed by applying a uniform size
scaling of the recovered scene in each trial (see Table 2). This opti-
mal size scaling was done by making the recovered pairwise dis-
tances as close as possible, in the least-squares sense, to the
actual distances. We next asked whether there was some addi-
tional factor representing a perceptual distortion of visual space.
Traditionally, two distortions have been discussed, namely affine
and projective. The presence of such distortions can be verified
simply by applying affine and projective transformations to the
reconstructed top view (floor plan) and then determining whether
the distances among the transformed positions of the objects are
closer to their true distances after this transformation. Table 2
shows the 2D affine and projective transformations used, as well
as the overall size scaling that was just described. All three types
5 One of the anonymous reviewers pointed out that we could include the
PhaseSpace error in our Eq. (1). This would have reduced the estimated variance o
the subjects’ reconstructions. This reduction would be quite small so we decided no
to include it.
f
t



Fig. 3. Interface shown on the screen of a tablet computer. The name of each object was labeled on the lower right corner of its icon. The subject used a stylus to move the
icons.

Table 1
Monocular and binocular errors of the 3 subjects’ reconstruction in Experiment 1.

Subject Viewing condition RMS (%) STD (d0/d) (%) Bias (%)

TK Monocular 20.28 19.76 4.79
TK Binocular 12.81 11.48 �5.76
YS Monocular 24.05 16.94 17.14
YS Binocular 22.80 14.66 17.51
XZ Monocular 31.37 17.45 26.10
XZ Binocular 28.74 17.78 22.63
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of transformations were applied independently to individual trials
to minimize the mean squared error. Note that if there actually
were perceptual distortions of visual space, the distortions will
be constant across trials, and only one common distortion will be
found for all trials. We applied the distortions to individual trials
in order to see whether there was any effect because if we do
not find strong effects of affine or projective distortions on a trial
by trial basis, we would not have found them after all of the trials
were pooled.

The three transformations described in Table 2 were applied
cumulatively from size scaling to affine, and from affine to projec-
tive transformation. Simplified equations of affine and projective
transformations with the most influential parameters were applied
to the data to interpret these parameters more clearly. Graphs of
subjects TK’s, YS’s and XZ’s monocular and binocular standard
deviations of their normalized pairwise-distances are shown in
Fig. 5.6
6 These graphs show errors computed from pairwise distances among the objects,
when the position of the subject was not used. If the position of the subject is added
to the computation of pairwise distances, the errors in Fig. 5 increase. For example,
the errors after size scaling in binocular trials are twice as big. More precisely, they
increase to 13%, 15% and 21% for TK, YS and XZ, respectively. This fact suggests that
even though the subject can recover the 3D scene quite reliably, he has difficulty
including himself in the recovered scene. This issue will be discussed further in
Experiment 3.
First note that the random errors, as measured by the standard
deviation of the normalized distance, were almost always smaller
in binocular than in monocular viewing, but only subject TK’s dif-
ference was large. Also note that the advantage of binocular view-
ing observed was expected because adding the second view cannot
harm 3D vision; it can only help. Next, note that the errors
decreased substantially when size scaling was applied. Recall that
the size scaling removed the response bias from individual trials.
This means that the standard deviations after size scaling are likely
to represent the observer’s actual degree of perceptual uncertainty
in recovering pairwise distances in the 3D scene. The average stan-
dard deviation of the three subjects was 11.4% in monocular view-
ing and 8.5% in binocular viewing. These numbers are only 3–4
times greater than the Weber fraction for line-length discrimina-
tion, a task in which only one pair of approximately equal lines
is presented in the frontoparallel plane (Pizlo, Rosenfeld, &
Epelboim, 1995). Note that in our experiment, the subjects were
faced with the task of estimating (reconstructing) the length of a
line segment in a 3D space, so this task must lead to greater vari-
ability than the task of deciding which of two line segments in the
retinal image is longer. It follows that the variability measured was
not very large considering the computational difficulty of this 3D
task. Further transformations, namely affine and projective, did
not affect the errors very much, suggesting the absence of system-
atic distortions of 3D visual space. The standard deviation
decreased by 2.3% in monocular, and by 1.8% in binocular viewing
when an affine transformation was applied, and additional 0.7%
and 0.9% when a projective transformation was applied. Most
likely this decrease in error when affine and projective transforma-
tions were applied was caused by the addition of free parameters
to the estimation rather than by a perceptual distortion of visual
space. Note that the number of measurements in each trial, 6 or
10 pairwise distances when 4 or 5 objects were in the scene, was
not much larger than the number of free parameters, namely, 3
when an affine, and 5 when a projective transformation was used.
We can, therefore, conclude that our subjects’ visual space was not
distorted, which means that they saw the 3D spatial arrangement
of objects within this space veridically.



Fig. 4. Frequency polygons of the intra-trial Bias of three subjects (TK, YS and XZ) in
monocular and binocular viewing.

Table 2
Transformations and corresponding equations applied to the reconstructed positions.

Transformation Equation

Size scaling
(with one parameter)

x0 ¼ ax
y0 ¼ ay

Affine transformation
(with two parameters)

x00 ¼ bx0

y00 ¼ cy0

Projective transformation
(with two parameters)

x000 ¼ x00
dx00þey00þ1

y000 ¼ y00

dx00þey00þ1

Fig. 5. Standard deviation of the normalized pairwise-distances of the 3 subjects’
reconstruction in Experiment 1. The ordinate shows errors (%) represented as the
standard deviation of the normalized pairwise-distances, and the abscissa shows
the transformations applied to the reconstructed positions. The light and dark gray
bars indicate monocular and binocular viewing conditions.
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We pointed out above that our subjects had difficulty including
themselves in the reconstructed scene. Including the distances of
the objects from the subject increased the reconstruction errors.
Did this simply mean that systematic errors are always made when
egocentric distances are estimated? Probably not because He et al.
(2004) showed that perceived egocentric distances, as measured
by blind walking, are quite accurate and precise. He et al.’s result,



Fig. 6. Illustration of Foley’s (1972) experiment. The triangle on the left is the
triangle adjusted by the subject. The triangle on the right shows the triangle that
the subject had been asked to construct in which OB = BA and the angle OBA = 90�.
‘‘O” indicates the subject’s position. The circles contain 75% of the settings made by
the subjects.

Fig. 7. If the triangle is perceived as an isosceles right triangle with the angle at O
being perceived as 30�, the visual space must be curved. Specifically, when this
space is curved, the sum of angles in this triangle is less than 180�.
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together with our results on 3D scene recovery, suggests that our
subjects had difficulty combining the ego- and exocentric coordi-
nate systems into one. Experiment 3 addressed this question
directly and showed that they did.

3. Experiment 2: Triangle production with natural viewing

The results of Experiment 1 suggested that visual space is Eucli-
dean, but the relationship between physical locations and per-
ceived locations does not describe the intrinsic geometry of
visual space. It is possible that a subject’s perception of the room
is subject to some distortions, but his reconstruction on the com-
puter’s screen does not reveal them because the subject’s percep-
tion of the room, represented on the computer’s screen, is
distorted in the same way as the subject’s perception of the room,
itself. The intrinsic geometry of the visual space can be evaluated
by analyzing the relations among the perceived lengths and angles.
This was done by using Foley’s (1972) isosceles right triangle task.
Foley’s experiment and results will be described next.

In Foley’s experiment, the subject adjusted two points of light at
eye-level to form a perceived isosceles right triangle, including
himself at the vertex ‘‘O” of one of the acute angles (see Fig. 6).
The main result was that the adjusted distance AB is roughly one
half of the viewing distance OB. This means that the triangle OAB
‘‘out there” is not isosceles, despite the fact that it is perceived as
such. More importantly, the angle AOB in the constructed triangle
is perceived accurately as 30�, despite the fact that it should have
been perceived as 45� if the right triangle were perceived as isosce-
les and if the visual space were Euclidean. From this result, Foley
concluded that binocular visual space is non-Euclidean (see
Fig. 7). Specifically, visual space is curved and the sign of this cur-
vature is negative. In such a space, the sum of the angles in a trian-
gle is less than 180�.

Note that Foley performed his experiment with extremely
impoverished stimuli: 2 points of light at the eye level presented
in complete darkness with the subject’s head immobilized on a
bite-board. His conditions were very different from natural view-
ing conditions, so there is little reason to believe that Foley’s
results will generalize to visual perception in everyday life. We will
examine this issue in our next experiment, but we will evaluate the
reasoning that led Foley to a non-Euclidean model before describ-
ing our experiment examining the generality of his results. Foley’s
theoretical justification of his non-Euclidean model is not convinc-
ing. Foley assumed that the results of his experiment required the
operation of a binocular visual system. This is certainly true with
respect to the comparison of distances: AB vs. OB, but the judg-
ment of angle AOB does not require binocular information. It can
be done, and most likely was done, by using monocular informa-
tion. So, Foley’s experiment does not allow his conclusion that
binocular visual space is non-Euclidean with a negative curvature
because he mixed two quite different types of judgments: one
binocular and the other monocular. These judgments are very dif-
ferent because the monocular task was very easy. It called for noth-
ing more than ‘‘measuring” distances on the retina. The binocular
task was much more difficult because it required inferring 3D dis-
tances on the basis of 2D information on the retina. Such an infer-
ence is an ill-posed Inverse Problem, the kind of problem that
cannot be solved veridically without making use of a priori con-
straints (Pizlo, 2001). So, even before we did our experiment, we
had a good reason to believe that Foley’s theoretical claim about
visual space being curved was unwarranted. But, despite the
methodological flaw in how he drew his conclusion, his data
demonstrating a large perceptual compression of depth can be
evaluated independently from his claims about the curvature of
visual space. We decided to do just this next. We re-examined
Foley’s triangle experiment under relatively-natural viewing
conditions.

Our study went out of its way to produce the kind of environ-
ment and natural viewing conditions we humans encounter almost
every day. Also, unlike everyone else who has studied the geome-
try of 3D vision, we recognized that 3D vision is a difficult inverse
problem, whose solution depends critically on the operation of a
priori constraints. Note that once the inverse problem approach is
adopted, it is essential to emulate natural conditions as much as
possible to guarantee that these constraints can operate effectively.
If the stimuli or viewing conditions are impoverished, some or all
of the a priori constraints may have become ineffective, making
3D judgments biased as well as variable, not because visual space
is non-Euclidean, but because the experimental conditions were
not ecologically-valid (Brunswik, 1956). Ecological-validity was
approximated in this experiment by using a triangle task with 3
natural objects, rather than 2 points of light, standing on the floor
with the room illuminated. This experiment clearly showed that
our 3D visual space is Euclidean. Our third, and final, experiment
worked out which aspects of natural viewing are essential for
vision to be veridical.

3.1. Subject

Three subjects (TK, YS and JC) participated in this experiment.
All three had corrected-to-normal vision. TK and YS had also
participated in Experiment 1.



Fig. 8. Average physical arrangement that was perceived as isosceles right triangles
by the three subjects in Experiment 2. The length of OB was set as d and the length
of AB was represented as a fraction of d. Angles were computed from the measured
lengths. The length and the angles were averaged across the 10 trials for each
subject and viewing condition. The number in the parentheses indicates the
standard deviation of the ratio AB/OB.
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3.2. Stimuli

Three ordinary children’s chairs, standing naturally on the floor,
served as the 3 stimuli that formed the triangle. This is completely
different fromwhat Foley did. In his experiment, the subject served
as 1 of the 3 objects forming the triangle. The motion capture sys-
tem identified the exact position of each chair by detecting a LED
mounted at its center. These LEDs were used as the reference
points for the distance judgments made by both the subject and
the motion capture system. Two of the chairs (O, B) were placed
in front of the subject within a viewing distance of 4 m, and the
subject was required to adjust the position of the remaining chair
(A) so as to construct an isosceles right triangle (see Fig. 8). Note
that ‘‘O” in our experiment, refers to one of the three objects, not
to the subject as it did in Foley’s experiment.

3.3. Procedure

Each subject was tested in 20 trials during which he set the
position of A so that the segment AB appeared perpendicular to
OB, and the distance AB appeared equal to OB. The physical
changes of the position of the chair moved by the subject were
actually carried out by the experimenter in response to verbal
commands from the subject.

In half of the 20 trials, the subject viewed the scene binocularly.
The right eye viewed the scene in the other half, the left eye was
occluded. The subject’s head was supported on a chin-rest to min-
imize motion parallax cues produced by moving the head.

After completing his adjustment of the position of the object A,
the subject was asked to report verbally whether the angle AOB
was equal to 45�. The positions of LEDs on all 3 chairs were mea-
sured by the motion capture system at the end of each trial.

3.4. Results and discussion

The adjusted ratio, AB/OB, averaged across the three subjects,
was 0.89 in monocular and 0.87 in binocular viewing. Fig. 8 shows
the physical layout that each subject perceived as an isosceles right
triangle. The subjects always reported that the angle AOB was 45�.
The actual average angle AOB shown in these Figures was com-
puted from the three distances among the chairs. On average, the
angle AOB was less than, but close to, 45�. These results, which
are completely different from Foley’s (1972), allow us to conclude
that in natural viewing conditions, visual space is Euclidean in both
monocular and binocular viewing.
Table 3
Differences between Foley’s (1972) experiment and our Experiment 2.

Foley (1972) Our Experiment 2

Lighting condition Dark room Illuminated room
Level of stimuli Eye level Knee level
Number and type of stimuli Two points of light Three pieces of furniture
4. Experiment 3: Triangle production task with varying viewing
conditions

We could not know at this point which experimental factor(s)
was responsible for the differences in our and Foley’s experimental
results because the stimulus and the viewing conditions differed in
more than one way (see Table 3). There are at least three possible
factors, namely: (i) the illumination level (his dark and our highly
illuminated room), (ii) the placement of the stimuli (ours standing
on the floor and his at eye level), and (iii) the number and nature of
the stimuli. Foley used the subject as 1 of the 3 vertices and tiny
lights for the other 2 vertices of his isosceles triangle. Our 3 ver-
tices were ordinary children’s chairs standing naturally on the
floor. We both used binocular viewing. In our Experiment 3, the
head of the subject was not restricted in any way, but the head
in Foley’s was immobilized by a bite-board.

So, an experiment designed to find out why our results were
different from Foley’s had to manipulate 23 variables, which meant
that we needed 8 experimental conditions to find out which factors
were responsible for the distortion of visual space reported by
Foley (1972).

4.1. Subjects

The 3 subjects with corrected to normal vision (TK, YS and XZ),
tested in Experiment 1, participated in this experiment.

4.2. Stimuli

Children’s free-standing coat racks (height = 111 cm – eye level)
and low rectangular stands (height = 46 cm – knee level) were
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placed on the floor in different positions to form the triangles.
Their locations were determined by a LED placed in their center
as done previously. LEDs also served once again as the reference
points for distance judgments. In the 3-objects condition, object
O was put in front of the subject at a distance between 1 m and
2 m and object B was aligned with object O and with the subject.
The distance between B and O was set between 1 m and 2 m. Ini-
tially, object A was placed behind object B, and was moved so as
to construct an isosceles right triangle. The subject sat on a chair
with his head free to move. The height of the chair was adjusted
to make the subject’s eyes approximately at the same height as
the LEDs mounted on the coat racks. This was done to make the tri-
als with coat racks similar to the conditions used by Foley who pre-
sented his stimuli at his subject’s eye level.
4.3. Procedure

Each subject was tested with 3 trials in each of the 8 conditions.
The subject sat on a chair and kept his eyes closed while the exper-
imenter set up the scene. Once it was set up, the subject opened his
eyes and directed the experimenter to move the position of object
A so that the segment AB appeared perpendicular to OB, and the
distance AB appeared equal to OB. The experimenter recorded
the positions of the LEDs with the motion capture system after
the subject was satisfied with the position of A.

The subject was given unlimited time to view the scene binoc-
ularly and his head was free to move. The subject was not asked to
judge the perceived magnitude of the angle AOB. The angle AOB
was computed from measurements made by the motion capture
system.
4.4. Results and discussion

Table 4 shows the average of the aspect ratios and the average
angles of the constructed triangles that the subjects perceived as
an isosceles right triangle in each of the conditions. Note that if
the subject constructs the isosceles right triangle accurately, the
angle AOB would be 45� and the ratio AB/OB should be 1. When
the room was illuminated (lighting condition: bright) and when
three objects were used at knee and eye-level, the ratio AB/OB,
averaged across the three subjects was 0.94. So, our estimated
depth compression with natural viewing of a 3D scene is only
6%. This estimated systematic error is comparable to the standard
deviation of such judgments (see Experiment 2). We can, therefore,
conclude that there is almost no evidence of distortions in 3D
scene perception when natural scenes are viewed naturally. The
systematic errors we measured with natural viewing, 6%, are no
way near to the 50% errors measured by Foley and everyone else
with unnatural viewing. It is clear that human observers see things
the way they are ‘‘out there”.
Table 4
The average angles AOB and the average ratios AB/OB for the subjects in Experiment 3. A

Lighting condition Level of eye Number of stimuli TK

AOB

Dark Eye level 2 39.1�
Dark Floor level 2 38.0�
Dark Eye level 3 43.0�
Dark Floor level 3 40.1�
Bright Eye level 2 44.3�
Bright Floor level 2 42.1�
Bright Eye level 3 47.1�
Bright Floor level 3 43.4�
When only two objects were used in a bright room, the recon-
structed ratios AB/OB were smaller; they ranged between 0.75 and
0.87. When the room was dark, performance was worse overall.
With 3 objects in the dark, the reconstructed ratio AB/OB ranged
between 0.76 and 0.93, and when only 2 objects were shown in
a dark room, performance was the worst: the reconstructed ratio
AB/OB ranged from 0.59 to 0.76. Our naïve subject, XZ, when tested
with two objects at the eye-level in a dark room (the conditions
used by Foley) produced triangles almost identical to those
reported by Foley (1972) with the ratio AB/OB being close to 0.6.

It is easy to understand why a brightly illuminated room could
lead to more veridical perception than an almost completely dark
room. In a brightly illuminated room, there is much more visual
context available to which effective a priori constraints, known to
be used for the veridical perception of 3D objects and 3D scenes,
can be applied. They include the direction of gravity, the orienta-
tion of the horizontal floor, as well as the symmetry of the 3D
objects within the room. It is, however, harder to explain why con-
structing a triangle with 3 objects is more accurate than construct-
ing one with 2 objects and oneself. It seems that incorporating
one’s own position when recovering positions of objects is more
difficult than recovering positions among three external objects;
this issue was mentioned in Experiment 1. Recall that with two
objects and oneself, the subject has to compare both egocentric
and exocentric distances. With three external objects, the entire
task can be performed by comparing only exocentric distances.
Egocentric distance estimation depends on the subject’s viewpoint
and involves a viewer-centered representation, but exocentric dis-
tance estimation can be independent from the viewpoint which
makes it similar to a scene-centered representation. It has already
been demonstrated that egocentric distance estimations, as mea-
sured by blind walking to an object, are accurate (He et al.,
2004). This suggests that subjects may simply not be able to use
both types of distances in a common perceptual coordinate system
despite the fact that they can reconstruct both. A scene-centered
coordinate system may simply dominate 3D scene perception
because it is likely to be used for achieving space constancy.
5. Model

Following the approach we used in our work on the veridical
recovery of 3D shape described in the Introduction, we started for-
mulating and testing models of 3D scene recovery at the same time
that we started designing the psychophysical experiments
described just above. The most recent version of the model, which
was published last year, will be described briefly here (Pizlo, Li,
Sawada, & Steinman, 2014). This computational model was imple-
mented in a robot, called ‘‘Čapek”. Čapek is equipped with a stereo-
camera (BumbleBee made by Point Grey Research). The camera’s
height above the floor was about 1 m and its two lenses were
separated by 12 cm.
ngles AOB were computed by using the measured lengths.

YS XZ

AB/OB AOB AB/OB AOB AB/OB

0.73 37.1� 0.76 29.37� 0.59
0.75 34.1� 0.66 33.18� 0.65
0.79 39.8� 0.93 37.15� 0.78
0.82 40.1� 0.89 34.42� 0.76
0.85 39.5� 0.79 37.91� 0.75
0.81 41.5� 0.87 38.56� 0.79
0.98 42.6� 0.97 42.37� 0.91
0.89 43.7� 0.99 41.60� 0.89
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Fig. 9 illustrates typical results obtained by this robot using our
computational model for 3D scene recovery. This particular scene
contains 7 pieces of furniture that produce partial occlusions of
each other. The ground is a highly textured dance floor. The com-
plexity of the ground’s surface is enhanced considerably by specu-
lar reflections and shadows. The partial occlusions, together with
the complex ground surface, make figure-ground organization
challenging from a computational point of view. A reader looking
at Fig. 9 (left) will have no difficulty finding objects in front of
the background despite its complexity and the partial occlusions
in this scene. A human observer has no difficulty producing veridi-
cal figure-ground organizations in such scenes. This always seems
easy and effortless, but this is far from easy for a computational
model. Our model is probably the very first to be able to solve such
a difficult figure-ground organization problem with real images, as
well as it does. Note that the scene shown in Fig. 9 is much more
complex than the scenes used to test both the model and the sub-
jects in the present study. Recall that in the present study, the floor
was covered by a homogeneous carpet that produced no specular
reflections and the objects were arranged without any occlusions
(see Fig. 1). Fig. 9 makes it clear that these differences did not mat-
ter much at all: The veridicality of the Figure-Ground Organization
in Fig. 9 is quite good. How was this done?

Čapek started by solving the binocular correspondence problem
for texture points, using a standard algorithm that came with the
Bumblebee camera. It then computed a 3D depth-map of the visible
points. Čapek then applied an a priori constraint that says that all
objects reside on a common horizontal ground. With this in place,
the robot estimated the orientation and position of the floor by
finding the plane that can fit the largest number of points in the
depth-map. This provided Čapek with an estimate of the position
of the horizontal ground plane and the vertical direction of gravity.
These estimates were very good: there was no systematic error and
the standard deviation of the floor orientation estimate was less
than half a degree. These estimates are similar to the known visual
abilities of human subjects presented with such tasks. The points
representing the floor are then eliminated, and the remaining
points, which represent the objects, are projected orthographically
onto the horizontal plane. The result of this projection is called a
‘‘top view” representation. Čapek then identifies individual objects
in the 3D scene by solving a clustering problem in this representa-
tion and fitting rectangles to the individual clusters (a rectangle is
characterized by 5 parameters, that is, coordinates of the center,
2D orientation plus width and length). Solving the clustering prob-
lem in a top-view representation is much more reliable than solv-
ing this problem in a 2D camera image. Objects rarely occlude each
other in a top-view, but they often occlude each other in a camera
view. The center of the fitted rectangle is Čapek’s estimate of the
object’s position on the floor. Note that a rectangle is a natural fig-
ure to use in a top-view of a mirror-symmetrical object standing
upright, that is, an object with its plane of symmetry vertical.
One side of the rectangle is parallel to the plane of symmetry
and the other side is orthogonal to it. This is true for all mirror-
symmetrical objects, not only pieces of furniture, but also for dogs,
horses, cows and people. The rectangles fitted by Čapek are shown
in Fig. 9 (right), where the estimated rectangles are superimposed
on the ground truth that was measured by the PhaseSpace system.
The fit is obviously very good.

Adding the estimated height of each object to the estimated
rectangle results in 3D bounding-boxes that represent a solution
of the 3D figure-ground organization (3D FGO). These boxes are
projected to the camera image, producing bounding-polygons.
These polygons, which are shown in the center of Fig. 9, are a solu-
tion of a 2D FGO problem. The bounding-polygons partially over-
lap, as they should, because the objects overlapped in the camera
image. Note that using 3D bounding-boxes allowed the recovery
of where the objects ended on their back, invisible-sides, as well
as the recovery of the invisible, empty spaces behind the objects.
Clearly, Čapek was able to produce a spatially-global 3D map of
the room from a single vantage point, a map that can be used to
plan navigation. Simply looking at Fig. 9 (left), makes it easy for
the reader to see where objects end on their back, invisible-sides,
as well as how large the invisible spaces behind the objects are.
So, Čapek can do what we humans do, so well. The fact that we
humans can do it is not very surprising because our common sense
tells us that we can all do this very well. Imagine what getting
around during rush hour in a train station would be like if we could
not. The new thing here is that we have the first computational
model that explains how this can be done. This result is important
because it breaks with the long tradition started by David Marr’s
paradigm, in which we only see the visible surfaces of objects
(Marr, 1982; Pizlo, 2008). According to Marr, our knowledge about
the back parts of the objects comes from our familiarity with indi-
vidual objects, something that must be learned. Here, as well with
our 3D shape recovery model, the back parts of objects are recov-
ered on the basis of abstract geometrical and physical regularities,
namely, symmetry, compactness, planarity and gravity. Our model
has no familiarity with individual objects; it has no memory, and it
cannot learn anything about the shapes, sizes or positions of
objects. Note that this calls attention to an additional advantage
inherent in testing a model like ours. One can never be sure about
the role familiarity is playing in a human observer. With our
model, we can be sure that it plays no role, whatsoever.

Now, we will report Čapek’s test results with experimental con-
ditions identical to those used with our human subjects. Čapek
reconstructed a top view of four different scenes using its binocular
camera. At this point of the model development, Čapek cannot
recover 3D scenes monocularly. The top views of recovered 3D sce-
nes showed no sign of any systematic distortions of the 3D space
around it. This result was shown in Fig. 9. This result made it clear
that there was no need to apply the full set of transformations, viz.,
size scaling, affine stretching and projective distortion, as we did in
Experiment 1. Čapek’s reconstructions of the pair-wise distances
among several of the objects used in the 4 scenes are shown in
Table 5. The standard deviation of Čapek’s reconstructed distances
ranged between 7.4% and 10.3%, values very close to the errors of
our subjects (see Fig. 5 for our binocular subjects’ results after
size-scaling).

Čapek was next tested in a triangle task in which 3 objects were
standing on the floor and the room was illuminated. Čapek recon-
structed the 3D scene using its binocular camera, reporting the
position of each object, as well as the distances and angles among
them. An experimenter read the distances and angles reported, and
based on these readings, adjusted the position of object A in the
direction that would make the departure from the reconstructed
isosceles right triangle smaller. The criterion used to end each trial
was that the difference between the length of the reconstructed AB
and OB was less than 1 cm, and the reconstructed angle ABO was
different from 90� by less than 1�. The actual position of the objects
was measured again with the motion capture system after this
final adjustment had been made. The model was tested in 4 trials.
The average physical arrangement of the isosceles right triangle
that was reconstructed by Čapek is shown in Fig. 10. Čapek’s visual
space is obviously Euclidean: it is not distorted. We drew the same
conclusion from our experiments with human subjects. Further-
more, Čapek’s variability in adjusting the AB/OB ratio was very
similar to the variability demonstrated by our human subjects in
Experiment 2.

This similarity does not prove that this model describes how the
human visual system solves the 3D scene recovery task, but it does
provide a first step towards formulating such an explanation.
Note that Čapek was able to solve a complicated, naturalistic,



Fig. 9. Left: one of the two camera images of a 3D indoor scene acquired by our robot (Čapek). Center: the color curves indicate the regions containing individual objects. This
shows that our robot solved a figure-ground organization problem on its camera image. Right: top view of the 3D scene in front of the robot. Black quadrilaterals represent the
‘‘ground truth”: the true positions, sizes and orientations of the 7 pieces of furniture. Color rectangles are the robot’s reconstructions.

Table 5
Robot’s errors measured as the standard deviation of normalized distances when
reconstructing pairwise-distances among the 4 or 5 objects in each of 4 scenes.

Model Number of objects STD (d0/d) (%)

Setting 1 4 10.31
Setting 2 5 9.39
Setting 3 4 7.36
Setting 4 5 7.50
Average – 9.36
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FGO problem. It was able to find real objects in a 3D scene, as well
as in its 2D camera images. A number of tests showed that the
model does this nearly perfectly (see Pizlo et al., 2014, for more
examples). Human beings do this nearly perfectly, too. Our future
work will address the effect of impoverishing the visual stimuli on
the model’s performance by using a dark room as well as by using
two, rather than three objects. It is not clear, however, how infor-
mative these manipulations will be because, as you may recall,
these manipulations caused our subjects to perceive illusions when
they were tested. Traditionally, it has been assumed, often implic-
itly, that veridical perceptions can be produced in many different
ways, which suggested that one needed to study illusions to dis-
ambiguate among several possible explanations. Our recent work
on human and robot 3D vision suggests that the converse might
be true. It is much more difficult to formulate multiple models of
veridical perceptions than multiple models of biased and unreli-
able perceptions. This is precisely why we started by formulating
a model of veridical vision.
Fig. 10. The average physical arrangement that was perceived by Čapek as an
isosceles right triangle. The length of OB was set as d and the length of AB was
represented as the fraction of d and averaged across 4 trials. Angles were computed
from the measured lengths. The number in the parentheses indicates the standard
deviation of the ratio AB/OB.
6. General discussion

In the Introduction, we argued that computational modeling is a
necessary tool for explaining how the visual system solves inverse
problems. Inverse problems are typically ill-posed, which means
that the input data available allows for more than one possible
interpretation. This is always true with 3D vision. The Ames’s chair
demonstration is a classical example of this fact (see http://shape-
book.psych.purdue.edu/1.3/). The visual system must apply effec-
tive a priori constraints if it is going to produce a unique 3D
percept. The key word here is ‘‘effective”. A single constraint may
be sufficient to do the job, but more often than not, the visual sys-
tem must use several constraints in order to make sure that the 3D
perceptual interpretation is: (i) unique, (ii) stable, that is, the 3D
percept does not change much in the presence of noise and uncer-
tainty in the 2D retinal image, and (iii) veridical. This is a lot to ask
of the visual system. But even more importantly, there is simply no
way to decide how to accomplish these goals without formulating
and testing computational models that allow you to find out: (1)
which constraints should be applied, and (2) how they should be
applied to satisfy the three criteria, listed just above. This is critical
because you cannot evaluate the computational stability of a 3D
interpretation without running simulations. Furthermore, these
simulations must be done with realistic input images, not with
the toy input images usually used in 3D shape and scene research.
What all this means is that what we mean when we formulate and
talk about a ‘‘model” is quite different fromwhat other researchers,
usually working within different contexts, mean by a ‘‘model”. In
those other cases, fitting a regression surface to data points, results
in what is called a ‘‘model”, and this model can be verified or falsi-
fied by collecting additional data. Formulating a model of how the
visual system solves the 3D vision problem, which is what we do, is
a completely ‘‘different animal” because the main challenge here is
not to choose the best model from a family of already existing
models, as is typically done when you decide which is the best
regression function, but to come up with even a single model that
can solve the recovery problem in 3D vision reasonably well. It fol-
lows, that with the types of models we are using, falsification is not
your ‘‘best friend” as it often is elsewhere. In 3D vision, there is
usually no model you can turn to, so there is nothing to falsify.
Simply put, scientific discovery in 3D vision is not accomplished
by using an ANOVA or Bayesian tests to reject some hypotheses.
Discovery is accomplished by correctly guessing which cost func-
tion is actually being used by the visual system.

In this paper, we presented our ‘‘guess” about the cost function
that is used for the veridical perception of 3D scenes. Our guess
took the form of a computational model that takes real camera
images of a real 3D scene and forms a veridical 3D interpretation

http://shapebook.psych.purdue.edu/1.3/
http://shapebook.psych.purdue.edu/1.3/
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of the scene. Our model works well in the sense that its 3D recov-
ery is as good a representation of the ground truth about the loca-
tions of 3D objects in the scene as our human subjects’ percepts.
Furthermore, this model uses constraints known to be used by
the human visual system. We do not claim that this model is the
ultimate, correct model. It will surely benefit from elaboration.
We also will not be surprised to find out that a completely new
model may be needed to emulate the human beings’ vision as well
as this can be done. Our next step will be to formulate a second
model, with a different cost function, and/or with different con-
straints to find out whether it can produce equally good 3D scene
recoveries. If it can, we will try to develop tests to choose between
them.

Emulating human 3D vision is only one part of this endeavor.
Showing that human beings perceive 3D scenes veridically under
natural conditions is also important. For some obscure reason,
studying failures of vision (‘‘illusions”) have attracted much more
attention in the vision community than studying the veridicality
of human visual perceptions. The study of illusions at the expense
of veridical perceptions may simply be a product of the widespread
commitment to testing null hypotheses. This strategy encourages
looking for perceptual ‘‘effects”, such as the effect of depth cues
on judging the aspect ratio of an ellipse, or the joint effect of tex-
ture and binocular disparity on perceived slant of the surface,
etc. If a percept is veridical and constant, despite changes in the
viewing conditions, there are no effects! There is nothing to pub-
lish. This might explain, at least partially, why there have been very
few studies designed to assess the degree of veridicality in visual
perception rather than its failures.

We showed, in three psychophysical experiments, that human
beings see naturalistic indoor scenes accurately, so accurately that
there was no appreciable bias that could be used to justify using
non-Euclidean spaces as models of the visual space, which is the
perceptual representation of the physical space in which we
humans live and act. The variability of our subjects’ judgments
was also fairly small. When these subjects were asked to compare
distances among 3 objects forming a right isosceles triangle on the
floor, a task similar to line-length discrimination, their standard
deviations were only 4–6%, barely twice as large as it is when
the subject is required to discriminate the lengths of two line-
segments in the frontal plane. It seems likely that the performance
we measured is as good as the very best that can be done in 3D
vision. If this proves to be the case, it seems unlikely that there will
be two, or more, different models that are also capable of produc-
ing performance equal to the best performance demonstrated here.

In conclusion, our results with human subjects, when taken
along with our robot’s performance, suggest that human 3D vision
is based on the operation of three a priori constraints, specifically:
(i) the direction of gravity, (ii) a horizontal floor upon which all
objects reside, and (iii) the symmetry inherent in the 3D objects.
These specific constraints were essential for our computational
model to work as well as it did. More psychophysical experiments
must be done before we can make an equally explicit statement
about how the human visual system works. Details about how
these constraints are combined with visual data in our computa-
tional model are available elsewhere (Li et al., 2012; Pizlo et al.,
2014). The fact that a priori constraints are essential was antici-
pated by the Gestalt Psychologists over 100 years ago. When the
3D visual stimuli available to a human observer are natural, these
a priori constraints can be fully effective, and the 3D percept will be
veridical, that is, we humans will see things as they actually are
‘‘out there”. But, whenever viewing conditions are very impover-
ished, our natural a priori constraints are likely to be ineffective,
so our visual reconstructions must become unreliable as well as
biased. It is important to keep in mind that unreliable vision with
impoverished stimuli is inherent in the ill-posed nature of the
visual task presented to the subject. Under natural viewing condi-
tions, a priori constraints can be used by the visual system, allow-
ing the ill-posed task to be regularized and solved veridically as a
well-posed task.
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Appendix A

A.1. Calibration of the motion and position capture system

The coordinate system in the room was defined by drawing a
5 m by 5 m square with a grid of 1 m steps on the floor (Fig. A1).
The positions of the vertices of the grid were then measured by
the motion capture system and the transformation between the
coordinate systems of the physical space and the motion capture
system was derived.

A.2. Drawing the grid on the floor

Straight line segments on the floor were marked by first pro-
jecting a line from a laser and then stretching strings along the
laser lines. We then determined the positions of the three vertices
p0, p1, and p2 of the square (see Fig. A2). The two line segments,
p0p1 and p0p2 form a rectangular corner at p0. The two segments
were drawn roughly first to make them parallel to the walls of
the room which is approximately rectangular (Fig. A2). The posi-
tions of p1 and p2 were marked at a distance of 5 m from p0. The
positions of p1 and p2 were then corrected so that p0, p1, and p2
formed an isosceles right triangle. Next, a vertex p3 of the square
was determined by simple trigonometry. Once these measure-
ments were done, markings were placed at 1 m steps on the four
sides of this square. The grid-lines were drawn by connecting these
markings.
A.3. Measuring the physical grid using the motion capture system

The positions of the vertices of the grid were measured with the
motion capture system in order to compare the coordinate systems
of the physical space and the motion capture system. LED markers
(used in the motion capture system) were placed sequentially at
the vertices on the floor and 60 cm above the floor. The position
of the marker was measured for 10 s at 30 Hz at each position
(total samples = 300). The measured positions of points on two
sides of the square proved to be unstable and these positions were
eliminated from subsequent analyses (see gray area in Fig. A2). The
useful area that remained was a 4 m by 4 m square. Measurements
made at the other positions were stable and their standard devia-
tions were less than 2 mm. The 300 samples obtained at each use-
ful position were averaged and used in the subsequent analyses.

Deriving the transformation between physical [x0, y0, z0]t and
measured [x, y, z]t spaces:

x0

y0

z0
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y
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2
64

3
75� Txyz

0
B@

1
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Rxyzðhx; hy; hzÞ ¼ RzðhzÞRyðhyÞRxðhxÞ



Fig. A1. (a) A photo of the experimental room during the calibration. The grid on the floor was marked with strings. (b) The top view of the room. The four corners, p0, p1, p2
and p3 form a square reference frame used for producing the grid that was used as the ground truth in the calibration. Dashed contours indicate the grid on the floor and the
gray discs indicate the positions of the motion capture system’s cameras attached to the ceiling. The 3D coordinate system was set so that the xz-plane coincided with the
floor and the y-axis was vertical and pointing up. The origin of the coordinate systemwas set at the center of the grid. The photo (a) was taken from the bottom-right corner of
the room as shown in (b).

Fig. A2. A copy of Fig. A1b. The points of the grid in the shaded area could not be
measured reliably. Note that all of these unreliable points were located farthest
from the center of the circular array of cameras. These points could only be seen by
cameras on the opposite side of the circle. The unreliable points were far away from
the cameras, and the limited viewing angles of the cameras above the points
prevented these points from being seen.
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1 0 0
0 cos hx � sin hx
0 sin hx cos hx

2
64

3
75
RyðhyÞ ¼
cos hy 0 � sin hy
0 1 0

sin hy 0 cos hy

2
64

3
75
RzðhzÞ ¼
cos hz � sin hz 0
sin hz cos hz 0
0 0 1

2
64

3
75

where [x, y, z]t is a measured position of a point, [x0, y0, z0]t is its
physical position, and hx, hy, and hz are degrees of rotations about
the x, y and z axes respectively. In total, there were seven free
parameters. These parameters were determined using the least
squares method: Txyz = [12.6 mm, �4.8 mm, �9.0 mm]t,
hx = 0.086�, hy = 0.017�, hz = 0.12�, and Sxyz = 1.004. The difference
between the physical position and the measured position of the
point after the transformation was less than 2 cm. It means that
the motion capture system could detect a position of a point in a
3D scene within the maximum error of 2 cm after the calibration.
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