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ABSTRACT 

We present a parametrized class of matrices for which the rate of convergence of 

the conjugate gradient method varies greatly with the parameter and does not 

appreciably depend on the algorithm implementation. A small change in the eigen- 

value distribution can lead to a large change in the sensitivity of CG to rounding 

errors. A theorem is proved which gives a necessary and sufficient condition for 

ordering exact arithmetic CG processes for systems with different spectra according 

to the energy norm of the error. Theorems 4.1 and 4.2 continue Paige’s and 

Greenbaum’s work. 

1. INTRODUCTION 

Let Ax = b be a system of N linear equations, where x, b E RN, and A is 
a symmetric, positive definite matrix of order N. The conjugate gradient 
method (CG) for the solution of this system can be presented in the form 

x0, rO=b-h” 

(ri,r’) 

do = r”, 

‘i= (d’,Ad’) ’ 

x i+1 = xi + Ti d”, 

r i+l= ri - 7iAdi, 

rf+l 

cp,=(. 
i+l 

>r 1 

I (ri,ri) ’ 

di+l _ ri+l + pi di, i=O,1,2 ,.... (1.1) 
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The CG method was proposed by Hestenes and Stiefel in 1952 [8]. It gives, 
in exact arithmetic, the correct solution x within N steps. In practice, 
however, CG is regarded as an iterative method [16], because a sufficiently 
accurate approximate solution x k is often obtained in far fewer than N steps. 

The theoretical convergence rate (in the absence of rounding errors) has 
been studied by many authors. Using Chebyshev polynomials, estimates for 
the convergence rate were developed ([7], e.g.). It was recognized that the 
rate of convergence depends strongly on the distribution of eigenvalues of A. 
The effect of roundoff was discussed in Hestenes and Stiefel’s original paper, 
and again by Reid [16] and Jennings [9]. It was also studied extensively by 
Wozniakowski [26] and Bollen [4, 51. Results developed by Paige, Parlett, and 
Simon for the Lanczos algorithm provided further insight into this problem 
[12-15, 17-191. 

During our experiments we have found a parametrized class of matrices 
for which the behavior of the CG method is quite surprising. We have 
studied the change in the number of iterations required for convergence as a 
function of eigenvalue distribution. For some values of the parameter the CG 
process is sensitive to rounding errors, which leads to very slow convergence. 
A small change in the parameter (which implies a small change in the 
eigenvalue distribution) can lead to a large change in the convergence rate. 
The fact that the CG rate of convergence depends strongly on the distribu- 
tion of eigenvalues is well known. However, the known results deal with 
qualitative characteristics of the spectrum (isolated eigenvalues, clustered 
eigenvalues, eigenvalue gap). In our experiments, the parameter does not 
affect the eigenvalue distribution qualitatively. 

The purpose of our paper is to report our observations and to give at least 
a partial explanation of them. For our parametrized eigenvalue distributions 
CG is sensitive to rounding errors even in the case of a small condition 
number K (e.g. K = 100) and small N (e.g. N = 12,24). The fact that the CG 
process is strongly influenced by rounding errors for small N is more 
surprising than for large N. We have studied the sensitivity of CG to 
rounding errors as a function of eigenvalue distribution. The small problem 
size N is convenient for this work. Therefore most of our numerical results 
illustrated in Figures I-3 have been obtained for N = 24 (we note that they 
represent a small part of the experimental results obtained during our work 
for this paper). It can be easily verified that similar results can be obtained 
for N >> 24. 

We do not claim that our particular eigenvalue distribution is the only 
one for which CG suffers from rounding errors. Nevertheless, we think that 
studying this distribution may lead to a better understanding of the effect of 
rounding errors on the CG process. 
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2. THE REAL CONVERGENCE RATE: DESCRIPTION 
OF EXPERIMENTS 

The aim of our experiments was to study the dependence of the real CG 
convergence rate on the distribution of eigenvalues of the matrix A (in 
preconditioned CG methods, the distribution of eigenvalues is that of the 
preconditioned matrix, which depends on the choice of preconditioning 
method [3]). 

We use the following eigenvalue distributions. For a given N, A,, and 
K = A,/A, we generate the inner eigenvalues by the formula 

i-l 
hi = A, + N_1(A” - A,)P> d=2,3 ,...,N-I. (2.1) 

Thus for p = 1 we have a uniformly distributed spectrum, and for p < 1 the 
spectrum has the “clusterpoint” A i. The parameter p describes quantitatively 
the nonuniformity of the spectrum. 

For a given spectrum {A,, AZ,. . , AN) determined by N, A i, K, and p we 
carried out computations using following five algorithms: 

ALGORITHM 2A. The simulation procedure proposed by Hageman and 
Young [7] generates the Euclidean norm of the kth CG error, ]]x - xk]]; the 
A-norm of the k th CG error, [lx - rk(( A; and the Euclidean norm of the k th 
CG residual, ]]rk]]. The coordinates 77j of the initial residual r” in the basis of 
normalized eigenvectors of the matrix A are randomly generated with 
7j E (O,l>. This simulation procedure is equivalent to the CG algorithm in 
which all vectors are represented by their coordinates in the basis of A’s 
eigenvectors. The operation y = Ax is thus reduced to y = diag(A,, . . . , A,)x 
E Dx, and the computation corresponds to the ordinary CC process applied 
to the diagonal system Dx = b. 

ALGORITHM 2B. The simulation procedure based on Paige and Saunder’s 
SYMMQL algorithm generates [lx - xk](, ]]x - xk]]A, and J]rkJ], as well as the 
Euclidean norms [lx - z;]] of the SYMMQL error, Ilr:ll of the SYMMQL residual, 
and ]]rhll of the MINRES residual; cf. [ll]. 

ALGORITHM 2C. The Rutishauser variant of the CG algorithm [27] is 
applied to the system Dx+b=O, where D=diag(A,,...,A,), b=-r”= 

-(771,172,...7 vNIT, and the initial guess is x0 = 0. 



538 Z. STRAKOS 

ALGORITHM 2D. The classical variant of the CG algorithm (referred to 
by Reid as algorithm version 2; cf. 1161). 

ALGORITHM 2E. Jacobi acceleration of the Algorithm 2D; cf. [l]. 

These last two algorithms were applied to the system A? = 6 generated 

by 

A = GDGT, (2.2) 

where % and ? are related to r” and x by 

6 = Gr', i!=Gx, (2.3) 

and G is a randomly generated orthogonal matrix, GGT = I. The initial guess 
is !i” = 0. 

3. THE REAL CONVERGENCE RATE: RESULTS AND DISCUSSION 

Our observations and conclusions are summarized in three points. 

(1) There exists a critical value of the parameter p for which the number 
of CG iterations required for convergence greatly exceeds N even in the case 
of a small condition number (e.g. K = 100) and small N (e.g. N = 12,24). In 
its neighborhood a small change in p (or a small perturbation of the 
eigenvalue distribution) may cause a large change in the CG convergence 
rate. 

(2) The critical value of the parameter p decreases with increasing 
precision level. For p 2 0.9, CG processes are practically ordered in the 
sense of Theorem 3.1. 

(3) The observed results practically do not depend on the variant of the 
CG algorithm used (that is why the variants are not distinguished in the 
figures). 

A detailed discussion and partial explanation of these results is given in 
the following subsections. 

Point Cl) 

We have observed that the real CG convergence rate strongly depends on 
the distribution of eigenvalues of the system matrix. For some eigenvalue 
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distributions CG is sensitive to roundoff even in the case of a small condition 
number (e.g. K = 100) and small N (e.g. N = 24) while for a slightly 
modified spectrum the sensitivity IS remarkably smaller. This is illustrated in 
Figures 1 and 2. Figure 1 shows the number k of CG iterations required to 
satisfy the criterion (IX - x’ll/ (Ix - x0/l < 10pL, L = 12, as a function of the 
parameter p for A, = 0.1, K = 103, and N = 12, 24, and 48. In Figure 2 the 
size of the problem, N, is fixed (N = 24) and the condition number is set at 
K = 10, 102, 103, and 104. All results have been obtained using IBM double 
precision (DP) arithmetic (56 bit mantissa). We have found that for a given 
N, K, and precision level L (here L = 12), there exists a critical value p*. As 

p approaches p *, the number of iterations k = k(p, L) required to satisfy 
IIx - xkl( < 10-LIlx - x0/l greatly exceeds N, reaching its maximum at p = p*. 
In the neighborhood of p* a small change in p may cause a large change in 

kb, LX 
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FIG. 1. The number of CG iterations required to reduce the relative CG error 

measured in the Euclidean norm below 10-12, as a function of the parameter p 
(A, = 0.1, K = 103, N = 12, 24, and 48). 
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FIG. 2. The number of CG iterations required to reduce the relative CG error 

measured in the Euclidean norm below lo-“, as a function of the parameter p 

(A, = 0.1, N = 24, K = 10, lo*, 103, and 104). 

The fact that the CG rate of convergence depends strongly on the 
distribution of eigenvalues is well known. However, the known results deal 
with qualitative characteristics of the spectrum (isolated eigenvalues, clus- 
tered eigenvalues, eigenvalue gap). In our experiments, the parameter p 
does not affect the eigenvalue distribution qualitatively. We wish to call the 
reader’s attention to the fact that a small perturbation of the eigenvalue 
distribution may cause a large change in the CG convergence rate (or in the 
sensitivity of CG process to rounding errors). 

Point (2) 
For a fixed A,, N, and K, the critical value p* decreases with increasing 

precision level I,. This is illustrated in Figure 3, which shows k = k(p, L) 
computed in DP arithmetic for A, = 0.1, N = 24, K = 103, and precision 
levels L = i, 1, 4, 7, and 10. We see a shift of p*(L) from E 0.9 for L = 0.5 
to E 0.68 for I, = 10. Even more surprising is the fact that k(p*(l), 1) x=- 

k(p*(lO),l). To reach an accuracy of 10-l for p = p*(l)s 0.9, the CG 
process needs many more iterations than for p = p*(lO) E 0.68. CG rapidly 
accelerates its rate of convergence in the first case, while in the second it 
converges slowly with a roughly constant convergence rate. We have not 
found an explanation. 

We see that for any value of L and for any p1.p2 + 1, p1 > pz, 

k(p,,L) Q k(pz,L), 
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FIG. 3. 
7, and 10. 

The function k = k(p, L) for h, = 0.1, N = 24, K = 103, and L = f, 1, 4, 

i.e., the CG processes computed for different values of p, p -+ 1, are in some 

sense “ordered.” 
Using Greenbaum’s ideas [6], we prove Theorem 3.1, which gives a 

necessary and sufficient condition for ordering exact arithmetic CG processes 
for systems with different spectra according to the energy norm of the error. 

As above, let xi be the ith iterate of the exact CG process for AX = b, 
and r” be the initial residual. Corresponding to r” there are uniquely 
determined eigenvalues 0 < h, < A, < . . * < A,,, and orthonormal eigenvec- 
tors z’,z~,...,z”’ of A such that 

m 
r” = C 7jjzj, 77j'O, 

j=l 
j=1,2 ,...,m, ( 3.1) 

(3.2) 
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Let By = c be a system of linear equations, B a symmetric positive definite 
matrix. Let yi be the exact ith CG iterate for this system corresponding to 
the initial residual to = c - By’, and let to be expressed as 

to= 2 tjwj, tj>O, j=1,2 ,..., m, (3.3) 
j=l 

where w1,w2,...,w”’ are normalized eigenvectors of B corresponding to its 
eigenvalues PI, pZ,. . . ,p,,. 

DEFINITION 3.1. We call the initial guesses x0 and y” comparable if the 
corresponding initial residuals are defined by (3.1) and (3.3) and nj /A = 

(j/G> j = L%...,m. 

COMMENT. For the comparable initial guesses r” and y” we have 

IIX - x011* = II!/ - YOlle. 

THEOREM 3.1. The following three assertions are equivalent: 

(A) We have 

‘i Pi 

-<- 

Aj Pj 
Vi> j, i,jE{l,Z ,..., m}. 

(B) For any comparable initial guesses x0 and y” we have 

IIX - xill.4 < Ily - dlle ViE(1,2 ,..., m}. 

CC> For any comparable initial guesses x0 and y ’ we have 

(3.4) 

IIX - xx4 < Ily - Y’lls. 
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Proof. (A) d (B): Using the CG-minimizing property (e.g. [20, 21, 251) 
and the expansions (3.1) and (3.31, we can write 

lly - y”lG = E [4i(Pk)l% 
k=l 

where pi, qi are the minimizing CG polynomials with respect to xi, y i, and 
where S,” = T-E /hk = [i/pk. Greenbaum showed [6, Lemma l] that there 
exists an ith degree polynomial si, ~~(0) = 1, such that [So]’ <[qi&k)12 
Vk E {1,2,. . . , m). Applying this, we must have 

Q 2 [ 9i(pk)12(Jf = IIY - ~‘11: ViE(1,2 ,..., m). 
k=l 

(B) j (C): This implication is trivial. 
(Cl * (A): Suppose C holds and there are i, j E (1,2,. . . , ml, i > j, such 

that 

EL<-, ‘i 

Pj Aj 

Choosing li = lj = 1, lk = 0, k E {{l, 2,. . . , m)\{i, j)}, we obtain 

P,(A) = I- 
hi + Aj 
-A, 

Pi+cLj 

A; + A; 
%(P)=l-- 2p. 

Pf + Pj 

It is easy to show that 

lly - #II: = 5 [91(,+)]21f < t [Pl(Ak)]26; = 11% - X’lli. 
k=l k=l 

This contradicts the assumption, and the proof is finished. The ordering 
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according to the first iteration implies the same ordering for subsequent 
iterations. n 

Though for p > 0.9 the CG processes shown in Figure 3 are practically 
ordered in the sense of Theorem 3.1, this fact can hardly be explained using 
this theorem. Theorem 3.1 assumes exact arithmetic, while the experimental 
results in Figure 3 are strongly influenced by rounding errors. Theorem 3.1 
can be successfully applied for explanation of experiments, e.g. in the case of 
CG with full reorthogonalization. 

Point (3): 
The observed results do not appreciably depend on the variant of the CG 

algorithm used. Comparable results of Algorithms 2A-2D differ in at most 
one or two iterations. Jacobi acceleration of CG (Algorithm 2E) does not 
improve the results shown, e.g., in Figure 3. On the contrary, for p E (0.5, 
0.6) it converges more slowly than ordinary CG. The agreement of real 
convergence rates obtained using Algorithms 2A, 2C, and 2D shows that the 
effect of roundoff on the CG process does not depend noticeably on the 
density of the system matrix (on the accumulation of elemental roundoff). 
The agreement of the Algorithm 2A and 2B results shows definitely that in 
our experiments the CG process suffers from rounding errors not due to 
unstable solution of the implicitly (in Algorithm 2A) or explicitly (in Algo- 
rithm 2B) generated tridiagonal system, but due to loss of orthogonality 
among the residual or normalized residual vectors. This corresponds to 
Simon’s results [17]. 

4. CONCLUDING REMARKS 

In exact arithmetic the convergence of extremal Ritz values implies the 
acceleration of the CG convergence rate (e.g. [2, 20, 22-241). On the 
contrary, the convergence of a computed Ritz pair to an eigenpair is 
equivalent to the loss of orthogonality caused by rounding errors (e.g. [12]). 
Jennings observed the influence of large outlying eigenvalues on the CG 
sensitivity to rounding errors [9]. We present a parameterized eigenvalue 
distribution with large outlying eigenvalues for which a small change of the 
parameter can cause a large change in the sensitivity of CG process to 
rounding errors. 

We believe that further progress in our work requires a large number of 
experiments which relate the real rate of convergence to the loss of orthogo- 
nality and the convergence of Ritz pairs. 
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Fundamental theoretical results concerning the convergence of Ritz pairs 
and the loss of orthogonality were developed by Paige and Parlett. 
Greenbaum used Paige’s work and proved a very interesting result concem- 
ing the real convergence rate of the CG and Lanczos methods. She shows 
that for a given values of J, finite precision CG applied to a linear system 
AX = b converges in steps 1 through J at the same rate as exact CG applied 
to a certain linear system x,X, = ?I,. The matrix A, has more distinct 
eigenvalues than A. The eigenvalues of x, all lie within small intervals 
about the eigenvalues of A [lo]. 

We give a small new contribution to these results. We prove that for any 
eigenvalue hj of A for which the corresponding eigenvector has a nonnegli- 
gible component in the initial residual, there is an eigenvalue of XJ very 
near Aj. 

We use the notation similar to [12]. The computed results of the Lanczos 
process after k steps satisfy 

AV, =vkTk + /?k+lv k+l(ek)T + sv,. (4.1) 

Let the exact eigendecomposition of A and Tk be 

A = UAUT, A = diag(hj), (4.2) 

Tk = YkMkYkT, Mk = diag( $)), (4.3) 

where the orthonormal matrices U and Yk have the columns uj and yjk! 
Then from (4.1) 

If we denote 

w, = (t”$‘)i j = UT& = uTv,Y,, 

f& = (t,$))i,j = uT[ &+lvk+l(ek)T + av,]r,, (4.5) 

where 2, = VkYk is the matrix of computed Ritz vectors, then (4.4) can be 
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written as 

or 
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(4.6) 

(4.7) 

We now consider the estimate for IlSn,ll. For any vector x 

< 11x11 lld+lll < (1+ 4)“‘ll~ll> 

(4.8) 

Here E,,, &I are small multiples of the relative machine precision E defined in 
[ 12, (2.16)]. 

We are interested in the value of 

min IA. - CL(k)\ 

j 
1 J 

The result is obtained in the next theorem. 

THEOREM 4.1. Zf the eigenvector of A has a nonzero component in the 
initial vector of the Lanczos process, i.e. 

I(ut,v’)(+o, (4.9) 

then for some eigenvalue CL(“) of T 
3 k 

Ihi _ ~~‘)I = minIA, _ ~~k)I ~ k1’2(‘k+l ’ k”2&1JIAII) 
t I("i~vl)l 

[1+ O(E)]. (4.10) 
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Proof. From (4.7) 

Then for any set of real numbers qt, C:=,cp,” = 1, we have 

and we can find coeffkients qt so that 

k 

c ‘Pt Yt (k) = e,, 

t=1 

Using (4.131, (4.12), (4.11), and (4.8), the proof is completed. 

As a consequence we obtain 

547 

(4.11) 

(4.12) 

(4.13) 

n 

THEOREM 4.2. Zf (4.9) holds, th en or each eigenvalue Ai of A there is f 
some eigenvalue pL(jN + m, of the Greenbaum matrix xJ constructed fm the Jth 
step of the Lanczos process with the property 

Ihi - /.L(jN+y Q (yy;f)i;ll [1+ O(&)], (4.14) 
If 

where m and 5 are defined in [lo, pp. 22, 36, 46, 501. 

Greenbaum warns that Theorem 4.2 does not imply that the finite 
precision Lanczos process will eventually find all eigenvalues with nonnegli- 
gible components in the initial residual. Only ifit could be shown that, for 
some J, the exact Lanczos process applied to A, finds some eigenvalue by 
step J, would it then follow that the finite precision Lanczos process finds 
this eigenvalue (A. Greenbaum, personal communication). 
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