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Abstract 

We study graphs which are critical with respect to the chromatic index. We relate these to 
the Overfull Conjecture and we study in particular their construction from regular graphs by 

subdividing an edge or by splitting a vertex. 

In this paper, we consider simple graphs (that is graphs which have no loops or 

multiple edges). An edge-colouring of a graph G is a map 4 : E(G) -+ cp, where cp is 

a set of colours and E(G) is the set of edges of G, such that no two incident edges 

receive the same colour. The chromatic index, x’(G) of G is the least value of 1~1 

for which an edge-colouring of G exists. A well-known theorem of Vizing [13] states 

that, for a simple graph G, 

d(G) 6 x’(G) < d(G) + 1, 

where d(G) denotes the maximum degree of G. Graphs for which x’(G) = d(G) are 

said to be Class 1, and otherwise they are Class 2. A graph G is critical if it is 

Class 2, connected and for each edge e of G, X’(G\e) < x’(G). 

A fairly long-standing problem has been the attempt to classify which graphs are 

Class 1, and which graphs are Class 2. Holyer [lo] showed that the problem of de- 

termining whether a graph is Class 1 is NP-hard. Notwithstanding this, the Overfull 

Conjecture of Chetwynd and Hilton [3], if true, would classify all graphs satisfying 

d(G) > f 1 V(G)1 into Class 1 and Class 2 graphs. A graph is called overfull if 
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It is easy to see that if G is overfull, then G must be Class 2. The Overfull Conjec- 
ture is: 

Overfull Conjecture. If a simpZe graph G satisfies A(G) > i) V(G)I, then G is Class 2 

if and only if it contains an overfull subgraph H with A(G) = A(H). 

There is a moderate amount of evidence to support this conjecture; for a review of 

the evidence, see [7] or [9]. It is worth noting that if g(n) is the number of graphs of 
order n, and h(n) is the number of graphs of order II and maximum degree > n/2, 
then g(n)/h(n) --f 1; this is true whether the graphs counted are labelled or unlabelled 

(see [6]). Also worth noting is the fact that Niessen [ll] recently gave a polynomial 
algorithm to determine if a graph G satisfying d(G) 2 i\Y(G)I has an overfull sub- 

graph H with A(G) = A(H), and thus demonstrated that, if the Overfull Conjecture 
is true, then there is a polynomial algorithm to determine if a graph G satisfying 
A(G) 2 i 1 V(G)1 is Class 1 or Class 2. 

Let K be a connected graph and let x be a vertex of K such that &(x) = m 2 2. 
Suppose the neighbourhood N(x) of x is N(x) = {xi,. . . ,x,}. We say that the graph G 
is obtained from K by splitting x into two oertices u and u if V(G) = V(K\x) U {u,v} 
and E(G)=E(K\x)u U UU 1 <j&r 2d.q Ur+lqj~m VXi for some 1 < Y d m. 

From this definition, we see that if G is obtained from a connected graph K by 

inserting a vertex u into any edge whose end vertices are both of degree > 2, then G 
can be considered as a graph obtained from K by splitting a vertex x into two vertices 
x and v. 

In this paper we consider further a question that Yap [ 151 studied earlier, namely 
under what circumstances is it true that if a vertex of a regular Class 1 graph G is 
split into two vertices, then the graph G’ obtained is critical? 

Yap [ 15, 161 proved the following theorem. 

Theorem 1. Let t b 1, let r 2 2 and let rt be even. Zf any vertex of the complete 
r-purtite graph K; with t vertices in each part is split into two vertices, then the 
resulting graph is critical. 

In Yap’s paper the example in Fig. 1 is given of a graph G”, obtained from a three 

regular graph by splitting one vertex, where G* is not critical. In fact, G*\pq is 
3-critical, and can be obtained from Petersen’s graph by deleting one vertex. 

Example. 

Although we do not always obtain a critical graph by splitting a vertex, we would 
like to propose the following conjecture: 

Conjecture 1. Let G be a connected regular Class 1 graph with A(G) > ilV(G)l. 
Let G* be the graph obtained from G by splitting one vertex x of G into two vertices 
u and v. Then G is critical. 
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Fig. 1. G” 

The example above shows that the figure $ cannot be reduced significantly. Note 

that Yap’s theorem, Theorem 1, supports Conjecture 1. The results in this paper all 

lend further support to this conjecture. 

It is easy to see that G* is Class 2. 

Lemma 1. If any vertex x of any connected regular Class 1 graph G with d(G) z 2 
is split into two vertices u and v forming G’, then G* is Class 2. 

Proof. It is easy to see that IV(G)/ is even and so 

so that G” is overfull. It is well-known, and easy to see, that any overfull graph is 

Class 2. Therefore G* is Class 2. 0 

To show that G* is critical we have to show that G*\e is Class 1 for each edge 

e E E(G* ). This is always the case for edges e incident with the new vertices u and v. 

Lemma 2. Ij” any vertex x of any connected regular Class 1 graph G with d(G) > 2 
is split into two vertices u and v forming G”, and if e is an edge of G’ incident with 
u and v, then G”\e is Class 1. 

Proof. If e = uv then any Class 1 edge colouring of G yields a Class 1 edge colouring 

of G*\e by allowing each edge to retain its original colouring. If e is incident with U, 

but e # uv, then we can take the edge colouring of G*\v just above, and then give uv 

the colour e had. If e is incident with u, the argument is similar. 0 

Our first result is that the Overfull Conjecture implies Conjecture 1. 

Theorem 2. The Overfull Conjecture implies Conjecture 1. 
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Proof. Let G be a regular connected Class 1 graph satisfying d(G) > i 1 V(G)I, and let 

a vertex n of G be split into two vertices u and v. By Lemmas 1 and 2, G” is Class 2, 

and if e E E(G' ) and e is incident with u or v then G*\e is Class 1. So now let e be 

non-incident with u or v. Let Gi = G*\e. We need to show that Gi is Class 1. 

Suppose on the contrary that Gi is Class 2. Then, according to the Overfull Con- 

jecture, G1 has an overfull subgraph H with d(H) = d(G1) = d(G). Note that Gi is 

not overfull, so that 1 V(H)1 < 1 V(G, )I. If u 6 V(H) then H would be Class 1, since G 

was Class 1. So we may suppose that u E V(H), and similarly that v E V(H). Since 

G is connected, G’ is connected. Then Gi must be connected unless e was a cut 

edge; if e were a cut edge in Gt then e must also be a cut edge in G. But this 

would mean that H could be obtained from an even order graph, say H’, by split- 

ting the vertex x, and that, within H*, each vertex except one had degree d(G) 
and that the exceptional vertex had degree d(G) - 1. But this would imply that 

21E(H*)I =(IV(H*)I - I)d(G) + (d(G) - l)= IV(H*)Id(G) - 1, which is impossi- 

ble, since IV(H*)( is even. Therefore Gi is connected. Therefore IE(H, GI \H)J 2 1. 

Consequently, 

2lE(H)l = c Mu) 
VE V(N) 

<(2+ d(G))+(lVH)I -2Y(G)- 1 

= 1 + (I?‘(H)1 - l)d(G). 

But since H is overfull, IV(H)/ - 1 is even, and so 

21&U 6 (IV(H)1 - 1)4G). 

But this implies that H is not overfull, a contradiction. 0 

Corollary 3. The Overfull Conjecture implies that if G is a regular graph of even 
order satisfying d(G) 3 i I V(G)/, and if G* is obtained from G by splitting a vertex, 
then G* is critical. 

Proof. It was shown by Hilton in [8], and independently by Niessen and Volkmann 

[12], that if the Overfull Conjecture is true, then every regular graph G satisfying 

d(G) 3 $/V(G)1 is Cl ass 1. It is obviously also connected. The corollary then follows 

from Theorem 2. 0 

However, a statement that is very much stronger than Corollary 3 can readily be 

made. Call a graph G just overfull if 

P(G)1 =4G)l;IW)IJ + 1. 

Note that if G is a regular graph of even order, and G* is formed from G by split- 

ting a vertex, then G* is just overfull (see the proof of Lemma 1). Niessen [l l] 

recently showed that if d(G) 2 iIV(G)J and G is overfull, then G contains no proper 
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induced overfull subgraph H with d(G) = A(H). We can therefore deduce the follow- 

ing stronger result. 

Theorem 4. The Overfull Conjecture implies that if A(G) b ;I V(G)J then G is crit- 
ical zf and only if G is just overfull. 

Proof. First suppose that G is just overfull. Then for any edge e E,?(G), G\e is not 

overfull. Also, by Niessen’s result, G contains no proper induced overfull subgraph H 
with d(G) = d(H). Consequently, by the Overfull Conjecture, G\e is Class 1. Thus 

G is critical. 

Next suppose that G is critical. Then G is Class 2, so by the Overfull Conjecture G 

contains an overfull subgraph H with the same maximum degree. If H # G then since 

G is connected, G contains an edge e that is not in H. Therefore G\e contains H, 
and so is Class 2, and therefore is not critical, a contradiction. Therefore H = G, and 

every proper subgraph of G is not overfull. Therefore G is just overfull. 0 

In the rest of the paper the graphs are simple, but we show now that if G is a bipartite 

multigraph and G* is obtained from G by splitting a vertex then G’ is critical. First 

we prove a useful lemma. 

Lemma 3. Let G be a connected regular bipartite multigraph of degree d >, 2, with 
independent vertex sets A and B. Let a E A and b E B. Then G\(a, b} has a perfect 
matching. 

Proof. Let A’ = A\(a) and B’ = B\(b). Let G1 = G\(a, b}. Suppose Gt has no perfect 

matching. Then by Hall’s theorem, there is a set X CA such that IN(X)1 >, /XI - 1. 

Then 

b c dc, (w) 
WENW) 

2 Cd - 1)1X1, 

so 1x1 3 d. There are at most d vertices of degree d -- 1 in X, so we obtain in a similar 

fashion, 

dlN(X)I 3 c dG,(W) 

WEN(X) 

3 c dG, (w> 
WEX 

2 d(XI - d. 
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Therefore, (N(X)1 = 1x1 - 1 and equality holds everywhere above. But this implies that 
{b} UN(X) UX induces in G a connected component with 2d vertices containing a and 

not containing b, and thus that G is not connected, a contradiction. q 

Theorem 5. Let G be a connected regular bipartite multigraph of degree d > 2. 
Let G* be obtained from G by splitting any vertex x into two vertices u and v. 
Then G* is critical. 

Proof. Let Y(G)=AUB, where A={al,...,a,} and B={bl, . . . , b,}, and each edge 
of G joins a vertex of A to a vertex of B. We may suppose that x E A. By Lemmas 1 

and 2, G* is Class 2 and, if e is an edge that is incident with u or v, then G*\e is 
Class 1. Now let e = yz where y E A and z E B, and consider the case when e is not 

incident with u, v. We have to show that G*\e is Class 1. 
By Lemma 3 the graph G\{x,z} h as a perfect matching E. Clearly, G*\{uvUE Ue} 

has maximum degree d - 1, and, being bipartite, is Class 1. Therefore G*\e is Class 1 

also. 0 

Finally, we show that if G is a regular graph of even order and of sufficently high 
degree, and G* is obtained from G by splitting a vertex, then G is critical. Corollary 3 
showed that this would follow from the Overfull Conjecture if d(G) 2 $IV(G)J, but 
here all we can do is to prove it for, approximately, d(G) 3 0.823 1 V(G)]. 

Before giving this final result we need to state the following generalization due to 
Berge [l] of a well-known result of Chvatal [5]. 

Lemma 4. Let G be a simple graph of order n with degrees dl < d2 6 . . . < d,,. 
Let q be an integer with 0 < q < n - 3. If, for every k with q <k < i(n + q), the 
following condition holds: 

dk--q < k =S dn_k 2 n - k + q, 

then, for each set F of independent edges with IFI = q, there exists a Hamiltonian 
circuit containing F. 

We also need the following result due to Chetwynd and Hilton [4]. 

Lemma 5. Let G be a regular simple graph of even order satisfying d(G) 2 i( fi-- 1) 
IV(G)]. Then G is Class 1. 

We now give our final result. 

Theorem 6. Let G be a regular simple graph of even order satisfying d(G) B k( v’?‘- 1) 
IV(G)1 + 2. /f G’ is obtained from G by splitting any vertex x into two vertices 
u and v. then G’ is critical. 
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Proof. By Lemma 5, G is Class 1. It follows by Lemmas 1 and 2 that G* is Class 2 

and that if e E E( G* ) and e is incident with u and v then G*\e is Class 1. 

So now let e E E(G* ) and let e be non-incident with u or U. Let e = yz and let 

Gr = G*\(e). Let VI EN(P). First, choose a perfect matching Mt of Gt\{u,v, y}. We 

show below that MI can be chosen. Second, choose another perfect matching I”n, 

of Gr\(M, U {tl, vl,z}). We also show that MI can be chosen. Now consider the graph 

G~\{M~,uv,M~,ov~} and form a graph G’ by identifying u and v; the graph G’ is 

regular of even order ) V(G)1 and degree d - 2. Then by Lemma 5, G’ is Class 1. It 

follows that Gi\(Ml, uv,M~, twl ) is Class 1, and then that Cl itself is Class 1. 

Now, let us show that Ml and M2 can be chosen. In G’, let ur E N(u). Now consider 

the graph G. Recall that G is regular of degree d. Let H be a Hamiltonian circuit 

containing the edges xut,xvt and e. This corresponds in Gr to a Hamilton path starting 

and finishing on y and z containing the edges ut u, uv, out. Clearly, if we choose every 

other edge of this Hamilton path so that the edge uv is included (possibly interchanging 

the labels y and z), then we obtain Ml U {uu}. Also, the other set of alternate edges 

yields M2 U {we}. To see that G does have a Hamiltonian circuit containing xuI, xrr 

and e we apply Lemma 4 with q = 3. q 
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