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The study systematically investigated the nutritional potential of two different growing populations of
Sarcocornia ambigua (salt-tolerant) in terms of nutrients, bioactive compounds, and antioxidant activities. The
results revealed that the moisture content represented the largest single component (88.15% and 88.57%) in
the proximate composition of both samples of S. ambigua. The mineral present in highest amounts in both
samples (on a fresh matter basis) was sodium, followed by potassium, magnesium and then calcium. The
antioxidant activity for samples measured by DPPH ranged from 34.64 to 135.83 μmol TEAC 100 g−1 and by
FRAP from 31.92 to 170.14 μmol Fe+2 100 g−1. The fifteen phenolic compounds identified in each extract by
HPLC–ESI-MS/MS reveal the presence of one coumarin (scopoletin), one phenolic aldehyde (syringaldehyde),
eight phenolic acids (p-coumaric, cinnamic, vanillic, ferulic, caffeic, syringic, sinapic, and chlorogenic acids) and
five flavonoids (galangin, quercetin, naringin, kaempferol and isoquercitrin). This information can be useful in
determining the possible role of the compounds identified which can participate in the prevention of different
health disorders. Further studies are needed to evaluate the bioabsorption and bioavailability of the compounds
present in S. ambigua, as well as the interactions between them, after consumption. In summary, the findings of
this study highlight the potential of this halophyte as a valuable source of natural antioxidants and nutrients for
use in the food and pharmaceutical industries.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Plants of the Sarcocornia genus (Amaranthaceae) are halophytes
(salt-tolerant) that grow in saline areas, usually near the coast and
along the shores of salt lakes and marshes (Kadereit, Mucina, &
Freitag, 2006). The Amaranthaceae family comprises approximately
160 genera and 2400 species. Five South American species of
Sarcocornia have been identified and four different morphological
types are found in South America and the Mediterranean countries
(Alonso & Crespo, 2008). In South America the perennial Salicornia
gaudichaudiana (Moq.) occurs along the entire coast of Brazil and as
far south as Mar del Plata in Argentina (Costa & Davy, 1992; Souza
nta Catarina, Centro de Ciências
ntos, Rodovia Admar Gonzaga,
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Filho & Paradella, 2002). In Brazil new experimental crops of perennial
Salicornia and Sarcocornia have been grown applying an irrigation
system that uses saline effluent from shrimp farms (D'oca et al., 2012).
The taxonomy and nomenclature of the taxonomic description of
S. gaudichaudiana growing in South America has recently been updated
and currently this species is referred to as Sarcocornia ambigua (Michx.)
Alonso and Crespo (2008).

Different species of the Salicornia and Sarcocornia genera are suitable
for crop production and they have received good acceptance from
consumers, who are exclusively interested in the young green plant
parts that are sold in the market as ‘samphire’ or ‘sea asparagus’. The
latter name probably reflects the shape of the shoots, which resemble
the tops of green asparagus.

The aerial part of Salicornia herbacea has been used as a characteris-
tic food by coastal people and as a folk medicine to treat a variety of
diseases (Kim et al., 2011; Zhu & Row, 2010). The Salicornia species
have been introduced into the European market as a vegetable with
leafless shoots resembling green asparagus and, specifically in Italy
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and France, they have been used as an ingredient in vinegar. Also, in
Korea they are consumed as a seasoned vegetable, salad and fermented
food (Kim et al., 2011).

There is currently considerable interest in these plants since they
have been shown to be a promising functional food given their high nu-
tritional value in terms of natural minerals, includingMg, Na, Ca, Fe and
K, dietary fiber and many bioactive compounds, such as phytosterols,
polysaccharides and phenolic compounds, particularly flavonoids and
phenolic acids (Jang, Kim, Choi,Woo, & Choi, 2007; Ventura et al., 2011).

A number of studies have been carried out on the nutritional and
chemical characterization of the phenolic compounds content and anti-
oxidant activity of different halophytic species (S. herbacea, Salicornia
bigelovii, Salicornia persica, Sarcocornia fruticosa) that grow in saline
areas in several countries (Kim & Lee, 2009; Kim et al., 2009, 2011; Lu
et al., 2010; Min, Lee, et al., 2002; Oh, Kim, Lee, Woo, & Choi, 2007;
Rhee, Park, & Cho, 2009; Ventura et al., 2011).

The extraction and analysis of the bioactive compounds in
S. herbacea have attracted attention. Recent studies have been focused
on the isolation of bioactive compounds from the aerial parts of
S. herbacea, such as flavonoid glycosides (isorhamnetin 3-O-β-D-
glucoside and quercetin 3-O-β-D-glucoside), phenolic acids (caffeic
acid, syringic acid, p-coumaric acid, chlorogenic acid, ferulic acid and
sinapic acid) and flavonoids (myricetin, quercetin hesperetin,
kampferol, rhamnetin and acacetin) in order to elucidate their potential
health benefits (Essaidi et al., 2013; Kim et al., 2011; Kong et al., 2009).

Previous studies have shown that S. herbacea has several biological
and physiological effects on health, with properties including antidia-
betic (Lee et al., 2005; Park, Ko, Choi, & Chung, 2006), antioxidant,
anti-inflammatory (Lee et al., 2007;Min, Lee, et al., 2002), antithrombus
(Lee et al., 2005) and antihyperlipidemic (Cha et al., 2004) activity.

However, little attention has been given to species found in Brazil,
and there have been no reports on the characterization of the nutrient
composition, bioactive compounds and antioxidant activity profile of
S. ambigua.

Thus, a detailed study on the proximate composition of S. ambigua
will contribute to the generation of data that can beused in food compo-
sition tables, as well as to provide better dietary guidance. Additionally,
themajor phenolic compounds in this species were characterized using
HPLC–ESI-MS/MS and the “in vitro” antioxidant activity was evaluated.

2. Materials and methods

2.1. Plant material

Sampling of the plant material from two different regions of
S. ambigua in the state of Santa Catarina (SC), Brazil, was conducted in
October 2012. The material was collected from two regions; the first
located on a natural tideland near the coast in Palhoça (latitude 27°
40′ 54.76″ S, longitude 48° 38′ 19.63″ O) (Region A), and the second in
Barra da Lagoa, Florianopolis (Latitude 27° 34′ 33″ S, Longitude 48° 26′
33″ O) (Region B) from an experimental crop irrigated once a day
with seawater and fertilized with sludge taken from the settling tanks
of a shrimp (Litopenaeus vannamei) farm.

The material was botanically identified at the Department of
Botany of the Regional University of Blumenau. A voucher specimen
was deposited in the Dr. Roberto Miguel Klein Herbarium at the
Regional University of Blumenau (no. 41346). The plant samples were
transported to the Laboratory of Food Chemistry within a maximum
of 2 h after collection.

2.2. Chemical reagents

The chemical reagents used were 1,1-diphenyl-2-picrylhydrazyl
(DPPH), 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid
(Trolox) and sodium hydroxide purchased from Sigma Chemical Co.
(St. Louis, MO). Gallic acid was obtained from Vetec (Rio de Janeiro, RJ,
Brazil). Hydrochloric acid (HCl), anhydrous ferric chloride (FeCl3),
methanol (MeOH) and ethanol (EtOH) were purchased from Sigma-
Aldrich Chemical S.A. (Madrid, Spain). A commercial mixture of fatty
acid methyl esters (FAME): 10 mg mL−1 Grain Fatty Acid Methyl
EsterMix (analytical standard) inmethylene chloride (CH2Cl2)waspur-
chased from Supelco (Bellefonte, PA, USA). A standardmultielement ICP
III solution purchased fromPerkin Elmer (Shelton CT, USA) andRh stock
solution supplied by Sigma-Aldrich (Buchs, Switzerland) were
employed. Argon gas with a purity of 99.996% purchased from White
Martins (Sao Paulo, Brazil) was used. All reagents were of analytical
grade unless otherwise indicated. Distilled and deionized water with a
resistivity of 18.2 MΩ cm was obtained from a Milli-Q plus system
(Millipore, Bedford, USA). The standards of phenolic compounds used
in the HPLC–ESI-MS/MS analysis were obtained from Sigma-Aldrich
(Sao Paulo, SP, Brazil) and all of them presented purity above 98%. A
stock solution of each standard of phenolic compound was prepared
by dissolving 10 mg in 10 mL of methanol (1000 mg L−1), and then,
another working solution was prepared by dilution of these
1000 mg L−1 stock solution to 10 mg L−1 also in methanol. All
solutions were stored at 4 °C in a refrigerator.

2.3. Sample preparation

The aerial parts (leaf and steam) of the plants to be studied were
washed with deionized water, towel dried and submitted to blanching
for 10 min at 85 °C to inactivate the enzymes. Part of each sample was
maintained in its natural condition and the other part was dried
at 65 °C for 12 h (dry sample — DS). Both samples were stored at a
temperature of −20 ± 0.2 °C until use. For subsequent analysis the
samples were ground sufficiently in an Ika® Werke A11 (Staufen,
Germany) food processor. This sample was utilized for analysis of fatty
acids and mineral.

2.4. Chemicals analysis

General parameters were measured following the methods
recommended by the Association of Official Analytical Chemicals
(AOAC, 2005): moisture content (925.09) was determined by drying
the sample in an oven at 105 °C until constant weight; ash content
(923.03) was determined by burning the sample in a muffle furnace at
550 °C for 5 h; total lipids (920.85) were determined according to the
Soxhlet extraction methodology; and the crude protein (920.87) con-
tent was calculated from the total nitrogen content determined by the
Kjeldahlmethod, using a conversion factor of 6.25. Soluble and insoluble
dietary fiber content was determined by the enzymatic–gravimetric
method (991.43). Available carbohydrate content was obtained by
difference, considering 100 g minus the sum (g) of water, protein,
lipids, ash and dietary fiber. The chemical analysis was performed
in triplicate with the homogeneous fresh sample, derived from the
sampling procedure described above, and all results were expressed as
fresh matter (% w/w).

2.5. Fatty acid composition

The lipids extracted from the whole plant (DS) by the method
described in Section 2.4 were converted to fatty acid methyl esters
according to Metcalfe, Schmitz, and Pelka (1966) and Hartman and
Lago (1973), with some adaptations (0.5 mol L−1 methanolic sodium
hydroxide was used for solubilization and saponification; esterification
was performed with 3% ammonium chloride and sulfuric acid in meth-
anol and the n-hexanewas used for extraction). Fatty acidmethyl esters
(FAME) were determined using the AOCS Official Method Ce 1f-96
(2002) with appropriate adaptations to the temperature program for
the determination of the fatty acid composition. A gas chromatography
system (Agilent Technologies model 7890A) equipped with a flame
ionization detector (FID), a split/spitless injector (operating with a
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split ratio of 1:50) and a capillary column HP-88 (88% cyanopropylaryl
60 m × 0.250 mm ID × 0.20 μm film) was used. Helium was used as
the carrier gas at a flow rate of 1 mL min−1. The injector and detector
temperatures were 250 °C and 300 °C, respectively. The oven tempera-
ture was held at 140 ºC for 5 min, ramped at 4 ºC min−1 to 240 °C, and
held at 240 °C for 10 min. The gas chromatography peaks for FAME
were identified by comparison with known standards. The results
were expressed as the relative percentage of each fatty acid.

2.6. Mineral analysis

2.6.1. Sample preparation
The concentrations of themajor minerals (sodium, potassium,mag-

nesium and calcium) were determined on an inductively coupled plas-
mamass spectrometer (ICP-MS), Perkin-Elmer SCIEX,model ELAN6000
(Thornhill, Canada) coupled to a cross-flow nebulizer and a Scott spray
chamber. Prior to the determination of the total element concentrations
a complete destruction of the organicmatrix of homogenized samples is
required and during the mineralization process all organic compounds
were converted into inorganic elements. In this regard, the samples
(0.5 g of DS) were microwave digested (MLS-1200 microwave oven;
Milestone, Sorisole, Italy), with 6 mL HNO3 (65% v/v) (Supra pure,
Merck, Darmstadt, Germany) and 1 mL H2O2 (30% v/v) (Trace Select
Ultra; Sigma-Aldrich) at 250–600 W for 25 min in closed vessels.

Digested sampleswere diluted appropriatelywithultra-pure labora-
tory Milli-Q water (18.2 MΩ cm quality; Millipore SAS), and to correct
for non-spectral interferences, 10 μg L−1 Rh was used as the internal
standard for all determinations. The concentrations of the standards
used for the external calibration, prepared using stock solution Multi-
element Calibration Standard 3 (Perkin Elmer, Inc., Shelton, Ct, USA),
ranged between 2.0 and 800 μg L−1. In order to verify the trueness of
the measurements, certified reference materials of the National
Institute of Standards and Technology (Gaithersburg, USA) were used
to evaluate the analytical methods for all of the elements studied. The
certified samples were of apple leaves (SRM no. 1515) and pine needles
(SRM no. 1517a). Each sample, including the certified materials, was
digested in triplicate and analysis was carried out once on each digest.

The instrument performance was assessed daily prior to the analysis.
Argon (99.996%;WhiteMartins, São Paulo, Brazil)was used as the sample
introduction and plasma gas. The instrumental parameters were as
follows: RF power, 1200 W; sampler and skimmer cones, Pt; scanning
mode, peak hopping; resolution, 0.7 amu; readings per replicate, 50; rep-
licates, 3; sweeps/reading, 20; residence time, 50 s; gas flow rates, main
15.0 L min−1, intermediate 1.0 L min−1 and nebulizer 1.0 L min−1;
and isotopes 23Na, 24Mg, 39K and 43Ca.

2.7. Isolation and purification phenolic compounds

The aerial parts of the raw plant material (60 g) were treated with
methanol (250 mL) and stored at a temperature of 10 ± 0.2 °C for ten
days according to Filho and Yunes (1998) with some adaptations.
After extraction the extract was filtered through Whatman no. 1
filter paper and then evaporated to give a final volume of 50 mL. The
pH of the concentrate obtained was then adjusted to pH 12.0 with
2.0 mol L−1 NaOH and the samples were kept in the dark for 12 h at a
temperature of 25 ± 2 °C. The pH was then adjusted to 2.0 with HCl
solution and partitioned with ethyl ether three times. The ethereal
extracts were combined and then evaporated in a rotary evaporator
until complete removal of the solvent. Next, the extracts were dissolved
in 2 mL of theMeOH/H2O (70:30)mixture, sonicated (1400A®Unique,
Sao Paulo, SP, Brazil) for 2 min at room temperature (25 ± 2 °C),
passed through an SPE column (Strata C18-E/Phenomenex previously
conditionedwith 5 mLMeOH and 5 mL ultrapure H2O) and then eluted
with a solution of MeOH/H2O (70:30) with the volume adjusted to
10 mL. Upon injection into the HPLC–ESI-MS/MS, the extracts were
further diluted with methanol.
2.7.1. Identification and quantification of phenolic compounds by
HPLC–ESI-MS/MS

The HPLC–ESI-MS/MS analysis was performed on a 1200
high-performance liquid chromatography (HPLC) system (Agilent
Technologies — Waldbronn, Germany). Separation was performed in a
Zorbax Eclipse XDB-C8 column (150 mm, 2.1 mm ID, 3.5 μm particle
size). The liquid chromatography analysis was carried out using a mobile
phase gradient consisting of acetonitrile:water (95:5) (A) and0.1% formic
acid inwater (B)with an initial condition of 15% A. Themobile phasewas
then linearly increased to 95%A and 5% B over 10 min. This conditionwas
maintained for 5 min, giving a total runtime of 15 min. The initial condi-
tions were returned to 15% A and 85% B and equilibrated for a further
10 min. The column temperature was set at 30 °C, the flow rate was
250 μL min−1 and the sample injection volume was 5 μL. The HPLC sys-
tem was coupled to a mass spectrometer system consisting of a hybrid
triplequadrupole/linear ion trap mass spectrometer, model API 3200™
(Applied Biosystems/MDS Sciex, Concord, Canada). Analyst version 1.5.1
was used for the HPLC–ESI-MS/MS system control and data analysis.
The mass spectrometry was tuned in negative and positive modes by in-
fusion of a polypropylene glycol solution. The experiments were per-
formed using the TurbolonSpray® source (electrospray ionization—ESI)
in positive ion mode. The capillary needle was maintained at 5500 V.
TheMS/MS parameterswere as follows: curtain gas, 10 psi; temperature,
400 °C; nebulizer gas, 45 psi; auxiliary gas, 45 psi; and collision gas, me-
dium. Other parameters for the cone and collision energy are listed in
Table 1 and these optimal conditions were obtained by the infusion of
the standards of phenolic compounds at concentration of 1 mg L−1

usingmethanol as solvent. The polyphenolic compoundsweremonitored
using the scan mode multiple reaction monitoring (MRM).

2.8. Procedure to determine antioxidant activity (AA)

2.8.1. Extract preparation
The extracts were prepared using 10 g of fresh sample (aerial part)

with 25 mL of MeOH in an ultrasonic bath (Unique® 1400A, Sao
Paulo, SP, Brazil) at room temperature (25 °C) for 30 min and then
centrifuged at 1000 ×g for 10 min using a Fanem® centrifuge, model
280R (Fanem, Sao Paulo, SP, Brazil). The supernatants recovered were
used to evaluate the antioxidant activity.

2.8.2. DPPH radical scavenging activity assay
The antioxidant activity against DPPH was determined according to

the method Brand-Williams, Cuvelier, and Berset (1995) adapted of
Kim, Lee, Lee, and Lee (2002). A methanol solution containing
0.01 mmol L−1 DPPH was prepared fresh daily and stored at 20 °C
until use. The ethanol solution of the DPPH radical (2.9 mL) was placed
in a glass cuvette and the absorbance at 515 nm in t = 0 (t0) wasmea-
sured using a Hewlett–Packard spectrophotometer, model HP 8452A
(Cheadle Heath, Stockport Cheshire, UK). The extract (100 μL) was
then added and the mixture was shaken well and incubated in the
dark for 30 min (t30) at room temperature (25 °C). The absorbance
was taken at 515 nm. Inhibition of DPPH free radicals, in percent
terms (I %), was calculated according to the formula:

% inhibition ¼ ½1−ðabsorbance samplet¼30min=absorbance controlt¼0minÞ�

The antioxidant activity of the samples was expressed as
μmol Trolox equivalent antioxidant capacity 100 g−1 of fresh matter
(μmol TEAC 100 g−1 FM), through a calibration curve Trolox
75–1050 μmol·L−1. Each determination was performed in tripli-
cate and was repeated at least three times.

2.8.3. Ferric reducing antioxidant power (FRAP) assay
The antioxidant capacity was estimated by performing the

FRAP assay, following the procedure described in the literature by



Table 2
Nutrient composition of Sarcocornia ambigua collected from two different regions in state
Santa Catarina, Brazil.

Proximate composition Region A Region B

Moisture (%) 88.15 ± 0.54a 88.57 ± 0.60a

Ash (g 100 g−1) 2.96 ± 1.31a 3.64 ± 1.21b

Crude Protein (g 100 g−1) 1.93 ± 0.02a 2.06 ± 0.01a

Lipids (g 100 g−1) 0.16 ± 0.01a 0.12 ± 0.09a

Soluble dietary fiber (g 100 g−1) b0.5 b0.5
Insoluble dietary fiber (g 100 g−1) 2.75 ± 0.10a 1.97 ± 0.03b

Total carbohydrate (g 100 g−1) 3.55a 3.14b

Major minerals
Sodium (mg g−1) 10.19 ± 5.3a 16.57 ± 1.8b

Potassium (mg g−1) 2.90 ± 1.1a 1.81 ± 0.1b

Magnesium (mg g−1) 0.92 ± 0.5a 1.30 ± 0.1b

Calcium (mg g−1) 0.54 ± 4.1a 0.53 ± 0.2a

Values expressed in fresh matter.
Results expressed as mean ± SD of triplicates.
a–b Different superscript letters between samples denote significant differences (ANOVA,
p b 0.05).

Table 1
Operating parameters for analysis in positiveMRMmode of the polyphenolic compounds.

Analytes DPa EPa CEPa CEa CXPa

Vanillic acid 26 5.5 10 17/35 4
Chlorogenic acid 26 2.5 18 17/75 6/4
Caffeic acid 21 5 12 11/37 4
Coumarin 36 8.5 10 31/23 4
p-Coumaric acid 21 7.5 14 11/35 4
4-Methylumbelliferone 31 8 10 45/23 4
Coniferaldehyde 31 4 14 13/31 4
Syringaldehyde 21 3.5 10 19/29 4/10
Scopoletin 51 6 12 25/27 4
Ferulic acid 21 3 12 11/17 4
Syringic acid 21 5 12 11/33 4
Sinapaldehyde 31 3.5 16 45/27 4/8
Sinapic acid 16 7 12 13/35 4
Resveratrol 36 3.5 14 31/19 4
Apigenin 21 4.5 16 13/31 4
Naringenina 41 4 12 27 4
Luteolin 46 4 16 113/89 4/30
Kaempferol 51 4.5 14 39/45 4
Aromadendrin 26 5 12 15/19 4
Hispidulin 46 5 14 23/43 4
Quercetin 51 5 14 73/77 4
Apigenin 7-glucoside 51 7 22 29/45 4
Myricetin 26 4 24 19/33 4
Isoquercetin 21 4.5 26 21/43 6/4
Naringin 16 5 16 23/57 4
Rutin 21 5 24 29/19 6
Cinnamic acid 21 4.5 12 11/25 4
Galangin 66 3.5 14 69/67 4
Catechin 31 3.5 14 19/17 4
Epicatechin 31 3.5 14 19/17 4

a DP — declustering potential; EP — entrance potential; CEP — collision energy
potential; CE— collision energy; CXP — collision cell exit potential.
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Benzie and Strain (1996). The extract (200 μL) and 200 μL of FeCl3
(3 mmol L−1 in 5 mmol L−1 citric acid) were mixed in a tube and
incubated for 30 min in a water bath at 37 °C. TPTZ solution (3.6 mL)
was then added and the mixture was vortexed. After exactly 10 min
the absorbance (620 nm) was read using a Hewlett–Packard spectro-
photometer, model HP 8452A (Cheadle Heath, Stockport Cheshire,
UK). The results were expressed as μmol Trolox equivalent antioxidant
capacity 100 g−1 of fresh matter (μmol Fe+2 100 g−1 FM), based on a
calibration curve (Trolox 75–1050 μmol·L−1). Each determination
was performed in triplicate and was repeated at least three times.

2.9. Statistical analysis

All variables were reported as mean ± standard deviation (SD) of
three replicates. The results were compared by the one-way analysis
of variance (ANOVA) and T-test. To evaluate the relationship between
the variables evaluated. The data analysis was performed using the
software STATISTICA 7.0 (Statsoft Inc., Tulsa, OK, USA) and differences
between the means were considered statistically significant at the
5% level (p b 0.05).

3. Results and discussion

3.1. Chemical analysis

The nutrient composition and mineral content of S. ambigua are
shown in Table 2. Significant differences (p b 0.05) were revealed
between the samples in terms of the contents of ash, insoluble dietary
fiber, total carbohydrate and most minerals.

The results revealed that the moisture content represented the
largest single component (88.15% and 88.57%) in the proximate
composition of both samples of S. ambigua. Similar findings have been
published for different halophytic species grown in Korea and China,
with moisture contents of 88.42 to 90.9% (Lu et al., 2010; Min, Son,
et al., 2002). The ash content ranged from 2.96% (sample A) to 3.64%
(sample B) on a fresh matter basis. These values are two to three
times lower than those reported by Min, Son, et al. (2002) and Lu
et al. (2010) for S. herbacea and S. bigelovii (4.36 to 6.2%). Overall, the
large oscillations in the ash content may be related to the content of
minerals, which varies widely between species of the genus Salicornia
and Sarcocornia (Min, Lee, et al., 2002).

The crude protein content ranged from 1.93% (sample A) to 2.06%
(sample B), in agreement with results reported by Min, Son, et al.
(2002), Ventura et al. (2011) and Agawu (2012), who observed crude
protein contents ranging from 1.7 to 2.0%; 2.0 to 3.59% and 1.20 to
4.66% respectively.

The lipid contentwas relatively low and ranged from 0.16% to 0.12%.
The results were shown to be lower than those obtained in previous
studies with Salicornia europaea (0.34%) (Guil, Torija, Gimenez, &
Rodriguez, 1996), S. herbacea (0.20 to 0.30%) (Min, Son, et al., 2002)
and S. bigelovii (0.37%) (Lu et al., 2010).

The total carbohydrate content ranged from 3.55% (sample A) to
3.14% (sample B), in contrast to the result reported by Lu et al. (2010)
(4.48%). The predominant dietary fiber was insoluble and ranged from
2.75% (sample A) to 1.97% (sample B). This content is 2–3 times higher
than that reported by Lu et al. (2010) for S. bigelovii (0.83%).

Wide variations in the chemical compositions of Salicornia and
Sarcocornia species growing in different geographical locations with
different soil conditions (salinity) have been reported (Lu et al., 2010;
Min, Son, et al., 2002; Ventura et al., 2011). This study verifies the data
presented in these reports, suggesting that the geographical location
inwhich S. ambigua grows and the crop system used affect the chemical
composition of the plant material.
3.2. Major minerals

The major minerals of S. ambigua (on a fresh matter basis) are
presented in Table 2. The results revealed that therewere significant dif-
ferences (p b 0.05) with wide variability between samples A and B for
sodium, potassium and magnesium. In all samples the mineral present
in highest amounts was sodium, followed by potassium, magnesium
and then calcium. These results are similar to those reported by Min,
Son et al. (2002), Lee, Rhin, and Kim (2009), Rhee et al. (2009),
Lu et al. (2010), Parida and Jha (2010) and Ventura et al. (2011), who
found that the mineral with the highest concentration in S. herbacea,
S. europaea, S. bigelovii, S. brachiata, S. persica and S. fruticosa was
sodium, followed by potassium, magnesium and then calcium.

The sodium content ranged from 10.19 mg g−1 (sample A) to
16.57 mg g−1 (sample B), in agreement with results reported by
Min, Son, et al. (2002), Lu et al. (2010) and Ventura et al. (2011), who
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observed corresponding sodium values of 10.03 mg g−1, 9.98 mg g−1

and 15.57 mg g−1, respectively.
The potassium, magnesium and calcium contents ranged between

samples from 2.9 to 1.81 mg g−1; 0.92 to 1.30 mg g−1 and 0.54 to
0.53 mg g−1, respectively. Similar findings have been published for
different halophytic species with potassium, magnesium and calcium
contents ranging, respectively, from 1.76 to 2.71 mg g−1, 0.87 to
1.23 mg g−1 and 0.52 to 0.62 mg g−1 (Ventura et al., 2011).

In summary, the variation in the mineral content of the S. ambigua
samples expected, since the plant by accumulation of organic solutes
and mineral ions may vary according to the geographic location, crop
system, irrigation water salinity, maturity and harvest conditions
(Grieve, Shannon, & Poss, 2001; Maggio, De Pascale, Fagnano, &
Barbieri, 2011).

In this context, sodium is themain ion accumulatedwhen plants are
irrigated with moderately or hyper-saline water and the amounts of
other ions, such as K+, Mg2+ and Ca2+, which confer nutritional value
to the product, typically decrease with increasing irrigation water
salinity, predominately as a result of competition with Na+ during
uptake (Flowers & Colmer, 2008).

3.3. Fatty acid profile

The results for the fatty acid profile, total saturated fatty acids (SFA),
monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids
(PUFA) of S. ambigua grown in the different regions are given in
Table 3. Significant differences (p b 0.05) were revealed between the
samples only for the fatty acids that were not identified.

The fatty acid profile of S. ambigua showed a predominance of poly-
unsaturated fatty acids (PUFA) ranging from 60.61 to 61.32%, compris-
ing mainly linolenic acid (44.04 to 44.70%) followed by linoleic acid
(16.57 to 16.52%). The saturated fatty acids (SFA) represented 17.82 to
18.27% of the total lipid content, with the main constituent being
palmitic acid (13.20 to 13.65%), and the monounsaturated fatty acids
(MUFA) represented 4.49% to 4.59% of the total lipid content with the
main constituent being oleic acid (3.84 to 3.92%). A similar trend in
the fatty acids profile was reported by Ventura et al. (2011) for samples
of S. persica and S. fruticosa, who observed that the most abundant fatty
acid was linolenic acid, which ranged from 41.2 to 48.2% of the total
fatty acids content, followed by linoleic acid (23.85 to 27.31%) and
palmitic acid (20 to 21.13%).

The findings also showed that the lipid content of S. ambigua is
relatively low (Table 2) and this plant is thus adequate for human con-
sumption as a leafy vegetable, containing a high content of unsaturated
fatty acids (65.1% to 65.9%) in its composition. For good nutritional
Table 3
Fatty acids profile (%) from lipid fraction of S. ambigua samples.

Fatty acids Region Aa Region Ba

Lauric (C12:0) 0.45 ± 0.02 a 0.45 ± 0.01 a

Myristic (C14:0) 0.59 ± 0.03 a 0.58 ± 0.02 a

Palmitic (C16:0) 13.20 ± 0.38 a 13.65 ± 0.65 a

Palmitoleic (C16:1c) 0.65 ± 0.20 a 0.67 ± 0.02 a

Stearic (C18:0) 1.70 ± 0.23 a 1.70 ± 0.18 a

Oleic (C18:1c) 3.84 ± 0.16 a 3.92 ± 0.16 a

Linoleic (C18:2c) 16.57 ± 0.68 a 16.62 ± 0.52 a

Linolenic (C18:3c) 44.04 ± 1.20 a 44.70 ± 1.20 a

Arachidic (C20:0) 0.79 ± 0.03 a 0.79 ± 0.02 a

Behenic (C22:0) 1.08 ± 0.04 a 1.09 ± 0.03 a

Others 17.09 ± 0.30 a 15.83 ± 1.69 b

Total SFA 17.82 a 18.27 a

Total MUFA 4.49 a 4.59 a

Total PUFA 60.61 a 61.31 a

Results expressed as mean ± SD of triplicates.
a–b Different superscript letters between samples denote significant differences (ANOVA,
p b 0.05).

a Results expressed as percentage.
quality, including beneficial health effects, the PUFA/SFA ratios should
be higher than 0.45 (Guil et al., 1996), and in the present study the
PUFA/SFA ratios ranged from 3.4 to 3.3.

In summary, the fatty acid profile observed for the samples of
S. ambiguawas as expected since, at the cellular level, in plants irrigated
with saline water alterations to the membrane fatty acid composition
prevent damage to the cellular membranes (Allakhverdiev, Nishiyama,
Suzuki, Tasaka, & Murata, 1999). These alterations can lead to a
significant amount of unsaturated fatty acids, mainly linolenic acid
and linoleic acid (whose benefits to human health are well known),
accumulating in the cellular membranes of the leaves of edible plants
species, both halophytes and non-halophytes, with culinary uses
(Simopoulos, 2004).

3.4. Structural characterization of phenolic compounds isolated by
HPLC–ESI-MS/MS

Currently, limited published data are available on the composition
and/or content of individual phenolic acids and flavonoids in halophytic
species (S. herbacea, S. bigelovii, S. persica, S. fruticosa). In previous
studies the phenolic acids and flavonoid contents were extracted and
isolated by chromatography and the structural characterization of the
isolated compounds was carried out by nuclear magnetic resonance
(NMR) (Kong et al., 2009; Hwang, Yun, Chun, Chung, & Kim, 2009;
Kim et al., 2011; Wang et al., 2013).

Thefingerprinting ofmethanol extracts of S. ambigua led to the iden-
tification and quantification of phenolic acids and flavonoids based on
their molecular formula and fragmentation pattern and by comparison
of their retention times with those of commercially available standards.

In this procedure the extracts of S. ambigua were injected in order
to obtain a qualitative profile and of the 30 analytes (Table 1) included
in the method the samples initially presented mass fragmentation
corresponding to 22 compounds. However, of these 22 compounds,
seven were not confirmed. These compounds showed mass fragmenta-
tion similar to umbelliferone, 4-methylumbelliferone, coumarin,
coniferaldehyde, sinapaldehyde, catechin and epicatechin but, although
the fragmentation profiles were the same, a comparison with the
chromatographic column retention times observed for the standards
showed considerable differences for these 7 compounds. This may be
due to the close structural similarity between some phenolic com-
pounds, such as flavonoids, which have very similar fragmentation
patterns.

After identification of phenolic compounds present in the samples,
calibration curves were constructed with 7 points for the 15 different
analytes identified. It was determined that the limit of quantification
was the lowest point of the curve and the mixture of standards with
the concentration corresponding to this value for each analyte was
injected. Thus, the detection limit was obtained by dividing the lower
limit of calibration curves for 3.3. The calibration curves were prepared
from stock solutions of analytical standards at a concentration of
1000 mg L−1 (approximately) by successive dilution with MeOH: H2O
50% (v/v) until the optimal range of application for each analyte. The
calibration curves and the samples were injected in duplicate and the
parameters for the linearity, coefficient of determination, detection
and quantitation limits, as well as, retention times of the compounds
are presented in Table 4.

Table 5 summarizes the 15 phenolic compounds identified in each
extract, their retention time, protonation [M + H]+ and phenolic con-
tent. The results reveal the presence of one coumarin (scopoletin), one
phenolic aldehyde (syringaldehyde), eight phenolic acids (p-coumaric,
cinnamic, vanillic, ferulic, caffeic, syringic, sinapic, and chlorogenic
acids) and five flavonoids (galangin, quercetin, naringin, kaempferol
and isoquercitrin).

The major phenolic acids and flavonoids quantified by HPLC–ESI-
MS/MS in the extract of S. ambigua sampleswere ferulic, caffeic, vanillic,
p-coumaric acids, kaempferol and galangin (Table 4). Ferulic acid was



Table 4
Some figures of merit of the method applied.

Analyte RT
(min)

LOD
(mg L−1)

LOQ
(mg L−1)

Analytical range
(mg/L)

Eq. of the calibration curves R2

Scopoletin 7.19 0.08 0.27 0.27–5.32 y = 295 474x + 54 306 0.9975
Syringaldehyde 7.09 0.11 0.37 0.37–7.36 y = 443 671x + 267 914 0.9944
Galangin 11.32 0.07 0.23 0.23–4.55 y = 155 647x + 19 275 0.9994
Kaempferol 9.72 0.07 0.23 0.23–4.50 y = 101 076x + 7749.3 0.9973
Quercetin 8.93 0.07 0.24 0.24–4.73 y = 35802x − 1838.9 0.9988
Naringin 7.48 0.07 0.24 0.24–4.77 y = 36578x + 6018.7 0.9975
Isoquercetin 6.85 0.06 0.20 0.20–4.09 y = 254117x + 28205 0.9958
Cinnamic acid 9.61 0.07 0.23 0.23–4.59 y = 616682x + 147776 0.9951
p-Coumaric acid 6.90 0.07 0.23 0.23–4.64 y = 308540x + 45202 0.9927
Vanillic acid 4.53 0.07 0.23 0.23–4.55 y = 176087x + 9858.2 0.9959
Caffeic acid 4.25 0.07 0.24 0.24–4.73 y = 209619x + 22547 0.9977
Ferulic acid 7.28 0.07 0.23 0.23–4.59 y = 537574x + 69816 0.9953
Syringic acid 4.53 0.08 0.25 0.25–5.09 y = 130353x + 9729.8 0.9993
Sinapic acid 7.18 0.07 0.23 0.23–4.55 y = 118800x + 120000 0.9896
Chlorogenic acid 2.64 0.07 0.23 0.23–4.64 y = 326704x − 979.78 0.9984
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the most abundant phenolic acid in both samples, followed by caffeic
acid and the most abundant flavonoid was galangin in both samples.
The ferulic acid concentration (μg 100 g−1) ranged from 914.4
(sample A) to 591.79 (sample B) and the caffeic acid concentration
(μg 100 g−1) ranged from 318.0 (sample A) to 171.04 (sample B) on
a fresh matter basis. The galangin had a concentration of 20.15 μg
100 g−1 in sample A and 50.31 μg 100 g−1 in sample B, on a freshmat-
ter basis. A similar result was reported for extracts of S. herbacea by Oh
et al. (2007) and Zhu & Row (2010) who observed that the most abun-
dant phenolic acids were ferulic and caffeic acids.

Previous research conducted on the phenolic composition of
S. herbacea indicated the presence of chlorogenic, sinapic, ferulic, caffeic,
salicylic, syringic, p-coumaric and trans-cinnamic acids, as well as
dicaffeoylquinic acid derivatives and other phenolic acids, such as
tungtungmadic acid, scopoletin and pentadecyl ferulate (Essaidi et al.,
2013; Hwang et al., 2009; Rhee et al., 2009; Wang et al., 2013; Zhu &
Row 2010), together with some flavonoids, such as myricetin, querce-
tin, kaempferol, rhamnetin, isorhamnetin, hesperetin, galangin,
acacetin, quercetin-3-b-glucoside, rutin and other flavonoid glucosides
(Essaidi et al., 2013; Kim et al., 2011; Lee et al., 2005).

These results indicate that the content of phenols and flavonoids can
vary between different species within the same genus and also between
different ecotypes. The authors suggest that the different environmental
stress conditions (temperature, salinity, water availability, light intensi-
ty, nutrient deficiency, ionic stress), under which halophytes species
Table 5
Identification and quantification of phenolic compounds in S. ambigua.

Phenolic content

Phenolic compounds Experimental mass
[M-H]+(m/z)

MS/MS (m/z) Region Aa Region Ba

Scopoletin 193 133/178 bLOQ bLOQ
Syringaldehyde 183 123/77 bLOQ bLOQ
Galangin 271 77/69 20.15 50.31
Kaempferol 287 153/121 41.00 bLOD
Quercetin 69 303/69 30.94 bLOD
Naringin 681 273/153 bLOQ bLOQ
Isoquercetin 465 319/85 15.11 21.95
Cinnamic acid 149 131/103 bLOQ bLOQ
p-Coumaric acid 165 147/91 56.84 bLOQ
Vanillic acid 169 93/65 63.31 bLOQ
Caffeic acid 181 163/89 318.00 171.04
Ferulic acid 195 177/145 914.44 591.79
Syringic acid 199 155/77 25.18 bLOQ
Sinapic acid 225 207/91 bLOQ bLOQ
Chlorogenic acid 355 163/89 bLOQ bLOQ

ND = not detect; LOQ = limit of quantification; LOD = limit of detection.
a Values expressed μg 100 g−1 fresh matter.
grow, increase the synthesis of small, non-enzymatic molecules
with antioxidant properties, such as ascorbate, glutathione, carotenoid
and polyphenolic compounds, in order to decrease the production of
reactive oxygen species (ROS) (Buhmann & Papenbrock, 2013;
Ventura & Sagi, 2013).

According to Buhmann and Papenbrock (2013) the influence of the
growth conditions on the biosynthesis of phenolic compounds can be
readily tested by cultivating halophytes under different environmental
conditions.

The samples collected from the natural marsh (region A) had a
higher number of flavonoids (galangin, kampferol, quercetin and
isoquercitrin) and phenolic acids (p-coumaric, vanillic, caffeic, ferulic,
syringic, sinapic and chlorogenic acid) identified. Ferulic and caffeic
acids were the major phenolic compounds in both regions; however,
higher concentrationswere present in samples collected from the natu-
ralmarsh. The phenolic profile of the samples under study is reflected in
their antioxidant activity, which will be discussed in the next section.

3.5. Antioxidant activity (AA)

The study on the antioxidant activity (AA) of the plant extracts was
focused on the phenolic compounds and the two assays used to assess
the AA are based on different radicals and mechanisms of reaction.
The results for the total phenolics content and the DPPH and FRAP
assays are summarized in Table 6.

These variations were to be expected since many factors affect the
phenolic content of plants, such as the presence of other constituents
and/or of different types of phenols, time of harvest, growth conditions
(soil conditions), temperature, light and frequency and duration of
inundation by saline water (Ghosh & Scheepens, 2009).

The evaluation of the antioxidant activity of the S. ambigua extracts
showed large variations in the results obtained, with statistically
significant differences (p b 0.05) between the regions, demonstrating
that the growing region influences the phenolic compounds and,
Table 6
Availability of the antioxidant activity (AA).

Region DPPHa

(μmol TEAC 100 g−1)a
FRAPa

(μmol Fe+2 100 g−1)a

A 135.83 ± 5.00 a 170.14 ± 3.36 a

B 34.64 ± 4.56 b 31.92 ± 5.73 b

All results expressed as mean ± SD of triplicates.
TEAC, Trolox equivalent antioxidant activity.
a−b Different superscript letters for samples in the same column denote significant
differences (ANOVA, p b 0.05).

a Values expressed in fresh matter.
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consequently, the antioxidant activity. The AA for samples measured by
DPPH ranged from 34.64 to 135.83 μmol TEAC 100 g−1 and by FRAP
from 31.92 to 170.14 μmol Fe+2 100 g−1.

The percentage inhibition of DPPH radicals was highest for the
extracts of region A with 18.32 ± 0.70%, followed by the extracts of
region B (10.26 ± 1.4%), with statistically significant differences
(p b 0.05).

In summary, the results show that all plant samples have relatively
high antioxidant and free radical scavenger activity but sample A had
the highest antioxidant activity. The variation in the AA described in
this study for the samples of S. ambigua can be attributed to the origin
of the plant material. The sample collected from region A was growing
in natural tideland near the coast, in the presence of high salt concentra-
tions in the soil and the sample collected from region Bwas grown as an
experimental crop irrigated once a daywith a seawater effluent and fer-
tilized with sludge collected from settling tanks at a shrimp L. vannamei
farm. There is a general consensus that salt stress reduces gas exchange,
thereby limiting the CO2 supply to the leaf, and that it causes an over-
reduction of the photosynthetic electron transport chain leading to the
production of ROS. In response to this type of oxidative damage in
halophytes (salt-tolerant vegetation) the synthesis of antioxidants is
induced (Ashraf, 2009).

Most studies on plant antioxidants have shown that the production
of antioxidants is enhanced in plants in response to salinity to counter-
act the salt-induced elevated levels of ROS in the cells. However,
variations in the production of antioxidants in response to salt stress
are evident at the inter-species or intra-species level. The variations in
the seawater components, the frequency and duration of inundation
by saline water and the salt marsh plants present not only affects the
oxygen availability but also influences the production of antioxidants
(Ashraf, 2009; Garratt et al., 2002).
4. Conclusions

This paper reports the content of individual phenolic acids and
flavonoids in S. ambigua for the first time, with 15 phenolic compounds
identified in each extract. Ferulic and caffeic acids were the major
phenolic acids and galangin, kampferol and quercetin were the major
flavonoids quantified in the S. ambigua extracts. The results of the cur-
rent study suggest that the combination of phenolic compounds pres-
ent in the S. ambigua extracts may be responsible for the observed
antioxidant activity. This information can be useful in determining the
possible role of the compounds identified which can participate in the
prevention of different health disorders. Further studies are needed to
evaluate the bioabsorption and bioavailability of the compounds pres-
ent in S. ambigua, as well as the interactions between them, after
consumption.

However, despite differences in the composition of the plants, the
cultivation of this species is viable and can be applied to enhance the
production and consequently encourage higher consumption.

In summary, the findings of this study highlight the potential of this
halophyte as a valuable source of natural antioxidants and nutrients for
use in the food and pharmaceutical industries.
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