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Abstract The graph Laplacian and the graph cut problem are closely related to Markov
random fields, and have many applications in clustering and image segmentation. The diffuse
interface model is widely used for modeling in material science, and can also be used as a
proxy to total variation minimization. In Bertozzi and Flenner (Multiscale Model Simul
10(3):1090–1118, 2012), an algorithm was developed to generalize the diffuse interface
model to graphs to solve the graph cut problem. This work analyzes the conditions for the
graph diffuse interface algorithm to converge. Using techniques from numerical PDE and
convex optimization, monotonicity in function value and convergence under an a posteriori
condition are shown for a class of schemes under a graph-independent stepsize condition.
We also generalize our results to incorporate spectral truncation, a common technique used
to save computation cost, and also to the case of multiclass classification. Various numerical
experiments are done to compare theoretical results with practical performance.

Keywords Machine learning · Numerical analysis · Diffuse interface methods

1 Introduction

This paper studies a machine learning algorithm [3] that connects two different areas of
interest: The graph cut problem and the diffuse interface model. We give a brief introduction
of the two areas and their connections to statistical physics.
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The graph cut problem originated in computer science for the purpose of partitioning
nodes on a graph [6]. It is tightly related to statistical physics due to its connections with
Markov random fields (MRF), and spin systems. In particular, the maximum a posteriori
(MAP) estimation of the Ising model can be formulated in terms of a graph cut problem [17].
The results also generalizes to multiclass graph cut by extending to the generalized Potts
model [5]. Therefore, efficient solutions to the graph cut problem provide a means of doing
MAP estimations for these types of MRFs, and is computationally more efficient compared
to techniques for generic MRFs such as belief propagation [32,35]. Graph partitioning is
also tightly related to the study of networks in statistical physics [21,24,36]. In [18], Hu
et al. applied methods for solving graph cut problems to perform modularity optimization
[16,25,36], a technique widely applied for community detection in networks.

On the other hand, diffuse interfacemodels have beenwidely used inmathematical physics
tomodel the free boundary of interfaces [9,26].Diffuse interfacemodels are often built around
the Ginzburg–Landau functional, defined as

GL(u) = ε

2

∫
|∇u|2 + 1

ε

∫
W (u(x))dx . (1)

Evolution by the gradient flow of the Ginzburg–Landau functional has been used to model
the dynamics of two phases in material science. The most common among them is the
Allen–Cahn equation [9], the L2 gradient flow of the Ginzburg–Landau functional. Another
commonly used model is the Cahn–Hilliard equation [2,8]. The diffuse interface models
can often be used as a proxy for total variation (TV) minimization since the �-limit of the
Ginzburg–Landau functional is shown to be the TV semi-norm [20].

The key observation linking the two areas above is that the TV semi-norm, when suitably
generalized to weighted graphs, coincides with the graph cut functional for discrete valued
functions on graphs [29]. Hence techniques for TVminimization can also be applied to solve
the graph cut problem. In [3], Bertozzi et al. generalized the Ginzburg–Landau functional
to graphs, and developed an algorithm based on the Allen–Cahn equation to approximately
solve the graph cut problem. This was made rigorous by the result that the graph Ginzburg–
Landau functional�-converges to the graph TV functional [28]. Following this line ofwork, a
series of new algorithms were developed for semi-supervised and unsupervised classification
problems onweighted graphs [18,23], applying techniques for TVminimization to the setting
of weighted graphs.

The reason many PDE models defined on the Euclidean space Rn can be generalized to
discrete graphs is that the graph Laplacian matrix [30] shares many connections with the
classical Laplacian operator. We recap the definition of the graph Laplacian and some of its
basic properties below.

We consider a weighted graph G with vertices ordered {1, 2, . . . , n}. Each pair of vertices
(i, j) is assigned a weight wi j ≥ 0, with wi j > 0 representing an edge connecting i and
j , and wi j = 0 otherwise. The weights wi j form a weight matrix or adjacency matrix of
the graph G. Given a weight matrix W , one can construct three different kinds of graph
Laplacians:

Lu = D − W Unnormalized Laplacian, (2)

Ls = I − D−1/2WD−1/2 Symmetric Laplacian, (3)

Lrw = I − D−1W Random Walk Laplacian, (4)

where D is the diagonal matrix dii = ∑
i wi j . Throughout this paper, we assume that each

node i is connected to at least another node, so that dii > 0,∀i and Eqs. (3) and (4) are
well-defined.
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Convergence of the Graph Allen–Cahn Scheme

All three Laplacian matrices are commonly used in graph learning problems. In particular,
the graph Dirichlet energy for the unnormalized graph Laplacian has the following property
as shown in Eq. (5).

1

2
〈u, Luu〉 = 1

2

∑
i j

wi j (u(i) − u( j))2. (5)

Here u is a mapping from the set of nodes {1, . . . , N } to R, identified with a vector in R
N .

We use u(i) to denote the value of u on the node i . Similar to the classical Dirichlet energy,
the graph Dirichlet energy penalizes similar nodes (i.e. pairs such that wi j is large) from
having different function values, bringing a notion of “smoothness” for functions defined on
the graph. In this paper, we will mainly focus on the unnormalized Laplacian, and generalize
to the other two cases whenever we can.

This paper studies the discrete graph Allen–Cahn scheme in [3] used for graph semi-
supervised classification. We give a brief introduction of the semi-supervised learning
problem and its relation to the graph Allen–Cahn scheme. Given a collection of objects
indexed by Z = {1, . . . , N } and a set of labels y(i) ∈ C for each object i , the task of
semi-supervised learning is to infer the labels for all items given only the labels on a subset
of objects Z ′ ⊂ Z . We mainly focus on the case of binary classification, i.e., when |C | = 2,
since the original Ginzburg–Landau model in [3] was designed to handle the binary case.
However, we also generalize modestly to incorporate multiclass classification in Sect. 5 as
well. Following the convention in [3], the binary label set C is assumed to be C = {−1, 1}.
Next, we introduce the Ginzburg–Landau energy and the Allen–Cahn equation on graphs.
Define the Ginzburg–Landau energy on graphs by replacing the spatial Laplacian with the
graph LaplacianL .

GL(u) = ε

2
〈u, Lu〉 + 1

ε

∑
i

W (u(i)), (6)

where W is the double-well potential W (x) = 1
4 (x

2 − 1)2. Let W(u) = ∑
i W (u(i)). The

Allen–Cahn equation on graphs is defined as the gradient flow of the graphGinzburg–Landau
functional.

ut = −∇GL(u) = −εLu − 1

ε
∇W(u). (7)

The discrete graph Allen–Cahn scheme in [3] is a semi-implicit discretization of Eq. (7). The
reason for being semi-implicit is to counter the ill-conditioning of the graph Laplacian

uk+1 − uk

dt
= −εLuk+1 − 1

ε
∇W(uk). (8)

To do graph semi-supervised classification, we add a quadratic fidelity term 1
2

∑
i∈Z ′ η(u(i)−

y(i))2 to the graphGinzburg–Landau energy, where y(i) are the known labels and η is a scalar
parameter reflecting the strength of the fidelity. For our purpose, it ismore convenient to adopt
a matrix notation of the fidelity term, namely

F(u) = GL(u) + 1

2
η‖u − y‖2�, (9)

where ‖u − y‖2� := 〈u − y,�(u − y)〉, � is a diagonal matrix where �i i = 1 if i ∈ Z ′
and 0 otherwise. The value u(i) can be interpreted as a continuous label assignment, and
thresholding u(i) > 0 and u(i) < 0 gives a corresponding partition of the graph. Solving the
gradient flow of F(u) via a semi-implicit discretization, we have:
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uk+1 − uk

dt
= −εLuk+1 − 1

ε
∇W(uk) − dt ∗ η�(uk − y). (10)

In later sections, we will study the scheme (8) first and then incorporate the fidelity term in
the analysis.

Next, we introduce spectral truncation. Note in each iteration of (8) and (10), we need
to solve a linear system of the form (I + dt L)u = v. In many applications, the number of
nodes N on a graph is huge, and it is too costly to solve this equation directly. In [3,23], a
strategy proposed was to project u onto the m eigenvectors of the graph Laplacian with the
smallest eigenvalues. In practice, spectral truncation gives accurate segmentation results but
is computationally much cheaper. The reason spectral truncation works is because the first
few eigenvectors of the graph Laplacian carry rich geometric information of the graph. In
particular, the second eigenvector, named the Fiedler vector, approximates the solution to the
normalized graph cut problem [30].

In practice, the selection of the stepsize dt is very important to the performance of the
model, but is largely chosen empirically by trial and error in previous papers. In this paper,
we intend to do a thorough and rigorous analysis on the range of stepsize for the scheme to
be well-behaved. Our main contributions are below:

– Weprove that there exists a graph-independent upper bound c such that for all 0 ≤ dt ≤ c,
the schemes (8), (10) are monotone in the Ginzburg–Landau energy, and that under an a
posteriori condition, the sequence {uk} is convergent.

– We show that the upper bound c depends linearly on ε, and is inversely proportional to
the fidelity strength η in (10).

– We generalize the results to incorporate spectral truncation and multiclass classification.
– We conduct a variety of numerical experiments to compare practical performance with

theory.

The paper is structured as follows: in Sect. 2, we prove that the scheme is bounded via a
discrete version of the maximum principle. In Sect. 3, we use L2 estimates to prove mono-
tonicity and convergence. In Sect. 4, we prove monotonicity and boundedness for spectral
truncation under a graph-dependent stepsize bound dt = O(N−1), and provide an example
for the dependency of dt on the graph size. In Sect. 5, we generalize the results to multiclass
classification. In Sect. 6, a variety of numerical experiments are done to compare the theory
with practical performance.

We present a list of notations and definitions used throughout the paper.

– L placeholder variable for any choice of the three definitions of the graph Laplacian. The
exact choice will be specified in the proposition or context it was referred to.

– Z the set of nodes of the graph, with cardinality N ; Z ′ the fidelity set, i.e., the set of
nodes where the labels are known.

– u Z 
→ R, identified with a vector in R
N . u( j) denotes the evaluation of u on node j ,

and uk denotes the kth iterate of some numerical scheme.
– W double-well function, W (x) = 1

4 (x
2 − 1)2.

– W(u) = ∑
i W (u(i)) sum of the double-well function on all nodes.

– ∇W(u) = (W ′(u(1)), . . . ,W ′(u(N ))) Gradient of W with respect to u.
– y ∈ R

N Vector of known labels. y(i) ∈ {−1, 1} denotes the known label when i ∈ Z ′;
y(i) = 0 otherwise.

– Diagonal Map: a (possibly non-linear) map F : R
N 
→ R

N that satisfies F (u) =
(F1(u(1)), . . . ,FN (u(N ))) for u ∈ R

N . We call F i : R 
→ R components of the
diagonal map F .
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2 Maximum Principle-L∞ Estimates

The main result for this section is the following:

Proposition 1 (A Priori Boundeness) Define uk by the semi-implicit graph Allen–Cahn
scheme

uk+1 − uk

dt
= −εLuk+1 − 1

ε
∇W(uk), (11)

where L is the unnormalized graph Laplacian. If ‖u0‖∞ ≤ 1, and 0 ≤ dt ≤ 0.5ε, then
‖uk‖∞ ≤ 1, ∀k ≥ 0.

What is notable is that the stepsize restriction is independent of the graph size.We also note
that the bound on dt depends linearly in ε, and we will generalize this dependency to include
the fidelity term later in this section. To prove the proposition, we split the discretization (8)
into two parts. ⎧⎨

⎩
vk = uk − dt ∗ 1

ε
∇W(uk),

uk+1 = −dt ∗ (εLuk+1) + vk .

(12)

We will prove that ‖uk+1‖∞ ≤ ‖vk‖∞ for all dt > 0 via the maximum principle, and show
that the stepsize restriction essentially comes from the first line of (12). For future reference,
we denote the first line of (12) as the forward step since it corresponds to a forward stepping
scheme for the gradient flow and the second line a backward step correspondingly.

2.1 Maximum Principle

The classical maximum principle argument relies on the fact that �u(x0) ≥ 0 for x0 a local
minimizer. This fact is also true for graphs and is an extension of the classical maximum
principle for finite difference operators [10].

Proposition 2 (Second Order Condition on Graphs) Let u be a function defined on a graph,
and L be either the unnormalized graph Laplacianor the random walkgraph Laplacian.
Suppose u achieves a local minimum at a vertex i , where a local minimum at vertex i is
defined as u(i) ≤ u( j),∀wi j > 0. Then we have [Lu](i) ≤ 0.

Proof For both the random walk and the unnormalized Laplacian, we have the following:
⎧⎪⎨
⎪⎩

Lii = −
∑
j �=i

Li j ,

Li j ≤ 0.

(13)

Let i be a local minimizer. Then

[Lu](i) = Lii u(i) +
∑
j �=i

Li j u( j)

=
∑
j �=i

Li j (u( j) − u(i)) ≤ 0 � (14)

Next, we prove a maximum principle for discrete time. ��
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Proposition 3 (Maximum Principle for Discrete Time) For any dt ≥ 0, let u be a solution
to

u = −dt ∗ (Lu) + v, (15)

where L is either the unnormalized or the random walk Laplacian, then maxi u(i) ≤
maxiv(i), and mini u(i) ≥ miniv(i). Hence ‖u‖∞ ≤ ‖v‖∞.

Proof Suppose i = argmin j u( j) is any node that attains the minimum for u. Then since
u(i) = dt ∗ (−Lu)(i) + v(i) and (−Lu)(i) ≥ 0 by Proposition 2, we have min j u( j) =
u(i) ≥ v(i) ≥ min j v( j). Arguing similarlywith themaximum,wehave that ‖u‖∞ ≤ ‖v‖∞.

��
2.2 Proof of Boundedness

We show that the stepsize bound for the sequence uk to be bounded depends only on the
forward step of the scheme.

Proposition 4 Let uk be defined by⎧⎨
⎩

vk = uk − dt ∗ �(uk),

uk+1 = −dt

σ
∗ Luk+1 + vk .

(16)

where � is a diagonal map � : (u(1), . . . , u(N )) 
→ (�0(u(1)), . . . , �N (u(N ))), L is the
unnormalized graph Laplacian, and σ some constant greater than 0. Define the forward map
F dt : u 
→ u − dt ∗ �(u), and denote its components by F i

dt . Suppose ∃M > 0 and some
constant c(M,�) such that ∀0 ≤ dt ≤ c, and ∀i , F i

dt ([−M, M]) ⊂ [−M, M]. Then if
‖u0‖∞ ≤ M, we have ‖uk‖∞ ≤ M, ∀k ≥ 0.

Proof Suppose ‖uk‖∞ ≤ M . By induction and our assumption on F i
dt , ‖vk‖∞ ≤ M . By the

maximum principle, ‖uk+1‖∞ ≤ ‖vk‖∞ ≤ M . ��
We can now prove Proposition 1 by setting M and � in Proposition 4 accordingly, and

estimate the bound c(M,�).

Proof We set M = 1 and � = (W ′, . . . ,W ′), where W is the double-well function. Note
that by replacing dt with dt/ε and setting σ = 1

ε2
in (16), we recover the original scheme

(12). Therefore, we may assume ε = 1, and scale the bound obtained by ε. The component
forward maps F i

dt are

F i
dt (x) = x − dtW ′(x) = x − dtx(x2 − 1) := Fdt (x). (17)

The proposition is proved if we show Fdt ([−1, 1]) ⊂ [−1, 1] for 0 ≤ dt ≤ 0.5, which is
shown in Lemma (1). ��
Lemma 1 Define Fdt as in (17). If 0 ≤ dt ≤ 0.5, Fdt ([−1, 1]) ⊂ [−1, 1].
Proof For a general M , we can estimate c by solving dt to satisfy (18)

⎧⎨
⎩

max
x∈[−M,M]Fdt (x) ≤ M

min
x∈[−M,M]Fdt (x) ≥ −M

(18)

Since Fdt is cubic in x , (18) can be solved analytically via brute force calculation. Setting
M = 1 and solving (18) for dt ≥ 0 gives 0 ≤ dt ≤ 0.5. ��
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The choice of the constant M = 1 is natural since the function value u(i) is ideally close
to the binary class labels {−1, 1}. However, if we merely want to prove boundedness without
enforcing ‖uk‖∞ ≤ 1 we can get a larger stepsize bound by maximizing the bound obtained
from (18) with respect to M , namely,

Lemma 2 For 0 ≤ dt ≤ 2.1, Fdt ([−1.4, 1.4]) ⊂ [−1.4, 1.4].
The reason we are computing these constants explicitly is that we will compare them in

Sect. 6 against results from real applications. For future reference, the dt ≤ 0.5 bound will
be called the “tight bound” where the dt ≤ 2.1 bound will be called the “loose bound”.

2.3 Generalizations of the Scheme

In this section, we extend the previous result to the case where fidelity is added, and also to
the case for the symmetric graph Laplacian Ls .

We restate the graph Allen–Cahn scheme with fidelity:⎧⎪⎨
⎪⎩

vk = uk − dt ∗
(
1

ε
∇W(uk) + η�(uk − y)

)
,

uk+1 = −dt ∗ (εLuk+1) + vk .

(19)

� is a diagonal matrix where �i i = 1 if i is in the fidelity set Z ′ and 0 otherwise, and
y(i) ∈ {1,−1}, i ∈ Z ′.

Proposition 5 (Graph Allen–Cahn with fidelity)Define uk by (19) and suppose ‖u0‖∞ ≤ 1.
If dt satisfies 0 ≤ dt ≤ 1

2+η
ε, we have ‖uk‖∞ ≤ 1 for all k.

Proof Denote the forward map of (19) by F dt , i.e., F dt (uk) = vk . Since � is a diagonal
matrix, F dt is a diagonal map. Note F dt has only three distinct component maps which we
denote by Fi

dt , i = 1, . . . , 3. Namely, F0
dt (u) = u − dt[ 1

ε
(u2 − 1)u + η(u − 1)], F1

dt (u) =
u − dt[ 1

ε
(u2 − 1)u + η(u + 1)], F2

dt (u) = u − dt[ 1
ε
(u2 − 1)u]. By solving (18) with M = 1

for Fm
dt ,m = 0, . . . , 2 for non-negative dt , we get 0 ≤ dt ≤ 1

2+η
ε. ��

The case for the symmetric graph Laplacianis a little different. Since Ls does not satisfy
(13), we can no longer apply the arguments of maximum principle. However, we are still
able to prove boundedness under the assumption that the graph satisfies a certain uniformity
condition.

Proposition 6 (Symmetric graph Laplacian) Let di = ∑
j wi j be the degree of node i .

Suppose ρ ≤ 4 where ρ is defined below

ρ = maxi di
mini di

. (20)

Define uk by the semi-implicit scheme (11) where L is set to be the symmetric Laplacian Ls.
Suppose ‖u0‖∞ ≤ 1. If 0 ≤ dt ≤ 0.25ε, we have ‖uk‖∞ ≤ 2, for all k ≥ 1.

Proof By definition of Ls and Lrw, we have the relation

Ls = D1/2LrwD−1/2 (21)

Substituting (21) to line 2 of (12) with L = Ls , we have

D−1/2uk+1 = −dt ∗ LrwD−1/2uk+1 + D−1/2vk . (22)
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We will do a change of variables ũk = αD−1/2uk , and ṽk = αD−1/2vk , where α =
(mini di )1/2, and write the scheme in terms of ũk .⎧⎪⎨

⎪⎩
ṽk = ũk − dt ∗ 1

ε
αD−1/2∇W

(
1

α
D1/2ũk

)
,

ũk+1 = −εdt ∗ Lrwũk+1 + ṽk .

(23)

By the definition of α, we have ‖ũ0‖∞ ≤ 1.Wewill use the same technique as before to show
‖ũk‖ ≤ 1,∀k. By the maximum principle, ‖ũk+1‖∞ ≤ ‖ṽk‖∞. Define the forward mapF dt

of (23), i.e., F dt (ũk) = ṽk . Define Gdt (c, x) = x − dt
c W

′(cx) = x − dt
c x(c

2x2 − 1), the
components of F dt are:

ṽk(i) = F i
dt (ũ

k(i)) = Gdt/ε(ci , ũ
k(i)), (24)

where ci = (
di

min j d j
)1/2 ∈ [1, 2]. We can prove the theorem if we show F i

dt maps [−1, 1] to
itself for all i = 1, . . . , N . This is formalized in the next lemma, whose proof we omit since
it involves only brute force calculations. ��
Lemma 3 For any 0 ≤ dt ≤ 0.25, and some fixed c ∈ [1, 2], Gdt (c, x) as a function of x
maps [−1, 1] to itself.

Finally, since ‖ũk‖ ≤ 1, we have ‖uk‖ ≤ 2 by definition of ũk .

Remark 1 The condition ρ < M with M = 4 is arbitrary and just chosen to simplify
calculations for dt . The proposition here is weaker than Proposition 1 due to the loss of
the maximum principle. We will see this again during the analysis of spectral truncation in
Sect. 4.

3 Energy Method-L2 Estimates

In this section, we derive estimates in terms of the L2 norm. Our goal is to prove that the
graph Allen–Cahn scheme is monotone in function value, and derive convergence results of
the sequence {uk}. We will drop the subscript for 2 norms in this section. Our proof is loosely
motivated by the analysis of convex-concave splitting in [11,33]. In [11], Eyre proved the
following monotonicity result:

Proposition 7 (Eyre) Let E1, E2 be real valued C1 functions Rn → R, where E1 is convex
and E2 concave. Let E = E1 + E2. Then for any dt > 0, the semi-implicit scheme

uk+1 = uk − dt∇E1(u
k+1) − dt∇E2(u

k), (25)

is monotone in E, namely,

E(uk+1) ≤ E(uk), ∀k ≥ 0.

In our proof, we will set E = GL(u), E1 = ε
2 〈u, Lu〉 and E2 = 1

ε
W(u). Since E2 is not

concave, wewill have to generalize Proposition 7 for general E2. But first, we digress a bit and
establish the connection between the semi-implicit scheme (25) and the proximal gradient
method, which simply assumes E1 to be sub-differentiable. The reason for this generalization
is to have a unified framework for dealing with E1 taking extended real values, which is the
case when we study spectral truncation in Sect. 4.
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The proximal gradient iteration [4] is defined as

uk+1 = Proxdt E1(u
k − dt∇E2(u

k)), (26)

where the Prox operator is defined as Proxγ f (x) = argminu{ f (u) + 1
2γ ‖u − x‖2}. This

scheme is in fact equivalent to the semi-implicit scheme (25)when E1 is differentiable. This is
clear from the implicit gradient interpretationof the proximalmap.Namely, if y = Proxγ f (x),

y ∈ x − γ ∂ f (y). (27)

∂ f is the subgradient of f , which coincides with the gradient if f is differentiable.
The Prox operator iswell-defined if f is a proper closed convex functions taking extended

real values, namely, if the domain of f is non-empty, f is convex, and the epigraph of f is
closed. We prove an energy estimate for the proximal gradient methods when E2 is a general
function.

Proposition 8 (Energy Estimate) Let E = E1 + E2. Suppose E1 is a proper closed and
convex function, and E2 ∈ C2. Define xk+1 by the proximal gradient scheme xk+1 ∈ xk −
dt∂E1(xk+1) − dt∇E2(xk). Suppose M satisfies

M ≥ max
ξ∈S ‖∇2E2(ξ)‖, (28)

where S = {ξ |ξ = t xk + (1 − t)xk+1, t ∈ [0, 1]} is the line segment between xk and xk+1,
we have

E(xk) − E(xk+1) ≥
(

1

dt
− M

2

)
‖xk+1 − xk‖2. (29)

Proof

E(xk) − E(xk+1) = E1(x
k) − E1(x

k+1) + E2(x
k) − E2(x

k+1)

≥ 〈∂E1(x
k+1), xk − xk+1〉 + E2(x

k) − E2(x
k+1)

= E2(x
k) − E2(x

k+1) − 〈∇E2(x
k), xk − xk+1〉 + 1

dt
‖xk+1 − xk‖2

≥ 1

dt
‖xk+1 − xk‖2 − M

2
‖xk+1 − xk‖2.

The second line is by definition of subgradients, and ∂E1(xk+1) could be any vector in the
subgradient set. The third line is by substituting the particular subgradient ∂E1(xk+1) in
the definition of xk+1. The fourth line is obtained by one variable Taylor expansion of the
function E2 along the line segment between xk and xk+1. ��

Next, we apply estimate (8) and the boundedness results in Sect. 2 to prove that the graph
Allen–Cahn scheme is monotone in the Ginzburg–Landau energy under a graph-independent
stepsize.

Proposition 9 (Monotonicity of the Graph Allen–Cahn Scheme) Let uk be the graph Allen–
Cahn scheme with fidelity defined below:

uk+1 = uk − dt ∗ (εLuk+1 + 1

ε
∇W(uk) + η�(uk − y)), (30)

where L is the unnormalized graph Laplacian. If ‖u0‖∞ ≤ 1, then ∀0 ≤ dt ≤
min( ε

2+η
, 2ε
2+ηε

), the scheme is monotone under the Ginzburg–Landau energy with fidelity,

namely, E(uk) = GL(uk) + η
2‖uk − y‖2� ≥ E(uk+1) = GL(uk+1) + η

2‖uk+1 − y‖2�. The
result holds for symmetric Laplacians if we add the uniformity condition (20) for the graph.
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Proof From Proposition 1, we have ‖uk‖∞ ≤ 1,∀k if 0 ≤ dt ≤ ε
2+η

. We set E2(u) =
1
ε
W(u) + η

2‖uk − y‖2�, and E1(u) = ε
2 〈u, Lu〉. Since (30) is equivalent to the proximal

gradient scheme with E1 and E2 defined above, we can apply Proposition 8. Since the L∞
unit ball is convex, line segments from uk to uk+1 lie in the set {‖u‖∞ ≤ 1}, and we can
estimate M by the inequality below

max‖u‖∞≤1
‖∇2E2(u)‖2 ≤ max|x |≤1

∣∣∣1
ε
W ′′(x) + η

∣∣∣ = 2

ε
+ η.

Thus we can set M = 2
ε

+ η. Let c = min
(

ε
2+η

, 2
M

)
= min

(
ε

2+η
, 2ε
2+ηε

)
. We have

∀0 ≤ dt ≤ c,

E(uk) − E(uk+1) ≥
(

1

dt
− M

2

)
‖uk+1 − uk‖2 ≥ 0. (31)

Hence uk is monotone in E . The case for the symmetric Laplacian can be proved in a similar
manner by computing an estimate of max‖ξ‖∞≤2 ‖∇2E2‖. ��

Next, we discuss the convergence of the iterates {uk}. First, we prove subsequence conver-
gence of {uk} to a stationary point of E(u).Wefirst need a lemmaon the sequence {uk+1−uk}.

Lemma 4 Let uk , dt , be as in Proposition 9, then
∑∞

k=0 ‖uk+1 − uk‖2 < ∞. Hence
limk→∞ ‖uk+1 − uk‖ = 0.

Proof Summing Eq. (31), we have the following

E(u0) − E(un) ≥
(

1

dt
− M

2

) n−1∑
k=0

‖uk+1 − uk‖2, (32)

holds for all n. Since E(un) ≥ 0 and dt ≤ 2
M , we prove the lemma. ��

Proposition 10 (Subsequence convergence to stationary point) Let uk , dt , be as in Propo-
sition 9. Let S be the set of limit points of the set {uk}. Then ∀u∗ ∈ S, u∗ is a critical point
of E, i.e., ∇E(u∗) = 0. Hence any convergent subsequence of uk converges to a stationary
point of E.

Proof By definition, uk+1 = uk − dt∇E1(uk+1) − dt∇E2(uk). Hence we have

‖∇E1(u
k) + ∇E2(u

k)‖ ≤
(

‖∇E1(u
k+1) − ∇E1(u

k)‖ + 1

dt
‖uk+1 − uk‖

)
. (33)

Since {uk} is bounded and ∇E1 is continuous, we have limk→∞ ‖∇E(uk)‖ = 0, where we
use limk→∞ ‖uk+1 − uk‖ = 0. ��

In general, we can not prove that the full sequence {uk} is convergent, since it is possible
for the iterates {uk} to oscillate between several minimum. However we show that when the
set of limit points is finite, we do have convergence. This is stated in the Lemma 5, which is
proved in the Appendix.

Lemma 5 Let uk be a bounded sequence in R
N , and limk→∞ ‖uk+1 − uk‖ = 0. Let S be

the set of limit points of the set {uk |k ≥ 1}. If S has only finitely many points, then S contains
only a single point u∗, and hence limk→∞ uk = u∗.
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Finally, we provide an easy to check a posteriori condition that guarantees convergence
using the lemma above. The condition states that the iterates uk must take values reasonably
close to the double-well minimum −1 and 1. Empirically, we have observed that the values
of uk are usually around−1 and 1 near convergence, hence the condition is not that restrictive
in practice.

Proposition 11 (Convergence with A Posteriori Condition) Let uk , dt , be as in Proposition
9. Let δ > 0 be any positive number. If for some K , we have |uk(i)| ≥ 1√

3
+ δ, for all k ≥ K

and i, then we have limk→∞ uk = u∗, where u∗ is some stationary point of the energy E.

Proof We only need to show that the set of stationary points of E on the domain D =
[ 1√

3
+δ, 1]N is finite. Computing theHessian of E , we have∇2E(u) = εL+ 1

ε
(3u2− I )+η�,

where u2 is the diagonal matrix whose entries are u(i)2. Note that∇2E(u) is positive definite
on D since η� and L are semi-positive definite, and 3u2 − I is positive definite on D.
Therefore, the stationary points of E are isolated on D. Since D is bounded, this implies the
set of stationary points is finite. ��

4 Analysis on Spectral Truncation

In this section, we generalize the analysis of the previous sections to incorporate spectral
truncation. We establish a bound dt = O(N−1) for monotonicity and boundedness when

the initial condition u0 ∈ Vm where Vm is defined below, and dt = O(N− 3
2 ) for the general

case. First of all, we formally define the spectral truncated graph Allen–Cahn scheme. All
conclusions in this section hold for both the unnormalized Laplacian and the symmetric
Laplacian, therefore we will not make the distinction and will denote both by L .

Let {φ1, φ2, . . . , φm} be eigenvectors of the graph Laplacian L ordered by eigenval-
ues in ascending order, i.e., λ1 ≤ λ2 · · · ≤ λN . Define the mth eigenspace as Vm =
span{φ1, φ2, . . . , φm}, and Pm as the orthogonal projection operator onto the space Vm .
Then the spectral truncated scheme is defined as⎧⎨

⎩
vk = uk − dt ∗ 1

ε
∇W(uk),

uk+1 = Pm[−dt ∗ (εLuk+1) + vk].
(34)

Note that in practice, we do not directly solve the linear system on the second line of (34),
but instead express uk+1 directly in terms of the eigenvectors as in (38). However, writing it
in matrix form is notationally more convenient in the subsequent analysis. We want to apply
the energy estimates in Sect. 3 for spectral truncation. To do this, we first show that spectral
truncated scheme (34) can be expressed as a proximal gradient scheme for some E1 and E2.

Proposition 12 (Reformulation of Spectral Truncation) The spectral truncated scheme (34)
is equivalent to the proximal gradient scheme (26)with E1 = ε

2 〈u, Lu〉+ IVm , E2 = 1
ε
W(u),

where IVm is the indicator function of the mth eigenspace, i.e.

IVm (u) =
{
0, u ∈ Vm
+∞, else.

(35)

Proof Let v be any vector in R
N . Define u, u′ by the spectral projection and the proximal

step respectively, namely,

u = Pm[−dt ∗ (εLu) + v]. (36)
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u′ = arg min
y

ε

2
〈y, Ly〉 + IVm (y) + 1

2dt
‖y − v‖2. (37)

We only have to show u = u′. Decomposing (36) in terms of the eigenbasis {φ1, φ2, . . . , φm},
we have

u =
∑
j≤m

〈v, φ j 〉
1 + dtελ j

φ j . (38)

Since IVm is +∞ outside Vm , we have u′ ∈ Vm . Let u′ = ∑m
i=1 c

′
iφ

i , and y = ∑m
i=1 ciφ

i

then the function in (37) becomes

ε

2
〈y, Ly〉 + 1

2dt
‖y − v‖2 =

m∑
i=1

(
ε

2
λi c

2
i + 1

2dt
(ci − 〈v, φi 〉)2

)
+ C. (39)

And therefore

c′
i = arg min

c

ε

2
λi c

2 + 1

2dt
(c − 〈v, φi 〉)2 = 〈v, φi 〉

1 + dtελi
. (40)

Hence we have u = u′. ��
Since the orthogonal projection Pm is expansive in the L∞ norm, i.e., ‖Pmu‖∞ ≤ ‖u‖∞

does not always hold, we lose the maximum principle. However, we show that the energy
estimate alone is enough to prove monotonicity and boundedness under a smaller stepsize.

Proposition 13 Let L be either the symmetric or unnormalized graph Laplacian and
ρL = maxi |λi |. Set ε = 1 and define uk by the spectral truncation scheme (34). Sup-
pose ‖u0‖∞ ≤ 1, and u0 ∈ Vm. Then there exists δ > 0 dependent only on ρL such that
∀0 ≤ dt ≤ δN−1, The sequence {uk} is bounded and GL(uk+1) ≤ GL(uk), for all k. Here
N is the dimension of u, i.e., number of vertices in the graph.

The choice for ε = 1 is only to avoid complicated dependencies on ε that obscures the
proof. For the next two sections, we will assume ε = 1 throughout. To prove the theorem,
we first establish the following lemmas.

Lemma 6 (Inverse Bound) Let M be any positive constant. Set ε = 1 in the GL functional.
If GL(u) ≤ M, then ‖u‖22 ≤ N + 2

√
NM, where N is the dimension of u.

Proof By definition, GL(u) = 1
4

∑
i (u(i)2 − 1)2 + 1

2 〈u, Lu〉 ≤ M . Since 1
2 〈u, Lu〉 ≥ 0,

1
4

∑
i (u(i)2 − 1)2 ≤ M . Then from the Cauchy–Schwarz inequality,

∑
i (u(i)2 − 1) ≤

2
√
NM , and hence ‖u‖22 ≤ N + 2

√
NM . ��

Lemma 7 Let uk and uk+1 be defined in (34). Then the following inequality holds:

‖uk+1‖2 ≤ (1 + dt)‖uk‖2 + dt‖uk‖32. (41)

Proof Since L is symmetric semi-positive definite and the orthogonal projection Pm is
non-expansive in the L2 norm, we have ‖uk+1‖2 ≤ ‖vk‖2. Since vk(i) = uk(i) − dt ∗
[uk(i)(uk(i)2 − 1)], let g(i) = (u(i))3, then

‖vk‖2 ≤ (1 + dt)‖uk‖2 + dt‖g‖2 = (1 + dt)‖uk‖2 + dt‖uk‖36
≤ (1 + dt)‖uk‖2 + dt‖uk‖32.

(42)

��
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Next, we prove the main proposition. The idea is to choose dt small enough such that
monotonicity in GL is satisfied, and then apply Lemma 6 to have a bound on uk .

Proof (Proposition 13.) Let E1(u) = ε
2 〈u, Lu〉+ IVm , E2(u) = 1

ε
W(u), and E = E1+E2 =

GL(u) + IVm . By Proposition 12, (34) is equivalent to the proximal gradient scheme for the
splitting E = E1 + E2. We also have ∀k ≥ 0, E(uk) = GL(uk) since uk ∈ Vm . Therefore,
we will denote E(uk) and GL(uk) interchangeably.

We claim that there exists constants δ > 0, independent of N such that ∀0 ≤ dt ≤ δN−1,
Eq. (43) holds for all k.

GL(uk) ≤ GL(u0) ≤ C0N ,

‖uk‖2 ≤ C1
√
N ,

(43)

where C0 = (1 + ρL), and C1 = √
(1 + 2

√
1 + ρL)N .

We argue by induction. For the case k = 0, since ‖u0‖∞ ≤ 1, we have ‖u0‖2 ≤ √
N <

C1
√
N . We also have GL(u0) ≤ ρL‖u0‖22 + ∑

i≤N 1 ≤ C0N , since ‖u0‖22 ≤ N .
Suppose (43) is satisfied for iteration k. We first prove the first line of (43) for k + 1.

Since ‖uk‖2 ≤ C1
√
N ,we apply Lemma 7 and get ‖uk+1‖2 ≤ A1

2 (1+dt)N 1/2+ A1
2 dt N 3/2

for some A1 independent of N . Therefore, we can choose δ1 independent of N such that
∀0 ≤ dt ≤ δ1N−1, ‖uk+1‖2 ≤ A1N 1/2.

Next, we apply Proposition 8 and choose dt such that E(uk) ≥ E(uk+1). Since
‖uk+1‖∞ ≤ ‖uk+1‖2 ≤ A1N 1/2. We can set M in Proposition 8 by the estimate below:

max
‖ξ‖∞≤A1

√
N

‖∇2(W )(ξ)‖2 ≤ max
|x |≤A1

√
N

|W ′′(x)| = max
|x |≤A1

√
N

|(3x2 − 1)| ≤ A2N ,

where A2 independent of N, and we can set M = A2N . Let δ2 = 2
A2
, and δ = min(δ1, δ2),

we have GL(uk+1) ≤ GL(uk) ≤ C0N for all 0 ≤ dt ≤ δN−1.
To prove the second line of (43), note that since GL(uk+1) ≤ C0N , we can apply the

inverse bound Lemma 6 and get ‖uk+1‖2 ≤ C1
√
N . This completes the induction step. ��

In Proposition 13, we assumed the initial condition u0 to be in the subspace Vm . This is
not generally done in practice, as u0 is usually chosen to have binary values {−1, 1}. The
corollary below gives a monotonicity result for u0 not in Vm .

Corollary 1 Let uk be defined as in Proposition 13. Let u0 be any vector satisfying ‖u0‖∞ ≤
1. Then exists δ independent of N such that ∀dt < δN−3/2, {uk} is bounded and GL(uk) ≤
GL(uk+1) for k ≥ 1.

Proof Since u0 is not in the feasible set Vm , E(u0) = +∞ �= GL(u0). However, since
u1 ∈ Vm , we can start the induction from k = 1. Since ‖u1‖2 ≤ ‖v0‖2 ≤ √

N , we can
estimate GL(u1) ≤ ρL‖u1‖22 + ∑N

i=1((u
1(i))2 − 1)2 ≤ C0N 2 for some C0 independent of

N . By Lemma 6,GL(u) = O(N 2) implies ‖u‖2 = O(N 3/4), hence we can set the induction
as below. {

GL(uk) ≤ C0N
2,

‖uk‖2 ≤ C1N
3
4 ,

(44)

and k = 1 is already proved above. To prove (44) for general k, we apply Lemma 7 and
choose 0 ≤ dt ≤ δ1N−3/2 so that ‖vk‖2 ≤ A1N 3/4. We then apply Proposition 8 and
estimate
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Fig. 1 Illustration of counter example graph with N = 7. We index the left most node by 1 and the right
most node by 2, both marked by an “times” in the figure. Starting from the top left node marked by a circle,
we rotate counter clock-wise and assign odd indices {2k + 1|k ≥ 1} to these nodes. We assign even indices
{2k|k ≥ 2} on the right similarly. We assume there are N nodes marked by circles on each side, and hence the
graph has a total of 2N + 2 nodes

max
|x |≤A1≤N3/4

|W ′′(x)| ≤ A2N
3/2 := M,

and set δ2 = 2
A2 . By choosing δ = min(δ1, δ2), we provemonotonicity for 0 ≤ dt ≤ δN−3/2.

��
4.1 A Counter Example for Graph-Independent Stepsize Restriction

We proved that the spectral truncated scheme is monotone under stepsize range 0 ≤ dt ≤
δ = O(N−1). One would hope to achieve a graph-free stepsize rule as in the case of the
original scheme without spectral truncation (8). However, as we show in our example below,
a constant stepsize to guarantee monotonicity over all graph Laplacians of all sizes is not
possible.

Proposition 14 (Graph Size Dependent Stepsize Restriction) Define uk as in (34), with
ε = 1. For any δ > 0 and dt = δN−α, 0 ≤ α < 1, we can always find an unnormalized
graph Laplacian LN×N and some initial condition ‖u0‖∞ = 1 such that the scheme in (34)
with truncation number m = 2 is not monotone in the Ginzburg–Landau energy.

Remark 2 α = 0 is the case for graph-independent stepsize. However, this result is stronger
and claims that dt has to be at least O(N−1) for monotonicity to hold for all graphs.

To prove Proposition 14, we explicitly construct a collection of weighted graphs that
require increasingly small stepsizes to guarantee monotonicity as the graph size N increases.
The graph is defined in Definition 1, and illustrated in Fig. 1. To give the idea behind the
construction, we note that the reason maximum principle fails for spectral truncation is
because a general orthogonal projection P is expansive in the L∞ norm. Namely, for some
vector ‖v‖∞ ≤ 1,we have in theworst case ‖P(v)‖∞ = O(

√
N ). Our strategy is to explicitly

construct a graph such that projection operator Pm onto one of its eigenspaces Vm attains this
worst case L∞ norm expansion. This is made precise in Proposition 15.

Definition 1 (Counter Example Graph)

1. IndexingWe index the nodes as shown in Fig. 1. The graph has a total of 2N + 2 nodes,
where N is the number of nodes marked by a circle on each side.
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2. Edge weightsWith reference to Fig. 1, we set the weights for the solid black edges to 10;
the solid gray edges 1; and the dashed gray edges to γ

N , where γ = 2
1−N−1 = 2 + o(1).

Writing out the weight matrix, we have

wi j =

⎧⎪⎨
⎪⎩
10, i, j of same parity and �= 1, 2

1, (i, j) = (2k − 1, 2k) or (2k − 1, 2k), k ≥ 2
γ
N , i = 1, j �= 2 or j = 1, i �= 2

(45)

3. Graph Laplacian We choose L to be the unnormalized graph Laplacian L = D − W .

Proposition 15 Under the setup above, the second eigenvector of the graph Laplacianis

φ2 =
(
1

2
,−1

2
,

1

2
√
N

,− 1

2
√
N

, . . . ,
1

2
√
N

,− 1

2
√
N

)
, (46)

and the second eigenvalue λ2 is O(1) with respect to N. Moreover, let u0 = Sign(φ2) =
(1,−1, . . . , 1,−1). Then the projection of u0 onto the subspace V2 = span{φ1, φ2} satisfies
P2(u0) = C

√
Nφ2.

We refer toAppendix for the proof of this proposition. Next, we give a proof of Proposition
14. The idea is that after the first two iterations, |u2(1)| is arbitrarily larger that that of |u1(1)|,
and thus the scheme cannot be monotone in the Ginzburg–Landau energy.

Proof (Proposition 14) Define uk by the spectral truncated scheme (34) with u0 = Sgn(φ2)

and dt = δN−α for some δ > 0 and 0 < α < 1.
Since |u0( j)| = 1,∀ j , v0 = u0. Since v0 ⊥ φ1, we have u1 = 〈φ2,v0〉

1+dtλ2
φ2. By Proposition

15, u1 = C0
√
Nφ2, where C0 is O(1) with respect to N . Next, we compute v1. Note that

|u1( j)| = O(N 1/2), j = 1, 2 and |u1( j)| = O(1), j ≥ 3. By noting that W ′(x) ∼ cx3

asymptotically, we have v1( j) = O(N 3/2−α), j = 1, 2, and v1( j) = O(1), j ≥ 3. Since

v1 ⊥ φ1, we can write u2 = 〈φ2,v1〉
1+dtλ2

φ2. By the estimates on v1( j), 〈φ2, v1〉 = O(N 3/2−α).

Therefore, since λ2 = O(1), we have u2 = O(N 3/2−α)φ2. Since u2(1) is asymptotically
larger than u1(1)with respect to N , we have GL(u2) > GL(u1) for N large, and the scheme
is not monotone in GL for large N . ��
4.2 Heuristic Explanation for Good Typical Behavior

Despite the pathological behavior of the example given above, the stepsize for spectral trun-
cation does not depend badly on N in practice. In this section, we attempt to give a heuristic
explanation of this from two viewpoints.

The first view is to analyze the projection operator Pm in the L∞ norm. The reason why
the maximum principle fails is because Pm is expansive in the L∞ norm. Namely, for some
vector ‖v‖∞ ≤ 1, we have ‖Pm(v)‖∞ = O(

√
N ) in the worst case. However, an easy

analysis shows the probability of attaining such an O(
√
N ) bound decays exponentially as

N grows large, as shown in a simplified analysis in Proposition 17 of Appendix. Thus in
practice, it is very rare that adding Pm would violate the maximum principle “too much”.

The second view is to restrict our attention to data that come from a random sample.
Namely, we assume that our data points xi are sampled i.i.d. from a probability distribution
p. In [31], it is proven under very general assumptions that the eigenfunctions, eigenvalues of
the symmetric graph Laplacian converges to continuous limits almost surely. Moreover, the
projection operators Pk converges in various senses (see [31] for details) to their continuous
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limits. More recently, results for continuous limits of graph-cut problems can be found in
[27]. Under this set up, we can define the Allen–Cahn scheme on the continuous domain and
discuss its properties on suitable function spaces. The spectral truncated scheme still would
not satisfy the maximum principle, but at least the estimates involved would be independent
of the size of the samples xi , which is also the size of the graph.

5 Results for Multiclass Classification

The analysis in previous sections can be carried over in a straight forward fashion to the
multiclass case. Multiclass diffuse interface algorithm on graphs can be found in [15,19,23].
We state some basic notations. Let K be the number of classes, and N the number of nodes on
the graph. We define u to be a real-valued N × K matrix, and obtain the classification results
with respect to the matrix u by taking the row-wise maximum. Specifically, the predicted
label of node i will be argmax j ui j . We think of the matrix u as a vector valued function on
the graph, and denote its rows by u(i).

The multiclass Ginzburg–Landau functional is defined as

GL(u) = ε

2
tr(uLu) + 1

ε

N∑
i=1

W (u(i)). (47)

where ek = (0, 0, . . . , 1, . . . , 0)t , and W is the L2 “multi-well”.

W (x) =
(

K∏
k=1

‖x − ek‖22
)

, (48)

In [14], a different well function is defined using the L1 norm instead of L2. However, the
algorithm in [14] uses a subgradient descent followed by a projection onto the Gibbs simplex.
Since the Gibbs simplex itself is already bounded, this renders the boundedness result trivial,
and therefore we will only prove the results for the L2 well. Define W(u) = ∑N

i=1 W (u(i)).
We minimize GL by the semi-implicit scheme below

⎧⎨
⎩

vk = uk − dt ∗ 1

ε
∇W(uk),

uk+1 = −dt ∗ (εLuk+1) + vk .

(49)

The main proposition we prove is this.

Proposition 16 Let L be the unnormalized graph Laplacian. Suppose u0 ∈ [0, 1]N×K , and
define uk by Eq. (49). Then ∃c dependent only on K such that if 0 ≤ dt ≤ c, we have
uk ∈ [0, 1]N×K for all k ≥ 0.

Remark 3 The choice for uk ∈ [0, 1]N×K instead of an L∞ bound is natural in the multiclass
algorithm sincewewant the final results to have components close to {0, 1} instead of {−1, 1}.
Proof Suppose uk ∈ [0, 1]N×K . Since line 2 of (49) is decoupled in columns of uk+1,
we can apply maximum principle to each column and have maxi j u

k+1
i j ≤ maxi j vki j , and

mini j u
k+1
i j ≥ mini j vki j . Hence we only have to show vk ∈ [0, 1]N×K . Since the rows in line

1 of (49) are decoupled, we only have to show that the forward map maps each row of uk to
[0, 1]K for 0 ≤ dt ≤ c. This is proven in the lemma below.
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Lemma 8 Define F dt : RK → R
K as F dt (x) = x − dt∇W(x). Then ∃ c dependent only

on K such that ∀0 ≤ dt ≤ c, F dt ([0, 1]K ) ⊂ [0, 1]K .
Proof Given x ∈ [0, 1]K , we denote components of x by xi . Let y = F dt (x). For each
i , yi = (1 − 2dt

∑
j G j (x))xi + 2dtGi (x), where G j (x) = ∏

k �= j ‖x − ek‖22. We set
1
2c = maxx∈[0,1]K

∑
j G j (x). Then ∀0 ≤ dt ≤ c, we have 1 ≥ (1 − 2dt

∑
j G j (x)) ≥ 0.

We then prove yi ∈ [0, 1]. For one direction, since xi ≥ 0, yi ≥ 2dtG j (x) ≥ 0. In the other
direction, yi ≤ 1 − 2dt

∑
j G j (x) + 2dtGi (x) ≤ 1. ��

Remark 4 Using the same argument as in previous sections, we can extend the result to
incorporate fidelity and also prove monotonicity. We omit these discussions for the sake of
brevity.

6 Numerical Results

In this section, we construct a variety of numerical experiments on several different types
of datasets. This helps demonstrate our theory, and also have some implications on the real
world performance of the schemes. In the following subsections, we specify the exact type
of graph Laplacian used for each experiment. For all of the experiments, we initialize u0

randomly from the uniform distribution on [−1, 1]N .
6.1 Two Moons

The two moons data set was used by Buhler et al. [7] in exploring spectral clustering with p-
Laplacians. It is constructed by sampling from two half circles of radius one on R2, centered
at (0,0) and (1,0.5). Gaussian noise of standard deviation 0.02 in R

100 is then added to the
data points. The weight matrix is constructed using Zelnik-Manor and Perona’s procedure

[34]. Namely, we set wi j = e−‖xi−x j‖2/√τi τ j , where τi is the M th closest distance to i . We
will consider all three Laplacians Lu , Lrw, and Ls in this section, and we refer to the figure
captions for exactly which type of Laplacian is used.

In the experiments below, we compute the maximum stepsize dt such that the scheme
satisfies an a posteriori criterion that reflects either the boundedness or the monotonicity of
the scheme. Namely, we define the boundedness criterion as

‖uk‖∞ ≤ M, ∀k ≤ MaxIter, (50)

and define the monotonicity criterion as

E(uk) ≤ E(uk+1), ∀k ≤ MaxIter. (51)

We set MaxIter = 500, and use bisection to determine the maximum stepsize that satisfies
the criterion given.

Figure 2 plots the maximum stepsize such that the graph Allen–Cahn scheme satisfies the
boundedness criterion for M = 1, 10, where the graphs are generated from the two moons
dataset with N = 20:20:2000. No fidelity terms are added and we set ε = 1. We perform
the experiment for both the random walk Laplacian and the unnormalized Laplacian. We
observe empirically that the stepsizes are independent of graph size N , and also match the
tight and loose bound nicely.

Figure 3 plots the maximum stepsize dt such that the graph Allen–Cahn scheme satisfies
the monotonicity criterion. We plot the results for all three types of Laplacians. On the left,
we fix ε = 1, and N is varied from 20:20:2000. As we can see, the typical maximum stepsize
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Fig. 2 Maximum stepsize dt that satisfies the boundedness criterion in Eq. (50) for the two moons dataset.
Left M = 1. Right M = 10. We set ε = 1, and N = 20:20:2000. The “tight” and “loose” bound is defined in
Lemma 1 and 2

Fig. 3 Maximum stepsize dt that satisfies the monotonicity criterion in Eq. (51) for the two moons dataset.
Left ε = 1 and N = 20:20:2000. Right N = 2000 and ε = 0:0.02:1

for monotonicity is between the tight and loose bound. On the right, we fix N = 2000 and
vary ε in the range ε = 0:0.02:1. We observe empirically the maximum stepsize dt for the
unnormalized Laplacian has an almost linear relationwith ε. For randomwalk and symmetric
Laplacians, the relation is linear for small values of ε, but deviates as ε is larger.

Figure 4 (left) plots the maximum stepsize dt that satisfy the monotonicity criterion for
the scheme under spectral truncation. The truncation level is set atNeig = 50. The results are
compared with the original schemewithout spectral truncation, and we see that the maximum
stepsizes are roughly in the same range across all sizes of graphs tested in the experiment.
We suspect that the effects of varying the truncation level Neig may be hard to observe as
suggested in Fig. 4 (left), and will most likely depend on the specific data set and the graph
construction parameters. Due to the length of the paper, we omit discussions of varying
the truncation level. Figure 4 (right) plots the effects of adding a quadratic fidelity term
with strength parameter c while keeping ε = 1 fixed for different percentages of randomly
sampled fidelity points. We observe empirically that the stepsize dt decays as c increases to
a large value, which matches the bound obtained in Proposition 5.

6.2 Two Cows

The purpose of this experiment is to study the effects of Nyström extension on the maximum
stepsize for monotonicity. Nyström extension is a sampling technique used to approximate
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Fig. 4 Maximum stepsize dt that satisfies themonotonicity criterion in Eq. (51) for the twomoons dataset.We
set L = Lu , and ε = 1. Left Spectral truncation versus full scheme with Neig = 50, N = 20:20:2000. Right
Varying fidelity strength c for different percentages of randomly sampled fidelity points. We fix N = 2000,
and c = 0.1:0.02:3.1

Fig. 5 Images of different resolution segmented under dt = 2, ε = 4. a 256×256, b 51×51, c segmentation
for 256 × 256 and d segmentation for 51 × 51

eigenvectors without explicitly computing the graph Laplacian [1,12,13]. The technique is
very useful since it is often computationally prohibitive to work with the full graph Laplacian
when the graph size N is large, which is often the case in image processing applications.

The images of the two cows (see Fig. 5) are from theMicrosoftDatabase, and has been used
in previous papers for the task of image segmentation [3,23]. The dimensions of the original
image is 312×280.Wegenerate 10 imageswith increasingly smaller sizes (312/k)×(280/k),
k = 1, . . . , 10 by resizing the original image to the target dimensions. We use a feature win-

dow of size 7 × 7, and construct a fully connected graph with wi j = e− ‖xi−x j ‖2
2σ2 , where

σ = 1. We use the symmetric graph Laplacian for this dataset. The eigenvectors are con-
structed using the Nyström extension, the details of which could be found in [3]. Figure 5
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Fig. 6 Maximum Stepsize dt
that satisfies the monotonicity
criterion in Eq. (51) for the Two
Cows dataset under different
image sizes. N is the number of
nodes in the graph, which equals
A × B with A, B the height and
width of an image. We set ε = 4
for k ≤ 5 and ε = 2 for k ≥ 5,
where k is the scale of the
resizing

Table 1 Maximum stepsize and classification accuracy for MNIST digit triplets

Digits {4, 6, 7} {3, 5, 8} {1, 0, 9} {0, 6, 1} {2, 7, 1}

Max dt 0.5823 0.5914 0.5716 0.5701 0.5755

Accuracy (dt = 0.5) (%) 97.98 97.58 96.00 96.36 98.22

For each collection of digits, N ≈ 2,5000. First row triplets of digits to be classified. Second row maximum
stepsize that satisfies the monotonicity criterion in Eq. (51). Third row accuracy under a fixed dt that is close
to the maximum stepsize

shows two images with k = 1, 5 being segmented under the same stepsize dt = 2, ε = 4.
For fidelity, we select a rectangular area (see blue and red boxes in Fig. 5) of pixels as fidelity,
and set the fidelity strength to η = 1.

Figure 6 plots the maximum stepsize for monotonicity versus N−1/2, where N is the size
of the graph which equals to the number of pixels in the image. To ensure segmentation
quality, smaller epsilon had to be chosen for images of lower resolution. We choose ε = 4
for k ≤ 5 and ε = 2 for k ≥ 5. We plot the ratio dt

ε
versus N−1/2 in Fig. 6.

6.3 MNIST

The purpose of this experiment is to study the stepsize bound for the multiclass graph Allen–
Cahn scheme. The MNIST database [22] contains approximately 70,000 28 × 28 images
of handwritten digits from zero to nine. The graph is constructed by first projecting each
image to the 50 principal components obtained through PCA of the entire MNIST dataset.
The weights are computed using the Zelnik-Manor and Perona’s scaling [34] with 50 nearest
neighbors.

We consider subsets of the MNSIT dataset by choosing a triplet of digits (e.g. {4, 5,
6}). For each such subset, there are approximately 25,000 images, where each image is a
representation of one of the digits in the triplet. We test the maximum stepsizes that satisfy
the monotonicity criterion on several such subsets as shown in Table 1. We set ε = 1, η = 1,
and randomly select 5% of data points as the fidelity set. We also use spectral truncation
with 100 eigenvectors to speed up computations. Table 1 shows the maximum stepsizes for
various choices of digit triplets, and the classification accuracy for dt = 0.5. We observe that
the maximum dt does not change when the choice of the triplet varies, and can all achieve
a good classification accuracy under a stepsize close to the maximum stepsize allowed for
monotonicity.
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7 Discussion

The graph Allen–Cahn scheme has been used to approximate solutions to the graph cut
problem. This paper studies the range of stepsizes for the graph Allen–Cahn scheme to
converge, in relation with the graph Laplacian and other parameters. In summary, we obtain
graph independent bounds on dt for which the graph Allen–Cahn scheme is bounded and
monotone. Moreover, under a mild a posteriori condition, we show the iterates converge to a
stationary point of the total energy E . We then prove a similar monotonicity and boundedness
result for stepsize 0 ≤ dt ≤ O(N−1) when spectral truncation is applied. We show via
an explicit example that the dependency of the stepsize dt on the number of nodes N is
unavoidable in the worst case. We also extend the results to multiclass Ginzburg–Landau
functional using similar techniques as in the binary case.

There are still some very interesting problems left to be explored. One interesting theoreti-
cal problem is to generalize the results for other well potentials of different asymptotic growth
rate. It may also be worthwhile to explore the dependency of dt on ε for the spectral trunca-
tion analysis, which the paper, for the sake of simplicity, does not address. Another potential
problem is the relationship between the stepsize and the accuracy of the classification result.
So far this analysis does not attempt to characterize the quality of the extrema reached, but
experiments have shown that the classification accuracy does differ under different choices
of stepsize.
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Appendix

Proof (Lemma 5) Let S = {u∗
0, . . . , u

∗
n} be the set of limit points for the set {uk |k ≥ 0}.

Since S is finite, choose ε such that the epsilon neighborhoods of the points u∗
i do not overlap.

Choose N such that for any k ≥ N , we have‖uk+1 − uk‖ < ε
4 . By the definition of a limit

point, there exists n′ > n > N such that un ∈ B(u∗
0, ε/2) and un

′ ∈ B(u∗
1, ε/2). Since‖uk+1 − uk‖ < ε

4 , ∃n < k < n′ such that uk is outside an ε/2 neighborhood of S. Since
there should be infinitely many such pairs n and n′, there are infinitely many points outside
the ε/2 neighborhood of S, contradicting S being the only limit points of the set {uk}. ��
Proof (Proposition 15) Recall that when the graph G is connected, the eigenspace of the
eigenvalue 0 is spanned by the constant vector e = (1, 1, . . . , 1) [30]. To prove Proposition
15, we first establish a lemma that characterizes the non-constant eigenvectors of L using
symmetries of the graph. ��
Lemma 9 Let L be the unnormalized graph Laplacian defined in Definition 1. For any
positive eigenvalue λ > 0 of L, there exists an eigenvector φ with eigenvalue λ such that φ

is one of the four forms below.

1. (a,−a, b,−b, . . . , b,−b), a �= 0

2.
(
a, a,− a

N ,− a
N , . . . ,− a

N ,− a
N

)
, a =

√
N

2(N+1) .
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3.
(
0, 0, a,−a,− a

N−1 ,
a

N−1 , . . . ,− a
N−1 ,

a
N−1

)
, a =

√
N−1
2N .

4.
(
0, 0, a, a,− a

N−1 , . . . − a
N−1

)
, a =

√
N−1
2N .

Proof Suppose φ = (a0, ã0, b1, b̃1, . . . , bN , b̃N ) with eigenvalue λ > 0. Since e =
(1, 1, . . . , 1) is an eigenvector of L with eigenvalue 0, we have 〈φ, e〉 = 0, i.e.∑

i

φ(i) = 0.

Define the eigenspace of engenvalue λ as Vλ. Since the graph is invariant under reflection
along the middle and symmetric permutations of the nodes marked with a circle (see Fig. 1),
Vλ is also invariant under these actions. Namely, define

R(φ) = (ã0, a0, b̃1, b1, . . . , b̃N , bN ), (52)

σ(φ) = (a0, ã0, bσ(1), b̃σ(1), . . . , bσ(N ), b̃σ(N )), (53)

where σ is any permutation of 1, . . . , N , then R(φ) and σ(φ) are also eigenvectors of L with
eigenvalue λ. Let

ξ0 = 1

N

∑
σ∈C(1,N )

σ (φ) = (a0, ã0, b∗, b̃∗, . . . , b∗, b̃∗),

where C(1, N ) is the cyclic permutation group of index 1, . . . N , and b∗ = ∑
(bi )/N . Then

either ξ0 �= 0 ∈ Vλ, or ξ0 = (0, 0, . . . 0). We discuss each case seperately. Note that for cases
where the potential eigenvector v is already completely determined, e.g. cases 2–4, we can
use the definition of an eigenvector

Lv = λv (54)

to verify whether the candidate is an eigenvector or not.

Case 1: (ξ0 �= 0) Denote ξ0 = (a, ã, b, b̃, . . . , b, b̃). Define ξ1 = 1
2 (ξ0 + R(ξ0)). By the

same reasoning, either ξ1 = 0 or ξ1 �= 0 ∈ Vλ. ξ1 = 0 implies a = −ã, b = −b̃, and ξ0 is
of the form 1. If ξ1 �= 0 ∈ Vλ, ξ1 is of the form (a, a, b, b, . . . , b, b). Eliminating b by the
equation

∑
i ξ1(i) = 0 and normalizing, ξ1 is of form 2.

Case 2: (ξ0 = 0) Since a0 = 0, ã0 = 0, φ = (0, 0, b1, b̃1, . . . , bN , b̃N ). Since φ0 �= 0, we
can WLOG assume b1 or b̃1 �= 0. Let

ξ1 = 1

N − 1

∑
σ∈C(2,N )

σ (φ) := (0, 0, a, ã, b, b̃, . . . , b, b̃),

where C(2, N ) is the cyclic permutation group from 2, . . . , N . ξ1 �= 0 since b1, b̃1 are not
all zero. Let ξ2 = 1

2 (ξ1 + R(ξ1)). If ξ2 = 0, a = −ã, b = −b̃. Define

ξ3 = 1

N

∑
σ∈C(1,N )

σ (ξ1) =
(
0, 0,

a + (N − 1)b

N
,−a + (N − 1)b

N
, . . .

)
(55)

Then ξ3 �= 0 gives ξ3 = (0, 0, a,−a, . . . , a,−a), a = 1√
2N

. However, it’s easy to check

that ξ3 is not an eigenvector via (54). ξ3 = 0 implies ξ1 is of form 3. Finally, ξ2 �= 0 and
〈e, ξ2〉 = 0 gives ξ2 is of form 4.

We continue with the proof of Proposition 15.We will show that for the particular weights
we have chosen, one of the vectors of form 1 in Lemma 9 has the smallest Dirichlet energy
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1
2 〈φ, Lφ〉 among all vector of forms 1–4, and that this vector is indeed an eigenvector of the
Laplacian L .

Define γ as in Definition 1. Recall the variational formulation of the second eigenvector

argmin
u

Dir(u) = 〈u, Lu〉 s.t. 〈u, e〉 = 0, ‖u‖2 = 1. (56)

First, we define χ1 to be the minimizer of (56) under the additional constraint χ1 =
(a,−a, b,−b, . . . , b,−b). Writing in terms of a and b, and using the relation

〈u, Lu〉 =
∑
i j

wi j (u(i) − u( j))2,

we have (56) is equivalent with

min
a,b

F(a, b) = γ (b − a)2 + 2Nb2,

s.t. a2 + Nb2 = 1/2.
(57)

Let k be the Lagrange multiplier, the optimality condition is
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a = (1 + 2N

γ
+ kN )b,

b = (1 + k)a,

1/2 = a2 + Nb2

(58)

k2 +
(
1

N
+ 2

γ
+ 1

)
k + 2

γ
= 0. (59)

Solving k for γ = 2
1−N−1 , we have k = ± 1√

N
− 1. k = − 1√

N
− 1 gives a maximizer

and is ruled out, hence k = 1√
N

− 1, and a = √
Nb. By normalizing χ1, we find χ1 is

equal to the vector φ2 defined on (46). We can verify that χ1 satisfies Lχ1 = λχ1, and
thus χ1 is an eigenvector. Let χ i , i ≥ 2 be the vectors 2–4 in Lemma 9. We show that

argmini Dir(χ i ) = 1. Computing the Dirichlet energy, we have Dir(χ1) = 1+ 1−1/
√
N

1+1/
√
N

<

2, Dir(χ2) = 2 ∗ (1+1/N )2

(1−1/N )2
> 2, Dir(χ3) = 50 + o(1), Dir(χ4) = 50 + o(1).

This implies χ1 is the eigenvector of L whose eigenvalue λ is the smallest non-zero
eigenvalue of L . Since 0 has only multiplicity one, χ1 is the “second eigenvector” or L . ��

Proposition 17 Define the set

M = { u ∈ R
N | ‖u‖∞ ≤ 1,max

Pm
‖Pmu‖∞ ≥ C

√
N },

where Pm is any projection operator onto a subspace, and 0 < C < 1. Then the volume(with
respect to the standard L2 metric in RN ) of the set M decreases exponentially with respect
to the number of dimensions N.

The proposition shows that if u were sampled uniformly from a unit cube, then the proba-
bility of some projection Pm expanding the max norm by a factor of O(

√
N ) is exponentially

decreasing.

123



X. Luo, A. L. Bertozzi

Fig. 7 Illustration of Proposition
17. S is one of the “caps” that vn
resides in. un and vn have angle
less than θ

Proof Letu ∈ M . Then bydefinition of the setM ,∃ someprojection Pm such that‖Pmu‖∞ ≥
C

√
N . Define v := Pmu and vn := v

‖v‖2 . Define un := u
‖u‖2 . Since vn is the projected

direction of u, Pmu = 〈u, vn〉vn . Then we have
C

√
N ≤ ‖Pmu‖∞ = 〈u, vn〉‖vn‖∞ = ‖u‖2‖vn‖∞〈un, vn〉.

Since ‖u‖2 ≤ √
N , we have

‖vn‖∞〈un, vn〉 ≥ C. (60)

Since 〈un, vn〉 ≤ 1, the projected direction vn must be in the set S = {v | ‖v‖2 =
1, ‖v‖∞ ≥ C}. However, the set S consists of the N “caps” of a unit sphere (see Fig. 7),
and hence is exponentially decreasing in volume with respect to the standard metric on the
sphere. On the other hand, since ‖vn‖∞ ≤ 1, by (60) we have 〈un, vn〉 ≥ C , and thus u lies
in a cone K (vn) with angle cos(θ) ≥ C . Hence u ∈ ⋃

v∈S{K (v)}, and since cones K (v)

have volume exponentially decreasing as well, we have Vol(M) is exponentially decreasing
with respect to N . ��
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