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Abstract 

Non Destructive Evaluation (NDE) techniques are widely used in several industries in order to control product quality or to 
ensure the integrity of a part. A wide variety of methods exist. They involve the application of a suitable form of energy to the 
specimen under test. One of these forms of energy can be electromagnetic and the most used imply the measurement of a 
magnetic field. 

This presentation starts with a survey of today’s magnetic field sensing elements. Then, it overlooks the electromagnetic methods 
used for inspecting materials involving magnetic field measurements. Among these methods are magnetic flux leakage (MFL) 
and eddy current testing (ECT). Some considerations on different excitation forms like sinusoidal, multi-harmonic, pulsed or 
transient or even velocity induced are untaken. 

The presentation concludes with an analysis of the advantages and drawbacks of each class of magnetic sensing technology when 
applied to an electromagnetic method involving magnetic field measurement. The approach of this presentation follows some of 
the recent developments in the magnetic sensors technology and studies the present and future impact of the improvements in the 
nondestructive evaluation methods.  
 
© 2014 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the Indira Gandhi Centre for Atomic Research. 
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1. Introduction 
 

 Non Destructive Evaluation (NDE) methods have a wide field of application in manufacturing, power, 
construction and maintenance industries. These methods are used during product development, during 
manufacturing and to inspect the final product. Additionally they also permit products to be inspected throughout 
their lifetime in order to determine when to repair or replace a particular part. Thus, in a developed society faced 

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the Indira Gandhi Centre for Atomic Research

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2014.11.054&domain=pdf


407 Helena G. Ramos and A. Lopes Ribeiro  /  Procedia Engineering   86  ( 2014 )  406 – 419 

with aging infrastructures, aging airline fleet, aging petrochemical or nuclear power plants and where a throng of 
other industries try to use their equipment beyond its designed lifetime NDE offers a margin of safety [1]. 

 The increasingly importance of nondestructive evaluation endorses basic and advanced research 
development and drives technological progress. In the last two decades, some significant progress has been achieved 
not only in the technological development of sensors and on the design of probes but also on the testing of new 
types of excitation modes. 

 The objective of this paper is to present a comprehensive assessment of the capabilities and developments 
brought by some recent magnetic sensors or new probe designs and to discuss the development of new NDE 
techniques with enhanced capabilities, lower cost and ease of use.  

 Although there are several nondestructive techniques, this paper deals specifically with electrical and 
magnetic methods of testing materials. These methods include eddy current testing (ECT) [2, 3] methods, where 
induced eddy currents are produced in the specimen under test and the resulting magnetic field is measured and 
magnetic flux leakage (MFL) [3] methods, where a magnetic field is applied to the specimen under test and any 
resulting change of the magnetic flux is observed. Both techniques require sensors either active or passive to detect 
or measure a magnetic field. The magnetic particle inspection (MI) method will not be considered within this survey 
as magnetic particles are the only sensors that don’t require electronic signal processing. As used at present, within 
this method magnetic particles just line up in the directions of the magnetic flux indicating flux diversions occurring 
at a discontinuity of magnetic permeability caused by surface or near surface flaws and a properly quantified mean 
of assessing flux leakage is not provided [3]. 

 The paper begins with a survey of the magnetic sensors currently used the area of non-destructive 
evaluation [4, 5]. There are many types of magnetic sensors based on different technologies. Traditional inductive 
eddy current probes based on excitation/detection coils as well as magnetic field transducers are analyzed. Different 
eddy current inductive probe configuration and design are described. For instance, probes with the same coil or coils 
to generate eddy currents and to determine the resulting magnetic field (reflection probe) or probes with separate 
function coils with detection coils that can be absolute or differential are presented. In the magnetic detection 
elements, superconducting quantum interference devices (SQUID), fluxgates, Hall sensors, anisotropic or giant 
magnetoresistors (AMR and GMR) shall be reported. A comparison of the performances of different sensors is 
carried out. Some are very sensitive, able to measure magnetic fields or magnetic field gradients in the region of 
interest, some are tiny allowing a good spatial resolution, some present a large bandwidth from DC to the MHz 
zone.  

 The paper is divided into sections. Besides this Introduction and a review of some magnetic sensors 
specifications at Section 2, Section 3 presents briefly the methods that require the use of magnetic sensors, namely 
eddy current testing and magnetic flux leakage. Section 4 analysis the performance and limitations of competing 
technologies based on the work that is being developed by the authors and Section 5 relates the relevance of each 
type of sensor with a method and outlines some conclusions. 

2. Magnetic Sensors 

 There are several magnetic sensors capable of determining values of magnetic flux density. Some of the 
most mentioned in the literature of non-destructive testing are SQUIDS, fluxgates, Hall probes, magnetoresistive 
sensors and sensing coils [4, 5]. Sensing coils are used to access the electromotive force (e.m.f.) due to time varying 
magnetic fields and the other magnetic field sensors measure the magnetic flux density directly. Table 1 summarizes 
the specifications of the magnetic sensors that the text that follows surveys. 
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Table1. Magnetic sensor technology  

 
 
2.1 SQUID 
 
 The most sensitive low field sensor is the superconductivity quantum interference device (SQUID). 
Developed about 1962, its operation is based on two effects: the Josephson junction and the flux quantization. 
SQUIDs give a measure of the magnetic flux across the pick-up coil section or can have a more complex 
configuration with two pick-up coils wound in opposite direction, functioning as a magnetic gradiometer [6]. 
Advantages of SQUID systems for NDE include high sensitivity (≈10-100 fT Hz-1/2), wide bandwidth (from DC to 
10 kHz) and broad dynamic range (>80 dB). Although the extensive research done in the past two decades in the 
context of NDE in areas like flaw characterization, analysis of the magnetic properties of materials and corrosion, 
cooling is still a barrier to the acceptance of the method. The development of high temperature superconductivity 
(HTS) materials in SQUIDs will certainly increase the number of applications but due to their unavoidable higher 
cost and handling convenience, SQUIDs will always be used only when other NDE sensors fail to ensure the 
required performance [6,7].  

2.2 Fluxgate 

 Another magnetic sensor that can provide field sensitivities in the range of a few tens of nano Tesla is 
fluxgate [8]. Fluxgate sensors measure the absolute strength of a surrounding magnetic field. In the most common 
type, the measuring principle is based on the “second harmonic principle”. The sensor incorporates two coils, a 
primary and a secondary, wrapped around a common high-permeability ferromagnetic core. A current in the primary 
coil produces a field which periodically saturates (in both directions) the probe coil. If an external magnetic field is 
applied to the sensor, the symmetry of the cycling saturation is disturbed and a second harmonic amplitude of the 
reference signal corresponding to the external field strength appears. Fluxgate sensors have a field sensitivity up to 
10 pT/√Hz in the range [10-10; 10-3] T, a frequency bandwidth from DC to 1 kHz and a dynamic range of more than 
140 dB. As depicted in Table 1 fluxgate sensors present some advantages for nondestructive testing when compared 
with other magnetic sensors, however these devices tend to be bulky and not so rugged as smaller more integrated 
sensor technologies [8-10]. 
 
2.3 Hall Sensor 
 
 Hall sensor is a slab of a semiconductor material and its operation is based on Hall effect. When a current is 
applied from one end of the slab material to the other charge carriers begin to flow. If at the same time an external 
magnetic field, B, is applied to the slab, the current carriers are deflected by Lorentz force and give rise to an output 
voltage proportional to B. The effect occurs either with direct or alternating fields and the voltage across the two 
parallel faces varies at the same frequency as B, provided the current is DC [11, 12]. Flux density can be measure 
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from 100 nT with a resolution better that 1 nT. The active areas are as small as (0.1×0.025).10-3 m. The sensitive 
layer of the device lays parallel to the surface of the testing sample and measures the magnetic field in a direction 
perpendicular to the surface. 
 
2.4 Anisotropic Magnetoresistance 
 
 The dependence of the change of electrical resistance of a material on the angle between the direction of 
electric current and direction of magnetization, known as anisotropic magnetoresistance (AMR), was first observed 
by William Thomson (Lord Kelvin) in 1851. It was only 100 years later that thin films technology made possible the 
manufacture of practical sensors exhibiting a sufficiently large magnetoresistive effect to be used in measurements 
[13-17]. AMR have a sensitivity 1 mG to 6 G, a frequency bandwidth from DC to 5 MHz and a dynamic range of 
120 dB. They have a limited magnetic field range meaning that their saturation field is quite low. These solid state 
magnetic sensors can be one, two and three-axis.  

 
2.5 Giant Magnetoresistance 
 
 Giant magnetoresistors (GMR) are devices based on the giant magnetoresistivity phenomenon reported for 
the first time in 1988. The best use of GMR for magnetic field sensors is with a Wheatstone bridge configuration as 
depicted in Fig. 1(a) [14, 18-19]. Four giant magneto-resistors are connected in a bridge configuration, with two of 
them magnetically shielded. 

(a) (b) 

Fig. 1 (a) GMR bridge sensor AA002-02; (b) Output characteristic for a supply voltage of 5 V. 

 Fig. 1(b) represents the sensor output voltage as a function of the magnetic flux density. The typical V-
shaped characteristic determines the necessity of a DC bias that can be obtained with a magnet or with a DC current 
[19-21]. In the linear regions the AA002-02 sensor presents a sensitivity around 4 mV/V-Oe. This sensitivity 
corresponds in S.I. units to the characteristic in Fig. 1(b) for a DC supply voltage of 5 V.  

 GMRs have a limited field resolution as depicted in Table 1. Nevertheless, they present advantages that 
make them robust probes in industrial noisy environments. For instance, they are insensitive to magnetic fields 
perpendicular to their direction of sensitivity and their sensor characteristic will not be disturbed if they are subject 
to strong magnetic fields.  

 
2.6 Pick-up Coil 
 
 Coils can be used as detectors by measuring the values of the magnetic flux density across the coil section. 
Faraday induction law states that the voltage induced in a coil is proportional to the changing magnetic field across 
it. Their sensitivity depends on the number of turns, section diameter and permeability of the core. Advantages of 
pick-up coils are their robustness (provided they are properly encapsulated), ease of manufacture, shape and size to 
suit the inspection task. When compared with semiconductor magnetic sensors they are larger and thus particularly 
suitable for scanning surface areas. Because search coils work only with a varying magnetic fields pick-up coils 
show decreasing sensitivity at lower frequencies, nevertheless one gets comparable performance under same 
working conditions [15, 16] 
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(a) (b) 

Fig. 2 (a) Commercial ECT probes; (b) Inductive probes projected and built at our laboratory. 
 

3. Methods 
 
 Magnetic sensors can be used in two methods to determine the magnetic flux density that informs about the 
cracks and other defects of the inspected materials. These magnetic methods are Eddy Current Testing (ECT) and 
Magnetic Flux Leakage (MFL). In both of them a magnetic field is applied to the object under test and any resulting 
changes in the magnetic flux density in the region of interest are observed. 
 
3.1 Eddy Current Testing 
 

 Eddy current testing (ECT) are currently applied in nondestructive evaluation of metallic materials [1-3, 
22-24]. They are widely used to detect, localize and characterize flaws and other defects in those materials. They are 
especially useful when the objects under test are only accessed from one external surface. Advantages of eddy 
current testing (ECT) techniques include rapid inspection speed and high sensitivity for surface flaws, whereas as 
drawbacks one may refer their applicability only to conductive material and a distortion due to the lift-off effect can 
be pointed out [25]. Besides, no contact with the object under test is required and surface preparation is usually 
unnecessary 

 ECT includes several techniques based on eddy current theory. In all of them the eddy currents are induced 
in the specimen under test by a magnetic field produced by an excitation coil carrying a time-varying current. These 
loop currents are proportional to the conductivity distribution. Cracks or flaws within the material distort the flow of 
these eddy currents and create a secondary magnetic field that contains the information about the defects in the 
specimen. The total magnetic field can be measured either using detection coils or magnetic field sensors.  

 
Fig 3 ECT: (a) the alternating current flowing through the coil generates a magnetic field around the coil; (b) when 
the coil is near a conductive material, EC is induced in the material; (c) a flaw in the material disturbs the EC 
circulation, the magnetic coupling with the probe changes and a defect signal can be measured. 
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3.2 Magnetic Flux Leakage  
 
 Magnetic Flux Leakage (MFL) non de
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Fig. 6. Contour plots of the normalized voltage amplitudes and an arrow representation of the normalized amplitudes 
and phases of the output voltages sensing coils. 

             Different coil probe structures are available in eddy current inspection. Encircling or bobbin probes are used
for cylindrical geometries like tubes or pipes externally or internally [31]. 

              ECP can be classified according to the type of detection element. If the detection is performed with sensing 
coils they are named inductive. If they use magnetic sensors one may call them hybrid probes considering that the
excitation is still achieved with a current that runs in a coil [32-37]. The inductive type probes must be used with
excitation frequencies high enough to produce measurable voltages as sensing coils sensitivity depend on frequency. 
On the contrary, reliable detection of subsurface flaws can be increased using magnetic sensors.  In fact, as 
illustrated in Fig.7, the electromagnetic field penetration inside a conductor is limited by its frequency that restricts 
the depth at which flaws may be perceived [34]. Thus, as solid state sensors present high sensitivities at low 
excitation frequencies lowering test frequency, deep buried flaws can be detected. 

  

Fig.7. Electromagnetic field penetration inside aluminum for two frequencies: 200 Hz and 10 kHz. 

 

Figs. 8-10 show some probes designed and implemented at our laboratory with an excitation coil and a giant 
magnetoresistor (GMR) centrally located. 
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(a)                                                     (b) 

(d)                                                              
(c) 

 

Fig. 8. ECP: (a) solenoid; (b) (c) pancake; (d) parallelepiped. Polarizing magnets are positioned on the sides. 
 

 Improvements have been carried out to tailor the probe geometrical configuration for the specific object to 
be tested. Fig. 8(a) shows a solenoid with a GMR positioned to allow plate thickness determination [35-36]. Pancake 
probes (Fig. 8(b)) are more efficient to inspect metallic plates [37]. To characterize geometrically defects from the 
measurements taken (inverse problem solution) special shape probes have been developed. For instance, by 
measuring with the ECP depicted in Fig. 8(b) two arbitrary orthogonal components of the magnetic field, it is 
possible to determine the field along any other direction parallel to the plate. The result is valid under the condition 
that the excitation coil applies a magnetic field which is invariant under a probe rotation [38-39]. The probes 
depicted in Figs. 8(d) and 9(b) produce eddy currents in the plate which in the case of flawless material, have an 
uniform density and point along a pre-defined direction inside a given area on the plate surface. The applied 
magnetic field is spatially constant inside that area and invariant under a probe translation [39-40].   

 The use of planar probes as presented in Fig. 9 has been proposed by several authors [28, 41-42]. The 
manufacture using printed circuit board techniques is easy and inexpensive. It makes possible to minimize probes 
and enhance spatial resolution. It can be produced on a flexible printed circuit board allowing the inspection of non-
flat surfaces. 

 

GMR 
S

Connector

Top View 

  1
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Fig 9. (a) (b) photos of the ECT probes; (c) 1-Uniform current lines; 2-Uniform EC lines on a homogenous plate 

Fig. 10 shows some handheld probes that use a PC mouse as positioning system [42]. 

 

Fig. 10. Results over a 0.5 mm width crack, 20 mm length and 2 mm depth 

 Most traditional EC testing uses AC magnetic fields but nowadays research is focus in other excitations. To 
optimize the evaluation of a specific characteristic of a defect techniques with different excitations have also been 
tested with success. One of them is the multi-frequency use [34, 43]. By measuring the response at different 
frequencies, each frequency response accentuates one parameter and others are minimized. Fig. 11 shows the 
magnetic field component orthogonal to the crack length measured when the aluminum plate is scanned over the 
linear crack at two different excitation frequencies (200 Hz and 10 kHz). 

Recently, transient eddy currents (pulsed eddy currents) produced by a square wave received interest in applications 
such as the detection of defects, the characterization of sub-surface cracks, and the measurement of a specimen 
thickness or its electrical conductivity. Due to the rich frequency content of the signal used deeper penetration of the 
electromagnetic field on the sample is achieved and simultaneous evaluation of the material at different depths can 
be carried out [36, 44-45]. Fig. 12(b) presents the results obtained experimentally with a pancake coil with a GMR 
with a sensitive axis perpendicular to the plate whose thickness id to be measured. 

 

 

 

 

Bottom View
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(a) (b) 
 

Fig 11. Magnetic field component measured for a crack scanned with testing frequency: (a) 200 Hz; (b) 10 kHz. 

  

(a) (b) 

Fig. 12. (a) ECT probe; (b) exponencial components of pulsed GMR responses for different lift-offs 

 The induction of the eddy currents in the material under test can be performed with a DC magnetic field 
moving in the vicinity of the sample under test (Faraday effect) and the use of very sensitive GMRs to infer the 
presence of cracks by measuring the magnetic field resulting from the currents flow pattern [46-47]. The method 
presents undoubted advantages when the material to be tested is in motion relative to the test sensor because the 
sensitivity of the method increases with speed. Fig. 13 (a) shows the experimental setup and (b) the results obtained 
for four similar cracks having 100 mm long, 0.5 mm wide and depths 0.5 mm, 1 mm, 1.5 mm and 2 mm 
respectively. 

 

(a) 
(b) 

Fig. 13. Experimental setup depicting a PC, the brushless motor controller and driver, the linear belt drive and the 
probe, which includes a permanent magnet and a GMR sensor. 
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 Another modified ECT technique that is worth mentioning to inspect tubes is the Remote Field Eddy 
Current (RFEC). The basic setup and the measuring principle are depicted in Fig. 14(a) with both excitation and 
sensing coil inserted in a tube [48]. The eddy currents induced in the tube wall, produce a magnetic field that 
opposes the primary field, thereby reducing the direct magnetic field affecting the inside tube wall. A magnetic field 
also appears on the exterior of the tube that is guided along the tube. As this field propagates, it re-diffuses back in 
the interior wall of the tube. In other words, there are two magnetic fields inside the tube: the direct fields and the 
indirect that has twice penetrated the thickness of the tube. A detector (that can be a pickup coil or a solid state 
magnetic sensor) placed two or three tube diameters from the excitation coil is able to detect the response from the 
indirect field. Fig. 14(b) shows the measured data in the inner and outer surface obtained with an GMR. 

      (b) (a) 

Fig. 14. (a) RFT probe structure; (b) experimental magnetic field obtained with the setup 

 In order to increase scanning speed research has been carried out to automate the measurement and to 
resort the use of sensor arrays [20]. Some manufacturers already propose solutions with sensor arrays. It is 
appropriate to note that the sensors included in the ECT arrays do not work like in other inspection techniques as 
ultrasounds by complementing the information collected by each. The use of arrays of sensors in ECT as presented 
in Fig 15, simply allows the detection of anomalies in a time less than that which is necessary in the traditional 
method with one sensor. 

 

(a) (b) 
Fig. 15.Uniform eddy current probe based on GMR magnetometer sensor array, planar spiral rectangular excitation 

coils and rectangular magnetic biasing coil a) design b) implementation 
 
 
 



417 Helena G. Ramos and A. Lopes Ribeiro  /  Procedia Engineering   86  ( 2014 )  406 – 419 

4.2 Magnetic Flux Leakage  

 Concerning the magnetic flux leakage method most development has been carried out in the detection field 
based mainly in the technology development of magnetic sensors and not in the field generation.  

5. Discussion 

 For successful defect detection, properties such as high linearity, large dynamic range, and good spatial 
resolution are required.  

 Very good results are achieved using the most sensitive magnetic sensors that work at low frequencies 
(SQUIDs and fluxgates), nevertheless they can hardly be used in real industrial applications due to the complexity 
and costs of such systems and their insufficient robustness. 

 When comparing solid-state magnetic sensors with sensing coils two protruding features have to be 
assessed. One is related with the robustness and high flexibility in configuration that is greater in encapsulated coils 
than in solid-state sensors and the other is the very small active area of the latter so that they approximate to 
magnetic field point sensors. Concerning the measuring quantities, sensing coils present an output voltage 
proportional to the magnetic field time derivative while in magnetoresistors it is proportional of the magnetic field. 

 An issue to be considered especially when considering magnetic sensors with a limited dynamic range 
(AMR, GMR) is their insensitivity to the excitation field.   

 
6. Conclusions 

 
 It is clear that there is not a general purpose method for inspecting materials as well as there is not a 
magnetic sensor able to respond to all requirements for non destructive evaluation. It is our opinion that although 
AMR and GMR magnetic sensors still require some more improvements they already present improvements in EC 
probes performance and in the future solid state magnetic sensors will replace traditional inductive sensors in most 
of the situations. The prospects for arrays of identical magnetoresistive sensors for rapid scanning of large areas are 
also promising. 
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