
Operations Research for Health Care 3 (2014) 129–144

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Operations Research for Health Care

journal homepage: www.elsevier.com/locate/orhc

Scheduling patient appointments via multilevel template:
A case study in chemotherapy
A. Condotta, N.V. Shakhlevich ∗

School of Computing, University of Leeds, Leeds, LS2 9JT, United Kingdom

a r t i c l e i n f o

Article history:
Received 24 February 2012
Accepted 12 February 2014
Available online 6 March 2014

Keywords:
Patient scheduling
Treatment patterns
Template schedule
Integer linear programming

a b s t r a c t

This paper studies a multi-criteria optimization problem which appears in the context of booking
chemotherapy appointments. The main feature of the model under study is the requirement to book
for each patient multiple appointments which should follow a pre-specified multi-day pattern. Each
appointment involves several nurse activities which should also follow a pre-specified intra-day pattern.
The main objectives are to minimize patients’ waiting times and peaks of nurses’ workload for an
outpatient clinic. Our solution approach is based on the concept of a multi-level template schedule which
is generated for a set of artificial patientswith typical treatment patterns. There are two stages in template
generation: the multi-day stage, which fixes appointment dates for all artificial patients, and the intra-
day stage, which fixes for each day appointment starting times and patient allocation to nurses. The
running schedule is created by considering actual patients one by one as they arrive to the clinic. Booking
appointments for each new patient is performed by assigning appropriate dates and times of the template
schedule following the prescribed multi-day and intra-day patterns. Additional rescheduling procedure
is used to re-optimize intra-day schedules on a treatment day or shortly beforehand. The key stages
of the scheduling process are modeled as integer linear programs and solved using CPLEX solver. We
demonstrate the effectiveness of our approach through case-based scenarios derived from a real clinic
and discuss the advantages that the multi-level template can bring.

© 2014 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

With increasing number of cancer patients, chemotherapy de-
partments are under pressure to provide more efficient and qual-
itatively better service. The UK National Chemotherapy Advisory
Group [1] and the Department of Health [2] suggest a redesign of
the delivery of chemotherapy treatments and set up new targets
in terms of patients’ waiting times and improved quality of ser-
vice. In our paper we show that advanced scheduling algorithms
can help in providing timely treatments to larger numbers of pa-
tients within shorter time-frames, balancing workloads of medical
staff and reducing the costs of treatments. Automated scheduling is
also helpful in efficient rescheduling which is often needed due to
unpredictable events such as changes in patients treatment plans
and clinic resources.

In this paper we study a multi-criteria optimization problem
which appears in the context of scheduling chemotherapy appoint-
ments. The scenario we consider is typical for many chemotherapy
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outpatient clinics. In its current form, the problemwas formulated
by the Institute of Oncology at the St. James’s University Hospital
in Leeds, UK.

Chemotherapy is an important and widely used therapy to
treat cancer. It consists of cyclic administrations of drug mixtures
delivered to patients under rigid protocols called regimens. In an
outpatient clinic, chemotherapy is mainly administered orally or
through intravenous systems in a day case unit. The two main
characteristics of a regimen are drug combinations and delivery
patterns. Once a regimen is prescribed, a patient should visit the
clinic at treatment days which are separated by a fixed number of
rest days. During a treatment day, a patient undergoes a specific
treatment procedure which involves nurse activities separated by
time intervals of fixed length.

A regimen is characterized by two types of patterns:

• a multi-day pattern given as a sequence of treatment days and
rest days in-between and

• an intra-day pattern given for each treatment day as a sequence
of nurse activities and time-lags in-between.

Typically, nurse activities are related to setting up an intravenous
machine, its re-setting for a new drug mixture or a check-up of
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patient’s state. The working day of the clinic is split into 15-min
time slots and this is the main time unit of an intra-day schedule:
each nurse activity consists of exactly one 15-min time slot and the
length of any time-lag in-between nurse activities is a multiple of
15 min.

Upon arrival to the clinic, a patient is allocated to a nurse for
delivering treatments of the prescribed intra-day pattern of the
current one-day session. An important clinic requirement, related
to the quality and safety of service provision, is to assign a single
nurse to perform all treatment activities for a patient on one
treatment day. It is, however, acceptable that different nurses treat
a patient on different visit days.

Normally a nurse treats several patients during a day. If
treatment activities assigned to one nurse lead to a clash in the
nurse’s schedule with more than one activity occurring during the
same time slot, a special arrangement is made so that clashing
activities are covered by additional nurse(s). It is required that each
nurse has a 30-min break (two time slots) in the middle of the day.

Example 1. Consider a multi-day schedule for nine patients P1,
. . . , P9, shown in Fig. 1(a) with treatment days marked by dark
boxes. No treatments are planned for weekend days which are
dashed. The fragments of schedules for three days and one nurse
are shown in Fig. 1(b). The first two intra-day schedules have
clashing activities resulting in a solution of poor quality since
clashing treatments cannot be delivered by a single nurse.

In order to characterize the effect of clashing activities, we use the
following two measures of an intra-day schedule for day d and
nurse n: the number of clashing activities Ωd,n and the maximum
clash density ∆d,n. The value of Ωd,n is defined as the minimum
number of activities which, if removed from the schedule of day
d, result in a clash-free schedule for nurse n. The value of ∆d,n is
defined as themaximumnumber of activities assigned to onenurse
in one time slot.

Example 1 (Cont.). The schedule for the second day (d =

08/07/2008) has clashing activities in time slots 9:15, 9:30, 12:30,
13:30 and 14:45. The schedule becomes clash free if we remove,
e.g., the following activities: four activities of patient P8 assigned
to time slots 9:15, 9:30, 13:30, 14:45, two activities of patient P1
assigned to time slots 9:15, 14:45, and one activity of patient P5 as-
signed to time slot 12:30, which implies that Ωd,n = 7. The second
characteristic ∆d,n = 3 reflects the fact that there are three clash-
ing activities in time slots 9:15 and 14:45, and this is themaximum
number of activities assigned to one time slot.

In the rest of the paper we use the term ‘‘appointment ’’ to indicate
one treatment day of a patient. An appointment is scheduled if its
date and starting time are fixed and a nurse is allocated to perform
all associated treatment activities on that day. An appointment is
partially scheduled if only some of these parameters (day, time,
nurse allocation) are fixed.

The main decisions associated with scheduling appointments
for one patient are as follows:

D1: selecting the date of the first appointment, which in fact fixes
the dates of all subsequent appointments of the associated
multi-day pattern;

D2: selecting the starting time of each appointment; this fixes the
time slots for all treatment activities needed for the patient on
the visit day;

D3: allocating nurses, one nurse per patient per visit day, to
perform all treatment activities for that patient on the day.
Themain outcome of the above decisionmaking process is amulti-
day schedule combined with a series of intra-day schedules, one for
each day of the time horizon. These schedules fully describe all
nurse activities in the clinic.

It should be noticed that each of the above decisions incurs an
NP-complete problem even under most simple assumptions. For
example, two-component patterns can be modeled as a famous
coupled-operation scheduling problem, which has attracted lots
of attention of scheduling researchers since the seminal paper
by Orman and Potts [3]. In particular, the multi-day problem
corresponding to decision D1 with two-component patterns and
the assumption that one appointment require a complete day is a
special case of the general coupled-operation problemwhere each
appointment is a task to be scheduled on a single machine within
a certain deadline. Similarly, the intra-day problem corresponding
to decision D2with two-component patterns to be assigned to one
nurse is also a special case of the coupled-operationproblemwhere
each activity is a task to be scheduled on a single machine. The NP-
completeness of the coupled-operation problemwith equal-length
operations is proved in [4]. As far as decision D3 is concerned,
the NP-completeness of the corresponding problem follows from
the NP-completeness of the k-coloring problem, as shown in [5],
Chapter 4.

Actual scenarios of chemotherapy scheduling involve compli-
cated patterns with typically more than two activities per pattern;
in addition they involve a combination of several metrics which
characterize the quality of the combined schedule. The three main
metrics are as follows:

F1: the average number of waiting days for all patients, where
the number of waiting days for a patient is measured as the
delay from a target starting date (predefined by the patient’s
requirements or by the clinic waiting targets) to the day of the
first appointment;

F2: themaximum clash density∆, which is calculated as themax-
imum among ∆d,n-values for all nurses n ∈ N and all days d ∈

H of the selected time horizon H , i.e. ∆ = maxd∈H,n∈N ∆d,n;
F3: the total number of clashes Ω for all nurses, which is calcu-

lated as the sum of the Ωd,n-values for all nurses over the time
horizon H , i.e. Ω =


d∈H,n∈N Ωd,n.

The model we propose is based on the requirements gathered in
collaboration with the St. James’s University Hospital in Leeds,
UK. The flexibility of our solution approach makes it possible to
introduce various adjustments to deal with an extended version
of the model, addressing more complex scenarios. For example,
we consider the case where intra-day patterns are the same
for different appointment days of a regimen; the general case
with different intra-day patterns per regimen could be easily
handled by the model. Another possible extension is related to
additional requirements of the pharmacy, which supplies drugs for
chemotherapy treatments.While some drugs are available off-the-
shelf, others need to be prepared in the hospital pharmacy. Since
the shelf-life of drugs can be limited, it is often required to produce
some drugs just before their administration. Although in our study
wemainly focus onmetrics F1–F3, the approachwepropose is very
well suited for further enhancements which can take into account
drug preparation.

Our study can be considered as the first attempt to develop an
optimization model for scheduling patient appointments which
should follow intra-day and multi-day patterns. We explore the
benefits of using a template schedule to fix appointment dates
and times for patients arriving over time. The multilevel template
schedule we produce determines possible dates and time slots at
which future appointments can be scheduled. The appointments
of the template are grouped into levels with a view of producing
an efficient running schedule with even nurse workload and the
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Fig. 1. An example of a multi-day schedule (a) and three intra-day schedules (b), each schedule for one nurse.
smallest possible number of clashes. The running schedule is cre-
ated by considering arriving patients one by one; for each new pa-
tient all required appointments are assigned to appropriate time
slots of the template schedule following the prescribed multi-day
and intra-day patterns. An additional rescheduling procedure is
used to re-optimize each intra-day schedule on a treatment day
or shortly beforehand. The key stages of the planning process
are modeled as integer linear programs and solved using CPLEX
solver.

The paper is organized as follows. We start with the review
of relevant sources presented in Section 2. In Section 3 we intro-
duce the concepts of a template schedule and running schedule
and give a general overview of our approach. In Sections 4 and 5we
formalize in detail the structure of the template schedule andmet-
rics used to evaluate its quality. In Sections 6 and7wedescribe how
the template schedule should be constructed. In particular, Sec-
tion 6 describes the data generation process and Section 7 for-
mulates two integer linear programs (ILPs): one ILP to schedule
appointment dates for future patients and another one to schedule
appointment times for each day of the template schedule. In Sec-
tion 8 we describe how the template schedule is used for creating
a running schedule for arriving patients. Section 9 explains how
daily rescheduling is done. In Section 10 we evaluate the proposed
approach via computational experiments performed on two sce-
narios typical for a real-world clinic. Finally, conclusions are for-
mulated in Section 11.
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2. Literature review

There are two types of sources related to our study: the
papers on scheduling coupled-operation jobs with exact time-lags
and the papers on appointment scheduling in health care. The
problem with coupled-operation jobs models the simplest case
of scheduling multi-day or intra-day patterns when each pattern
consists of two components only, see Section 1. The coupled-
operation problem is NP-hard even for the case of equal length
operations [4]. The literature on heuristics is quite limited (see,
e.g., [4,6]), and the generalization of heuristics proposed for the
coupled-operation problem to the case of more complex patterns
and several criteria is a nontrivial task.

Appointment scheduling in health care has been studied since
the early fifties when Bailey [7] and Lindley [8] published their first
results on block appointment systems, using a single queue model
to minimize patient waiting times. Since then, the main stream of
research focuses on finding appropriate rules for assigning patient
appointments to time intervals in order to minimize patients’
waiting times, idle time and overtime of physicians or trade-offs
between these objectives, see, e.g., [9].

In more recent research, the models are extended by consider-
ing additional unexpected events such as no-shows, walk-ins and
emergency treatments. A popular approach aimed at reducing the
effects of those unexpected events is related to overbooking, see,
e.g. [10,11]. A comprehensive survey with a detailed classification
of scheduling models for booking outpatient appointments can be
found in surveys [12,13] and in a more recent classification re-
view [14].

In what follows we discuss the papers dealing with scheduling
a series of appointments, which is the main feature of our model.
Apart from chemotherapy, such problems arise in the context of
examination, rehabilitation and radiotherapy treatments.

Examination and rehabilitation treatments deal with packages
of treatment procedures, see [15–22]. Intra-day patterns usually
reduce to single treatments, while multi-day patterns are charac-
terized by partial precedence constraints: only some treatments
require a specific order, others can be sequenced with a large de-
gree of freedom. The time-lags between treatments can also be
flexible, contrary to the case of strict chemotherapy patterns. The
most popular approach for scheduling examination and rehabili-
tation appointments is genetic algorithm [17,18,22]; there are also
examples of construction heuristics [16], local search [19], queue-
ing systems [20] and ILP-based methods [15,21].

The problem which is most closely related to our problem is
scheduling radiotherapy appointments. Similar to chemotherapy
multi-day patterns, radiotherapy patterns are fixed and cannot be
altered. Their structure, however, is quite specific as they typi-
cally consist of several consecutive days (the time-lags in-between
treatment days are zero). Intra-day patterns are also rather uni-
form with one treatment per patient per day, see [23–26]. Typical
approaches adopted for scheduling radiotherapy appointments are
construction heuristics [25] and local search [26]; the simplified
models (e.g., those not taking into account the intra-day schedul-
ing problem, patients’ release times or due dates) are addressed via
integer linear programming [23,24].

The authors of the papers listed above emphasize that the
subject of schedulingmultiple (recurring) appointments is notwell
studied, whichever the context is: rehabilitation, examination or
radiotherapy. In spite of its importance, the problem of scheduling
chemotherapy appointments has received even less attention of
OR researchers. The majority of publications appear in medical
journals; the main focus of those publications is on scheduling
strategies adopted by practitioners.

As a rule, scheduling decisions are made by a qualified nurse
who selects appointment dates and times based on the knowledge
of treatment procedures, resource availability and personal expe-
rience. We refer to Turkcan et al. [27] who provide an overview of
publications in oncology journals. Here we onlymention the paper
by Dobish [28] who describes a scheduling strategy based on cre-
ating manually a weekly template schedule. The template is used
as a basis for scheduling patients arriving over time. Positive feed-
back of practitioners discussed in [28] and the potential of using a
template for scheduling patients in an uncertain environment have
inspired our work. Notice that the strategy suggested by [28] is of
empirical nature, while in our study the idea of template sched-
ule is developed into a formal optimization model with advanced
features.

We are aware of only one publication by Turkcan et al. [27] who
consider optimization aspects of delivering chemotherapy treat-
ments. There are a number of points of difference between the
model from [27] and the one studied in our paper: intra-day pat-
terns are treated in [27] as contiguous blocks of time rather than
sequences of nurse activities separated by idle intervals. Instead
of distinguishing within a block between treatment activities and
time-lags, the authors introduce a special characteristic of a block
which measures the acuity or intensity of treatments of the block,
and use that characteristic to restrict nursers’ workloads. In our
model, we use precise descriptions of intra-day patterns which al-
lows us to make accurate calculations of nurses’ workloads and to
estimate possible clashes.

The solution approaches are also different. The approach
proposed in our paper constructs a dynamic plan for all anticipated
appointments of the time horizon; such a plan is then frequently
adjusted and tuned in accordance with changes in demand and
changes in patients’ state of health. All appointment dates and
times are scheduled and communicated to a patient at the time
a patient is admitted to the clinic. In [27] scheduling is performed
at regular times for intervals in-between scheduling sessions. The
decisions are made for available patients only, which implies
that patients arriving in-between scheduling sessions should
always wait for the next session or even longer to get their
first appointment. Moreover, appointment times for subsequent
visits may not be available all at once as each scheduling session
considers a limited time interval until the next session.

In spite of all the differences, both studies, [27] and ours, indi-
cate that the problem of scheduling chemotherapy appointments
has multiple constraints, complex objectives and requires further
study. To the best of our knowledge the chemotherapy scheduling
problem, as defined in this paper, is common to outpatient clin-
ics not only in the UK, but internationally as well. Although many
booking and IT systems are available for the chemotherapy mar-
ket, their scheduling components are typically not automated and
have limited optimization capabilities.

We believe that the approach designed in this paper could be
adapted to similar health care settings in the future. Examples of
well defined job patterns can be found in nephrology in relation to
kidney dialysis treatment performed by a blood cleaning machine
supervised by a nurse. With the current tendency to standardize
patients’ pathways, the scope of application of the proposed
methodology can be expanded even further.

3. General idea of the solution approach

In this paper we consider a finite time horizon H in which
patients of a set P have to be treated in accordancewith theirmulti-
day and intra-daypatterns. It is assumed that patients arrive during
the firstHa days of time horizonH , which we call the arrival period,
Ha ⊂ H .Whenever a newpatient arrives, the scheduling procedure
makes a decision about all appointments for that patient fixing
the appointment dates, appointment times and nurse allocation
and recording this information in the running schedule. The overall
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Fig. 2. Representation of the 4-stage approach.
length of H is sufficiently large so that the latest patient arriving
at the end of Ha can get all required appointments within the
remaining part H\Ha of the time horizon.

The continuous arrival of patients is managed by adopting the
concept of the rolling time horizon. At some point of the arrival
period Ha we abort the scheduling procedure, keeping the current
running schedule with appointments fixed so far, and initialize our
scheduling procedure for the new time horizon H and new arrival
period Ha. Appointments for newly arriving patients are added to
the running schedule kept from the previous stagewithout altering
fixed appointments of patients arrived earlier.

The running schedule is created and maintained on the basis of
the multi-level template schedule, which is pre-calculated prior to
the start date of the arrival periodHa using the historical data of the
recent patients’ arrivals. It contains the appointments for a large
number of artificial patients and it serves as the basis for fixing the
appointments for each newly arriving patient. With careful pre-
calculation, we make sure that the template is flexible enough, so
that there are sufficient options for arriving patients with different
multi-day and intra-day patterns. Moreover, special attention is
paid to ensure that the template schedule can potentially produce
a high quality running schedule with reduced number of clashing
tasks in the nurses’ schedules and without violating patients’
waiting times limits.

We complement our approach with an additional subroutine of
daily rescheduling that allows further improvement of the running
schedule.

Formally, the approach we propose consists of the following
four stages:

Stage 1. Data Generation for Artificial Patients
(based on the forecast of the arrival rates of new patients);

Stage 2. Template Schedule Generation
(obtained as a solution to the problem of scheduling
artificial patients);

Stage 3. Running Schedule: Creating and Maintaining
(based on the template schedule; updated on a daily basis
for actual patients arriving over time);

Stage 4. Daily Rescheduling
(to take into account on-the-day changes in nurses’
availability and patients’ treatment plans).
The application of the described four-stage approach is illustrated
in Fig. 2. Stages 1–2 are performed in advance, prior to the first
day of the arrival period Ha, and the generated template covers
the whole time horizon H . Stages 3–4 are run on a daily basis.
After the decision is taken to shift the time horizon, Stages 1–2
are repeated once again: the previous template schedule is fully
replaced by a new template calculated on the basis of the most
recent information on patient arrival, keeping fixed appointments
of actual patients from the previous time horizon unchanged.With
the new template schedule for the next time horizon, Stages 3–4
are run again on a daily basis, serving the needs of arriving actual
patients.

In what follows we first explain the notion of a multi-
level template schedule in more detail (Sections 4–5) and then
describe the implementation details for each stage of our approach
(Sections 6–9).

4. Template schedule structure

The main goal of a multi-level template schedule is to create
a robust plan for serving patients arriving over time such that
the fluctuation in actual demand does not impact too much
the quality of the final running schedule. The template schedule
determines dates, times and nurse assignment for appointments
for a set of artificial patients PA. The number of such patients is the
expected demand increased by some factor as explained in detail
in Section 6. In brief, the main reason of dealing with a sufficiently
large set PA of artificial patients is to ensure that for each arriving
patient the algorithm, which produces a running schedule, will
find a set of appointments in the template that match the required
multi-day and intra-day patterns. Since the scheduling algorithm,
used at the template generation stage, optimizes the quality
characteristics of the template, the resulting running schedule,
which contains a selection of appointments from the template,
inherits those good characteristics of the template.

The template schedule, defined for the time horizon H , can be
seen as a combination of

• a multi-day schedule which specifies for each day d ∈ H the set
PA
d of artificial patients (PA

d ⊂ PA) to be treated on that day;
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• an intra-day schedule for each day d ∈ H , which specifies for
each patient p ∈ PA

d the allocated nurse and the appointment
starting time.

Due to the overestimated number of artificial patients (introduced
in order to provide at Stage 3 good allocation options for all
arriving actual patients), intra-day schedules of the template may
have a large number of unavoidable clashing activities. Still such
a template leads to a successful running schedule at Stages 3–4.
This is done by means of the so-called density sets, introduced
for every intra-day template schedule, which partition artificial
appointments in sets according to the number of clashing tasks
they generate. When generating the running schedule, the choice
of artificial appointments for actual patients is performed on the
basis of density sets, aiming to achieve the smallest possible
number of clashes in the resulting schedule.

Formally, the appointments of artificial patients of a day d ∈ H
assigned to the same nurse n are grouped into density sets L

(1)
d,n,

L
(2)
d,n, . . . , L

(K)
d,n , which satisfy the nested property:

L
(1)
d,n ⊆ L

(2)
d,n ⊆ · · · ⊆ L

(K)
d,n .

The upper index k, 1 ≤ k ≤ K , denotes a density level which
defines the maximum clash density ∆d,n of appointments L

(k)
d,n,

considered separately. Appointments of the set L
(1)
d,n do not have

clashing activities, i.e., if the appointments not belonging to L
(1)
d,n

are removed, the resulting schedule is clash free:∆d,n = 1. For any
k, 1 ≤ k ≤ K , a partial schedule consisting of appointments from
the set L

(k)
d,n may have clashes of the maximum density ∆d,n = k.

Although the total number of density levels K can be, in the worst
case, as large as the number of artificial patients scheduled on one
day, in our experiments on real world data the template schedule
has, as a rule, no more than 5 density levels, so that K ≤ 5
(see Section 10).

Example 1 (Cont.). Consider Fig. 1 as an example of a template
schedule. Each of the one-day schedules of the template, generated
for one nurse, should provide information on density sets. A
possible partition into the density sets for the second one-day
schedule corresponding to day d = 08/07/2008, can be as follows:

L
(1)
d,n = {P1, P2, P5} ,

L
(2)
d,n = L

(1)
d,n ∪ {P8} = {P1, P2, P5, P8} ,

L
(3)
d,n = L

(2)
d,n ∪ {P3} = {P1, P2, P5, P8, P3} .

Let R denote the set of regimens. We distinguish between the
density sets for different regimens: for a regimen r ∈ R, the set
of appointments belonging to a density set L

(k)
d,n is denoted by

L
(k)
r,d,n. In the above example, if patients P1 and P8 have the same

regimen r1, while the regimens of patients P2, P3, P5 are r2, r3, r4,
respectively, then each of the sets L

(k)
ri,d,n

is as follows:

L
(1)
d,n : L

(1)
r1,d,n

= {P1} , L
(1)
r2,d,n

= {P2} ,

L
(1)
r3,d,n

= ∅, L
(1)
r4,d,n

= {P5} ,

L
(2)
d,n : L

(2)
r1,d,n

= {P1, P8} , L
(2)
r2,d,n

= {P2} ,

L
(2)
r3,d,n

= ∅, L
(2)
r4,d,n

= {P5} ,

L
(3)
d,n : L

(3)
r1,d,n

= {P1, P8 } , L
(3)
r2,d,n

= {P2} ,

L
(3)
r3,d,n

= {P3} , L
(3)
r4,d,n

= {P5} .

As we show in Sections 7–8, density levels assigned to appoint-
ments of the template schedule in Stage 2, play a fundamental role
in Stage 3.
5. Quality metrics of the template schedule

The overall performance of our four-stage solution approach
is measured in terms of the quality of the running schedule with
respect to the objectives F1, F2, F3 introduced in Section 1 as
the average number of waiting days, the maximum clash density,
and the total number of clashes. In order to achieve a successful
running schedule,wepropose a number ofmetrics for the template
schedule: twometrics U and V characterize the template schedule
at the multi-day level and three metrics Xd, Yd and Zd characterize
the template schedule at the intra-day level for each day d of time
horizon H .

The first metric U specifies the maximum daily workload excess
of the clinic for the whole template schedule defined over the
time horizon H . This metric considers for each day d ∈ H the
difference between the clinic workload Wd and its daily capacity
Cd. The workloadWd is the total number of 15-min nurse activities
which appear in the intra-day schedule of the template. It can
be calculated by counting for each nurse n the number Wn,d of
activities performed by that nurse on day d and summing up those
values for all nurses n ∈ Nd (here Nd is the set of nurses on day d):

Wd =


n∈Nd

Wn,d.

The daily capacity Cd is the maximum number of activities which
can be performed by available nurses:

Cd =


n∈Nd

Hn,d
 ,

where Hn,d specifies working time of nurse n on day d given as a
set of 15-min time slots when the nurse is available.

With an overestimated number of artificial patients and a
limited number of nurses, some days of the template schedulemay
have activitieswhich cannot be covered by available nurses, so that
Wd > Cd. Then the workload excess of day d is max {Wd − Cd, 0}.
The maximum daily workload excess U for the whole template
schedule is defined for time horizon H as

U = max
d∈H

{max {Wd − Cd, 0}} . (1)

It is desirable to keep the workload excess as small as possible
distributing it evenly over time horizon H .

Stages 3 and 4 of our approach use two additional character-
istics related to the daily workload excess: the relative workload
Ŵn,d of nurse n on day d, which quantifies the proportion of time
the nurse delivers treatments to patients:

Ŵn,d =
Wn,dHn,d

 , (2)

and the average relativeworkload Ŵd of all nursesworking onday d:

Ŵd =


n∈Nd

Wn,d
n∈Nd

Hn,d
 =

Wd

Cd
. (3)

Characteristic Ŵn,d is used at Stage 4 when daily rescheduling
is done aimed at balancing the workloads of different nurses.
Characteristic Ŵd is used at Stage 3 when the best possible options
are selected from the template schedule to assign appointments of
actual patients keeping the maximum relative daily workload as
small as possible and evenly distributed over time horizon H .

To define metric V , we calculate for each artificial patient p ∈

PA the deviation
dp − tp

 of the date of the first appointment dp
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Table 1
Input data for the template schedule for day d.

Appointment Regimen Intraday pattern |PA
r,d|

P1 r1 1, 2, 18, 23 2P8

P2 r2 1 1

P3 r3 1, 2, 15, 24 1

P5
r4 1, 2, 3, 11 3P10

P11

P12 r5 1, 2 2P13

from a given target day tp for that patient, and take the average of
these values:

V =
1

|PA|


p∈PA

dp − tp
 . (4)

Observe that the definition of V includes the case in which the first
visit day dp of an artificial patient p precedes the target day tp.

We now turn to the one-day metrics Xd, Yd and Zd which
characterize the quality of an intra-day schedule of day d of the
template and which are closely related to the notion of a density
set introduced in Section 3. Each metric Xd, Yd and Zd is in fact a
collection of metrics X (k)

d , Y (k)
d and Z (k)

d , respectively, defined for
density levels k = 1, 2, . . . , K .

Consider an intra-day schedule for day d ∈ H , with artificial
patients PA

d treated on that day, which are partitioned into subsets
PA
r,d,n depending on regimen r ∈ R, and allocated nurse n ∈ Nd

(here R is the set of all regimens and Nd is the set of nurses on day
d). In the intra-day schedule of nurse n, appointments of patients
PA
r,d,n are scheduled and allocated to sets L

(k)
r,d,n, 1 ≤ k ≤ K ,

belonging to the density set L
(k)
d,n, see Section 3 for the definition.

For the partial intra-day schedule consisting of appointments
from L

(k)
d,n we define Ω

(k)
d,n as the total number of 15-min activities,

which, if removed from that partial schedule, result in a clash-free
schedule.

Using the above notations, we formally introduce three metrics
X (k)
d , Y (k)

d and Z (k)
d for a density level k and then provide their

interpretation and justification. Those metrics are then optimized
lexicographically, as explained in Section 7.

The metrics are defined as

X (k)
d = min

r∈R,n∈Nd


|L

(k)
r,d,n|

|PA
r,d,n|


(to be maximized),

Y (k)
d =


r∈R

αr,d


n∈Nd

L(k)
r,d,n

 (to be maximized),

Z (k)
d =


n∈Nd

Ω
(k)
d,n (to be minimized),

(5)
where parameterαr,d is an additionalweight characteristic defined
empirically.

Metric X (k)
d measures the proportion of artificial appointments

of different regimens allocated to L
(k)
d,n. Maximizing X (k)

d ensures
a fair representation of appointments of regimens in density set
L

(k)
d,n, so that in the resulting template schedule every regimen has

appointments in L
(k)
d,n and no regimen is overlooked in favor of

another regimen.
Metric Y (k)

d counts the total number of appointments allocated
to density set L

(k)
d,n, in the case of unit weights αr,d, or the weighted

number of appointments allocated to that density set, otherwise. In
the weighted version of metric Y (k)

d , the most frequent regimens r
have higher weights, so that maximizing Y (k)

d is aimed at allocating
as many appointments as possible to the density set of level
k giving preference to the appointments of the most frequent
regimens. In our experiments, we set

αr,d =
PA

r,d,n

 . (6)

Finally, metric Z (k)
d measures the overall number of clashing

tasks determined by appointments in L
(k)
d,n. Clearly, that value

should be as small as possible.
If several intra-day schedules are compared in terms of metrics

(5), then in the first place, we give preference to a schedule with
the highest proportion X (1)

d of appointments assigned to density
level k = 1 for each regimen r ∈ R and each nurse n ∈ Nd.
Among the schedules with the same value X (1)

d , we give preference
to those schedules having the largest total weighted number Y (1)

d
of appointments allocated to density level k = 1. If there are still
several schedules equivalent in terms ofX (1)

d and Y (1)
d , the preferred

schedule has the smallest number Z (1)
d of clashing activities. The

comparison then continues for density level k = 2, considering
metrics X (2)

d , Y (2)
d and Z (2)

d in this order. The similar approach is
applied for higher density levels k = 3, . . . , K .

The order of consideration of density levels starting from k = 1,
proceeding to k = 2 and so onup to k = K , is in agreementwith the
procedure used in Stage 3. The latter procedure explores for each
actual patient density level k = 1 in the first place, then density
level k = 2, etc., in order to ensure that matching appointments
are found in the lowest possible density level of the template.

Example 2. Consider 9 artificial patients P1, P2, P3, P5, P8, P10,
P11, P12 and P13 that should be treated on day d by nurse n. The
nurse working day starts at 9:00, finishes at 15:45 and consists of
15-min time intervals numbered from 1 to 27. Patients’ regimens
and intra-day patterns are given in Table 1. An intra-day pattern
is specified as a sequence of time slots, numbered from 1, which
require nurse actions. If an appointment is scheduled to start in
time slot t = 1 (at 9:00), then the intra-day pattern incurs nurse
activities in time slots listed in the pattern; if an appointment is
Table 2
Appointment starting times for two template schedules S1 and S2 and their density sets.



136 A. Condotta, N.V. Shakhlevich / Operations Research for Health Care 3 (2014) 129–144
Fig. 3. Template schedules S1 and S2 given by Table 2 and schedule S ′

1 obtained by modifying S1 .
Table 3
Performance metrics of template schedules S1 and S2 .

Level k X (k)
d Y (k)

d Z (k)
d

S1
k = 1 0.67 16 0
k = 2 1 19 3

S2
k = 1 0 12 0
k = 2 1 19 5

scheduled to start at time t > 1, the intra-day pattern incurs nurse
activities in time slots listed in the pattern incremented by t − 1.

Theworkload excessmax {Wd − Cd, 0} of the selected day d is 2
since all activities require Wd = 29 time slots while the nurse can
only cover Cd = 27 time slots.

Consider two template schedules S1 and S2 given by Table 2 and
graphically represented as the first two schedules in Fig. 3. There
are two density sets for each schedule L

(1)
d,n and L

(2)
d,n which are

specified in Table 2 and marked in Fig. 3.
Themaximumclash density of both schedule S1 and S2 is∆d,n =

2, while the number of clashing tasks is Ωd,n = 3 for S1 and
Ωd,n = 5 for S2. The values of all metrics for schedules S1 and S2
are shown in Table 3, where metric Y (k)

d is calculated with weights
αr,d set equal to |PA

r,d,n|.
According to metric X (1)

d , schedule S1 is preferred to schedule
S2 since the proportion of appointments allocated to density level
k = 1 is 0.67 for S1 and 0 for S2.

Consider now schedule S ′

1 which is a modification of schedule
S1, where the appointment for patient P5 starts in time slot 16, as
shown in Fig. 3. The density sets L
(k)
r,d,n are the same for schedules

S ′

1 and S1, so that S1 and S ′

1 are equivalent in terms of metrics
X (1)
d and Y (1)

d . Still schedule S1 is preferable in comparison with S ′

1

due to the metric Z (1)
d , as the overall number of clashing activities

in density set L
(2)
d,n is 3 for schedule S1 and 4 for schedule S ′

1.

6. Data generation for artificial patients

As described in Section 4, a template schedule is generated for a
large set of artificial patients PA. The number of artificial patients is
always an overestimate in comparison with the expected demand,
but the proportion of patients with different regimens and their
arrival rates aremaintained in agreementwith the recent historical
data.

Consider the arrival period Ha, when actual patients are due
to arrive, and the template generation stage prior to Ha. First we
forecast the arrival rate of patients at the clinic for period Ha. The
output of this stage is the expected number of patients λr (for
each regimen r ∈ R) arriving within each week of the arrival
period Ha and the distribution function characterizing patient
arrival over time. In this paper we focus mainly on scheduling
procedures rather than on forecasting techniques. In line with the
traditional approach often adopted in similar scenarios, we assume
that arrival of patients with a regimen r is a Poisson process with
mean and variance equal to λr , see, e.g., [12,29–33]. The value
of λr is estimated using the recorded historical data under the
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assumption that patient arrival rate for the new arrival period
Ha does not substantially differ from the past.

The number of artificial patients
PA

r

 with regimen r for the
arrival period consisting of |Ha| working days is defined as

|PA
r | = ξλr ×

|Ha|

5
,

where |Ha|
5 represents the number of weeks in Ha (assuming 5

working days perweek) and ξ ≥ 1 is an overestimation rate,which
value is determined empirically. Themain purpose is to ensure that
for each actual arriving patient considered in Stage 3 there can be
found a sufficient number of matching artificial patients with the
same regimen to select from, so that the incurred waiting time and
the number of clashes are within acceptable limits.

In our experiments the initial value of ξ is derived by scaling
the total amount of time needed by the appointments to match as
close as possible the capacity of the clinic, ignoring intra-day and
multi-day patterns. The latter assumption leads to a template with
excessive number of artificial appointments when considering
intra-day and multi-day patterns. Further tuning of parameter ξ
may be needed in order to find the right level of overestimation for
the template to be successful (for a successful template, assigning
actual appointments at Stage 3 leads to best results).

An additional adjustment is made for those regimens which
happen rarely. In particular, if ξλr < 1 for a regimen r , then we
assign |PA

r | a higher value:

|PA
r | =

|Ha|

5
,

i.e., we force at least one artificial patient with regimen r to be
scheduled each week. Such an adjustment ensures that at Stage 3,
when an actual patient with a rare regimen r arrives, the waiting
time will not be too large, whichever week the patient arrives.

Having defined the number of patients |PA
r | for each regimen

r ∈ R, we generate for each artificial patient p ∈ PA
r a target day

tp ∈ Ha of the first appointment. The values tp, p ∈ PA
r , are uni-

formly distributed in Ha. These values become the main input for
generating the template schedule in Stage 2. In the resulting sched-
ule, the day dp of the first appointment of patient p is selected as
close as possible to tp and either option dp ≥ tp or dp < tp is ac-
ceptable.

7. Template schedule generation

A template schedule is obtained as a solution to the problem
of scheduling appointments of artificial patients PA over time
horizon H . The integrated problem of constructing multi-day and
intra-day schedules simultaneously appears to be cumbersome
due to its size and the complex combination ofmulti-day and intra-
day patterns. Recall that the problem of scheduling even simplest
patterns consisting of two unit-size activities is already NP-
complete [4]. On the other hand, it can be naturally decomposed
into the following subproblems:

• one subproblem of generating a multi-day schedule for the
whole time horizon H;

• |H| subproblems of generating intra-day schedules for each day
d ∈ H .
The multi-day subproblem is formulated as an integer linear

program ILPH defined over time horizon H with time-indexed
decision variables

xp,s =

1, if the first appointment of artificial patient p
is scheduled on day s,

0, otherwise.

For each combination of s ∈ H and d ∈ H , we define the set
of artificial patients P A

s,d having an appointment on day d if the
first visit-day is s, s ≤ d; in addition for each patient p ∈ PA we
define constant wp,s,d representing the number of nurse activities
necessary to treat that patient on day d if the first visit day is s.
Constantswp,s,d are determined by the information given bymulti-
day and intra-day patterns.

Thenmetrics U and V defined by (1) and (4) can be represented
in the form:

U = max
d∈H

max


s∈H


p∈PA

s,d


wp,s,dxp,s


− Cd, 0


 ,

V =
1

|PA|


p∈PA


s∈H

s − tp
 xp,s.

We intend to find a solution with the smallest possible value
of V among the solutions with the smallest possible value of
U . Denoting the lexicographical minimization of U and V by
lex[minU, min V ], we formulate the integer linear program
ILPH for the multi-day problem as follows:

ILPH : lex [minU, min V ]

s.t. U ≥


s∈H


p∈PA

s,d

wp,s,dxp,s − Cd, d ∈ H,

U ≥ 0,

V =
1

|PA|


p∈P A


s∈H

s − tp
 xps,

s∈H

xp,s = 1, p ∈ PA,

xp,s ∈ {0, 1} , p ∈ PA, s ∈ H.

Having found the solution to problem ILPH , we generate input data
for intra-day problems: for each day d ∈ H and each regimen r , we
construct the set of artificial patients PA

r,d which should visit the
clinic on day d and define PA

d = ∪r∈R PA
r,d.

The intra-day problem consists in selecting the starting times
for all appointments of patients PA

d on day d and finding nurse
allocation. The suggested approach considers a series of integer
linear programs ILP (1)

d , ILP (2)
d , . . . , ILP (K)

d , as shown in Fig. 4. During
the solution process the set of artificial patients PA

d is partitioned
into the subsets Sd and Ud, which represent the sets of scheduled
and unscheduled patients, respectively. Initially Ud = PA

d and
Sd = ∅.

The solution is found iteratively starting from density level k =

1. The algorithm fixes the starting times for patients U′

d ⊆ Ud by
optimizing functions X (k)

d , Y (k)
d and Z (k)

d ; the set Ud is then updated
by moving patients U′

d to the set of scheduled patients Sd. The
corresponding appointments form the density setL

(1)
d . Proceeding

to density level k = 2 with updated sets Ud and Sd, the algorithm
keeps previously fixed appointments and finds the starting times
for new patients which are then added to Sd. The density set
L

(2)
d is now formed as the union of all previously scheduled

appointmentsL
(1)
d and the appointments scheduled for k = 2. The

subsequent density sets are considered in a similar fashion until
the appointments of all patients are scheduled and Ud = ∅.

For each density level k, the intra-day subproblem for day d ∈ H
is formulated as an integer linear program ILP (k)

d with variables

xp,s,n,d =


1, if artificial patient p ∈ PA

r,d is assigned to nurse
n ∈ Nd with the first treatment activity
in time slot s,

0, otherwise.

Initially, k = 1 and all x-variables are free. In subsequent iterations
k, k > 1, the set of scheduled patients Sd is non-empty and for
p ∈ Sd, the patient’s starting time sp and allocated nurse np are
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Fig. 4. Subproblems and algorithms for generating the template schedule.
fixed, which implies that the value of the corresponding x-variable
is also fixed, xp,sp,np,d = 1.

Finding now the expressions for the first two metrics X (k)
d and

Y (k)
d from (5) is straightforward:

X (k)
d = min

r∈R

 1
|PA

r,d|


p∈PA

r,d


n∈Nd


s∈Hn,d

xp,s,n,d

 ,

Y (k)
d =


r∈R

αr,d


p∈PA

r,d


n∈Nd


s∈Hn,d

xp,s,n,d

 ,

where αr,d is a parameter defined by (6).
In order to calculate the thirdmetric Z (k)

d , we introduce auxiliary
variables yi,n,d for each nurse n ∈ Nd and each time slot i ∈ Hn,d
of the nurse’s available time slots of day d. The smallest value of
yi,n,d is defined as 1 and it represents either of the following two
situations which do not incur any penalties:

• nurse n is free in time slot i;
• there is exactly one activity assigned to nurse n in time slot i.

Any greater value yi,n,d > 1 represents the number of activities
assigned to nurse n in time slot i.

Using the variables yi,n,d, the third metric Z (k)
d can be defined as

Z (k)
d =


n∈Nd


i∈Hn,d


yi,n,d − 1


.

For calculating yi,n,d, we define the set of patients PA
s,i,d having an

activity to be performed in time slot i if the appointment starts at
time s, and we set

yi,n,d ≥

τp,n,d
s=1


p∈PA

s,i,d

xp,s,n,d

with an additional constraint

1 ≤ yi,n,d ≤ k.
Here the constant τp,n,d defines the latest time slot when the intra-
day pattern of patient pmay start so that all activities of the pattern
can be performed by nurse nwithin the working hours.
As a result, we obtain the following integer linear program ILP (k)

d :

ILP (k)
d (Ud, Sd) : lex


max X (k)

d , max Y (k)
d , min Z (k)

d


s.t. X (k)

d ≤
1

|PA
r,d|


p∈PA

r,d


n∈Nd


s∈Hn,d

xp,s,n,d, r ∈ R,

Y (k)
d =


r∈R

αr,d


p∈PA

r,d


n∈Nd


s∈Hn,d

xp,s,n,d

 ,

Z (k)
d =


n∈Nd


i∈Hn,d


yi,n,d − 1


,

yi,n,d ≥

τp,n,d
s=1


p∈PA

s,i,d

xp,s,n,d, n ∈ Nd, i ∈ Hn,d,

1 ≤ yi,n,d ≤ k, n ∈ Nd, i ∈ Hn,d,
xp,sp,np,d = 1, p ∈ Sd,
n∈Nd


s∈Hn,d

xp,s,n,d ≤ 1, p ∈ PA
d ,

xp,s,n,d ∈ {0, 1} , p ∈ PA
d , s ∈ Hn,d, n ∈ Nd.

After a solution to problem ILP (k)
d (Ud, Sd) is found, the sets of

scheduled and unscheduled patients Sd andUd are updated so that
Ud = Ud \ U′

d and Sd = Sd ∪ U′

d. A patient p is scheduled, if there
exists a combination of s and n such that xp,s,n,d = 1; we denote
such a combination by sp and np.

The formulation can be extended to include various additional
constraints. For example, if ameal break is one of the requirements,
then ILP (k)

d can be forced to reserve for each nurse a set of
contiguous time slots (two 15-min slots in our experiments) in
the middle of the day such that no patient is treated at that time,
leaving the nurse free from treatment activities for that period. This
can be achieved by introducing variables bt,n,d, which define for
nurse n the starting time of a break on day d:

bt,n,d =

1, if the meal break of nurse n ∈ Nd
starts at time t ∈ Hn,d,

0, otherwise.
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LetMn,d be a set of possible starting times of themeal break of nurse
n ∈ Nd. For a patient p ∈ PA

d , introduce a set Bp,t,n,d of appointment
starting times which incur a treatment activity during the meal
break of nurse n starting at time t ∈ Mn,d. Clearly, if the meal
break of nurse n is scheduled at time t (i.e., bt,n,d = 1), patient
p ∈ PA

d cannot be allocated to nurse n with appointment starting
time s ∈ Bp,t,n,d. Then, ILP

(k)
d can be adjusted by introducing the

following additional constraints:
p∈PA

d


s∈Bp,t,n,d

xp,s,n,d + bt,n,d ≤ 1, n ∈ Nd, t ∈ Mn,d,
t∈Mn,d

bt,n,d = 1, n ∈ Nd.

Observe that it is easy to ensure that the meal break is of the
required length by defining the set Bp,t,n,d appropriately.

Suppose the template schedule is created for artificial patients
PA to be treated in time horizon H . In Stage 3, described in the
next section, the template schedule is used for generating and
maintaining a running schedule for actual patients P by fixing their
appointments in time slots reserved for artificial patients. Using
the approach of the rolling time horizon, at some point within
time horizon H a new template schedule is produced for a new
time horizon H ′ overlapping with H . The new template schedule
is found as a solution to a multi-day problem ILPH ′ and a series of
intra-day problems ILP (k)

d for d ∈ H ′, 1 ≤ k ≤ K , which are similar
to problems ILPH and ILP (k)

d , d ∈ H , 1 ≤ k ≤ K , with one point of
difference: the appointments of actual patients which have been
fixed in the running schedule must be kept. This can be achieved
by adding the constraints xp,s,n,d = 1 for each pre-scheduled actual
patient p ∈ P , who should visit the clinic on day d to be treated
by nurse n with the first visit day s, s ≤ d. On the other hand,
the appointments of artificial patients which are not booked so
far for actual patients can be rescheduled at no cost, so that the
corresponding x-variables are free.

8. Running schedule: creating and maintaining

Once a template schedule is generated, it is used to assign
appointment dates and times for arriving patients. The booking
process for a new patient consists in identifying in the template
schedule available appointments of artificial patients with the
same regimen and selecting the combination of appointments that
satisfies the multi-day pattern and additional preference condi-
tions. Then the dates and starting times of chosen appointments
become dates and times of appointments of the new patient. In
this section we propose an algorithm that selects appointments
from the template schedule with the aim of optimizing the quality
of the generated running schedule in terms of metrics F1–F3 (see
Section 1).

Consider a newly arrived patient p ∈ P with regimen r ∈ R
whose first visit date dp has to be within a given time window
[dmin

p , dmax
p ] determined by patient’s requirements and clinic wait-

ing targets. The proposed algorithm searches for a possible date dp
in [dmin

p , dmax
p ] that allows the selection of appointments from the

template schedule satisfying the multi-day pattern of regimen r .
One simple strategy is to choose in the template a single artifi-

cial patient with regimen r and to assign all appointments of actual
patient p to the dates and times of pre-scheduled appointments of
that artificial patient. Although this strategy is quite natural and
simple, it has a major drawback: if an appointment of the tem-
plate is left unused and the date of the first visit has passed, all un-
used parts of thatmulti-day pattern, pre-scheduled for some future
dates, cannot be used any more by newly arriving actual patients.

In order to overcome such a drawback and to make use of
the pre-scheduled appointments in the template more efficiently,
we consider the template schedule as a collection of artificial
appointments breaking the link to their multi-day patterns. Then,
in order to book appointments for actual patient pwith regimen r ,
we consider all artificial appointments with regimen r and select
such a combination of appointments that satisfies the intra-day
and multi-day patterns of regimen r and our preference criteria
(described below). In particular, during the selection we make
sure that in the resulting running schedule, the daily workload
of the clinic is not exceeded and that the number of clashing
activities in each intra-day schedule is as small as possible. Thus,
the appointments selected for actual patient p might correspond
to appointments of several artificial patients, but they satisfy the
requirements of patients p and potentially lead to a good running
schedule. Such strategy can be applied in both cases when one or
multiple intra-day patterns are used for one regimen.

We describe how to perform a feasibility test for selecting day
dp as the first visit day of actual patient p with regimen r . Let
πr = (πr(1), πr(2), . . . , πr(zr)) be the multi-day pattern associ-
ated with regimen r , where πr(1) = 1 and

• πr(j) − 1 is the number of days from the first visit to the jth
appointment;

• zr is the total number of appointments of the multi-day pattern
of regimen r .

The first visit date dp of actual patient p should be selected in such
a way that for each appointment j, j = 1, 2, . . . , zr , there exists a
matching artificial appointment scheduled in the template on date
d = dp + πr(j) − 1. The days and starting times of the selected
artificial appointments are then booked for patient p.

An artificial appointment of day d of the template matches the
jth appointment of actual patient p if

(i) it is associated with regimen r ,
(ii) it is free, i.e., it has not been used to book an appointment for

another actual patient,
(iii) the clinic workload of day d, if increased by treatments

activities needed for additional patient p, does not exceed a
given threshold.

Verifying the first two conditions is straightforward. In what
follows we clarify the last condition.

In order to keep the workload of the clinic within acceptable
limits and to reserve some proportion of working hours for ad-
ditional nurse duties, the relative workload of a clinic on any day
must not exceed a given threshold σ < 1 called capacity ratio. The
threshold σ represents the proportion of nurses’ time which can
be booked for treatment activities. Using the notation from Sec-
tion 5 and the notion of the average relative workload Ŵd, the cor-
responding constraint can be expressed as

Ŵd ≤ σ .

In accordance with definition (3) of the relative workload, the ca-
pacity requirement can be re-written as

Wd + wr

Cd
≤ σ ,

where Wd is the overall time required for treating actual patients
who have appointments on day d, Cd is the capacity of the clinic
on day dmeasured as the total number of 15-min time-slots when
the nurses are available, and wr is the total number of time-slots
needed for treatment activities of patient p.

Summarizing, a date dp ∈ [dmin
p , dmax

p ] is a feasible date for
the first appointment of patient p with regimen r if for each day
dp + πr(j) − 1, j = 1, 2, . . . , zr , there exists a matching artificial
appointment satisfying conditions (i)–(iii).

The minimization of the number of clashing tasks is fundamen-
tal in order to achieve a successful running schedule (see metric
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F3). For this reason our algorithm chooses a feasible starting date
dp such that the maximum density level k of the selected artificial
appointments isminimum. By thedefinition of a density set, select-
ing appointments belonging to the set L

(k)
d results in an intra-day

schedule with clash density not exceeding k.
The formal description of the algorithm is given by procedure

‘Match-Appointments(p,σ )’ presented below. It is assumed that
the template schedule is represented by the set of artificial ap-
pointments grouped in density sets L

(k)
r,d for each day d ∈ H

and each regimen r ∈ R. The algorithm uses the ‘Feasibility-
Test(r, j, d, k, σ )’ which verifies whether for the jth visit day of the
patient with regimen r there exists a matching artificial appoint-
ment of set L

(k)
r,d satisfying conditions (i)–(iii).

Procedure ‘Match-Appointments (p, σ )’

k := 0;
WHILE appointments πr(1), πr(2), . . . , πr(zr) for patient p are
not booked DO

Set the density level k := k + 1;
FOR dp = dmin

p TO dmax
p DO

IF ‘Feasibility-Test(r, j, d, k, σ )’ confirms for each
j = 1, 2, . . . , zr , that the jth appointment of
patient p can be assigned to the corresponding
day d = dp + πr(j) − 1 and the matching
artificial appointments belong to density set L

(k)
r,d

THEN book all appointments for patient p
with the first visit day dp; STOP

END FOR
ENDWHILE

Notice that in some extreme cases a set of feasible dates and times
may not be found by procedure ‘Match-Appointments(p,σ )’. For
example, if patient arrival rates substantially diverge from the
forecast of Stage 1, artificial appointments for arriving patients
may not be available in the template schedule. Our experiments
show that this difficulty can be overcome by using an appropriate
overestimation rate of patient arrival at the stage of template
generation.

In general, the matching strategy and the method used to es-
timate the number of arrivals (at the template generation stage)
provide a strongmechanism for adjusting themodel to address fur-
ther enhancements, related to additional constraints and optimiza-
tion criteria. For example, an additional objective ofminimizing the
number of patients waiting longer than a certain threshold can be
achieved by adjusting the timewindow [dmin

p , dmax
p ] and tuning the

overestimation parameter accordingly.

9. Daily rescheduling

In this section we develop an integer linear program to adjust
a one-day schedule in order to achieve an improvement in the
running schedule in terms ofmetrics F2, F3 introduced in Section 1.
In particular, we reduce the number of clashing activities and the
maximum clash density of each day by full re-allocation of nurses,
introducing minor shifts of nurses’ meal breaks and minor delays
in starting times of the pre-booked appointments. Observe that
changing nurse allocation does not incur any cost as a patient can
be treated by different nurses on different visit days.

Rescheduling for day d can be performed when complete
information about all booked appointments for that day is known.
The integer linear program presented below is a reformulation
of ILP (k)

d introduced in Section 7 with slightly modified objective
functions and constraints.

Consider a set of patients Pd visiting the clinic on day d. For
each patient p ∈ Pd, let sp be the starting time of the pre-booked
appointment and np ∈ Nd be the nurse allocated to patient p on
that day. The rescheduling problem consists of finding for each
patient p a new starting time s′p and a new nurse allocation n′

p ∈ Nd
such that the maximum clash density

∆d = max
n∈N

∆d,n (7)

and the total number of clashing activities

Ωd =


n∈N

Ωd,n (8)

are minimized (see Section 1 for the definition of ∆d,n and Ωd,n).
Since only small delays in patients’ starting times are accept-

able, a new starting time s′p of the appointment of patient p can
take values from a restricted set H ′

p,d ⊆ Hd, where Hd is the set of
15-min time intervals of day d. For example, if it is acceptable to
delay starting times by at most two 15-min time slots, then

H ′

p,d =

t ∈ Hd | sp ≤ t ≤ sp + 2


.

Consider now reallocation of patients to nurses. Introduce a set of
patients Ps,i,n,d such that the intra-day pattern of patient p ∈ Ps,i,n,d
incurs an activity for nurse n ∈ Nd in time slot i, if the appointment
starts at time s. Allocation of patient p with appointment starting
time s′p to nurse n′

p may be infeasible if it is not possible to complete
all treatments of the intra-day pattern of patient p within the
working hours of nurse n′

p. Therefore we limit our consideration
to a set of nurses Np,s,d ⊆ Nd whose working hours on day d allow
to perform all treatments of patient pwith starting time s.

Similar to formulation ILP(k)
d , we define the decision variables

xp,s,n,d and bt,n,d:

xp,s,n,d =

1, if the appointment time of patient p is s
and the allocated nurse is n,

0, otherwise.

bt,n,d =


1, if nurse n has a meal break starting at time t ,
0, otherwise,

and auxiliary variables yi,n,d to measure the number of clashing
activities. Recall that

yi,n,d ≥ 1,

where yi,n,d = 1 represents either of the cases: the nurse is free
in time slot i or performs one activity in time slot i and there
are no other clashing activities, see Section 7. The case yi,n,d >
1 corresponds to the number of clashing activities of nurse n
happening in time slot i and it is calculated as

yi,n,d ≥


s∈Hn,d


p∈Ps,i,n,d

xp,s,n,d.

The two main objective functions of the rescheduling problem are
the maximum clash density ∆d and the number of clashing tasks
Ωd, defined by (7) and (8), respectively:

∆d = max
n∈Nd, i∈Hn,d


yi,n,d


,

Ωd =


n∈Nd


i∈Hn,d


yi,n,d − 1


.

An additional objective is aimed at balancing the workload of
different nurses and it is measured as the maximum difference
W diff

d in nurses’ workloads:

W diff
d = max

n1,n2∈Nd

Ŵn1,d − Ŵn2,d

 .

Recall that the relativeworkloadWn,d of nurse n on day d is defined
by (2) and it can be calculated as

Ŵn,d =
1Hn,d

 
s∈Hn,d


i∈Hn,d


p∈Ps,i,n,d

xp,s,n,d.
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Table 4
Comparison of actual daily schedules of May 2008 used at the St. James’s Hospital (Leeds, UK) and those obtained via rescheduling.

Actual
schedule

Nurse reallocation; no delays in appointments starting
times

Nurse reallocation and possible delays in
appointment starting times
15 min
delay

30 min
delay

45 min
delay

Complete rescheduling

Number of clashing tasks per
month

454 110 41 30 22 0

Max clash density 6 4 4 2 2 1
Daily avg. clash density 3.2 1.95 1.55 1.25 1.20 1
Since the above three criteria are conflicting, we establish an order
of their importance for lexicographical optimization. Our first
priority is to minimize the maximum clash density ∆d; secondly,
among the solutions with the smallest clash density, we give
priority to those with the smallest number of clashing activities
Ωd; finally, among the solutions with the smallest ∆d and Ωd we
select those with the minimum workload differenceW diff

d .
Summarizing, the resulting integer linear program ILPd is of the

form:

ILPd : lex

min∆d, minΩd, minW diff

d


s.t. ∆d ≥ yi,n,d, n ∈ Nd, i ∈ Hn,d,

Ωd =


n∈Nd


i∈Hn,d


yi,n,d − 1


,

W diff
d ≥ Ŵn1,d − Ŵn2,d, n1, n2 ∈ Nd,

Ŵn,d =
1Hn,d

 
s∈Hn,d


i∈Hn,d


p∈Ps,i,n,d

xp,s,n,d, n ∈ Nd,

yi,n,d ≥


s∈Hn,d


p∈Ps,i,n,d

xp,s,n,d, n ∈ Nd, i ∈ Hn,d,

yi,n,d ≥ 1, n ∈ Nd, i ∈ Hn,d,
s∈H ′

p,d


n∈Np,s,d

xp,s,n,d = 1, p ∈ Pd,
p∈Pd


s∈Bp,t,n,d

xp,s,n,d + bt,n,d ≤ 1, n ∈ Nd, t ∈ Mn,d,
t∈Mn,d

bt,n,d = 1, n ∈ Nd

xp,s,n,d ∈ {0, 1} , p ∈ Pd, s ∈ H ′

p,d, n ∈ Np,s,d,

bt,n,d ∈ {0, 1} , t ∈ Mn,dn ∈ Np,s,d.

Notice that the pre-assigned appointment starting time sp and
nurse allocation np for every patient p ∈ Pd define a feasible
solution to ILPd, which can be used as an initial solution for that
problem. An optimal solution to ILPd determines new appointment
times s′p and nurse allocations n′

p for all patients p ∈ Pd.

10. Results of computational experiments

In this section we describe typical problem instances in a real
clinic, our design of experiments and computational results.

At the chemotherapy outpatient clinic of the St. James’s Hospi-
tal in Leeds, an average of 800 appointments are scheduled every
month. Treatments are performed by 19 nurses which have dif-
ferent working hours. The clinic works 5 days a week and every
day about 40 patients are treated by 8 nurses. According to the
recorded data, the time from the decision to treat to the date of the
first appointment is 14 days on average. In a typicalmonthly sched-
ule, there are about 450 clashing tasks while in a typical intra-day
schedule, there are about 20 clashing tasks. Patients’ waiting times
on treatment days can be as large as 2 h. The percentage of time a
nurse spends on treatment activities in relation to overall nurse’s
working hours is 47% on average.

We perform two types of experiments evaluating the operation
of the clinic
Table 5
The effect of rescheduling on patient waiting times.

Nurse reallocation and possible delays in
appointment starting times
15 min delay 30 min delay 45 min delay

Patients not waiting 53.98% 44.96% 40.19%
Patients waiting 15 min 46.02% 22.94% 18.81%
Patients waiting 30 min – 32.10% 17.78%
Patients waiting 45 min – – 23.22%

• if only the rescheduling procedure (Stage 4 of our approach) is
used in addition to the existing manual scheduling policy,

• if the whole four-stage scheduling approach is adopted.

The evaluation is based on historical data recorded at the St.
James’s University Hospital in Leeds during the period from 1st
May 2008 to 1st September 2009.

In our first set of experiments we show how the rescheduling
procedure corresponding to Stage 4 of our approach can be used
to improve daily schedules produced in the hospital manually. We
use actual daily schedules for one month of the recorded historical
data (May 2008). The results are summarized in Table 4 where we
compare the average number of daily clashes over the one month
period depending on rescheduling constraints.

Our experiments demonstrate that operation of the clinic can be
substantially improved if nurse reallocation is done (compare the
figures in the first two columns of Table 4). Further improvement
can be achieved if delays are allowed in starting times of patients’
appointments (see the figures in the last four columns of Table 4).
Observe that such delays do not affect all patients and they are not
necessarily of maximum duration (see Table 5).

In the second set of experiments, we evaluate the four-stage
approach on two scenarios, one with patients’ arrival rates similar
to actual rates in the real clinic (119 patients per week on average)
and another one with higher arrival rates (about 141 patients per
week). We consider the 160 regimens which occur in the real
clinic most often. Our experiments cover only one time horizon H
consisting of 134 days with the first 60 days corresponding to the
arrival period Ha (see Section 3) which includes a warm-up period
of 30 days. Solution quality is evaluated for the period between
the 30th and the 60th day, excluding the warm up period, where
the simulation does not consider patients arrived in the past, as
well as the final period, where no new patients are scheduled.
The need to generate the data is caused by the presence of the
noise in historical data. Since the generated data closely follows
the characteristics of the historical data, we compare our results
with the actual performance characteristics of the clinic.

Stages 1–2 are performed only once producing one multilevel
template schedule, which is then used to generate running sched-
ules for both scenarios. The data for artificial patient is generated
considering the arrival rate λr calculated as the arithmetic mean
of weekly arrival rates recorded in the historical data. The value of
parameter ξ , which defines the level of overestimation, is set to 5.

Stages 3 and 4 are evaluated on 100 datasets, which describe
patients’ arrivals simulated using a Poisson process. Each dataset
we generate contains arrival dates of patients for all regimens. For
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Table 6
Weekly nurse rota for Scenarios 1 and 2.

Mon Tue Wed Thu Fri

Shift 1 11:00–18:00 9:00–18:15 9:00–18:15 9:00–18:00 9:00–16:45
Shift 2 11:00–18:00 9:00–18:15 9:00–18:15 9:00–18:00 9:00–16:45
Shift 3 11:00–18:15 9:00–18:15 9:00–18:15 9:00–18:00 9:00–16:45
Shift 4 11:30–18:15 9:00–18:15 9:00–18:15 9:00–16:45 9:00–16:45
Shift 5 12:00–18:30 9:00–17:00 9:00–18:15 9:00–16:45 9:00–16:15
Shift 6 12:00–19:00 9:00–17:00 9:00–17:30 9:00–16:45 9:00–16:15
Shift 7 – 9:00–17:00 9:00–17:00 9:00–16:45 9:00–16:15
Shift 8 – 9:00–17:00 9:00–17:00 9:00–16:45 9:00–16:15
Shift 9 – – – – 9:00-16:45
Table 7
Characteristics of schedules produced for Scenarios 1 and 2.

Monthly number of
appointments

Daily clashing tasks Daily clash density Relative workload (%)

Avg. Dev. Max. Avg. Dev. Max. Avg. Dev. Max.

Real clinic 992 22.70 10.43 43 3.20 0.80 6 47.28 12.71 62.90
Scenario 1 1024 1.25 2.07 15 1.42 0.51 3 62.71 13.84 84.80
Scenario 2 1277 1.95 2.55 18 1.56 0.52 3 71.13 12.53 85.86
the first scenario, arrival rates are the same as λr -values used in
Stage 2. For the second scenario the arrival rates are increased by
about 20%.

All scheduling decisions for a patient have to be made on the
arrival date. Depending on the category of a patient, the first ap-
pointment should happen within 7, 14 or 28 days from the arrival
date.We denote the corresponding groups of patients as A, B and C,
assuming that the patients are split in proportion 73%, 15% and12%,
respectively, reproducing the statistical trends in historical patient
data.

Both scenarios use the samenurses’weekly rotawhich is shown
in Table 6. The shifts have different lengths giving nurses some
flexibility in negotiating preferred working hours. Notice that on
Monday nurse shifts start no earlier than 11 a.m. since the hospital
pharmacy needs additional set up time after a weekend in order to
prepare drugs for treatments. It is assumed that each nurse needs
a 30-min lunch break between 11 a.m. and 2 p.m.

The capacity ratio σ used in Stage 3 to generate and maintain
running schedules is set to 0.9 bounding the total number of
treatment activities performed by a nurse. This implies that in
addition to a 30-min lunch break, nurse’s schedule should contain
at least 10% of unused time slots for additional duties.

Tables 7 and 8 characterize the quality of the generated running
schedules. In the first scenario, our approach is able to schedule
appointments reducing the average number of waiting days (see
Table 8), eliminating almost all clashing tasks (see Table 7) and,
therefore, reducing their density and increasing nurses’ relative
workloads defined by (2).

The results of experiments for the second scenario are quite
remarkable. With an increased number of arriving patients it is
indeed inevitable that the waiting time characteristics and the
number of clashes should increase. It appears that for a 20% in-
crease in the number of patients (about 89 additional patients per
month or 253 additional appointments) the deterioration in sched-
ule quality is marginal: for each category of patients the number of
waiting days increases on average by no more than 1 day, while
the average number of clashing tasks changes from 1.25 to 1.95
only. The comparison with the actual booking process of the clinic
is even more dramatic: the quality of actual schedules generated
manually for 992 appointments is much worse than the quality of
schedules generated by our approach for 1277 appointments.

The experiments were performed on Intel Pentium Core 2 Quad
CPU2.5GHz and3GBRAM. The ILP programsof Stages 2 and4were
solved by a single thread version of CPLEX 11.2. Time estimates for
the four stages of our approach are as follows.
• Stage 1 is implemented by calculating averages of patients’ ar-
rival rates; the time required by these calculation is negligible.

• Since the template schedule is the major factor which affects
the quality of running schedules, we allowed more time for
solving the associated ILP programs: 1 h for the solution of the
multi-day problem and 8 h for the solution of all intra-day prob-
lemsof the timehorizon. In the environment of a real clinic, long
computation time of Stage 2 is acceptable as template schedules
are generated rarely and serve for sufficiently long time. These
calculations can be performed, for example, overnight.

• Stage 3 is a fast heuristic requiring less than 1 s to book all ap-
pointments for a patient.

• Stage 4 is implemented as a single ILP problem for each day.
We set up a time limit of 120 s for rescheduling each intra-day
schedule; however optimal solutions are often found within
60 s.

In order to set up the time limit for the series of intra-day problems
of Stage 2, we use the following approach. The 8-h time limit
(28 800 s) is divided among the days of the time horizon H in
proportion to the number of daily appointments assigned. This
implies that the time limit Td for solving the intra-day problem for
day d can be defined as

Td = 28 800 ×
|PA

d |
d∈H

|PA
d |

,

where
PA

d

 is the number of artificial patients to be treated on
day d.

Generating an intra-day schedule for one day of the template
involves a number of integer linear programs ILP (k)

d , one for each
clash density level k = 1, 2, . . . , K . Although the total number of
density levels K in an intra-day schedule for day d can be as large
as the number of artificial patients

PA
d

 scheduled on that day, for
our datasets K can be bounded by a much smaller number defined
empirically:

K ≤ 5.

Due to this we set up a time limit for each program ILP (k)
d as

T (k)
d =

Td
5

.

Finally, since there are three objective functions for each problem
ILP (k)

d optimized lexicographically, a time limit of T (k)
d /3 is imposed

for optimizing one function.
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Table 8
Patients’ waiting days and times.
Notice that, due to the size and complexity of the ILP problems
used for creating the template schedule, introducing the time
limits is important to achieve admissible computation time (which,
otherwise, may be as large as several days). Although we cannot
guarantee the optimality of the template schedule, the resulting
running schedules are still of high quality.

Summarizing we observe that the computational experiments
demonstrate the advantages of the proposed approach evaluated
against the performancemetrics of themodel. Further experiments
run in a real clinic in parallel with the existing manual system
might provide additional evidence of operational benefits which
the streamlined scheduling procedures can bring.

11. Conclusions

In this paper we have introduced a new appointment schedul-
ing problem which arises in the context of chemotherapy outpa-
tient clinic. If all information about patients is known in advance,
producing good schedules for nurses and patients which treat-
ments should follow a combination ofmulti-day and intra-day pat-
terns with constraints on waiting times appears to be a difficult
task. The on-line nature of the problemwith patients arriving over
time adds even more complexity to the scheduling process.

The approach we propose consists of four stages: generat-
ing data for artificial patients, generating a template schedule,
producing a running schedule and rescheduling. The major un-
derlying idea is essentially based on the concept of multilevel
template schedule which represents a well thought through plan.
The template schedule contains more pre-booked appointments
than anticipated, providing flexibility in selecting the most appro-
priate options for arriving patients and for handling unexpected
arrivals. It is obtained as a solution to a series of integer linear pro-
grams with multiple objectives optimized lexicographically. Due
to this, the template ensures that the final running schedule is po-
tentially of high quality and satisfies the requirements of patients
and nurses.

In order to use the template for booking actual appointments
and creating a running schedule, we design a matching procedure
which takes into account characteristics of appointments of the
template and requirements of arriving patients. Finally, a running
schedule is further improved via rescheduling.

Thus, the novelty of our work lies in

• the introduction of a newschedulingmodelwith jobs consisting
of repetitive tasks satisfying given multidimensional patterns;

• the formulation of the concept of multi-level template for
scheduling patients in an uncertain environment and in its
development into a formal optimization model with advanced
features;

• the integration of daily rescheduling procedures into long-term
planning.

The proposed approach can be enhanced with various additional
features. We have demonstrated how it can be extended to take
into account the requirements of meal breaks for nurses. Further
enhancements may include patients’ preferences on appointment
starting times (morning, midday or afternoon) or requirements
of pharmaceutical suppliers and hospital pharmacy on drug
preparation.

Computational experiments demonstrate that our approach
can potentially bring substantial improvement in operation of a
real clinic in different ways:

• maintaining patients’ waiting times within required limits;
• improving nurses’ schedules by reducing the number of

clashing tasks (from an average of 20 clashing tasks per day to
less than 2 clashes),

• increasing the clinic capacity in terms of additional patients (in
our experiments based on real-world data, up to 89 patients
can be treated monthly in addition to the current 476 patients
on average) without extending nurses’ working hours and
avoiding essential deterioration in schedule quality.

We strongly believe that the concept of template schedule can
be used as a powerful algorithmic tool to tackle complex on-
line scheduling problems, especially those which involve multi-
operation jobs with given patterns.

It will be interesting to consider alternative approaches for
generating template schedules, for example, an integrated ap-
proach for solving multi-day and intra-day problems simultane-
ously rather than sequentially. Due to the size and complexity of
the integrated problem, it will be appropriate to develop meta-
heuristics and to compare the quality of the resulting schedules
with those produced by the current ILP-based approach which
treats multi-day and intra-day problems sequentially. Another
possible improvement could be achieved in Stage 1 by developing
advanced models for prediction of future demands.
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