
INFO~ra~t~IO~ A~D CO~2OL 1S, 378~400 (1968) 

A Class of Optimum Nonlinear Double-Error- 
Correcting Codes* 

FRANCO P. PREPARATA 

Coordinated Science Laboratory and Department of Electrical Engineering, 
University of Illinois at Urbana, Illinois 61801 

Nonlinear double-error-correcting block codes of length (2 ~ - 1) 
(n even) are presented in this paper. They have the largest possible 
number of code-words for their length and minimum distance and 
are formed by adjoining to a certain linear code (referred to as the 
"kernel") a specific subset of its cosets. The kernel results from the 
juxtaposition and superposition of Bose-Chaudhuri-Hocquenghem 
codes of length (2 ~-1 - 1). The presented codes are systematic and 
are comparable to the corresponding linear codes with regard to the 
complexity of the encoding and decoding operations. 

1. INTRODUCTION 

Some examples of nonlinear binary codes have been reported in the 
li terature over the past years (Vasil'ev, 1962; Nadler, 1962; Green, 
1966). Particularly interesting for its structure and generality was the 
class discovered by  Vasil'ev (1962), i.e., a class of perfect single-error- 
correcting group and nongroup codes containing the Hamming codes. 

Recently some interest in nonlinear codes has been revived by the 
discovery made by Nordstrom and Robinson (1967) of a (15, 8) non- 
linear double-error-correcting code, of which previously reported (12, 5) 
(Nadler, 1962) and (13, 6) (Green, 1966) nongroup codes were shortened 
versions. The (15, 8) code had the interesting features of being system- 
atic and of meeting the Johnson's upper bound (1962) on the number of 
code words in a code of length 15 and distance 5. Subsequently the 
(15, 8) code has been described in terms of polynomial (i.e., linear) 
codes over GF(2) (Preparata, 1968a): This description proved to be a 
useful framework, since it led to the formal demonstration (Preparata, 
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1968b) of the distance properties of the code, previously heuristically 
assessed. 

A question which was first asked by Nordstrom and Robinson (1967) 
was whether the (15, 8) code was a member of a class of codes. The 
purpose of this paper is to answer this question in the affirmative. Non- 
group double-error-correcting (2 ~ - 1, 2 ~ - 2n) codes exist for each 
even n >= 4, and contain the (15, 8) code as a special case. Here again 
the polynomial description has been the essential device in the construc- 
tion of these codes. 

The interesting features of these codes can be summarized as follows: 
1) They contain twice as mauy code words as the double-error-correcting 
BCH codes of the same length, which is the largest number of code words 
possible for given length and distance, i.e., they are optimal; 2) their 
decoding can be based on the calculation of syndrome-like quantites and 
its complexity is comparable to the corresponding BCH codes; 3) the 
codes are systematic and encoding can be accomplished very simply by 
shift-registers in as many time units as are required by the serial trans- 
mission of the information digits. 

The following seetions are devoted to the description of the codes and 
to the demonstration of the properties stated above. 

2. D E S C R I P T I O N  OF T H E  CODES 1 

In the sequel all polynomials considered belong to the algebra A~_I 
of polynomials over GF(2) modulo (x 2~-~-1 -k 1)(n > 4). Given 
a(x) C A~_I, W[a(x)] denotes the number of nonzero coefficients of 
a(x); given b(x) C An_l, d[a(x), b(x)] = W[a(x) + b(x)] is the Ham- 
ming distance between a(x) and b(x). By the symbol a(x) we shall also 
denote the row vector [a2,-1_~, a2~-~-a, "." , ao] where a(z) = ~ a y .  

Let {re(x)} be a single-error-correcting BCH code of length 2 ~-~ - 1, 
generated by gz(x), a primitive polynomial of degree (n - 1); that is, 
if by a we denote a primitive element of GF(2~-~), g1(a) = 0. Consider 
now the code {s(x)}, whose generator polynomial has roots a, a ~ and 1: 
clearly {s(x)} is a BCH code of minimum weight 6 (see Peterson (1961), 
p. 167) and {s(x)} c {re(x)}. Clearly {s(x)} exists only for 2 ~-1 - 1 > 
2(n - 1) + 1, i.e., forn > 4; whenn = 4, s(x)isidentically0. Finally 
by u(x) we denote the polynomial (x2~-~-~+l)/(x + 1). 

There is some overlap between this section and (Preparata, 1968b) since this 
work is a eoneeptuM and chronological generalization of the lat ter .  
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Given two polynomials a(x) and b(x), (a(x) E A,_~ , b(x) E A,-1) 
and a binary parameter i, we construct (2" -- 1)-component vectors 
over GF(2) of the form 

[a(x), i, b(x)]. 

Given re(x) E {re(x)}, s(x) E {s(x)} and arbitrary i, we now set 
a(x) = re(x) and b(x) = re(x) + (re(l)  + i )u(x)  + s(x). We obtain 

v = [re(x), i, re(x) --b (re(l)  q- i )u(x)  -b s(z)] (1) 

We claim that 

LEMMA 1. The vectors v given by (1) form a linear code ~,,. 

Proof. The statement follows immediately from the verification that 
C, is a group with respect to addition over GF(2).  In fact: i) C, contains 
the additive unity [0, 0, 0], obtained by setting in (1) re(x) = O, s(x) = 
0, i = 0; ii) ¢ ,  is closed with respect to addition, since both {re(x)} and 
{s(x)] are group codes. 

Q.E.D. 

LEMMA 2. The minimum distance between any two code words of ~,, is 
at least 6. 

Proof. Since C, is a linear code its minimum distance coincides with 
the minimum weight W of its nonzero code words, which we now deter- 
mine. Assume first that m(x) = O. If also i = 0, then W = W[s(x)] >= 6. 
I f i  = 1, thenW = 1 + W[u(x) + s(x)] _>- 1 + W[u(x)] - max W[s(x)] 
We know that W[u(x)] = 2 "-1 - 1 and that max W[s(x)] is 2 "-1 - 6 
for n > 4 or is 0 for n = 4 (since max W[s(x)] is the maximum even 
weight of code words of the double-error-correcting BCH code); hence 
W ~  1 + 2  " - I -  1 - 2  " - 1 + 6 - -  6. 

Assumenowthatm(x) ~ 0. If m(x) ~ {s(x)l, thenm*(x) = m*(x) + 
(re(l)  + i)u(x) + s(x) ~ 0 and m*(x) E {m(x)t. It; follows that 
W >= W[m(x)] + W[m*(z)] ~ 3 :~ 3 = 6, since both m(x) and m*(x) 
are nonzero and {re(x)} has minimum weight 3. If, alternatively, 
re(x) E {s(x)}, then Wire(x)] ~ 6 and W > Wire(x)] => 6. Q.E.D. 

The number of information bits of C, is readily obtained when one 
considers that the independently selectable m(x),  s(x) and i contribute 
(2 "-l - n), (2 "-1 -- 2n) and I information bits, respectively. Therefore 
~, is a (2" - I, 2 ~ - 3n + 1) linear code of minimum distance 6. 

Consider now the polynomial ~(x) = ($~-z-x + 1)/gi(x), i.e., a 
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min imum degree max imum length sequence of length (2 ~-~ - 1). We 
firs~ show tha t  

LEMMA 3. There exists an s(O <= s <= 2 '~-1 -- 2) such that ( x ~ ( x )  )2 = 
2~(x). 

Proof. We compute  the product  ~(x)~(x ) .  Since ¢(x)  is not divided 
by  gl(x),  ~ ( x )  is not zero; moreover,  ¢2(x) belongs to the code generated 
by  ¢(x) ,  i.e. 

J ( x )  = ~ ( x )  (2) 

for some r~ 0 -<_ r =< 2 ~-~ -- 2. I f  we mult iply (2) by x ~' we have x2~2(x) = 
x~+2~(x), i.e. ( x ~ ( x ) )  2 = x'~(x) .x ~+'. The lemma follows if x ~+' -~ 1, 
i.e., if r -t- s = 0 (rood 2 ~-~ - 1), or, equivalently, s = 2 ~-~ - 1 - r 
rood (2 ~'-~ - 1). Q.E.D. 

We define f ( x )  ~= x '~(x) .  
A polynomial q(x) = axi(a = O, 1 ; j  = 0, 1, . . -  , 2 ~-1 --  2) is clearly 

a minimum weight coset leader of Ira(x)} for a = 1. We now construct 
vectors u of the form 

u = [q(x), o, q(x)f(z)] .  (3) 

We have the following lemmas:  

LEMMZ~ 4. The polynomial q(x) + q (x ) f ( x )  belongs to lm(x)}.  

Proof. The assertion follows immediately from L e m m a  3, since 

f(x)lq(~) + q ( x ) f ( x ) }  = f(x)q(x) + f ( z ) q ( ~ )  = o 

i.e., q(x) -~ q (x ) f ( x ) ,  being orthogonal to f ( x ) ,  is divided by  g~(x). 
Q.E.D. 

LEMMA 5. The sum of two vectors ul and u2 of the form (3) admits of 
the representation (n > 4) 

u~ + u~ = v --b q + p (¢) 

with 
v = Ira'(x), 0, m'(x) + m'(1)u(x)] ,  m'(x) C [m(x)t i.e. v C e,, 

q = [q(x), o, q(x)l,  (a) 

p = [o , o, m"(x)  ], m"(x)  C {~ (x ) } .  (6) 
[ f  q(x)  = 0, then m' (x)  = 0 ; i f q ( x )  ~ O then either m' (x)  = O or 

m' ( x ) is a trinomial. 
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Proof. Let  us = [ql(x), 0, q~(x)f(x)] and u~ = [q2(x), 0, q2(x)f(x)]. We 
have 

u~ + u2 = [ql(x) + q:(x), O, (q~(x) + q2(x))f(x)]. (7) 

Let  q(x)f(x) = (ql(x) + q2(x))f(x) andre ' (x )  ~ ql(x) + q2(x) + q(x). 
Clearly, since (q(x) + ql(x) + q~(x))f(x) = O, m'(x) C {re(x)}. If 
q~(x) = q~(x), it follows that  q(x) = 0 and m' (x) = O. If  q~(x) ~ q2(x), 
either q(x) = q~(x)(i = 1, 2) or q1(x), q2(x), q(x) are nonzero and dis- 
t inct:  in the former case m'(x) = 0, in the latter mr(x) is a trinomial. 

This given we can write 

ql(x) + q:(x) = m'(x) + q(x) 

and rewrite (7) as 

ul + u2 = Ira'(x), O, m'(x) + m'(1)u(x)] + [q(x), O, q(x)] 

+ [0, 0, q(x) + q(x)f(x) + m'(x) + m'(1)u(x)]. 

I t  is now evident tha t  m'(x )  ~ (q(x) + q(x)f(x)) + m'(x) + 
m'(1)u(x) E {re(x)} since it is the sum of polynomials belonging to 
{re(x)}. Q.E.D. 

LnMMA 6. For any trinomial re(x) C {re(x)} 

, ~ ( ~ )  = J ' ( ~  + ~ )  

where s and h are integers modulo 2 ~-~ - 1, h # O. 

Proof. Let re(x) -- x ~ + x i + x i, with distinct s, i, j .  Then m (a  3) -- 
38 Or31 ~ a + + . Recalling that  re(a)  - d + a ~ + a ~ 0 we have 

= (~' + ~;)~ = a ~ + ~J + . W ( a  ~ + d )  

or equivalently m(a ~) = a'aYe* = as~oJ-'o/-~. But  d - "  = 1 + a ~-'" 
hence, letting i - s = h # 0, the assertion is proved. Q.E.D. 

Consider now the matrices: 

H i =  [~-~-~ , - - - , a , 1 ] ,  

V = [1 , " ' ,  1 , 1 ] ,  

The matrix H = [H~ r, H~ ~, ur ]  r is the pari ty check matrix of {s(x)} 
(the superscript T denotes " t ranspose") .  Given a polynomial h(x), we 
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define h(x )H r ~ [fll, .8~, c] as the characteristics of h(x).  For arbitrary 
~(x) ~ Is(z)} 

W[h(z) + s(x)] > W[k(x)] 

where k(x)  is a minimum weight member of the coset of {s(x)} to which 
h(x)  belongs. We now calculate the characteristics of some polynomials 
which we shall frequently use in the sequel: 

f 
q(x) = a s q(x)H r = [a ~, a ~', 1] 

re(x) ~ {~(x)} m(x).~/~ = [0, .~(J),  m(1)] (S) 

m~P(x) (see (6))  mfr(x)Hr -- [0, m'(a ~) ~- a ~', 1]. 

The first relation is straightforward. The second follows from re(a) = O, 
since re(x) ~ [re(x)}. To prove the last relation, recall that  m"(x) 
= q(x) + q(x) f (x)  -~ m'(1)u(x)  + m'(x) ,  and that:  q(x ) f (x )H r 
= [a ', 0, 0], since f ( x )  is divided by  the minimum function g~(x) of 

a 8 andby  (x -~ 1); m' (1 )u (x )H  r -- [0, 0, m'(1)],  since u(x)  is divided by 
g;(x) and the minimum function gl(x) of a. 

LEM~. 7. For m"(x)  = q(x) -~ q(x) f(x)  + m'(1 )u (x )  + m'(x),  and 
arbitrary s(x) C {s(x)}, 

m[m"(x) + q(x) + s(x)] > " l 4f°r e y e ~  n 

[2 for odd n. 

P~oof. The characteristics of (mt~(x) -~ q(x)) is [a ~, m'(aa), 0] (see 
(8) ) .  WimPS(x) + q(x) -~ s(x)] is the minimum number of columns of 
H which add to [a ~, m~(a3), 0] r. Since c = 0, this number is even. Let 
us assume that  there are two elements xl and x2 of GF(2  ~-~) which 
satisfy the equations 

Xl - ~  X2 = a s 

Xl ~ + X2 3 = m ' ( a ~ ) .  

Since a ° ~ 0 we make the substitution Yl = ( x l / d ) ,  y: = (x2/a'). After 
easy manipulations we recognize that  y~ and yz are the solutions of the 
single equation 

y~ + y ÷ 1 + m' (a~) /a  ~' = O. 

Since either m'(x)  = 0 or m'(x) is a trinomial (Lemma 5), Lemma 6 
yields rn'(a3)/a ~ = a h -~ a ~ (0 <= h <= 2"-1--2) and the previous 
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equation becomes 

(y-{-ah)  2-t- ( y +  h )  + 1 -- 0 

or, equivalently, letting y + a ~ -- z 

z 2 + z + l  = 0 .  (9) 

But solutions of (9) are primitive cube roots of unity,  whence (9) has 
solutions in GF(2 "-I) only for odd n. Q.E.D. 

We now construct (2" -- 1)-components vectors of the form 

w = Ira(x) + i, re(x) + q(x)f(x)  
(10) 

-~ (re( l )  ~- i)u(x) + s(x)] 

where re(x), q(x), i, s(x) are independently chosen and contribute 
(2 "-1 - n) ,  (n - 1), 1, (2 "-1 - 2 n )  information bits respectively, for a 
total of (2" - 2n) information bits. The vectors w form a (2"` -- 1, 
2" - 2n) code N'`: the generic vector w can be decomposed as 

w = v ~- u (11) 

where v and u are defined by relations (1) and (3), respectively. Let  
wl = v~ W ul and w~ = v2 -b u2 be two distinct code words of ;E~. Using 
relations (4) (Lemma 5) we have 

Wl "~- W2 = (Vl .9[- V2) "~ (Ul -~ US) = Vl ~- V2 "~ V "-~ q *-~ p 

or 

w l + w 2  = v ' + q ÷ p  (12) 

where v' ~ Vl -t- v~ + v. Clearly v' is an arbitrary member of C~, but  
q + p can be decomposed as 

q -{- p = [q(x), 0, q(x)f(x) + m'(x) "-b m'(1)u(x)] 

--- [q(x), 0, q(x)f(x)] -~ [0, 0, m~(z) ~- m'(1)u(x)] 

= u' -l- [0, 0, m'(x) + m'(1)u(x)]. 

When m'(x) ~ 0, we recall tha t  m'(x) ~ Is(x)} (Lemma 5), that  is 
[0, 0, m'(x) -~ m'(1)u(x)] $ ~_~: hence ~ .  is a nonlinear code. Further- 
more, in (11) each nonzero u identifies a coset of C , ,  since q(x) ~ 0 
identifies a coset of {re(x)}. Hence ~ can be seen as the set union of 
C. and of a subset of its cosets, whose cardinality is 2 "`-1 -- 1. 
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Let W denote the weight of (wl + w~). We can now prove the central 
result of this paper. 

THEOREM 1. For even n >= 4, ~ is a nonlinear (2 = -- 1, 2 ~ -- 2n) code 
of minimum distance 5. 

Proof. If q(x) = 0, wl -? w2 C c~ and, by Lemma 2, W => 6. Assume 
now tha t  q(x) = x ~ (0 -<_ s =< 2 '~-1 - 2). In general, W is given by 

W = i + Wire(x) + q(x)l 
(13) 

"4- Wire(x) -4- (re( l)  + i)u(x) -4- s(x) + m"(x) ~- q(z)]. 

Depending upon the values of re( l )  and i we distinguish three cases: 
1) re ( l )  = 0, i = 1. Relation (13) becomes 

w > 1 + Wire(x) + q(~)] + Win(z) + ~(x) + m"(x)l 

- W i r e ( x )  + q(z)] 
= 1 + Win(x) + s(x) + m"(z)l. 

From relations (8) and u(x)H r = [0, 0, 1], we obtain (u(x) + m" (x))H r 
= [fll, fls, c] = [0, m ' ( a  3) + a 3", 0]. But  by Lemma 5 and Lemma 6 
m ' (a  ~) = as~(a ~ -4- a2~),0 =< k _<-- 2 ~-x -- 2. Hence, m ' (a  S) + a 3' 
= an'(1 + a ~ A- ash) • 0 in GF(2~-~), n even: it  follows tha t  W[u(x) 
+ s(x) + m#(x)] ¢ 0. Furthermore, Win(x) + s(x) + m"(x)] is even 
and >3 ,  since e = 0 and fl~ = 0 (H~ is the parity check matrix of a 
single-error-correcting code). We conclude that  W > 1 + 4 = 5. 

2) m ( I )  = 0, i = 0. If re(x) ~ O, relation (13) yields 

W > Wire(x)] + Wire(x) + m"(x) + s(z)] - 2W[q(z)]. 

Relations (8) give (re(x) + m"(x) )H r = [/~1, fiB, c] = [0, m(a  ~) 
+ m'(a ~) + aS',l], that  is, Wire(x) + m"(x) + s(x)] is odd (c = 1) 
and => 3 (fix = 0). Furthermore, m (x) ¢ 0 and m (1) = 0 imply Wire (x) ] 
-> 4, whence W ~ 4 + 3 -- 2 = 5. If  re(x) = 0 relation (13) becomes 

W >= W[q(x)] + W[m"(x) + q(x) -t- s(x)]. 

From Lemma 7, we have that  W[m"(x) + q(x) + s(x)] > 4 for n even, 
w h e n c e W ~  1 + 4 = 5. 

3) re ( l )  = 1. In this case W[m(x) + q(x)] is even and -> 2. Assume 
at first tha t  W[m(x) + q(x)] = 2: this implies that  re(x) = x" + x ~ + x s 
(s, i, j distinct), whence by Lemma 6 m(a  a) = a~'(a h + a ~h) for some h, 
1 =< h =< 2 ~-~ -- 2. Relation (13) yields 

W = i + 2 + Wire(x) + (1 + i) u(x) + m"(z) + q(x) + s(x)]. 
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For simplicity we let k(x)  ~ m(x)  -~ (1 -~ i )u(x)  + m"(x)  ~- q(x) 
-k s(x).  With the help of relations (8) the characteristics of k(x) is 
readily obtained as 

k ( x ) / / ~  = ~el, ~ ,  c] = [~ ,  m ( ~  ~) + m (~), i]. 

Since m'(a  ~) = a3'(a k + a2~)(O <= ]c < 2 '~-~ - 2), it follows that  
m(a  8) + m' (a  8) = a3"(a T + a 2~) with r = h + ]~. Therefore, from 
Lemma 7, W[/~(x)] > 2 for even n, that  is, W[k(x)] > 4 - i (since i is 
the parity of W[k(x)]).  We conclude that  

W > = i + 2 + 4 - i = 6 .  

Finally assume that  Wire(x) + q(x)] > 4. Since ~1 = a*,,w e obtain 
W[k(x)]_-> 1, whenceW>_- i + 4 +  1 = i + 5 .  

Q.E.D. 
Note. I t  is interesting to consider the problem of extending the method 

employed for the construction of ~ to other values of the number of 
correctable errors, namely to t = 1 or to t > 2. 

Two distinct schemes appear to be candidates for successful generaliza- 
tions. Consider again relation (10) which describes the double-error- 
correcting ~;~, i.e., 

w = [re(x) + q(x), i, m(z )  + ( re( l )  + i )u(x)  + s(x) + q(x)f(x)],  

Here ~ is constructed in terms of two codes, i.e., {re(x)} and {s(x)}, 
with {s(x)} ~ {re(x)}. Specifically, if a is primitive in GF(2~-~), then 
{re(x)} is characterized by the root a, and {~(x)} by the roots 1, a, ~ .  
Therefore two potential generalizations for t-error-correction are: 

3 25--1 A. {re(x)} has root a, and is(x)} has roots 1, a, a ,  . . .  , a 
3 2t--3 B. {re(x)} has roots c~, c ~ , . - . , a  , and {s(x)} has roots 1, ~, 

3 2t--1 
0~, : ' "  ,OL 

For t = 1, both schemes are successful and generate the same codes, 
as can be easily shown. Specifically with scheme B, re(x) is the generic 
member of A~_I, and {8(x)} has (x ~- 1)gl(x) as its generator, which 
gives the code ~4~ (~) 

w~ = Ira(x), i, re(x) + (re(l) + i)u(x) + s(x)] .  (14)  

Surprisingly, N~(~) is a group code, as is apparent from (14). Moreover, 
it can be shown that  it coincides with a Vasil'ev code (1962). In fact 

(14) can be expressed as 

w~ = [re(x), i, ~ ( x )  + p (z ) ]  
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where 

p(x) = (,~(1) + i)u(z) + s(x). 

If  we now impose the condition tha t  p(x) belong to the code generated 
by  gi(x), this relation becomes an equation in the unknowns s(x)  and i, 
which can Mways be solved if 

i -- par i ty  Wire(x)] + par i ty  W[p(x)] 

thereby yielding a linear Vasil 'ev code (equivalent to a Hamming  code). 
For  t > 2, the question whether either of the two outlined schemes 

produces a viable generalization remains entirely open. 

3. THE FORM OF THE REDUNDANCY FUNCTIONS 

Consider the expression (10) of the generic vector of 5~, that is 

w = Ira(x) ~- q(x), i, re(x) -? ( re ( l )  -t- i ) u ( z )  ~- s(x) ~- q(x)f(x)]. 

I t  is easily seen tha t  5~, can be encoded as a systematic code, i.e., 
(2 ~ - 2n) binary information digits can be arbitrarily assigned in fixed 
positions and the remaining (2n - 1) redundant  digits can be computed 
as functions of the information digits. In  this section we investigate the 
nature  of these functions. For  convenience, we now represent w as 

r .(0) O) (0) w = [~n--t_2, , i~ i~ i, .(1) .(1) 
• " " ~ 2 " - - ~ - - 2 ,  " " " , ~ 2 ~ - - I  , p : ~ - - 2 ,  " " " , P l ,  p 0 ]  

where i 's and p 's  denote information and redundancy digits, respectively. 
Assume for a moment  tha t  s(x) = 0. Then the leftmost 2 ~-1 digits 

[i~L~_2, . . .  , i] completely determine the 2 ~-1 --  1 r ightmost  ones; we 
denote the  lat ter  ones by  [~.-~_~, • • • , ~0], and analyze their dependence 
upon the former set. Le t  

i(x) A ~ i}O)x j, q(x)f(x)  ~= c(x) = ~ cjx ~, f (x)  = ~-~f~x', 

~n(x) = ~ m f  

where all summations run f o r j  = 0, 1, • • • , 2 ~-~ --  2. I f  q(x) = 0, then 
c~ = 0 for every j .  I f  q(x) = x', then due to the unique proper ty  of the 
max imum length sequence (see Peterson (1961), p. 148), C~+bC,+b_l "'" 
C~+b--~+2 = 1 and c~.+b . "  c3"+b-~+9 = 0 for j ~ s, where b is such tha t  
fifb-1 " ' "  fb-~+2 = 1. We readily have 

q(x) = Y2 c j + ~ . . .  ~j+~_~+~J, ~ ;  = i}0) + c~+~...ci+~_~+~ 

and 

¢~ = i~ °) + c~+~ . . .  cj+~_~+~ + i + ~ ( d  °) + c~+~ . . .  c~+~_~+~) + c~ 
k 
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or, after regrouping the terms 

= { E + i + + { E (15) 
k ~ j  h~]-l-b 

We now recall that ,  since c(x) = q ( x ) f ( x )  = i ( x ) f ( x ) ,  cs = ~ f~-ki(k °) 
is a linear function of the variables i~0), i~0), . . .  , i~o) i_2. Specifically, 
s incef (x)  is a maximum length sequence, for distinct r and s there is a t 
such that  c, + c~ = c , .  If  gl(x) is a trinomial, for s = (r + n - 1), t 
satisfies the relations r < t < r + n - 1. Hence 

ChCh--1 " ' "  Oh--n+2 "~- Ch.-.lVh " ' "  Oh--n+1 

= c~1 " . .  c1~_~+2(c~ + cf~,~+~) = ch_~ . . .  ch-~+z. 

I t  follows that  in the last term of (15), which is the sum of 2 ~-~ -- 2 
products, each pair of consecutive products of (n - 1) factors is con- 
t racted into a single product of (n - 2) factors, for a total of 2 ~-~ - 1 
products. In  conclusion we obtain 

I 2n--1--2 t 2n--2--2 n--3 
~j = i + i}0) + E (1 + fj-k)i(k °) + E IIC]+~+~+~h-~ (16) 

~:=0 h=O s=O 

which shows that  ~i(i~°)-I_2, . . .  , i~ °), i) is the sum of a strictly linear 
function and of a nonlinear function of degree at  most (n - 2). As a 
check, for the (15, 8) code, n = 4, the latter function is quadratic. 

This given, let h~. be the generic entry of the pari ty check matrix 
H* of {s(x~'} in systematic form, i.e., the (2n - 1) rightmost columns of 
H* form the uni ty  matrix and the index j runs from right to left. Then 
the relations 

2n--I--2 
p, = ~ +  ~ h~j(i~ ~) + ~ - )  (i  = 0 ,1 ,  . . .  , 2n -- 2) (17) ~'=2n--I 

give the sought redundancy functions. 
Expressions (15) and (17) are suggestive of a very simple implementa- 

tion of encoding. In  fact, ~- is a cyclic function of its arguments. Hence 
it can be realized by a recircnlating nonlinear eonvolutional eneoder 
consisting of a cyclic shift register and of a combinational circuit realiz- 
ing ~ = q~2--~-2 (see Figure 1). The complete encoder consists of three 
shift-registers SR1, SR2, SR3 with 1, (2 ~-1 -- 1) and (2n -- 1) stages, 
respectively. The operation is organized in four phases G1, G~, G3, 
G4, whose durations are I, (2 "-~ - 1), (2 ~-~ - 2n) and (2n -- 1) time 
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Tr )ut 
1 

•e•Gz 

) ~ I n SR2 . . . .  ~ ~ 

~ ' ' A 

Gs G,~ 

-~ -) ---~ Output 

i l :Lq ( ~ _ . _ { .  SR5 I I 
(2n-l) Stoges ~ -3 

J 

Fro. 1. Encoder for the ~ code. 

units, respectively. The indicated gates are permissive when the applied 
signals are active. All registers are initially set to 0. The information 

40), io(o> :(1) .(1) digits are fed in the sequence i, ~2 . . . .  2 ,  , , , z 2 . - 1 ,  • • • ~ 2 n - ~ - 2  • • • one 
per time unit. Then during G1 the digit i is fed to SR1 and during G2 
• (o) ,i~ °) are fed to SR2 (while they are concurrently sent fo the ~ 2 n ~ * - - 2  , " • • 

output): both SR1 and SR2 are recireulating, as shown. During phase 
G~, ~ 4- iJ 1) appears at point A to be fed to SR3, which is a feedback 
shift register performing the division of a polynomial by (x Jr 1)gl(x)- 
g3(x) (see Peterson (1961), p. 149); then at the end of G~ SR3 contains 
the parity checks ~'~3 h~j(iJ 1~ + ~ ) .  During G4 the input is 0 and at 
point B the functions p~ are formed and fed to the output. Therefore 
the calculation of the redundant digits takes no longer th~n the serial 
transmission of the information digits. 

4. O P T I M A L I T Y  OF T H E  5C,~ CODES 

A code ~ is a (2" - 1, 2 ~ -- 2n) double-error-correcting code• It  
contains one information digit more than the corresponding linear code, 
i.e., the BCH double-error-correcting code of the same length (which is 
a (2"  - 1, 2" - 1 - 2 n )  code). 

In this section we prove a stronger statement, namely, that a ~ ,  code 
has the largest number of code words for its length and minimum dis- 
tance, since it meets the Johnson's bound A (N, d) (Johnson, 1962) for 
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N = 2 ~ - 1 (n even)  and d = 5. 2 I n  fac t  the  Johnson ' s  bound  for  
d = 2t -F 1 is g iven by  

2 N 
A ( N ,  d) < (18)  

j~0 N 11 

where  [a] is the  integral  p a r t  of a, and  R(N, d, t) satisfies the  uppe r  
bound  

]]] R(N, d, t )  < L d  L d  - i . . . . . .  " (19) 

W h e n  N = 2 ~ - 1 and  t -- 2, relat ions (18) and (19) specialize as 

A(2 ~ -  1, 5) < 
22n--1 

Consider  re la t ion  (21) .  For  even n,  (2 ~ - 4)  is d iv is ib le  by  3, hence 
[(2 ~ - 3 ) /3 ]  = (2 ~ - 4 ) /3 .  Mo reove r  (2 ~ - -  4) is d iv is ib le  b y  4. W e m u s t  
now show t h a t  (2 ~ - 1 ) ( 2  ~ - -  2 ) ( 2  ~-2 - 1) is d iv is ib le  by  5. Th i s  
follows immedia t e ly  f rom the  obse rva t ion  t h a t  the  residues modulo  5 of 
2 ~ (n  even)  a l t e rna te  as 1 and  4, i.e., the  residue of (2" - 1) a l t e rna te  
as 0 and  3: since (2 ~ - 1) (2 ~ - 2 )  (2 ~-~ - 1) conta ins  two consecut ive 
even powers  of 2, we have  

R ( 2  ~ - 1, 5, 2) _-< (2~ - 1)(2~ - 2)(2~ - 4)  
6O 

The  observa t ion  t h a t  A (2 ~ - 1, 5) (n even) is a power of 2 is or iginal ly  due 
to J .  P.  Robinson.  Pr io r  to this ,  t he  au thor  fo rmula ted  a conjecture ,  based  on 
r a t h e r  fuzzy geometric a rguments ,  t h a t  nonl inear  codes of l eng th  (2 ~ - 1) and  
d is tance  5, anMogous to the  (15, 8) code, existed only  for even n (pr iva te  com- 
munica t ions ,  Jan .  and M a r c h  1968). 
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f rom which we readi ly  ob ta in  for  even n 

1, 5,  2 )  

(22) 

We then  conclude t h a t  

(2" - i ) ( 2  ~ - 2 )  

=> 3 6 = 2 ~-i - 1. 
(2" --  1) 

22"-I = 22~-2" (n  even)  
A(2"  - 1, 5) =< 22~_ 1 _ 2,_1 + 1 + (2 "-1 --  1) 

which is exac t ly  the  n u m b e r  of code words  of 5%. Clear ly  for odd n, 
rat io  (22) i s s t r i c t l y l a r g e r t h a n  2 "-1 - 1, since [(2 ~ - 3) /8]  = (2" - 5) /3 :  
which also shows, f rom a different angle, the  unrea l izab iS ty  of ~ ,  codes 
for odd n. 

5. DECODING OF A ~ CODE 

I n  this  sect ion we show t h a t  decoding of a 3~ code can be easily 
accompl ished th rough  the  calculat ion and examina t ion  of syndrome- l ike  
quant i t ies .  

Wi th  the  vec to r  

e = [ e0 (x ) ,  e, o ( x ) ]  

we represen t  an  error  pa t t e rn ,  where  e¢(x) E A~_i and e is a b ina ry  
pa rame te r .  T h e  dis tance proper t ies  of 3% give the  following condit ion on 
e for correc tabi l i ty  

W[eo(x)] + W[el(x)] + e < 2. (23) 

I n  general  the  received vec to r  is r = [to(x), r, r i (x) ]  = w + e, wi th  
w E ~ • W e  now c o m p u t e  the  following funct ions:  

~o = r o ( x ) / / 1  T, 

~= r~(x)tgl ~, 
~= (to(x) + r~(x) )H~ ~, 
A= r + r i (z )U ~. 

Since ro(x) = m(x)  + q(x) -4- e~(x), and m(x )Hi  r = O, le t t ing q(x) 
= bx ~, we h a v e  z0 = ba ~ -4- eo(a).  Similar ly,  f rom r i (x)  = re(x) + 
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( r e ( l )  + i ) u ( x )  + q (x ) f ( x )  + s (x)  + el(x) and u(x)H1 r = O, 
s ( x ) H l  r = O, q(x) f (x )H1 r = ba" we obtain ~1 = ba* + el(~).  From 
ro(x) + rl(x)  = q(x) + q (x ) f ( x )  + s (x)  + eo(x) + el(x) + ( r e ( l )  + 
i ) u ( x ) ,  recalling that  s(x)H3 ~" = O, f (x )H~ r = O, u(x)H~ ~ = 0, we 05- 
rain ~ = ba 3" + el(a ~) + e0(as). Finally since W[q(x)f(x)] ,  W[s(x)], 
Wire(x)  + m(1 )u (x ) ]  are even, d = r + i + e l ( l )  = e + e1(1). This 
is summarized as follows: 

= b .  + 
= ban + e0(a3) + ex(as), (24)  

= e + ex(1). 

The quadruple X -- (¢o, ¢1, ~, d) is conventionally termed the syn- 
drome of r. 

We now give a 1emma which is based on rather well-known results of 
the theory of finite fields. 3 

LEMMA 8. The set ~) of all 0 E GF(2  "-1) for which y2 + Y + e = 0 
has solutions over GF(2  ~-I) is a vector space of dimension (n - 2), given 
by the even linear combinations of a normal basis 8, f12 84, " " ,  82~-2 
of GF(2"-~).  

Proof. I t  is well-known (see, e.g., Albert (1956) p. 121) tha t  there are 
bases of GF(2  "-~) consisting of complete sets of conjugates (normal 
basis): let ~, f12 . . . ,  ~ - ~  be one such set of linearly independent 
conjugates. Then every "y E GF(2  ~-1) is mfiquely expressible as 

3' = co/3 + c~f~ ~ + . . -  + c~_~ ~-~ (c~ ~ G F ( 2 ) ) .  

Since 

82~-x = 8, then 2 = c,-28 + cob 2 + " '"  + c~-3~ 2~-~ 

and 

GF(2)) (25) "v + "y = d08 + d182 + ' " +  ~-2~ 

with de = ci + e~'_1 (the subscripts are modulo n - 1): But  the right 
side of (25) is the generic element of O: assume then that  do, dl ,  • • • , 
d~_~ are given. We then have c~_~ = do + e0 = do + dl + Cl . . . . .  

3 The argument given here is substantially borrowed from Albert (1956). A very 
similar theorem was proved by Berlekamp et al. (1962, Thm. 1). A particularly 
illuminating reference is Berlekamp (1968), which also contains a generalization 
of the lemma (p. 166). Since the statement given here is particularly geared to 
subsequent considerations, lemma and proof are given in full. 
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do + " "  -l- d._2 -t- c,_2, i.e., 

do + dl + . . '  d~_~ = 0 

i.e., the number of nonzero dis  is even. Q.E.D. 

This lemma provides a rule for testing whether 3' E G F ( 2  ~-~) is a 
member of O. In fact, we must first find a normal basis f~, ¢t ~, • • • , f12--~ 
of GF(2"-I) ,  (see, e.g., Berlekamp (1968), pp. 253-254). Let 7 denote 
the column vector representation over GF(2) of ~ E GF(2 ~-1) with 

,.~2n -- 21 
respect to the basis 1, a, • • • , a ~-~, and let M ~ [~, • • • , p j, a non- 
singular (n - 1) X (n - 1) matrix. Then ~- is related to the repre- 
sentation [do, . . .  , d~_~] of ~ with respect to the basis ~,f~2, . . .  , g2n-2 
by 

y -- M [do, . . .  , d,_~] r 

i.e., M-1y = [do, . - . ,  d~-:] r. Premultiplying both sides by the row 
vector u = [1, 1, . . .  , 1] we have the condition 

{: u . [ d ~ , . . ,  d~_2]r = if ~ E ® 

' if ~ , ~ 0  

which, denoting by ~T the row sum of M -~, is translated into 

(~ if ~,E 0 (26) 

~r~¢ = if ~,~ O. 

The following lemma provides some insight into the distance rela- 
tionship between the generic vector r and the members w of N . .  

LEMMA 9. Given any vector r = [rG(x), r, rl(x)] there exists a w E ~ 
such that r Jr w = [0, e, e(x)] with W[e(x)] <- 3. 

Proof. Let {t(x)} be the double-error-correcting BCH code gen- 
erated by gl(x)ga(x). We decompose ro(x) as to(x) = mo(x) ~- qo(x) 
and form rl*(x) = rl(x) -}- too(x) -~ (m0(1) -t- r)u(x)  -b qo(x)f(x). 
Next rl*(x) is decomposed as rl*(x) = t(x)  + e(x),where t (x)  E {t(x)} 
and e(x) is a minimum weight eoset leader of {t(x)l : it is known (Goren- 
stein, et al. (1960)) that  W[e(x)] =< 3. I t  is also of immediate verifica- 
tion that  ( t(x)  + t (1 )u (x ) )  C {s(x)}. We then form the code word 

w = [too(x) ~- qo(x), r - b  t(1), mo(x) + (mo(1) 

-J- r -]- t (1 ) )u (x )  + qo(x)f(x) "Jr t(x) + t(1)u(x)]  

= [ t o ( x ) ,  r n L t (1 ) ,  r l ( x )  + e (x ) ]  

Letting t(1) = e, r 4- w = [0, e, e(x)]. Q.E.D. 
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Hereafter the subscript j of ~j- or e~(x) is to be considered modulo 2. 
3 We define p ~ + (~0 = + ¢~) and prove the •following basic Lemma. 

LEMMA 10. The conditions p -b ~ = 0 (j  = 0 and 1), d = 0 hold 
i f  and only i f  r E ~ ,  i.e., they 

Proof. From Lemm~ 9, we 
tha t  the discrepancy between 

characterize the code ~ . 

can assume without loss of  generality 
r and some w E ~ be of the form 

[0, e, e(x)], W[e(x)] =< 3. Then relations (24) become 

fro ~'~ boL~ 

+ e(J), 
e + e ( 1 ) .  

The direct statement follows immediately by setting e(x) = O, e = 0 
in (27). To prove the converse, assume that  p W a.3 = 0 (j  = 0, 1). 
This implies z0 ~ = ~3, and, due to the uniqueness of the cubic root in 
GF(2~-I),  n even, ~¢ ~1. From (27) it follows that  e(a) = 0. We 
then have: p + ~i ~ ~ -~ ~ = e(a 3) = 0. Since [H1 r, H3 r] is the parity 
check matrix of a double-error-correcting code, and W[e (x)] ~ 3 (Lemma 
9), from e(a) = e(a 3) -- 0 we conclude that  e(x) = O. Finally d = 0 
yields e = e(1) = 0. Q.E.D. 

We readily recognize tha tp  q- z~ .3 = 0 (j  = 0, 1), d = 0 are equivalent 
to 

8 a (28)  • (r0 ---- o'I ~ o" ~ o" 0 ~ o ' 1 ,  d ~ 0 

which characterize the code. 
Following is a sequence of three theorems (2.1, 2.2 and 2.3) which 

establish a correspondence between sets of syndromes and sets of cor- 
rectable error configurations. The statements and the relative proofs 
follo)v a n  almost identical pattern. The necessary condition (" i f")  
is demonstrated by showing through relations (24) that  ~n error con- 
figuration of the prescribed type produces a syndrome of the prescribed 
type. The converse ("only if") is demonstrated as follows: we form a 
"correction" vector c = [c0(x), c, cl(x)] which is ~ function of the 
syndrome ~ alone and such that  c ~- W[c0(x)] -~ W[el(x)] 5 2; then 
we show that  r ~ c ~ ~:~, since the syndrome %* ~ (a0*, al*, a*, d*) 
calculated for (r ~- c), that  is 

= o- -t- co(a ~) + c1(a3), (29) 
• ~ d *  = d + c ' +  c~(1) 
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satisfies the  condit ions of L e m m a  10 (or, equivalent ly ,  ( 2 8 ) ) ;  finally, 
due to the  dis tance proper t ies  of N ~ ,  we eonclude t h a t  e = c is the  only 
correctable  error  conf igurat ion which could h a v e  p roduced  r. Clear ly  
each of these  theorems  also yields a decoding rule, embodied  b y  the  
calcula t ion of the  vec to r  c f rom $. Af te r  this in t roduc t ion  the  proof  of 
each t heo rem will be  s imply  sketched.  

THEOt~M 2.1. For correctable e the condition p + oj 3 = 0 is verified for 
exactly one value of j = 0, 1 i f  and only i f  W[e~(x)] + W[el(x)]  = 1. 

Proof. " I f " :  e j (x )  = x ~, ej+l(x) = 0 give o~ = ba ~ + a ~, o~+1 = ba ~, 
ba 3~ a 3~, bo~ ~. o = + whence p = T h e n  0 + oi÷1 = 0 and  

p + oi" = a3k[(ba"-k) ' + ba ~-k + 1] # 0 

since z 2 + z + 1 # 0 for any  va lue  of z E G F ( 2 ~ - I ) ,  n even. 
3 h "Only  i f " :  I f  p + o~ .3 ¢ 0, p + oj+1 = 0, we calculate  ~0 + ol = a ; 

t hen  we set  e~(x) = x h, ci+l(x) = O, c = d + ct(1) and  c o m p u t e  N*, i.e., 

* a h o*+i d* o j  = a~" + = o i + 1  = , = 0 ,  

, o ah , 8  = o +  = ~ + ( o 0 + o l )  3 = p = o j +  1 = 0-3.+ 1 

i.e., (28) are satisfied wi th  c + W[co(x)] + W[cl(x)]  < 2. Q .E .D.  

T h e o r e m  2.1 yields the  following decoding rule: 
Rule 1. I f  ~ p  = z3,  ~ p ~ o ~ ' + l , t h e n e j + l ( x )  = x h a n d e  = d + 

c1(1) where  a h = or0 + o l .  

TI-I~OREM 2.2. For correctable e the conditions p + o5 3 # 0 ( j  = O, 1), 
d = 1 hold i f  and only i r e  = 0 and W[ej (x )]  = 1 ( j  = O, 1). 

Proof. " i f " :  e j ( x )  = x kJ, e = 0 g i v e o j - =  b d + a  k;, o = ba 3~ + a 3kj 
+ a ~ki*~, d = 1, whence  p = bo[ ~ + akJa~i+~(a ~ + a~+~).  W e  t h e n  have  

aa~j F(o'~+~2 o~+~+ 1 1 # 0  
o + 0-2 = Lk-~V/  + o~: 

in GF(2"-~), n even. 
"Only  i f" .  I f  d = 1, p + o~ .3 # 0 ( j  = 0, 1) we calculate  o' ~ = 0 +  

o0o~(z0 + o~) and ob ta in  ~i+~ + ~ / ~  = a ~;. T h e n  we set  c = [x ~°, 0, x ~'] 
and  c o m p u t e  ~*, i.e., 

o~ = o ; + a  ~ = o ; + o ; ~ +  9/~=o*+~ 
* ~ Ski  o = o + , ~  + ~ ÷ ~ = o + ( o i + 1 +  ~ / ~ ) ~ + ( o ~ +  ~)~ 

= (0 + ,,~.o-~.+~(oj+~ + ~j) + p') + (0¢ + oj+~ + ~ ) ~  = ,~*~ 
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since ~ + ~.~.+~(~.+~ + ~.) = p'. Finally d* = d + C1(1) -~ 0. Re- 
lations (28) are satisfied with c + W[co(x)] + W[c~(x)] = 2. Q.E.D. 

We have therefore the following decoding rule: 
Rule 2. If ~Yp ~ ~o, ~Yp ~ ~ ,  d = 1, thenc  = 0 and c~(x) = x ~, 

where ~ = ~+~ + ~Y~ + ¢o~(~o -t- e~). 
Before giving Theorem 2.3, we notice that  subject to (~o + ~1) ~ 0 

the functions rj  ~ (p + ~'~)/(~o + ~)~(j  = 0, 1) are related by 

T~" -I- Tj+~ -I- ~0 Cr~ -t- 1 = O. 
(o'o + 

Expressing these elements of GF(2 ~-1) as column vectors with respect 
to the basis 1, a, - . .  , a~-~ and premultiplying by :~r (see (26)) we have 

since ~r .1  - I and (~o~1)/(~o + ~1) 2 C (~ (in fact ~o/(~o -t- ~1) solves 
the equation y~ + y + [~o~1/(~0 + ~1) 2] = 0). This proves the following 
lemma. 

L E M ~  11. I f  (~o -~ ~ )  ~ O, then exactly one of the two functions 
r i ,  r j+l belongs to O. 

THEOREM 2.3. For correctable e the conditions p + ~ /  ~ 0 ( j  = O, 1), 
d = O, (~o + ~1) ~ O h o l d i f a n d o n l y i f e i ( x )  = O, W[cj+l(x)] = 2, 
e = 0 .  

Proof. " I f " :  e = O, e~(x) = 0, e~+l(x) = x ~l + x k~ give ~s = bc~', 
aj+l = ba ~ + e~+l(a), ~ = ba 3" + e~+~(a~), whence (e~+~(a) ~ O) 

+ + ) 

I p ~ .  ~ ~ ~ 0"3"+ 1 = Cj+I(O/) + C3"q_1(~ ) "3[- C i.]-I(O~) 1 + ~" + ( ~ ~ ]  
3" 

Recalling tha t  e~+~(a) + e~+~(a ~) =- a~la~(a ~ + o~ ~ )  and letting 
~, ~ a~'/a ~ ~ 0, y ~ ¢~'/ei+~(c~) we have p + ¢~ - a ~ ' ( 1  -b "~) ~ 0 

since ~/ ~ !(k! ~ ks), and 

~ o-t- ~'+~ :-- ~ ( 1  n t- ~)~ y~ -t- y -t- 1 -t- ~ 1  -t- ~'i ~ 0 

since 1 ~ 0 and ~,/(1 + ~,~) ~ 0 imply: 1 Jr ~ / (1  -b ~'~) ~ O. More- 
over, d -- 0 and ~ro -t- ~rl = e~.+~(a) ¢ O. 

"Only if": If  d = O, p -t- ~'~ ~ 0 (j  -- O, 1), (~o -t- ~)  ~ 0 we obtain 



NONLINEAR DOUBLE-ERROR-CORRECTING CODES 397 

~1/(~0 -I- ~1) and ak2/(¢c -k ~1) as the solutions of 

-~ {rj 3 
y2 -I- y -I- (~i -~ ~1) 3 - 0 (30) 

( that  (30) has solutions over GF(2 ~-1) for exactly one value of j is 
guaranteed by Lemma 11). Set c~+l(x) = x kl -}- :~k~, Cj(X) = O, c -- 0 
and compute Z*, i.e., 

d* = d .-}- e1(1) = 0, 

, Oj ~1 -~- 0/k2 
~ + i  -- ~'+i -}- (~j -k ~j+1) --- ~ = ~J*, 

a~kl OL~k2 , + 
= ~ + "(~0 + ~1)' (~o + ~1) ~ 

-- ~ -F (~o -t- al) a 1 -F (00 + al) 2 a0 -1- 0"1 2' 

( P + ~ J ~  = ~2 ,3 
= ~ + (00 + .1)~ ~ + '(00 + - , ) V  = ~j 

since (a  k~ Jr ak~) / (ao  -k al) = 1 and a~lak~/(o'o "-{- al)  ~ = (p -[- a~3)/ 
(00 -t- a,) 3, being the sum and the product of the solutions of 
(30), respectively. Relations (28) are satisfied with c -F Wick(x)] -F 
W[Cl(X)] = 2. Q.E.D. 

This yields the following decoding rule: 
R u l e  3. If ~ 'p  ~ 00, ~/p ~ z l ,  d = 0, z0 -k ~1 ¢ 0, t h e n s e t c  = 0, 

c~(x)  -- 0 and c~+~(x) = x ~ .-]- x ~2, where a ~ and a ~ are the solutions 
o~ z '~ + (~o + ~ ) z  + (~ + (~})1(~o + .1) = o. 

Rules 1, 2, 3 constitute an algorithm which encompasses the cor- 
rection of all the correctable error patterns. What  is the behavior of this 
algorithm when the received r is at distance -> 3 from any w ~ ~ ? 
The answer to this question is implicitly provided by the previous three 
theorems, which give necessary and sufficient conditions for the exist- 
ence of a code word within distance 2 from the received word r. Therefore 
r lies at  distance => 3 from any code word if and only if p -t- ~ ~ 0 
( j  -- 0, 1) (Theorem 2.1), d = 0 (Theorem 2.2) and ~r0 -1- a, = 0 (Theo- 
rem 2.3). When ~ satisfies these conditions, clearly we can no longer 
perform the correction. In  fact, while the distance properties of ~ .  
guaran¢ee tha t  an existing correction vector c of weight -<_2 is, also 
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unique, more than one c of weight 3 can be constructed when Rules 1, 
2 and 3 are inapplicable. This is shown by the following argument. 
Assume that  the conditions x~/p =~ ~ ( j  = 0, 1), d = 0, ~o = ~1 hold 
for r. We determine a h such that  (1 + (~ + ~Q3)/a3h) E O: there are 
2 ~-2 va lues  of h which meet this requirement, since a 8 generates the 
multiplicative group of GF(2  ~-1) and, for fixed (z + z]), (1 -t- (~ + 
cro~)/a ~h) spans the set {0, a, a2, . . .  , a ~-~} which contains O for 
even n (Lemma 8). We then  form a correction vector c as follows: 
c = O, co(x)  x h, c~(x) 21 d- x k~, where a ~' = = = o-o -}- z ~ a  ~ ( i  = 1 ,  2 )  

and z~, z2 are the solutions of 

z ~ d- z d- 1 -t- o" ÷ (To 8 - -  - -  O° 0~8 h 

We notice that  a ~ + a ~* = (zl  % z2)a ~ = o~ h since z~ + z~ -- 1. Recalling 
tha t  ~0 = ~, ,  the syndrome ~* yields (see (29)) 

oth 
(xSh O/Ski O/~k2 a = o" - { -  . -}- -~- = o" - { -  aklak~(aki Jr- a k2) 

h $3 
= ~ + ~h(~o + z l a ) ( ~ o  + z2~ ~) = (~o + h ) a  = ~ o ,  

= e + e l ( 1 ) =  o 

iie., r + c E ~ .  This discussion proves tha t  there are several ~ code 
words :at distance 3 from r (but  none at distance < 3 )  and yields the 
following error detection rule: 

Rule  4. I f  ~/p ~ a0, ~/p ~ ~ , d  = 0, a0-b a~ = 0, t h e n t h e r e -  
ceived r is at distance => 3 from any code word. 

An " e x t r a  bonus" of the same discussion is tha t  given ~ny r there are 
code words at  distance -<_3 from r: this property is ~nalogous to the one 
found by  Gorenstein et al. (1960) for BCH double-error-correcting 
codes .  : 

In  Figure 2 we sketch a possible organization of a decoder for a ~ ,  
code. The serially received message is stored in three rccirculating 
registers SlZl, SR2, SR3, corresponding to the homologous registers of 
Figure 1. The received message is also fed to the S~VDI~O~m COMPUTER, 
which, once reception is completed, stores the functions d, a, a0, ¢~, 
i.e., the syndrome Z. These functions constitute the inpu£s of combi- 
national networks, which we now describe (in the illustration: heavy 

A n o t h e r  w e i g h t  3 c o r r e c t i o n  Vector  is o b t a i n e d  t h r o u g h  Rul:e 2, i .e. ,  c = 
[a ~, 1, a ~] whe re  a~ = ~0 -b ~ = ¢~ -{- ~ .  
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FIG. 2. Decoder for the  ~ code. 

lines denote bundles of (n -- 1) binary lines). The AUXILIARY ~rNCTmNS 
CO~PTJTER produces p + ~03, p + ~18, ~0 + ~1, ~, + ~/~ + ~o¢1(~o + ~0 
ands1 + ~ / ~ +  ~0~1(~0+ ~1). Of these, p + ~o 3, p + ~18, ~o + ~I, 
together with d, are fed to the CONTROL ~IT ,  which determines which 
decoding rule must be applied. In parallel, p + ao ~, p + as, ao-k ,a~ 
are fed to the QVADRATIC ~QVATION SOLVER, where r0 = (p + a03)/ 
(ao + ~1) 3 and rl = (p + ~1~)/(~0 + ~)~ are computed and tested for 
membership in @. If rj ~ @, Trj  and (1 + Try.) are the solutions of the 
equation y~ + y + r~ = 0, where T is an appropriate Square matrix 
(see, e.g., :Berlekamp et al., (1967)); Tr~ and (1 + Try.) are then 
multiplied in GF(2 ~-~) by (a0 + a~) in order to obtain the solutions 
a ~ and a ~ of z ~ + (~  + ~l)Z + (p + ~2)/(~o + ~ )  = 0 (see Rule 3): 
Since W[Co(X)] + Wick(x)] -< 2, at most two correction bits must be 
produced. ' This is accomplished as follows: 1) a0 + a~, ao + 
~/~ + ~0~(~0 + ¢0, ~ + ~/~ + ~o~(~0 + aO, ~ ,  ~ are fed ~o the 

SWlTCHINO NE~WOm~ 1: here signals from the control unit govern the 
selection of two correction functions "r~, "Y~ in the form of the vector 
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representations of two elements of GF(2~- I ) ;  2) the combinational 
circuit INVERT computes the inverse of ~,j -- h~. (if -yj = 0, the output  
of INVERT is conventionally 0) and -h~. is loaded in the Galois field 
counter C~. I t  must  be noticed that ,  assuming no delay in the com- 
binational elements, loading of Ci with a-hJ(j = 1, 2) occurs simul- 
taneously with the production of d, ~, g0, ~ • At  this point the contents 
of SR2 and SR3 are recirculated synchronously with the stepping of 
C: and C2 : once the condition 10 . . .  0 is detected in Cj a t ime unit  
durat ion signal is generated by  D and routed through the SWITCHING 
NETWORK 2 to perform the required correction of the contents of the 
registers. The  decoding operation therefore terminates  (2 ~-: --  1) 
t ime units after the serial reception of the message is completed. 

This  completes the presentat ion of the decoding procedure. 
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