
Advanced Engineering Informatics 28 (2014) 272–286
Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier .com/ locate /ae i
Processing of Topological BIM Queries using Boundary Representation
Based Methods q
http://dx.doi.org/10.1016/j.aei.2014.06.001
1474-0346/� 2014 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

q Handled by W.O. O’Brien.
⇑ Corresponding author. Tel.: +49 89 289 25065.

E-mail addresses: simon.daum@tum.de (S. Daum), andre.borrmann@tum.de
(A. Borrmann).
Simon Daum ⇑, André Borrmann
Chair of Computational Modeling and Simulation, Leonhard Obermeyer Center, Technische Universität München, Arcisstr. 21, 80333 München, Germany

a r t i c l e i n f o
Article history:
Received 22 October 2013
Received in revised form 12 March 2014
Accepted 10 June 2014
Available online 25 July 2014

Keywords:
Building information modeling
3D spatial query language
Topology
Boundary representation
QL4BIM
a b s t r a c t

Building Information Models (BIM) are comprehensive digital representations of buildings, which provide
a large set of information originating from the different disciplines involved in the design, construction
and operation processes. Moreover, accessing the data needed for a specific downstream application sce-
nario is a challenging task in large-scale BIM projects. Several researchers recently proposed using formal
query languages for specifying the desired information in a concise, well-defined manner. One of the
main limitations of the languages introduced so far, however, is the inadequate treatment of geometric
information. This is a significant drawback, as buildings are inherently spatial objects and qualitative spa-
tial relationships accordingly play an important role in the analysis and verification of building models. In
addition, the filters needed in specific data exchange scenarios for selecting the information required can
be built by spatial objects and their relations. The lack of spatial functionality in BIM query languages is
filled by the Query Language for Building Information Models (QL4BIM) which provides metric,
directional and topological operators for defining filter expressions with qualitative spatial semantics.
This paper focuses on the topological operators provided by the language. In particular, it presents a
new implementation method based on the boundary representation of the operands which outperforms
the previously presented octree-based approaches. The paper discusses the developed algorithms in
detail and presents extensive performance tests.

� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Building Information Models are comprehensive digital repre-
sentations of buildings. Their use for designing, engineering, con-
structing and operating buildings is increasingly being adopted
by the AEC industry [1]. A BIM comprises not only the 3D shape
of all building elements and the enclosed spaces, but also semantic
information representing both the type of the elements and the
relationships between them. Additionally, the model stores a
wealth of non-geometric properties. By providing the appropriate
data structures, a BIM serves as an interface and database for
exchanging information across the disciplines involved throughout
the design, construction and operation of the building. The use of
BIM in the interdisciplinary design and engineering processes calls
for well-defined points of information hand-over. The Information
Delivery Manual (IDM) provides a framework for describing the
processes and defining exchange requirements [2]. It precisely
specifies the information needs of the receiving participant and/
or application. The exchanged information has to satisfy high qual-
ity standards, as an efficient operation of downstream processes
can only be achieved if the data basis is accurate.

Coupled with 3D modeling, the semantic comprehensiveness of
building models provides a clearer insight into the consequences of
planning decisions than the 2D plan-based approach. Nevertheless,
the specific conditions in the construction industry and the unique
characteristics of each building can spoil the quality of the result-
ing model:

1. Projects are developed during long periods of design and plan-
ning phases, often including significant changes to the building
model(s).

2. There are a large number of contributors involved in the ongo-
ing detailing of a model.

3. Each domain focuses on different parts of the model.

These conditions, coupled with the complexity of the modeled
environment, lead to a massive amount of data and a high risk of
undetected errors. In large-scale projects in particular, the amount
and complexity of information stored in a BIM renders the manual

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2014.06.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.aei.2014.06.001
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:simon.daum@tum.de
mailto:andre.borrmann@tum.de
http://dx.doi.org/10.1016/j.aei.2014.06.001
http://www.sciencedirect.com/science/journal/14740346
http://www.elsevier.com/locate/aei


S. Daum, A. Borrmann / Advanced Engineering Informatics 28 (2014) 272–286 273
detection of spatial defects difficult and time-consuming. In addi-
tion, retrieving the data subset required for a specific exchange
scenario is a far from trivial task. To overcome this hurdle, several
researchers have proposed using formal query languages which
make it possible to specify the desired information in a concise,
well-defined manner. These approaches are presented in Section 2.
One of the main limitations of the methods proposed so far, how-
ever, is the inadequate treatment of geometric information. None
of the approaches support the use of qualitative spatial predicates
for defining filter expressions, only allowing simple numeric com-
parisons between individual geometry coordinates. This is not suit-
able for expressing filters with higher spatial semantics.

This has to be seen as a major deficiency, as spatial relations
between building elements play a significant role in most of the
design and engineering tasks of the AEC domain. To fill this techno-
logical gap, the authors have developed concepts and techniques
for a spatial query language for Building Information Models [3–
5]. The devised technology makes it possible to select specific
building elements by applying qualitative spatial relationships
within the respective filter expressions. These relationships form
an intermediate level of abstraction between the technical view
on building geometry using numerical coordinates, and the way
humans reason about buildings and the relations between their
components.

Typical examples of queries concerned with spatial semantics
are:

– Get all walls within the first storey.
– Does room 107 contain any heating equipment?
– Get all objects within the distance of 10 m from a certain point.
– Which columns touch slab No. 1?
– Are there any gas lines below the footing?

Possible applications for a spatial query language for BIM range
from verifying construction rules to extracting partial models that
satisfy spatial conditions. Such a partial model resulting from a
spatial query can be used to fulfill the exchange requirements
specified in the IDM process map, for example.

The proposed 3D spatial query language QL4BIM relies on a
spatial algebra that is formally defined by means of the point-set
theory and point-set topology [6]. The operators available for the
spatial types are the most important part of the algebra.

They consist of

– metric operators, such as Distance, CloserThan, and FartherThan
[4]

– directional operators, such as Above, Below and NorthOf [3] and
– topological operators, such as Touch, Within and Contains [7].

This paper focuses on the topological operators. In particular, it
presents a novel implementation approach which is based on the
direct use of the Boundary Representation (BRep) of the operands.
As shown by the performed performance tests, this newly devel-
oped technique outperforms the octree-based approaches pre-
sented in [8].

The paper is structured as follows: Section 2 discusses related
work in the field of query languages for BIM as well as spatial data
processing in the domain of Geographic Information Systems (GIS).
In addition, the standardized data model Industry Foundation Clas-
ses and its handling of BRep data is discussed. Section 3 presents
the formal definitions underlying the topological operators pro-
vided by QL4BIM. After revising the octree-based approach for
implementing the topological operators in Section 4, the developed
BRep-based approach is presented in Section 5. Section 6 discusses
the application of the R-Tree indexing method for achieving further
performance gains during topological filtering. The results of test
runs concerning runtime and time complexity are presented in
Section 7, while Section 8 discusses the Live LINQ query system,
which includes the proposed topological filters. The paper is
concluded by a summary and discussion.
2. Related work

This section is about query functionality in the domain of Build-
ing Information Modeling and Geographic Information Systems. It
also illustrates the handling of BRep geometry in the underlying
data model used in the QL4BIM system.

2.1. Industry Foundation Classes

The query language QL4BIM operates on BIM models complying
with the Industry Foundation Classes (IFC), a vendor-neutral, open
and standardized data model for the representation of complex
building models. The IFC are based on STEP, the ISO standard for
the exchange of product model data [9]. STEP includes the specifi-
cation of the data modeling language EXPRESS, which is employed
for defining the schema of the IFC.

This treatise deals with the realization of efficient algorithms
for processing topological predicates to filter IFC building models.
The presented algorithms operate on the geometric representation
of building elements and space objects. The IFC provide a large
variety of different geometry representations, including Construc-
tive Solid Geometry, Swept Area Representations and boundary
representations. For the latter, different options exist of which
the most important are:

– IfcFacetedBRep: A simple form of boundary representation
model in which all faces are planar and all edges are straight
lines. Edges and vertices are not represented explicitly in the
model but are implicitly available.

– IfcAdvancedBRep: A boundary representation model in which all
faces, edges and vertices are explicitly represented. It is a solid
with explicit topology and elementary or free-form geometry.

– IfcTriangulatedFaceSet: A tessellated face set with all faces being
bound by triangles.

The developed algorithms are based on the IfcTriangulatedFace-
Set representation. The data structure is very similar to that
underlying the indexed face set of the X3D standard [10].

In the prototypical implementation of the system we are
employing the library IFC LOADER provided by the IFC Tools Project
[11] to perform a pre-processing step which generates a triangu-
lated surface representation for each individual object. This repre-
sentation is stored using IfcTriangulatedFaceSet as an additional
geometry representation of the respective semantic object.

2.2. BIM query languages

The handling of data sets is covered by databases and their
query languages. The Structured Query Language (SQL) is the de
facto standard in this domain. Relational algebra provide the theo-
retical foundation for this language [12]. SQL can be used to exam-
ine structured data represented by relations. This requires static
and homogenous relationships between data items. By contrast,
the IFC data model allows a very flexible build-up of interposing
entity relationships. This makes a mapping in line with relational
database technology difficult [13].

The process of filtering can be accomplished on the level of the
meta-model (EXPRESS) or directly on the domain model (IFC). A
domain specific language for BIM can provide a more direct access
to the required data, as it is tailored to the domain model and hides



Table 1
The definitions of the topological predicates by the 4-IM.

oA \ oB A� \ B� oA \ B� A� \ oB

Ø Ø Ø Ø Disjoint
:Ø Ø Ø Ø Touching
:Ø :Ø Ø Ø Equal
Ø :Ø :Ø Ø Inside
:Ø :Ø :Ø Ø CoveredBy
Ø :Ø Ø :Ø Containing
:Ø :Ø Ø :Ø Covering
:Ø :Ø :Ø :Ø Overlapping

Fig. 1. The matrix representation of the 9-Intersection Model.

274 S. Daum, A. Borrmann / Advanced Engineering Informatics 28 (2014) 272–286
the details of the internal data representation [14]. The following
section discusses currently available domain-specific languages
for the filtering of building models.

The Partial Model Query Language (PMQL) is an XML-based
language offering Select, Update and Delete operators [15]. It is
integrated in the IFC Model Server and can be called up via
SOAP-based web services. A user-defined filtering is established
as a Select statement, which can comprise nested Selects. The
final set of results can be restricted by Where statements, which
check against object IDs, object types and generic SQL
statements.

The Generalised Model Subset Definition Schema (GMSD) make
it possible to define partial, domain-specific model views in a
declarative manner as well as providing selection functionality at
the instance level [16]. Weise provides a use case, where objects
are firstly filtered at the instance level, followed by a second pro-
cessing based on the defined view definition. An ad-hoc query in
GMSD is stated by means of a QuerySetSelect entity, which can con-
tain statements for filtering according to attribute and type values.
Operations like Union, Difference and Intersection can also be per-
formed on the result sets of sub queries.

The Building Information Model Query Language (BIMQL) is a
domain-specific query language for building models [14]. It cur-
rently provides a Read and Update functionality, to which Create
and Delete statements are to be added in the future. The language
is inspired by PMQL and SPARQL. The latter is a graph-based query
language in the context of the semantic web [17]. The language is
especially suitable for the traversal of complex referential data
models like the one provided by the IFC.

The strength of the presented languages lies in the semantic
processing of the underlying data set. However, none of the lan-
guages take the geometric representation of IFC objects for the fil-
tering of data into account. In QL4BIM, the IFC geometry is
transformed into explicit BRep data, i.e. IfcTriangulatedFaceSets.
This geometry representation is subsequently used by the provided
spatial predicates.

2.3. Spatial query functionality provided by Geographic Information
Systems

The overall concept of providing a spatial query language for ana-
lyzing BIMs is closely related to concepts and technologies devel-
oped in the area Geographic Information Systems (GIS). Such
systems maintain geographical data of the environment, such as
the positions and shapes of cities, streets, rivers, etc. and provide
functionalities for the spatial analysis of this data. Due to the nature
of this domain, most systems only support spatial objects in 2D
space.

It was in the late 1980s when the first implementations of a spa-
tial query language on the basis of SQL were realized. A multitude of
different dialects were developed, including PSQL [18], Spatial SQL
[19], GEOQL [20], KGIS [21] and TIGRIS [22]. Egenhofer [23] provides
a good overview of the different dialects and the basic advantages of
a SQL-based implementation. The Open Geospatial Consortium
(OGC) publishes the Simple Feature Access standard, which includes
a detailed description of spatial extensions for SQL [24].

The majority of Geographic Information Systems available sup-
port an extended spatial SQL, including ArcGIS [25] and PostGIS
[26]. As these systems evolved historically from a 2D geometric
representation approach, however, the functionality for processing
3D geometry is very restricted and the performance of the avail-
able tools is unsuitable for complex building data sets. The ArcGIS
documentation [25], for instance, states: ‘‘Some 3D set operators
are fairly process intensive and may take longer to execute. [. . .]
As a result, care should be taken when deciding what feature clas-
ses to use as inputs to these tools, regarding size and complexity of
data.’’ In contrast, the QL4BIM system is design to handle queries
against elaborated Building Information Models containing a high
amount of elements and detailed geometry representations.

3. Formal definition of topological predicates

Topological operators are used to query the topological rela-
tionship between two spatial entities. Since topological operators
return a Boolean value, they are also denominated topological
predicates. Topological relationships are invariant under transla-
tion, rotation and scaling as well as any combination of these
transformations – except when a scaling factor of zero is used.
They are qualitative in nature and provide a high level of abstrac-
tion which complies well with the way humans reason about
buildings and the relationships between their elements. The
authors consider the integration of topological operators in a BIM
query language as an important functionality required for an
enhanced, powerful analysis and verification.

Different mathematical systems have been presented for pro-
viding a formal definition for topological predicates. One main con-
tribution in this field of research was the introduction of the 4-
Intersection Model (4-IM, [27,28]). The 4-IM calculus is based on
the mathematical theories of algebraic topology and set topology
[29]. It applies the notion of the neighborhood of a point to
describe topological concepts such as the interior A� and the
boundary dA of a point set A. Topological predicates are defined
by the intersection of the interior and the boundary of two oper-
ands. In this case, an intersection can yield an empty Ø or a non-
empty set :Ø. These values represent the topological invariants
of the topological relations, reflecting that they stay constant under
transformations. The formal definitions of the topological predi-
cates are depicted in Table 1.

By taking the exterior of an entity into account, the 4-IM is
extended to become the 9-Intersection Model (9-IM). The � token
indicates the exterior in the model. This extension makes the han-
dling of line–line relations in R2 possible. The 9-IM is notated as a
3 � 3 matrix, as depicted in Fig. 1.

The 9-IM can represent 29 = 512 possible configurations, but
only eight are encountered when two solids are examined. Borr-
mann and Rank [30] examined the use of the 9-IM as a formal basis
for defining topological operators in an BIM environment, includ-
ing cases of solid-to-solid relations. As solid objects are the major
representation of spatial entities in BIM, this paper restricts itself
to contemplate the topological configuration of solids only. The
eight possible topological relations between two solids are Disjoint,
Inside, Equal, Touching, Containing, Overlapping, Covering, and
CoveredBy, shown in Fig. 2, which also depicts the 9-IM matrix
corresponding to each topological configuration.



S. Daum, A. Borrmann / Advanced Engineering Informatics 28 (2014) 272–286 275
The 9-IM does not provide the possibility to distinguish
between the dimensionality of the intersection sets. Accordingly,
the different touch constellations (vertex–vertex, edge–edge,
face–face) cannot be distinguished. To overcome this issue, Clem-
entini et al. developed the Dimensionally Extended 9 Intersection
Method (DE-9IM), where the dimensionality of the intersection
sets is recorded in the matrix [31]. Though the DE-9IM provides
extended expressivity, the algorithms presented in this study are
based on the 9-IM, as the covered set of topological operators is
sufficient for most practical use cases.
4. Octree-based implementation approach

Borrmann and Rank [5] introduced an approach for implement-
ing topological operators based on an octree representation. The
octree is a hierarchical structure based on cell decomposition
[32]. The geometry is decomposed with equally sized cubic cells,
also called octants. Every octant has exactly one parent cell and
either zero or eight child cells. Octants that are wholly inside or
outside the represented object hull have no child cells. The ratio
of the edge length of a child cell to its parental cell is always 1:2.
The principle functioning of this tree data structure is illustrated
by its 2D variant, the quadtree in Fig. 3.

In order to process a topological operator, the geometry of its
operands (BIM elements) has to be converted into an octree repre-
sentation. The level of refinement is controlled by a parameter
steering the tree construction. As the geometry input is a solid rep-
resented by a IfcTriangulatedFaceSet, octant-triangle intersection
tests can be used to create the tree in a top-down manner [33].
To classify interior and exterior cells, a flooding method is
employed [8,34]. The result is a discretized representation of a
building element made up of dedicated interior, boundary and
exterior cells. It is important to distinguish this approach using
the octree structure of a building element as an additional
geometry representation from using an octree as a spatial indexing
structure. To evaluate a topological predicate for a pair of geometric
Fig. 2. The eight predicates defining the possible top

Fig. 3. A non-colored quadtree and a three-colored quadtree with its graph structure. Wh
the discretized object.
objects, the octree-based algorithm comprises the followings steps:
(1) transform each of the boundary representations of the involved
objects into a corresponding octree, (2) create a 9-IM matrix by
superimposing the octrees and (3) determine the applicable topo-
logical predicate by comparing the created 9-IM matrix with the
definition templates (Fig. 2).

Since the octree structure acts as a secondary geometry repre-
sentation for BIM elements, their refinement level must be adjusted
to reflect the desired resolution. This is problematic, as the creation
and processing of the octree shows an exponential time complexity
concerning this refinement level [5]. This approach is accordingly
not applicable for the topological analysis of large data sets, as pro-
duced in BIM. The performance analysis in Section 7 depictures this.
On the other hand, an efficient formal analysis technology including
the topological exploration of building elements is advantageous,
especially in elaborated building models. This extends to the effi-
cient extraction of submodels. The next section presents the new
approach for the calculation of topological predicates. It is suitable
for use in building models with large number of elements and fine-
grained geometrical representations.
5. BRep-based implementation method for topological
operators

To overcome the limitations of the octree-based implementation
method, particularly with respect to the runtime performance, a
new implementation method based on the boundary representation
of the operands has been developed. The method is generic and
allows determining the topological predicate for any two geometric
objects. These objects may be non-convex (such as a wall with open-
ings) and may possess caves. However, to simplify the presentation
in this treatise and without loss of generality, we do not discuss
objects having multiple shells in the following explanations.

The presented algorithms are operating on a specific boundary
representation, a triangulated surface mesh. As stated above, we
make use of the IFC LOADER library of the IFC Tools Project [11]
ological relationships between two solids in 3D.

ite cells represent the exterior, black cells the interior and gray cells the boundary of



276 S. Daum, A. Borrmann / Advanced Engineering Informatics 28 (2014) 272–286
to generate an IfcTriangulatedFaceSet representation for each Ifc-
Product entity having a 3D shape. This including entities with
curved surfaces. The developed algorithms require the operands
to be manifold geometric objects. The original geometry represen-
tation (IfcSweptAreaSolid, IfcAdvancedBrep etc.) is preserved and
may be used for downstream applications following the selection
performed by means of the query language.

In contrast to the octree-based algorithms, the BRep-based algo-
rithms do not directly populate a complete 9-IM matrix. This is due
to the fact that the BRep data lacks the explicit representation of the
interior and the exterior of a geometric object. By conducting fur-
ther investigations into triangle-to-triangle constellations, how-
ever, it is possible to deduce the absent values in the 9-IM. Here,
it is important to distinguish clearly between intersecting and
meeting constellations. A meeting situation can occur if there are
adjacent vertices or edges between pairs of triangles. As 3D geom-
etry is used in the context in question, we consider a coplanar over-
lay of two triangles to be meeting rather than intersecting.

Main parts of the algorithms make use of a triangle-to-triangle
intersection test and a ray-based inside/outside classification. We
begin by describing these two tests before discussing the actual
algorithms.

5.1. Triangle intersection test

For the triangle-to-triangle intersection test, we make use of the
approach presented in [35]. In the description given here, we call
the triangles T1 and T2 and their corresponding planes p1 and p2

(Fig. 4, left). First, we calculate the signed distances between all
T1’s vertices to plane p2. If all distances have the same sign, the tri-
angle does not intersect the plane and the test immediately returns
false. The test is repeated for the second triangle. If these two early
rejection tests are passed, we proceed to calculate the line L of inter-
section between plane p1 and p2. The previous calculations guaran-
tee that each triangle covers an interval on L. The triangles only
intersect if these two intervals overlap. The original test is extended
in a way that it distinguishes between touching and intersecting tri-
angles (Fig. 4, right). Touching triangle pairs are necessary to verify
the Equal, the Touching and the Covering relationship.

In the case of coplanar triangles, they are projected on to the
most appropriate axis-aligned plane, where the areas of the
triangles are maximized, before we proceed to a two-dimensional
triangle-to-triangle overlap test [36].

5.2. Ray-based inside classification procedure

Due to the lack of an explicit representation of the interior and
the exterior in the BRep data structure, we are obliged to use
alternative methods to determine all intersection sets required
Fig. 4. Triangle intersection test (left), Intersection and Touching constellations
(right).
by the 9-IM, such as the intersection of the exterior and the
boundary.

The used inside test is realized by means of ray tests [4,37]. An
arbitrary triangle is chosen from the entity’s BRep and used as a
starting-point for rays. The rays are emitted from the selected tri-
angle and the number of intersections with the second operand’s
BRep is counted. If an even number of intersections occurs, the tri-
angle is located outside, whereas an odd number indicates that the
triangle is inside the IfcTriangulatedFaceSet. To determine the most
appropriate axis direction for testing purpose, the maximal compo-
nent of the triangle’s normal vector is examined. Fig. 5 illustrates
the described principle in 2D.

As the method can fail in special cases, additional measures
have to be taken to ensure its reliability. In Fig. 5, entityA1 is clas-
sified correctly, while we observe a glancing intersection for a ray
emitted by A2. This would lead to an erroneous examination of
intersection counts and thus to a wrong result of the inside/outside
test. To overcome this fragility, we use several rays in one test as
shown for A02 in Fig. 5 (direction +X). In consequence, the inside/
outside test considers the ray with the highest number of
intersections.

In case of ambiguities, another triangle can be chosen that
exhibits a different direction for ray emission. This is shown for
the object A02, which emits rays in the �Y direction instead of +X,
as tried before. The application of these approaches can be fine-
tuned by the end user by means of two parameters provided by
the query system, which enable to balance the increment of reli-
ability against an increase in runtime. The integer parameter
RayQuantity defines the number of rays emitted in an inside test.
The Boolean parameter UseMultipleRayDirections defines if a trian-
gle with another emission direction is chosen when ambiguous
intersection counts occur. In the established test bed, the usage
of three rays per test case lead to 100% reliable results.

To simplify the pre-selection of potentially intersecting trian-
gles, the rays are emitted parallel to the axes of the coordinate sys-
tem. This strategy is well suited to be used in combination with the
spatial indexing method presented in Section 6.2.

5.3. BRep-based evaluation of topological predicates

We begin by introducing the algorithms for evaluating the
predicates Disjoint and Touching using 3D boundary representa-
tions. Like the octree-based algorithms, they are based on the ver-
ification and falsification of entries in the 9-Intersection Model.

The algorithm Disjoint, depicted in Fig. 6, first checks whether
any triangle from object A meets or intersects any triangle from
object B. If this is the case, the predicate can be rejected, because
Disjoint only holds true if the intersection of the boundaries of A
and B in the 9-IM is an empty set. The next step (line 3 et seq.) ver-
ifies that there is no containment relationship between A and B,
thus determining whether the two objects are located inside each
other. This is realized by the InsideTest algorithm. If no contain-
ment occurs, the Disjoint relationship is verified.

We will now proceed to present the subroutines AnyTriangle-
TouchOrIntersect and InsideTest.

The first routine iterates over all triangles from object A and
tests every triangle from B for intersection or meeting using the tri-
angle/triangle intersection test described above. If we take a look at
the time complexity of AnyTriangleTouchOrIntersect (Fig. 7), the two
nested foreach statements cause a quadratic increase, driven by the
number of triangles n of the operands. The worst case time
complexity is accordingly O(n2).

The InsideTest algorithm (Fig. 8) determines whether a BRep A is
located inside a BRep B. A surface point on an arbitrary triangle
from A is used as the starting point of a ray. The subfunction Most-
AppropriateRayDirection provides the designated coordinate axis



Fig. 5. Principle of the inside/outside classification of geometry objects based on ray tests.

Fig. 6. Algorithm Disjoint.

Fig. 7. Algorithm AnyTriangleTouchOrIntersect.

S. Daum, A. Borrmann / Advanced Engineering Informatics 28 (2014) 272–286 277
direction which shows the minimal deviation from the triangle’s
normal. Based on the starting point and the direction, we create
a ray (line 3). In the subsequent foreach loop, every triangle from
object B is tested for intersection with the ray. We consider the
number of intersections to calculate the overall return value. An
even number of intersections negates the inside classification.
Because of previously rejected intersection tests, the returned clas-
sification not only holds true for the triangle but for the entire A
object. As it is necessary to identify the exact number of intersec-
tions and no early abortion is possible, the time complexity of the
InsideTest is always O(n). Here, n is the number of triangles in the
BRep of object B.
Fig. 9 depicts the algorithm Touching as pseudo code. The test
uses two variants of the AnyTriangleTouchOrIntersect routine, which
distinguish between touching and intersecting triangles. The worst
case time complexity for both variants is again O(n2). If a pair of tri-
angles from A and B intersect (line 1), this also indicates an inter-
section of the two interiors of the objects under examination.
Since, however, the definition of the Touching predicate prohibits
a non-empty set for the intersection of the interior of A with the
interior of B, the Touching predicate can be rejected in the case of
cutting triangles. On the other hand, there must be at least one pair
of touching triangles between A and B to fulfill the predicate (line
3). Otherwise, the algorithm will stop at this point and return false.



Fig. 8. Algorithm InsideTest.

Fig. 9. Algorithm Touching.

278 S. Daum, A. Borrmann / Advanced Engineering Informatics 28 (2014) 272–286
If the execution has reached line 7, it is possible that A covers B or
vice versa. A and B can nevertheless still touch each other. To dis-
prove the Covering relationships, we carry out two inside tests. If
these two tests return false, the objects cannot be nested and they
must approximate each other from the exterior. This step verifies
the Touching predicate.

As described in this section, it is possible to calculate topologi-
cal predicates of 3D components by means of a triangle intersec-
tion and touching test coupled with inside tests. In contrast to
the octree variant, this approach does not call for an explicit repre-
sentation of the interior and the exterior of components. The algo-
rithms developed for the remaining six topological predicates
Equal, Inside, Containing, Covering, CoveredBy, and Overlapping fol-
low the same principle: a hierarchy of intersection, touching and
inside tests is established for every predicate. A detailed descrip-
tion of the algorithms implementing these predicates is available
in [7].
6. Indexing methods for improving performance and
complexity of spatial queries

6.1. Runtime performance considerations

Although the topological predicates presented here are func-
tional, it is imperative to carefully consider their runtime behavior
in complex building models with high object counts and more
complex surfaces. This is particularly important as the value of
an efficient spatial analysis of a model increases for complex
scenes where a manual examination is practically impossible.

For the following performance considerations, the local process-
ing to determine a topological predicate between two explicit
objects has to be distinguished between a global inquiry. In the latter
case, a whole set of objects is processed by a topological predicate. An
example for a global querying is ‘‘Select all walls touching columns’’
in contrast to a local question like ‘‘Does wall 55 touch column 23?’’.

6.1.1. Local querying
As discussed above, the InsideTest increases linearly to the trian-

gle count of the second operand. In addition, the subroutines for
finding intersecting or touching triangles even suffer from a qua-
dratic runtime increase in terms of the triangle count of the used
IfcTriangulatedFaceSets. These algorithms are used for evaluating
the local topological relationship between two elements and
thereby operate on the level of the elements’ triangles.

6.1.2. Global querying
To provide a comprehensive approach for the analysis of build-

ing models, the query system also offers global algorithms on the
scene level. This is an extension to the local functionality on the
level of two components. For example, it is possible to select from
a set of all IfcProducts of a model those items which intersect other
ones, as illustrated in the following code section. The algorithm



S. Daum, A. Borrmann / Advanced Engineering Informatics 28 (2014) 272–286 279
OverlappingIfcProducts takes a list of IfcProducts and checks each
against all candidates (Fig. 10).

The processing of this type of global query, where a predicate is
tested within the Cartesian Product of building elements has a time
complexity of O(n2). Here n represents the number of elements in
the model. When implemented without pre-filtering, the topolog-
ical query functionality would accordingly suffer from an exponen-
tial runtime increase depending on the amount of objects in the
model (global querying) and the number of triangles belonging
to these objects (local querying).

6.2. R-trees

To overcome the exponential runtime complexity of global que-
ries, and to make a system available that can deal with real-world
building models containing tens of thousands of components, we
have incorporated a spatial index structure in the system. We
choose the R-tree data structure for this purpose, as it has proved
to be highly effective for indexing multi-dimensional data [38].

The R-tree is a hierarchical data structure that makes it possible
to index spatial data. Its basic functioning is illustrated in Fig. 11.
The main objective of applying the R-tree data structure is to group
items located in close vicinity. The established tree is height-bal-
anced, so that the leaf nodes are all located on the same level. To
provide an efficient tree construction and rapid spatial query func-
tionality, the tree only operates on axis-aligned bounding boxes of
indexed items. The tree is accordingly unable to calculate the final
spatial predicates, but it can look for candidates rapidly.

In the context concerned, the building elements in a model are
represented as three dimensional, closed shells, set up by means of
BRep geometry. Because an R-tree is capable of indexing multi-
dimensional items, it is suitable for dealing with this 3D geometry
provided by the components used in BIM. The indexed items,
denoted as data objects, are always connected to the leaf nodes
of the tree. So a leaf of the tree contains the bounding box of an
indexed geometry as well as a reference to the complex BRep
and the corresponding, semantic BIM entity. This can be an IfcWall
or an IfcColumn, for example.

The following section looks at the tree’s internal structure. If we
contemplate the tree from the point of view of a leaf, there is a
node containing several leaves on the next level. This node also
provides a bounding box, including all boxes from its referenced
leaves. By repeating this approach of encasing boxes in a so-called
directory box, we create a hierarchy where a node itself is charac-
terized by its own directory box and pointers to child nodes or
leaves which together determine the extent of the directory box.
Fig. 10. Algorithm Over
The tree can be fine-tuned by its two parameters m and M. They
reflect the minimal and maximal number of children in each node,
except for the root. The value of m must satisfy m 6M/2.

As the R-tree is a dynamic index structure, items can be
inserted, updated and deleted during runtime. If a new data object
is inserted, the tree is traversed downwards to find the most
appropriate leaf, picking the child that requires the least enlarge-
ment for the new item at each node that is visited and finally add-
ing the object to a well-suited leaf node. In doing so, we try to keep
the number of overlapping nodes in the tree to a minimum. If the
selected node overflows, i.e. it now contains M + 1 children, it is
divided into two new nodes to replace the overstaffed one. These
nodes are inserted in the parent, which can cause it to overflow,
too. The nodes are split recursively, maybe propagating to the root.
If this happens, the tree gains in depth and a new root node is cre-
ated. In this manner, the distinctive bounding box hierarchy of the
R-tree is set up.

Similar to a B-tree [39], the R-tree uses this hierarchy to provide
an efficient query functionality. Whilst the B-tree’s hierarchy is
built up by distinct elements, in the case of the R-tree, nodes on
the same level can overlap. Thanks to its box hierarchy, the R-tree
can rapidly return data objects completely contained in, or inter-
sected by general query boxes. This feature is used extensively in
the algorithms concerned for evaluating the topological predicates.
Samet [40] described the R-tree data structure in more detail.

6.3. A two-tier spatial indexing

The proposed concept establishes a two-tier spatial indexing
based on R-trees. This is necessary to accelerate the algorithms
on both local triangle level and on global scene level. In the follow-
ing section, the spatial indexing on scene level is termed global
indexing because it treats the objects of the model as whole enti-
ties. The second level of spatial indexing deals with the triangles
of building elements, so every object in the model with a three-
dimensional representation is equipped with its own R-tree. This
level of indexing is called local indexing in this treatise. Global
indexing enables the system to rapidly find candidates for the var-
ious spatial queries, thus excluding a large number of elements
from any further processing. Local indexing accelerates the evalu-
ation of spatial predicates between two IfcTriangulatedFaceSets if
the box pre-tests do not suffice.

6.3.1. R-tree query functionality
To illustrate the R-Tree indexing functionality, we first discuss

the application of the R-tree to identify candidates for topological
lappingIfcProducts.



Fig. 11. Example of the R-tree structure calculated from 2D data, based on [38].

280 S. Daum, A. Borrmann / Advanced Engineering Informatics 28 (2014) 272–286
predicates by means of an example. For clarity, we examine a two-
dimensional configuration, whereas the proposed system is
designed for the three dimensional case. Rectangle R12 in the R-
tree, shown in Fig. 11 is the bounding rectangle for data object
12. In this 2D example, the data object is a general polygon. The
bounding shape of an indexed item always covers more or equal
space than the referenced, complex form. Thus, if polygon 12 is
overlapped by a second polygon, their bounding shapes must also
intersect. This can be used to find candidates for the Overlap pred-
icate, for example. The tree index structure is called on to return all
objects intersecting with R12 in such a way that R12’s bounding
rectangle is designated as a query rectangle. Only R11 is returned
and provides a data object – polygon 11 in this case – for further
testing. All other polygons in the scene can be omitted from any
further processing. Only the polygons 11 and 12 have to be exam-
ined in terms of their exact geometric representation, which are
edges in this 2D case. In 3D, the triangles of the operands are
employed for this further local testing.

To verify the Overlap predicate, it is necessary to find intersect-
ing triangles. This is described in detail within the 3D algorithm
AnyTriangleTouchOrIntersect (Fig. 7). In this 2D example of Fig. 11,
we look for intersecting edges to verify the predicate: Polygon 12
is built with 6 edges and polygon 11 with 16 edges. If every edge
from the first polygon is analyzed for intersection with every edge
from the second polygon, 11 � 16 = 172 calculations have to be
performed in the worst case. Switching from 2D to the 3D, the
algorithm AnyTriangleMeetOrIntersect has to perform 250,000
triangle intersection tests if the used components A and B have
500 triangles each. To overcome the quadratic increase of calcula-
tions required, we utilize local indexing, which allows for an accu-
rate identification of intersecting triangles between two meshes
using a divide-and-conquer strategy [41]. We begin by identifying
node candidates by means of a parallel breadth-first search. At
each search level, nodes from the first tree are tested against nodes
in the second tree. If two nodes intersect, the second node is placed
on the first node’s candidate list. In the next level of execution, the
first node is replaced by its children. In addition, all referenced can-
didates are replaced by their children. We now test the new nodes
for intersection and produce new candidate lists. If a node is a leaf,
it is retained for the next level of node refinement until, ultimately,
the main node and its candidates are all leaf nodes. At this step, the
tree has performed the desired pre-selection of candidates and
only a few, more intricate tests have to be computed on the explicit
triangle geometry. The described divide-and-conquer strategy is
illustrated in Fig. 12.

The divide-and-conquer strategy can also be used on global
scene level searching for overlapping components. We will now
proceed to present the global version of this algorithm.
6.3.2. Candidate identification
The global version of the OverlapCandidates algorithm takes two

R-trees as inputs (Fig. 13). The trees are constructed from the
bounding boxes of BRep geometry, provided by the IfcProducts in
a building model. In line 1, a list of pairs of IfcProducts is created
and finally used as return value of the algorithm. This is followed
by the instantiation of a stack (line 2) to which the root nodes of
both trees are added. A While loops starts execution in line 4 until
the stack is empty. The first stack item is popped in this loop,
always containing one node from the first tree and a second node
from the other tree. When the bounding boxes of these nodes do
not intersect, the while loop continues its operations with a new
iteration. In line 12, the current node pair is inserted in the return
list, because the previous if statement proved that both nodes
intersect and are leaves. An exact geometry test is therefore
needed for the BRep geometry referred from this node pair. The
Cartesian product of the children of both current nodes is built in
the lines 13–19, bearing in mind that one node may already be a
leaf. In this case, the leaf node itself is inserted in the correspond-
ing nodesFrom list. Line 21 returns the candidates that have been
detected.

The depicted OverlapCandidates algorithm is utilized to find
overlapping IfcProducts on scene level. As with this global pre-
selection of BIM components, it is possible to enhance the algo-
rithms at triangle level. The algorithm is slightly modified to facil-
itate local indexing. To find intersecting or touching triangles from
the two elements undergoing testing, their local R-trees are passed
to a variant of the OverlapCandidates function. These R-trees have
been established in advance on the basis of the bounding boxes
of the individual triangles. Finally, a list of triangle pairs that pos-
sibly intersect or meet is returned. The more time-consuming tri-
angle-to-triangle intersection tests have only to be performed on



Fig. 12. Divide-and-conquer strategy for intersection search on triangle level.

Fig. 13. Algorithm OverlapCandidates.

S. Daum, A. Borrmann / Advanced Engineering Informatics 28 (2014) 272–286 281
this reduced data set. The modified method that operates at
triangle level is called Overlap TriangleCandidates.

Fig. 14 depicts the proposed high level method OverlappingIfc-
ProductsRTree for the computation of the Overlap predicate.
Exploiting the global and the local spatial indexing (algorithm
OverlapCandidates/OverlapTriangleCandidates) leads to a consider-
able improve ment in the time complexity for Overlap verifications
(see Section 7).

The evaluation of topological predicates using the BRep geome-
try of components also includes the inside/outside classification of
triangles and meshes. The ray-based approach used for this classi-
fication is described in Section 5.3. The triangle-to-ray intersection
test, which is performed against all triangles belonging to an IfcTri-
angulatedFaceSet, entails a time complexity of O(n), where n
reflects the number of triangles.

During the inside test, it is possible to employ the R-tree to
identify the minimal subset of triangles necessary for ray testing,
thus increasing the runtime performance and reducing time com-
plexity. The used approach is illustrated in Fig. 15. Here we exam-
ine the inside/outside configuration of two BRep objects A and B



Fig. 14. Algorithm OverlappingIfcProductsRTree.

282 S. Daum, A. Borrmann / Advanced Engineering Informatics 28 (2014) 272–286
(15a). Firstly, an arbitrary triangle from the BRep A is chosen (b).
BRep A has been previously tested for any triangle intersections.
Since no intersection occurred, if one triangle is classified as being
either inside or outside, the same attribute holds true for the entire
BRep. The normal of the picked triangle let us chose +X as the
direction in which to emit rays. The triangle’s bounding box is con-
sequently extended to the maximal X value of the bounding box of
BRep B (c). The extended box acts as the query input for an inter-
section search in the second R-tree, established for the IfcTriangu-
latedFaceSet of B (see d). By this means, we retrieve the triangle
candidates for ray testing (e). The ray is finally drawn from the
A’s chosen triangle to obtain the number of intersections. Because
of the odd number of intersections in Fig. 15f), the triangle can be
classified as being inside the object B. Accordingly, BRep A is veri-
fied of being located inside BRep B.

7. Performance tests

We set up a test bed to measure the absolute runtime of the
topological predicates Overlapping, Touching, Disjoint and Inside
for the purpose of verifying the practical usage of the proposed
approach. At the same time, the time complexity in terms of the
overall object count in a scene is indicated. Every object is made
up of 192 triangles. The scene contains a cluster of four objects
Fig. 15. Accelerating the inside test by
positioned closely to one another: two objects touch, three overlap
and one object is located inside another one. We then duplicate the
clusters to increase the object count in the scene (Fig. 16).

The test bed is implemented in C# in a single-threaded environ-
ment. The most demanding constellation comprises a scene made of
13,500 objects. Although the absolute, average runtimes obtained in
the tests are within the range of a few seconds, which is promising
for industrial applications, they can be further enhanced with a high
performance, native implementation, using the programming lan-
guage C or FORTRAN, for example. Table 2 shows the information
of the used system and implementation detail.

The first performance test (Fig. 17) compares the runtime of the
octree approach presented in [3] with that of BRep-based methods
presented in this paper. Because of the required fine resolution of
the involved octrees and the caused high amount of created
octants, we see an immense performance improvement if BRep
methods are used.

Fig. 18 contrasts the runtimes of the brute force implementa-
tion without any spatial indexing with the times achieved by the
proposed two-tiered indexing for the Overlapping, Touching, Dis-
joint and Inside predicates. As the runtimes of the R-tree approach
scale linearly and with a considerable low inclination, the system is
able to filter real-world BIM data during appropriate execution
times.
applying the local R-tree indexing.



Fig. 16. The four geometric objects in a touch/overlap/inside configuration shown on the left side were repeated up to 3375 times to create the test bed with maximal 13,500
objects.

Table 2
Performance test configuration.

CPU frequency 3.40 GHz
Used threads 1
System main memory 16.00 GB
Maximal used memory octree 3.72 GB
Maximal used memory BRep 3.25 GB

S. Daum, A. Borrmann / Advanced Engineering Informatics 28 (2014) 272–286 283
8. Formulation of filter expressions and their evaluation

In the proposed concept, the user enters a query expression by
way of source code. The expression defines a predicate, which is
used to select objects from a given set. The returned objects satisfy
the predicate in the expression. To give an example, a set of walls is
filtered by the expression wall.GlobalID.Starts-

With(‘‘1pJQ’’). Here, wall is a formal parameter which is
replaced by all walls in the set one after another.
8.1. LINQ

We use LINQ [42] for evaluating query expressions on set level,
as it provides powerful query mechanisms for in-memory collec-
tions and object networks. LINQ is neatly integrated into the
.NET framework and queries can be formulated using any .NET lan-
guage. The queries are type safe and attributes and methods of
involved objects can be used. For the definition of a query, an
Fig. 17. Comparing execution timing for the Overlap predicate achieved with the devel
anonymous function, called Lambda expression is built up. An
example of this expression type is wall => wall.Globa-

lID.StartsWith(‘‘1pJQ’’). The proposed BIM query system
uses C# in combination with LINQ for examining in-memory col-
lections. This allows the filtering of building models to be executed
directly in the fast main memory of the machine.
8.2. Live LINQ

Applied in a standard context, LINQ requires the definition of fil-
ter predicates during compilation time. While it is possible to pass
parameters to a LINQ query during runtime, the system is restricted
to pre-defined filters. To support flexible query statements, exclu-
sively defined by the end-user at runtime, the expression he enters
has to be converted into an executable filter object. This is achieved
via an on-the-fly compilation of user input. We call this functional-
ity Live LINQ. If the C# code that is entered is accurate, it is compiled
and saved as a .NET assembly, shown as a DLL in the file system. The
query application can then load this assembly at runtime and use
the embedded filter object in the pending filter execution. The user
gets an unfiltered set of IfcProduct entities by way of the original
data source. Whenever a query is executed, the LINQ processor iter-
ates over the IfcProduct collection. The returned set only contains
entities which the dynamic filter evaluates as true.

In contrast to standard LINQ, the use of Live LINQ allows the
user to define queries in a flexible manner. All object attributes
can be used in a query and the system is not restricted to
oped BRep based methods versus the Octree approach. Octree refinement level = 6.



Fig. 18. Absolute runtime measurements and time complexity behavior of the algor

284 S. Daum, A. Borrmann / Advanced Engineering Informatics 28 (2014) 272–286
predefined filters. In addition, as LINQ interacts directly on object
level, methods published by objects are also accessible in queries
that make the developed topological operators available. Finally,
the filter generation at runtime promotes the compiler as a valida-
tion tool for user-defined query statements. If an inadequate code
is submitted, the compiler returns clear error messages.

The Live LINQ system, including the proposed topological oper-
ators, has been successfully implemented in a BIM client, as
depicted in Fig. 19.

8.3. Query examples

The following query examples illustrate the usage of the Live
LINQ system and its incorporated spatial query functionality. The
first query does not include a spatial predicate. It rather shows
the principle query syntax. Besides filtering by IFC classes, Exam-
ples 2 and 3 make use of topological and directional predicates.
Example 4 is a demonstration how to realize a nested spatial query.

Example 1. Select a wall with GlobalId 1pJQicIrH4UR_2BqvRP.
IfcProducts.Where(p =>

p is IfcWallStandardCase && p.GlobalId ==

‘‘1pJQicIrH4UR_2BqvRP’’)
Example 2. Select walls which overlap with wall 1 (index 25)
IfcProducts.Where(p = > {

var wall1 = IfcProducts [25];
return p is IfcWallStandardCase &&

p.Overlaps(wall1);})
Example 3. Select walls which overlap with wall 1 (index 25) and
ithms implementing the Overlapping, Touching, Disjoint and Inside predicates.
which are located above slab 1 (index 12)

IfcProducts.Where(p => {

var wall1 = IfcProducts [25];
var slab1 = IfcProducts [12];
return p.Overlaps(wall1) && p.Above(slab1);})
Example 4. Firstly, select walls below slab 1. Secondly, select all
products which touch column 1 (index 34) but do not touch any of
the fetched walls, located below slab 1.

var slab1 = IfcProducts [12];
var wallsBelow = IfcProducts.Where(p => p is

IfcWall && p.Below(slab1));

IfcProducts.Where(p = > {

var column1 = IfcProducts [34];
return p.Touch(column1) && !wallsBelow.Any(w =>

w.Touch(p));})
9. Conclusion and future work

BIM and its underlying data models, especially the IFC, have
evolved over the past two decades. Today, they provide a well-
grounded foundation for representing a wide range of buildings
and the processes of their planning, construction and maintenance.



Fig. 19. Developed QL4BIM system with spatial query functionality and Live LINQ.

S. Daum, A. Borrmann / Advanced Engineering Informatics 28 (2014) 272–286 285
On the other hand, there are gaps in the analysis and handling
functionality available for BIM, concerning the formal spatial
exploration of models and the extraction of submodels.

This treatise describes new BRep-based methods for the verifi-
cation of topological predicates as part of the Spatial Query Lan-
guage for Building Information Models. It introduces a mapping
between the 9-Intersection Model and the boundary-based exam-
ination of topological predicates.

In order to deal efficiently with the computational complexity
arising in large-scale models, we combine two-tiered spatial index-
ing with efficient geometric algorithms. Both the actual runtime
and the time complexity of the topological predicates outperform
the previously used octree approach.

We devised a runtime parsing of ad-hoc queries, called Live
LINQ, so that a user is not limited to predefined queries but is able
to freely specify filters. The novel system of spatial processing
using QL4BIM allows an efficient querying of complex Building
Information Models. As proof of concept, we developed a BIM cli-
ent which incorporates the proposed approaches for the topologi-
cal predicates and the Live LINQ query system.

As one of the future aspects of our work, we will investigate
whether and how the expressivity of the topological operators of
QL4BIM can be enhanced by making use of the Dimensionally
Extended 9 Intersection Method as a formal basis. Additionally, a
user defined thickness of the boundary of building elements will
be incorporated in the developed system. Doing so, the system is
able to classify elements as touching, even if they are few millime-
tres apart, for example.
References

[1] C.M. Eastman, P. Teicholz, R. Sacks, K. Liston, BIM Handbook: A Guide to
Building Information Modeling for Owners, Managers, Designers, Engineers
and Contractors, second ed., Wiley, Hoboken, NJ, 2011.

[2] ISO, Building Information Modelling – Information Delivery Manual – Part 1:
Methodology and Format (ISO 29481-1). <http://www.iso.org/iso/
iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45501>, 2011.

[3] A. Borrmann, E. Rank, Specification and implementation of directional
operators in a 3D spatial query language for building information models,
Adv. Eng. Inform. 23 (1) (2009) 32–44, http://dx.doi.org/10.1016/
j.aei.2008.06.005.

[4] A. Borrmann, S. Schraufstetter, E. Rank, Implementing metric operators of a
spatial query language for 3D building models: octree and B-Rep approaches, J.
Comput. Civ. Eng. 23 (1) (2009) 34–46, http://dx.doi.org/10.1061/(ASCE)0887-
3801(2009) 23:1(34).

[5] A. Borrmann, E. Rank, Topological analysis of 3D building models using a
spatial query language, Adv. Eng. Inform. 23 (4) (2009) 370–385, http://
dx.doi.org/10.1016/j.aei.2009.06.00.

[6] A. Borrmann, Extended Formal Specifications of 3D Spatial Data Types, 2006.
[7] S, Daum, A. Borrmann, Boundary representation-based implementation of

spatial BIM queries, in: Proc. of the EG-ICE Workshop on Intelligent Computing
in Engineering, Vienna, Austria, 2013.

[8] S. Daum, A. Borrmann, Efficient and robust octree generation for implementing
topological queries for building information models, in: Proc. of the EG-ICE
Workshop on Intelligent Computing in Civil Engineering, 2012.

[9] ISO 16739:2013, Industry Foundation Classes (IFC) for Data Sharing in the
Construction and Facility Management Industries (ISO 16739:2013).

[10] D. Brutzman, L. Daly, X3D: Extensible 3D Graphics for Web Authors, Morgan
Kaufmann/Elsevier, San Francisco, CA, 2007.

[11] E. Tauscher, IFC TOOLS Project: Visualize Your Digital Knowledge. <http://
www.ifctoolsproject.com>. [February 21, 2014].

[12] E.F. Codd, The Relational Model for Database Management: Version 2,
Addison-Wesley Longman Publishing Co., Inc, Boston, MA, USA, 1990.

[13] A. Borrmann, E. Rank, Query support for BIMs using semantic and spatial
conditions: handbook of research on building information modeling and
construction informatics, in: J. Underwood, U. Iskidag (Ed.), Information
Science Pub, 2009.

[14] W. Mazairac, J. Beetz, BIMQL – An open query language for building
information models, Adv. Eng. Inform. 27 (4) (2013) 444–456, http://
dx.doi.org/10.1016/j.aei.2013.06.001.

[15] Y. Adachi, Overview of partial model query language, in: Proc. of the 10th Int.
Conf. on Concurrent Engineering, 2003.

[16] M. Weise, P. Katranuschkov, R.J. Scherer, Generalized model subset definition
schema, in: Proc. of the 20th CIB-W78 Conference on Information Technology
in Construction, 2003.

[17] B. Quilitz, U. Leser, Querying Distributed RDF Data Sources with SPARQL, The
Semantic Web, Research and Applications, 2008.

[18] N. Roussopoulos, C. Faloutsos, T. Sellis, An efficient pictorial database system
for PSQL, IEEE Trans. Software Eng. 14 (5) (1988) 639–650, http://dx.doi.org/
10.1109/32.6141.

[19] M. Egenhofer, An extended SQL syntax to treat spatial objects, in: Proc.of the
2nd Int, Seminar on Trends and Concerns of Spatial Sciences, 1987.

[20] B. Ooi, R. Sacks-Davis, K. McDonell, Extending a DBMS for geographic
applications, in: Proc. of the IEEE 5th Int. Conf. on Data Engineering, 1989.

[21] K. Ingram, W. Phillips, Geographic information processing using a SQL-based
query language, in: Proc. of the 8th Int. Symp. on Computer-Assisted
Cartography, 1987.

[22] J. Herring, R. Larsen, J. Shivakumar, Extensions to the SQL language to support
spatial analysis in a topological data base, in: Proc. of GIS/LIS, 1988.

[23] M. Egenhofer, Why not SQL!, J Geogr. Inform. Syst. 6 (2) (1992) 71–85.
[24] OGC, OpenGIS Implementation Standard for Geographic Information – Simple

Feature Access – Part 1: Common Architecture, first ed., 2011.
[25] ESRI, Working With 3D Set Operators: ESRI. <http://resources.arcgis.com/en/

help/main/10.2/index.html#//00q80000009v000000> [September 30, 2013].
[26] PostGIS, PostGIS: Spatial and Geographic objects for PostgreSQL. <http://

postgis.net/> [October 01, 2013].

http://refhub.elsevier.com/S1474-0346(14)00039-1/h0005
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0005
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0005
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0005
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45501
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45501
http://dx.doi.org/10.1016/j.aei.2008.06.005
http://dx.doi.org/10.1016/j.aei.2008.06.005
http://dx.doi.org/10.1061/(ASCE)0887-3801(2009)23:1(34)
http://dx.doi.org/10.1061/(ASCE)0887-3801(2009)23:1(34)
http://dx.doi.org/10.1016/j.aei.2009.06.00
http://dx.doi.org/10.1016/j.aei.2009.06.00
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0050
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0050
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0050
http://www.ifctoolsproject.com
http://www.ifctoolsproject.com
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0060
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0060
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0060
http://dx.doi.org/10.1016/j.aei.2013.06.001
http://dx.doi.org/10.1016/j.aei.2013.06.001
http://dx.doi.org/10.1109/32.6141
http://dx.doi.org/10.1109/32.6141
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0115
http://resources.arcgis.com/en/help/main/10.2/index.html#//00q80000009v000000
http://resources.arcgis.com/en/help/main/10.2/index.html#//00q80000009v000000
http://postgis.net/
http://postgis.net/


286 S. Daum, A. Borrmann / Advanced Engineering Informatics 28 (2014) 272–286
[27] M. Egenhofer, J. Herring, A Mathematical framework for the definition of
topological relationships, in: Proc. of the 4th Int. Symp. on Spatial Data
Handling.

[28] M. Egenhofer, R. Franzosa, Point-set topological spatial relations, Int. J. Geogr.
Inform. Syst. 5 (2) (1991) 161–174.

[29] S. Gaal, Point Set Topology, Academic Press, New York, 1964.
[30] A. Borrmann, E. Rank, Topological operators in a 3D spatial query language for

building information models, in: Proc. of the 12th Int. Conf. on Computing in
Civil and Building Engineering (ICCCBE), 2008.

[31] E. Clementini, P. Felice, P. Oosterom, A small set of formal topological
relationships suitable for end-user interaction, in: G. Goos, J. Hartmanis, D.
Abel, B.Chin Ooi (Eds.), Advances in Spatial Databases, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1993, pp. 277–295.

[32] H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image
Processing and GIS, Addison-Wesley, 1989.

[33] T. Akenine-Möller, Fast 3D triangle-box overlap testing, J. Graph. Tools 6 (1)
(2001) 29–33.

[34] S. Daum, Octree-Generierung: visual debugging mit blender, in: 25. Forum
Bauinformatik, Bochum, 2012.
[35] T. Akenine-Möller, A fast triangle-triangle intersection test, J. Graph. Tools
(1997) 25–30.

[36] D. Kirk, F. Antonio, Graphics Gems III: Faster Line Segment Intersection, AP
Professional, Boston, 1992.

[37] S. Schraufstetter, A. Borrmann, AABB-Bäume als Grundlage effizienter
Algorithmen für Operatoren einer räumlichen Anfragesprache, in:
Tagungsband des 19. Forum Bauinformatik, 2007.

[38] A. Guttman, R-trees: a dynamic index structure for spatial searching, in: Proc.
of the ACM SIGMOD Int. Conf. on Management of Data, 1984.

[39] T.H. Cormen, Introduction to Algorithms, second ed., MIT Press, Cambridge,
Mass, 2001.

[40] H. Samet, Spatial data structures, in: W. Kim (Ed.), Modern Database Systems:
The Object Model, Interoperability, and Beyond, ACM Press/Addison-Wesley
Publishing Co., 1995, pp. 361–385.

[41] S. Gottschalk, M.C. Lin, D. Manocha, OBBTree: a hierarchical structure for rapid
interference detection, in: Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques, 1996.

[42] E. Meijer, B. Beckman, G. Bierman, LINQ: reconciling object, relations and XML
in the .NET framework, in: Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, ACM, Chicago, IL, USA, 2006. pp. 706–706.

http://refhub.elsevier.com/S1474-0346(14)00039-1/h0140
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0140
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0145
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0145
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0155
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0155
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0155
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0155
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0155
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0155
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0155
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0155
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0155
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0160
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0160
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0160
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0165
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0165
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0175
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0175
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0180
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0180
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0180
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0195
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0195
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0195
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0200
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0200
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0200
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0200
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0200
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0210
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0210
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0210
http://refhub.elsevier.com/S1474-0346(14)00039-1/h0210

	Processing of Topological BIM Queries using Boundary Representation Based Methods
	1 Introduction
	2 Related work
	2.1 Industry Foundation Classes
	2.2 BIM query languages
	2.3 Spatial query functionality provided by Geographic Information Systems

	3 Formal definition of topological predicates
	4 Octree-based implementation approach
	5 BRep-based implementation method for topological operators
	5.1 Triangle intersection test
	5.2 Ray-based inside classification procedure
	5.3 BRep-based evaluation of topological predicates

	6 Indexing methods for improving performance and complexity of spatial queries
	6.1 Runtime performance considerations
	6.1.1 Local querying
	6.1.2 Global querying

	6.2 R-trees
	6.3 A two-tier spatial indexing
	6.3.1 R-tree query functionality
	6.3.2 Candidate identification


	7 Performance tests
	8 Formulation of filter expressions and their evaluation
	8.1 LINQ
	8.2 Live LINQ
	8.3 Query examples

	9 Conclusion and future work
	References


