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Tethering factors have been shown to interact with Rabs and SNAREs and, more recently, with coat
proteins. Coat proteins are required for cargo selection and membrane deformation to bud a transport
vesicle from a donor compartment. It was once thought that a vesicle must uncoat before it recog-
nizes its target membrane. However, recent findings have revealed a role for the coat in directing
a vesicle to its correct intracellular destination. In this review we will discuss the literature that links
coat proteins to vesicle targeting events.
Introduction
The transfer of material between organelles is mediated by

carrier vesicles that continually bud from one membrane

and fuse with another. In the past few decades, consider-

able progress has been made in identifying the molecular

machinery that maintains and regulates membrane traffic

(for a review see Bonifacino and Glick, 2004; Mellman and

Warren, 2000). Each vesicle transport reaction can be

divided into four essential steps that include vesicle bud-

ding, transport, tethering, and fusion (Bonifacino and

Glick, 2004). These steps are tightly regulated to ensure

that vesicles generated from a donor compartment are

delivered to their correct acceptor compartment. Although

much has been learned about these processes, exactly

how a carrier vesicle finds and fuses with its target organelle

remains an unanswered question.

In this review we will discuss how tethering factors may

work together with coat proteins to mediate the intracellu-

lar targeting of vesicles. Coat proteins, which are required

for vesicle budding and cargo selection, have recently

been shown to play an important role in tethering a vesicle

to its correct target membrane (Cai et al., 2007).

Four Essential Steps in Vesicle Transport
Vesicle budding is mediated by protein coats (Bonifacino

and Lippincott-Schwartz, 2003; Kirchhausen, 2000;

McMahon and Mills, 2004). Protein coats are dynamic

structures that cycle on and off membranes. They are re-

cruited from the cytosol onto donor membranes by small

GTPases of the Arf1/Sar1 family that regulate their assem-

bly (Springer et al., 1999). Coats deform flat membranes

into round buds, which leads to the release of coated ves-

icles (Figure 1). Coat proteins also participate in cargo se-

lection through the recognition of sorting signals present

in the cytoplasmic domain of transmembrane cargo pro-

teins. Clathrin was the first coat to be identified (Pearse,

1975). Clathrin-coated vesicles are mainly derived from
the plasma membrane or the trans-Golgi network (TGN)

and are transported to endosomes (Owen et al., 2004).

Subsequent studies identified two nonclathrin coats,

COPI (coat protein complex I) and COPII (coat protein

complex II), that mediate vesicle transport in the early se-

cretory pathway. COPI primarily acts from the Golgi to the

endoplasmic reticulum (ER) and between Golgi cisternae,

while COPII mediates traffic from the ER to the Golgi

(Barlowe et al., 1994; Letourneur et al., 1994; Waters

et al., 1991). In the last decade, several other nonclathrin

coats have been identified (Godi et al., 2004; Seaman

et al., 1998; Wang et al., 2006).

After budding, vesicles are transported to their final des-

tination by diffusion or by motor-mediated transport along

a cytoskeletal track (microtubules or actin, see Figure 1).

The molecular motors kinesin, dynein, and myosin have all

been implicated in this process (Hammer and Wu, 2002;

Matanis et al., 2002; Short et al., 2002). The third step in

vesicle-mediated membrane traffic is tethering (Figure 1).

Tethering is a term used to describe the initial interaction

between a vesicle and its target membrane. It precedes

the pairing of transmembrane SNAREs (soluble N-ethylma-

leimide-sensitive factor attachment protein receptor) on

apposing membranes, an event that leads to membrane

fusion (Söllner et al., 1993). Proteins and protein complexes

called tethers or tethering factors have been identified in

nearly all membrane-trafficking events (Sztul and Lupashin,

2006; Whyte and Munro, 2002). Together with Rabs, small

GTPases of the Ras superfamily, tethers play a critical role

in determining the specificity of vesicle targeting.

The last step in vesicle-mediated transport is the fusion

of the vesicle with its target membrane (Figure 1). Fusion is

thought to occur by the pairing of SNAREs, a family of

membrane proteins that are related to three different neu-

ronal proteins: synaptobrevin, syntaxin, and SNAP-25. A

SNARE on a transport vesicle (v-SNARE) pairs with its

cognate SNARE-binding partner (t-SNARE) on the
Developmental Cell 12, May 2007 ª2007 Elsevier Inc. 671

https://core.ac.uk/display/81217779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:susan.ferronovick@yale.edu


Developmental Cell

Review
Figure 1. The Four Essential Steps in Vesicle Transport
(1) Budding: coat proteins are recruited onto the donor membrane to induce the formation of a vesicle. Cargo and SNAREs are incorporated into the
budding vesicle by binding to coat subunits. (2) Movement: the vesicle moves toward the acceptor compartment by diffusion or with the aid of a
cytoskeletal track. (3) Tethering: tethering factors work in conjunction with Rab GTPases to tether the vesicle to their acceptor membrane. (4) Fusion:
the vesicle-associated SNARE and the SNARE on the acceptor membrane assemble into a four-helix bundle (trans-SNARE complex), which drives
membrane fusion and the delivery of cargo.
appropriate target membrane (Rothman, 1994; Söllner

et al., 1993). The energy derived from the assembly of

the SNARE complex has been postulated to drive the fu-

sion of two lipid bilayers (Hanson et al., 1997; Lin and

Scheller, 1997). However, factors acting downstream

from the SNAREs may also contribute to membrane fusion

(Muller et al., 2002; Ungermann et al., 1998). While the

specific role of the SNAREs in membrane fusion remains

to be determined, there is little doubt they play a key role

in this process. For a recent review on SNAREs and their

role in membrane fusion, see Jahn and Scheller (2006).

The pairing of SNAREs was once postulated to drive the

specificity of vesicle targeting (Söllner et al., 1993). How-

ever, several lines of evidence indicate this is not the

case. First, since SNAREs are recycled after each fusion

event, the same SNARE will be present on both antero-

grade- and retrograde-directed vesicles. Thus, the mere

presence of a SNARE cannot be the sole determinant of

the direction in which a vesicle is traveling. Furthermore,

the interactions of SNAREs are promiscuous (Tsui and

Banfield, 2000; von Mollard et al., 1997), and the disrup-

tion of SNARE complex formation does not block vesicle

tethering (Broadie et al., 1995; Hunt et al., 1994). These

findings indicate that SNAREs do not mediate the first

point of contact between a vesicle and its target. Instead,

tethers, which act upstream of the SNAREs, appear to

perform this function.

The Structure of Multisubunit Tethers
Although tethers are required for the initial interaction of

a carrier vesicle with its target membrane, not all putative
672 Developmental Cell 12, May 2007 ª2007 Elsevier Inc.
tethers have been shown to bind to vesicles. Almost all

tethering factors fall into two broad categories: long puta-

tive coiled-coil proteins and multisubunit complexes. This

review will focus on the role of multisubunit complexes in

vesicle tethering. The interaction of coats with tethers is

best documented with this class of tethers.

All large multisubunit complexes implicated in tethering

were first found in the yeast Saccharomyces cerevisiae

(for review see Whyte and Munro, 2002). To date eight con-

served complexes (COG, CORVET, Dsl1, exocyst, GARP/

VFT, HOPS/Class C VPS, TRAPPI, and TRAPPII) acting in

exocytic and endocytic trafficking events have been iden-

tified (see Figure 2). Five of these complexes are required

for secretion in vivo: TRAPPI (ER-Golgi), Dsl1 (Golgi-ER),

TRAPPII (intra-Golgi/endosome-late Golgi), COG (endo-

some-early Golgi), and the exocyst (Golgi-plasma mem-

brane; endosome-plasma membrane) (Andag et al.,

2001; Cai et al., 2005; Munson and Novick, 2006; Reilly

et al., 2001; TerBush et al., 1996; Whyte and Munro,

2001). Three of these complexes are required for vacuolar

protein sorting in vivo: CORVET (late Golgi-endosome),

HOPS (endosome-vacuole) and GARP/VFT (endosome-

late Golgi) (Conibear et al., 2003; Peplowska et al., 2007;

Peterson and Emr, 2001). The HOPS complex is also re-

quired for vacuole-vacuole fusion (Price et al., 2000). The

exocyst is needed for polarized growth, and it tethers a

variety of vesicles to exocytic sites (Munson and Novick,

2006). Thus, some tethers act in only one trafficking event,

while others may participate in more than one.

Structurally the best characterized tethering complexes

are the �300 kDa TRAPPI complex (Sacher et al., 2001)
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Figure 2. Large Tethering Complexes that Act in the Secretory and Endocytic Pathways
Protein complexes that play a role in vesicle tethering are indicated where they act. TRAPPI acts in ER-to-Golgi traffic. TRAPPII has been implicated in
transport events that take place within the Golgi, and from the endosome to the late Golgi. COG has been proposed to tether vesicles from the endo-
some to the cis-Golgi, while the GARP/VFT complex has been implicated in traffic from the endosome to the trans-Golgi. The CORVET complex may
be required for tethering events between the trans-Golgi and endosome, while HOPS functions between the endosome and vacuole. HOPS also has
been implicated in homotypic vacuole fusion. The exocyst complex binds to post-Golgi and recycling vesicles at the plasma membrane.
and the exocyst (TerBush et al., 1996). Yeast TRAPPI has

recently been visualized by single-particle electron

microscopy (Kim et al., 2006). It is a flattened dumbbell

(�65 3 65 3 180 Å) with two lobes. High-resolution struc-

tures for subcomplexes of vertebrate TRAPPI were mod-

eled into the EM reconstruction. The trs20-trs31-bet3

heterotrimer was fit into one lobe, while the bet3-trs33-

bet5 heterotrimer was fit into the other lobe (Figure 3A).

The two lobes of TRAPPI are linked together by the

trs23 subunit (Kim et al., 2006). The significance of the

presence of bet3 in each lobe of TRAPPI will be addressed

below when we discuss the interactions of tethers with

coat proteins. TRAPPII contains all the subunits found in

TRAPPI, plus three additional proteins (trs130, trs120,

and trs65) (Sacher et al., 2001).

The exocyst is a hetero-octameric �750 kDa complex

with subunits that range in size from 50 to 150 kDa (Guo

et al., 1999; TerBush et al., 1996). Quick-freeze/deep-

etch/rotary-shadow electron micrographs demonstrated

that the mammalian exocyst consists of 4–6 ‘‘arms.’’

Each arm, which is 35–70 Å wide and 100–300 Å long,

emanates from a central point (Hsu et al., 1998). In sam-

ples treated with glutaraldehyde, the exocyst looks like a

tree. The arms coalesce to a thicker long trunk (�300 Å)

with two flexibly disposed long branches (�100 Å). The

crystal structure of the Exo70 subunit (see Figure 3B)

revealed it to be a long rod (�160 Å) composed of contig-

uous a-helical bundles (Dong et al., 2005; Hamburger
et al., 2006). The C termini of three other exocyst subunits

(Drosophila Sec15, yeast Exo84, and Sec6; shown in

Figure 3B) were shown to be shorter rods composed of

contiguous a-helical bundles (Dong et al., 2005; Sivaram

et al., 2006; Wu et al., 2005). These structures, together

with secondary structure predictions, were the basis for

proposing that all exocyst subunits are elongated with

related folds (Dong et al., 2005). Two or more of these

rods may be aligned in forming the ‘‘trunk’’ and the

‘‘branches’’ of the exocyst.

Based on regions of weak sequence similarity to exo-

cyst subunits, it was proposed that two other tethering

complexes, the hetero-octameric COG complex and the

heterotetrameric GARP/VFT complex, are structurally

and functionally similar to the exocyst (Whyte and Munro,

2001). Secondary structure algorithms for COG subunits

suggest that, like exocyst subunits, COG subunits are

a-helical. However,quick-freeze/deep-etch/rotary-shadow

electron micrographs of glutaraldehyde-fixed mammalian

COG subunits showed a bilobed assembly that differs

from the exocyst (Ungar et al., 2002). Protein-protein inter-

action studies suggest that each lobe contains a heterotri-

meric COG subcomplex. The COG1/COG8 heterodimer

bridges the two lobes of the complex (Fotso et al., 2005;

Ungar et al., 2005). Thus, the architecture of the COG

complex superficially resembles TRAPPI rather than the

exocyst. TRAPPI and COG are similar in that they appear

to mediate a single tethering event, while the exocyst
Developmental Cell 12, May 2007 ª2007 Elsevier Inc. 673
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Figure 3. Structures of Tethering
Complexes
(A) High-resolution structures of mammalian
TRAPP subcomplexes bet3/trs31/trs20 and
bet3/trs33/bet5/trs23 have been determined
(Kim et al., 2006). bet3, trs31, and trs33 have
similar folds, as do trs20, trs23, and bet5. The
X-ray structures of the subcomplexes were fit
into a low-resolution model of the yeast
TRAPPI complex as obtained from single-
particle electron microscopy. The subcom-
plexes are associated as depicted (Kim et al.,
2006). The top and bottom views are related
by 90� rotation about a horizontal axis.
(B) Structural studies of exocyst subunits
reveal they are rods composed of contiguous
a-helical bundles. The structures shown are,
from left to right, yeast Exo70 and the C-terminal
domains of yeast Exo84 (Dong et al., 2005),
Drosophila Sec15 (Wu et al., 2005), and yeast
Sec6 (Sivaram et al., 2006). The fragments
are colored from blue at their N termini to red
at their C termini.
tethers a variety of vesicles to sites of polarized growth (Cai

et al., 2007; Munson and Novick, 2006; Zolov and

Lupashin, 2005).

A growing body of evidence implies that tethering is

a multistep process that is mediated through interactions

with coat proteins, tethers, Rabs, and SNAREs. In the

following sections we will review this literature.

Tethers Can Be Rab Effectors and Rab
Exchange Factors
Rabs are small GTPases of the Ras superfamily that

continuously cycle between the cytosol and membranes.

In the cytosol, the GDP-bound form of the Rab is com-

plexed with GDI (guanine nucleotide dissociation inhibitor).

Rabs are recruited to membranes with the aid of a GDF

(GDI displacement factor) (Dirac-Svejstrup et al., 1997)

and are inserted into the membrane via a prenyl group.

The membrane-bound Rab is then activated by a specific

GEF (guanine nucleotide exchange factor) through the

exchange of GDP for GTP (Soldati et al., 1994; Ullrich

et al., 1994). Upon activation, the Rab interacts with down-

stream effectors. Activation of the Rab is terminated when

GTP hydrolysis is stimulated by a specific GAP (GTPase-
674 Developmental Cell 12, May 2007 ª2007 Elsevier Inc.
activating protein) (Rybin et al., 1996). To date, 11 Rab pro-

teins have been identified in yeast, and >60 in mammalian

cells (Lazar et al., 1997; Pfeffer, 2001).

Do Rabs regulate only one trafficking step, or can the

same Rab be required in multiple trafficking events? Ini-

tially it was thought that each trafficking event is regulated

by a specific Rab. However, now it is clear this is not the

case. In fact, genetic studies in yeast imply that some

Rabs, like Ypt1p (Rab1 in mammals), act at multiple

stages of the exocyctic and endocytic pathway (Bacon

et al., 1989; Finger and Novick, 2000). In vivo and in vitro

studies have confirmed that Ypt1p (Rab1) is required for

ER-to-Golgi traffic, intra-Golgi traffic, and membrane re-

cycling through the early endosome (Bacon et al., 1989;

Baker et al., 1990; Davidson and Balch, 1993; Jedd

et al., 1995; Lafourcade et al., 2004). For a recent review

of Rabs and their role in membrane traffic, see Grosshans

et al. (2006).

The best understood function of Rab proteins is proba-

bly their role in vesicle tethering. The earliest evidence for

the involvement of Rabs in vesicle tethering and fusion

was the observation that mutations in the gene that en-

codes the Rab GTPase SEC4 lead to the accumulation
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of post-Golgi vesicles in yeast (Salminen and Novick,

1987). With the development of in vitro transport assays,

other Rabs were shown to participate in vesicle tethering.

The yeast homotypic vacuole-fusion assay revealed that

Ypt7p is needed at a step that precedes SNARE complex

formation (Mayer and Wickner, 1997; Ungermann et al.,

1998). Subsequently, the Rab Ypt1p was shown to be

required for the tethering of ER-derived COPII vesicles

in vitro (Cao et al., 1998).

Rabs in their GTP-bound form appear to facilitate the

recruitment of tethers to specific locations. A well-studied

example of a tether that is a Rab effector is the exocyst

complex. As mentioned above, the exocyst localizes to

sites of polarized growth in yeast and is required to tether

post-Golgi and recycling vesicles to the plasma mem-

brane (Munson and Novick, 2006; TerBush et al., 1996).

Most exocyst subunits are delivered on post-Golgi vesi-

cles to exocytic sites (Boyd et al., 2004). They are recruited

to vesicles via an interaction between the exocyst subunit

Sec15p and the GTP-bound form of the Rab Sec4p (Guo

et al., 1999). Two other exocyst subunits, Sec3p and

Exo70p, localize to the plasma membrane independent

of the cytoskeleton and ongoing membrane traffic (Boyd

et al., 2004; Finger et al., 1998). The exocyst complex

forms at the cell surface when post-Golgi vesicles tether

to the plasma membrane (Boyd et al., 2004). In epithelial

cells, the exocyst is required for the transport of proteins

to the basolateral cell surface (Grindstaff et al., 1998).

The COG and GARP/VFT complexes (Figure 2) are also

Rab effectors. COG is a multisubunit tethering complex

that mediates membrane traffic at the Golgi apparatus.

The yeast COG complex (also called the Sec34p/

Sec35p complex) is a Ypt1p effector that has been pro-

posed to tether vesicles from the late Golgi/early endo-

some to the early Golgi (Suvorova et al., 2002; Whyte

and Munro, 2001). GARP/VFT binds to the GTP form of

Ypt6p and plays a role in retrograde traffic from endo-

somes to the trans-Golgi (Conibear et al., 2003; Quenneville

et al., 2006; Siniossoglou and Pelham, 2001).

The HOPS complex is the only tethering factor shown to

act as an effector of a Rab (Ypt7p) and as a GEF. Homo-

typic vacuole fusion occurs in ordered steps that includes

priming, tethering, docking, and fusion. Proteins that reg-

ulate this process assemble into a ‘‘vertex ring’’ around

the apposed membranes of tethered vacuoles before fu-

sion occurs (Fratti et al., 2004; Wang et al., 2002, 2003).

Ypt7p and HOPS are required for the homotypic fusion

of yeast vacuoles and the fusion of transport vesicles to

the vacuole (Haas et al., 1995; Mayer and Wickner,

1997; Price et al., 2000; Seals et al., 2000; Wichmann

et al., 1992; Wurmser et al., 2000). The HOPS subunit,

Vps39p, converts Ypt7p from its GDP-bound form to its

GTP-bound form to promote vesicle tethering (Price

et al., 2000; Seals et al., 2000; Wurmser et al., 2000).

HOPS shares four subunits, Vps11p, Vps16p, Vps18p,

and Vps33p, with the newly identified CORVET complex.

CORVET binds to GTP-bound Vps21p, the Rab5 homolog

in yeast (Peplowska et al., 2007). Interestingly, human

homologs of Vps11p, Vps16p, and Vps18p are also com-
ponents of a mammalian complex that binds to Rab5-GTP

(Rink et al., 2005). These recent findings suggest that the

HOPS and CORVET complexes play a role in tethering

events that lead to endosome-vacuole (lysosomes in

mammals) biogenesis in both yeast and mammalian cells.

One of the other subunits of the CORVET complex, Vps3p,

has an affinity for Vps21p-GDP (Peplowska et al., 2007).

This observation led to the suggestion that Vps3p is an

exchange factor for Vps21p. Additional biochemical stud-

ies will be needed to test this proposal. Vps9p, which is

not a component of the CORVET or HOPS complexes, is

an established Vps21p exchange factor (Hama et al.,

1999).

All tethers discussed in this review article are Rab

effectors, except for the TRAPP complexes. In 2001, the

tethers TRAPPI and TRAPPII were identified as exchange

factors that specifically activate Ypt1p (Sacher et al.,

2001; Wang et al., 2000). TRAPPI only functions in

ER-to-Golgi traffic (Sacher et al., 2001), while TRAPPII

regulates intra-Golgi traffic and traffic from the early endo-

some to the late Golgi in vivo (Cai et al., 2005; Sacher et al.,

2001). Interestingly, five TRAPP subunits are needed to

fully reconstitute Ypt1p exchange activity in vitro (Cai

et al., 2007; Kim et al., 2006), and all of these subunits are

shared between TRAPPI and TRAPPII. This finding fits

well with the observation that both TRAPPI and TRAPPII

are Ypt1p exchange factors (Sacher et al., 2001). The

activation of Ypt1p by two distinct but related exchange

factors may explain how this small GTPase can function

in different transport events. However, it has recently

been reported that TRAPPII is not a Ypt1p exchange fac-

tor, but instead activates Ypt31p/Ypt32p (Morozova et al.,

2006). Yeast must contain a Ypt31p/Ypt32p exchange

factor distinct from TRAPPII, as previous studies demon-

strated that the depletion of TRAPP from yeast lysates

results in the loss of Ypt1p, but not Ypt31p/Ypt32p, ex-

change activity (Wang et al., 2000; Wang and Ferro-Novick,

2002). Additional experiments will be needed to resolve

these discrepancies and to determine if TRAPPII acts as

a Ypt1p or a Ypt31p/Ypt32p exchange factor in vivo.

Tethers Interact with Coat Proteins to Mediate
Vesicle Tethering
Vesicle coats are multilayered complexes (for review see

Gurkan et al., 2006). One layer includes adaptor protein

(AP) complexes that recognize and select cargo mole-

cules. Another layer includes cage proteins (CPs). CPs

assemble into a lattice on the membrane surface to form

a scaffold that collects AP-cargo complexes. This links

cargo concentration with membrane deformation, which

eventually leads to the formation of coated vesicles. As

we discuss here, many tethers show biochemical interac-

tions with coat proteins.

The depletion of the mammalian COG3 subunit in HeLa

cells results in the accumulation of COPI-coated, COG-

complex-dependent (CCD) vesicles carrying the intra-

Golgi SNAREs GS15 and GS28. Anterograde trafficking

of vesicular stomatitis virus G protein to the plasma mem-

brane was maintained in COG3-depleted cells, while the
Developmental Cell 12, May 2007 ª2007 Elsevier Inc. 675



Developmental Cell

Review
retrograde traffic of Shiga toxin was inhibited. Additionally,

mammalian COG bound to isolated CCD vesicles, and

both mammalian and yeast COG showed specific interac-

tions with COPI subunits (Suvorova et al., 2002; Zolov and

Lupashin, 2005). These studies led to the conclusion that

the cis-Golgi-localized COG complex tethers retrograde

COPI vesicles that bud from a trans-Golgi/endosomal

compartment (Zolov and Lupashin, 2005).

Specific interactions with COPI subunits were also

observed with two other putative tethering complexes,

TRAPPII and Dsl1. TRAPPII localizes to the late Golgi/early

endosome (Cai et al., 2005; Yu et al., 2006). Mutations in

genes that encode two different TRAPPII-specific sub-

units (TRS130 and TRS120) have somewhat different

phenotypes. Mutations in trs130 block intra-Golgi and

endocytic traffic, while mutations in trs120 only block en-

docytic traffic. TRAPPII also interacts with COPI in yeast

lysates, and COPI subunits are mislocalized in trs120 mu-

tants (Cai et al., 2005). A putative role for TRAPPII is to

tether vesicles that recycle through the early endosome

and Golgi (Cai et al., 2005).

Dsl1 is a large ER-localized complex implicated in the

tethering of retrograde COPI vesicles that direct traffic

from the Golgi to the ER (Andag et al., 2001; Reilly et al.,

2001). The central acidic domain of the Dsl1p component

interacts in vitro with the d- and a-subunits of the COPI

coat. The d-subunit is a constituent of the F subcomplex

of COPI that shares sequence similarities with clathrin

adaptor components. The a-COPI subunit belongs to

the B subcomplex of the COPI coat, which is thought to

function like clathrin (Andag and Schmitt, 2003). Thus,

Dsl1p interacts with both the F and B subcomplexes of

the COPI vesicle coat.

While several different large tethering complexes have

been shown to interact with coat subunits and coat

complexes, the function of these interactions has been

unclear. Direct evidence that coat proteins play a role in

vesicle tethering has come from a recent study that de-

fined the TRAPPI-binding partner on COPII vesicles (Cai

et al., 2007). The formation of COPII vesicles is initiated

when the small GTPase Sar1p recruits the cargo adaptor

complex Sec23p/Sec24p (Yoshihisa et al., 1993). This

leads to the capture of transmembrane cargo by Sec24p

(Kuehn et al., 1998; Miller et al., 2003). Sec23p/Sec24p

then recruits the Sec13p/Sec31p complex, which induces

coat polymerization and membrane deformation (Stagg

et al., 2006). In yeast, COPII vesicles are believed to tether

and fuse directly with the cis-Golgi (Baker et al., 1988;

Ruohola et al., 1988). In mammalian cells, COPII vesicle

tethering is thought to be largely a homotypic event (Xu

and Hay, 2004). Homotypic COPII vesicle fusion results

in the formation of membrane structures called VTCs

(vesicular tubular clusters), which are the compartments

where soluble cargo concentrates (Martinez-Menarguez

et al., 1999). Anterograde cargo then moves from VTCs

to the cis-Golgi (Ben-Tekaya et al., 2005; Presley et al.,

1997; Scales et al., 1997).

TRAPPI is a stage-specific tether that binds directly to

COPII vesicles (Sacher et al., 2001). The most conserved
676 Developmental Cell 12, May 2007 ª2007 Elsevier Inc.
component of the TRAPPI complex is Bet3, as yeast and

mammalian Bet3 (mBet3) are 54% identical (Sacher

et al., 1998). Immuno-EM studies demonstrated that

mBet3 resides on COPII-coated vesicles and COPII bud-

ding profiles, and in vitro mBet3 is required for homotypic

COPII vesicle tethering (Yu et al., 2006). Additional studies

demonstrated that Bet3 mediates COPII vesicle tethering

via an interaction with the coat subunit Sec23 in both yeast

and mammalian cells (Cai et al., 2007). These findings link

vesicle budding to tethering and show that the mechanism

of COPII vesicle tethering is conserved between yeast and

mammals. The structure of TRAPPI (Kim et al., 2006) is

consistent with a homotypic tethering model where a

copy of Bet3, in each of the two lobes of the TRAPPI com-

plex, interacts with a different coated vesicle to bring two

vesicles together. Although TRAPPI and TRAPPII share

seven subunits, only TRAPPI binds to COPII vesicles

(Sacher et al. 2001). One or more of the three TRAPPII-

specific subunits must mask the Sec23p-binding site on

Bet3p. Recently, another putative tethering factor that

participates in ER-to-Golgi traffic, Grh1p (yeast homolog

of GRASP65), was reported to interact with the Sec23p/

Sec24p complex (Behnia et al., 2007).

Although it was long thought that the vesicle coat is re-

moved soon after the carrier vesicle is formed (see review

in Bonifacino and Glick, 2004), these new findings imply

that vesicles remain coated until the coat is recognized

by a specific tether. The observation that TRAPPI binds

to a component of a cargo adaptor complex links vesicle

tethering to cargo recognition. This finding provides a sim-

ple mechanism to explain how the directionality of vesicle

transport is maintained. It also suggests that tethering

factors may integrate the recognition of a vesicle to the

process of vesicle uncoating.

The molecular mechanism by which vesicle uncoating is

regulated is still unclear. The disassembly of the COPI and

COPII coats is thought to occur subsequent to the hydro-

lysis of GTP by the Arf1/Sar1 family of proteins. In the case

of the COPII coat, Sec23p is the GAP for Sar1p, and this

GAP activity is further stimulated by the Sec13p/Sec31p

complex (Antonny et al., 2001; Yoshihisa et al., 1993).

Although GTP hydrolysis is required for COPII vesicle

uncoating, the COPII coat remains associated with vesi-

cles for a considerable amount of time after Sar1p is

hydrolyzed (Barlowe et al., 1994). The binding of secretory

cargo to the coat cargo adaptor complex stabilizes the

COPII coat on vesicles after Sar1p is released from mem-

branes (Forster et al., 2006; Sato and Nakano, 2005).

It was initially thought that ArfGAP1 induces COPI

vesicle uncoating (Bremser et al., 1999; Goldberg, 1999;

Reinhard et al., 2003). However, more recent findings

have revealed that ArfGAP1 functions as a basic compo-

nent of the COPI coat. In vitro studies have demonstrated

that the incorporation of cargo into COPI vesicles

depends on the hydrolysis of ARF1-GTP (Lanoix et al.,

1999; Nickel et al., 1998). When ArfGAP1, ARF1, and coat-

omer were used to reconstitute vesicle formation, purified

COPI coated vesicles were depleted of ARF1 and

enriched in ArfGAP1 (Yang et al., 2002).



Developmental Cell

Review
Figure 4. Vesicles Tether via an
Interaction with Coat Proteins
(A) In homotypic tethering, the tether (blue ves-
icle tether) links two coated vesicles together
via an interaction with a coat subunit. This in-
teraction is maintained as regions of the vesicle
uncoat and the SNAREs are exposed. Other
tethers (red vesicle tether) may then promote
SNARE pairing and membrane fusion.
(B) In heterotypic tethering, the tether (blue
vesicle tether) targets the vesicle to its accep-
tor compartment through a direct interaction
with a coat subunit. As the vesicle uncoats,
the SNAREs are exposed. This is then followed
by the formation of trans-SNARE pairs (red
vesicle tether) and membrane fusion.
Tethers Interact with SNAREs
How do tethering factors coordinate the recognition of

a vesicle to the process of membrane fusion? Many

tethers physically interact with SNAREs. Tethering factors

may bring the vesicle in closer contact with its target com-

partment after vesicle uncoating (Malsam et al., 2005) to

increase the probability of SNARE interactions. Alterna-

tively, tethering factors may actively promote SNARE-

mediated membrane fusion by stimulating the formation

of trans-SNARE complexes (Shorter et al., 2002).

Studies on the well-characterized coiled-coil tether,

p115, support both models. Rab1-GTP recruits p115

onto COPII vesicles as vesicles bud from the ER (Allan

et al., 2000). On vesicles, p115 interacts with a select set

of COPII vesicle-associated SNAREs (Allan et al., 2000).

The recruitment of p115 to membranes is dependent on

SNAREs and is required for COPII vesicle tethering and

VTC formation (Bentley et al., 2006; Brandon et al.,

2006). The most amino-terminal coiled-coil region of

p115, which is weakly homologous to a SNARE motif

(Weimbs et al., 1997), also stimulates SNARE complex as-

sembly (Shorter et al., 2002). Therefore, p115 may not only
tether vesicles to their target membrane via an interaction

with SNAREs, it also catalyzes SNARE-mediated mem-

brane fusion. Uso1p, the yeast homolog of p115, is also

required for the assembly of the ER-to-Golgi SNARE com-

plex in vivo (Sapperstein et al., 1996). Thus, in addition to

participating in fusion, the SNAREs appear to act up-

stream of fusion to recruit tethering machinery.

Another example of a tether interacting with a SNARE is

the GARP/VFT complex subunit Vps51p that binds to the

N-terminal domain of the SNARE Tlg1p (Conibear et al.,

2003; Siniossoglou and Pelham, 2001). GARP/VFT, which

localizes to the late Golgi in a Ypt6p-dependent fashion

(Siniossoglou and Pelham, 2001), has been implicated in

tethering endosomal derived vesicles to the late Golgi

via an interaction with Tlg1p (Conibear et al., 2003; Coni-

bear and Stevens, 2000). Since Tlg1p is present on Golgi

membranes as well, an alternative model is that Tlg1p is

a receptor for GARP/VFT on the Golgi. In either case, it

is possible that GARP/VFT interacts with Tlg1p to stimu-

late SNARE complex formation. Tlg1p has an N-terminal

domain that forms a three-helix bundle. Like other syntax-

ins, it has been suggested that the function of Tlg1p is
Developmental Cell 12, May 2007 ª2007 Elsevier Inc. 677
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autoinhibited through an interaction of its N-terminal

domain with its C-terminal SNARE motif (Misura et al.,

2000). Vps51p may release this autoinhibition as its N ter-

minus binds to the N-terminal domain of Tlg1p (Conibear

et al., 2003; Fridmann-Sirkis et al., 2006; Siniossoglou

and Pelham, 2001). However, deletions or point mutations

that eliminate the binding of Vps51p to Tlg1p do not affect

the recycling of proteins from endosomes to the Golgi in

vivo (Fridmann-Sirkis et al., 2006). These findings imply

that the binding of Tlg1p to Vps51p is not essential for

GARP/VFT-mediated vesicle tethering.

Tethering factors, like the exocyst and HOPS com-

plexes, may promote SNARE-mediated membrane fusion

by binding to Sec1/Munc18 family proteins (for review see

Jahn and Sudhof, 1999; Waters and Hughson, 2000).

Recent in vitro studies showing that Munc18 binds to fully

assembled SNARE complexes to promote membrane fu-

sion support this hypothesis (Dulubova et al., 2007; Shen

et al., 2007). The exocyst binds to Sec1p (Wiederkehr

et al., 2004), which in turn binds to the fully assembled

Snc/Sso/Sec9p exocytic SNARE complex (Carr et al.,

1999). HOPS is the only multisubunit tethering complex

that contains a Sec1 homolog, Vps33p. Vps33p binds to

the vacuolar t-SNARE Vam3p (Laage and Ungermann,

2001; Seals et al., 2000; Wang et al., 2001). There are

conflicting reports on the significance of the HOPS/

Vam3p interaction. In one study (Laage and Ungermann,

2001), deletion of the N-terminal domain of Vam3p was

reported to reduce the formation of trans-SNARE com-

plexes and homotypic vacuolar fusion in vitro. In another

study (Wang et al., 2001), deletion of the N-terminal

domain of Vam3p did not disrupt fusion in vitro or

in vivo. Recently, HOPS has been shown to bind to the

SNARE Vam7p. This interaction may play a role in initi-

ating SNARE complex assembly (Stroupe et al., 2006).

The COG and Dsl1 complexes are two other tethering

complexes that exhibit specific interactions with SNAREs.

COG interacts with intra-Golgi SNAREs (Suvorova et al.,

2002; Zolov and Lupashin, 2005), and Dsl1 binds to ER-

localized SNAREs (Kraynack et al., 2005). It has been sug-

gested that Dsl1 maintains the stability of an ER-localized

SNARE complex that contains Use1p, Ufe1p, and Sec20p

(Kraynack et al., 2005).

Concluding Remarks and Future Perspectives
Initially, tethers were proposed to act as structural

bridges. It was speculated that a tether on the target mem-

brane recognizes and binds to a specific determinant on

the incoming vesicle to form a molecular link that holds

two apposing membranes together. Since different

tethers act in different places, it has been suggested

that the localization of tethers is likely to be dependent

on their interaction with either certain lipids or with acti-

vated forms of small GTPases. These lipids and GTPases

are usually present on a subset of internal membranes,

providing each compartment with a unique identity that

allows it to be recognized by tethering factors (Munro,

2002). Tethers must also recognize vesicular compo-

nents. Coat proteins are likely candidates, as they bind
678 Developmental Cell 12, May 2007 ª2007 Elsevier Inc.
to cargo and are directly recruited from the cytosol to

the compartment where they function.

In the past decade, a growing body of evidence has

demonstrated that tethers work in conjunction with Rab

GTPases and bind to coat proteins. Based on this obser-

vation, we propose the following model for vesicle tether-

ing. First, we speculate that in homotypic tethering events,

the tether binds to two different coated membrane com-

partments (Figure 4A). In heterotypic tethering events,

only the vesicle would be coated (Figure 4B). In some

cases, tethering may be initiated before the Rab is acti-

vated (Cai et al., 2007; Wurmser et al., 2000). As domains

on the vesicle begin to uncoat, Rab-GTP may recruit other

tethers that promote SNARE pairing (Shorter et al., 2002)

(Figure 4). The same tether could act both upstream and

downstream of Rab activation, or multiple tethers may

participate in these events. For example, in yeast ER-to-

Golgi traffic several components have been implicated in

tethering COPII vesicles to their acceptor compartment

(Behnia et al., 2007; Cai et al., 2007; Sacher et al., 2001).

Thus, vesicle tethering appears to be a highly regulated

process. Additional studies will be needed to determine

how coats, tethers, Rabs, and SNAREs work together to

control the fidelity of membrane traffic. The finding that

a Rab exchange factor is recruited to vesicles by a coat

subunit (Cai et al., 2007) raises the intriguing possibility

that Rabs regulate vesicle uncoating.
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