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a b s t r a c t

Let G = (V , E) be a graph without an isolated vertex. A set D ⊆ V (G) is a total dominating
set if D is dominating, and the induced subgraph G[D] does not contain an isolated vertex.
The total domination number of G is the minimum cardinality of a total dominating set of
G. A set D ⊆ V (G) is a total outer-connected dominating set if D is total dominating, and the
induced subgraph G[V (G)−D] is a connected graph. The total outer-connected domination
number of G is the minimum cardinality of a total outer-connected dominating set of G.
We characterize trees with equal total domination and total outer-connected domination
numbers.We give a lower bound for the total outer-connected domination number of trees
and we characterize the extremal trees.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a simple graphwith |V (G)| = n(G) and |E(G)| = m(G). The neighbourhood NG(v) of a vertex v is the set
of all vertices adjacent to v in G. The degree dG(v) of a vertex v is the number of edges incident with v in G, dG(v) = |NG(v)|.
If dG(v) = 0, then we call v an isolate vertex. LetΩ(G) be the set of all leaves of G, that is the set of vertices of degree 1, and
let n1(G) be the cardinality ofΩ(G). A vertex v is called a support vertex if v is a neighbour of a leaf and dG(v) > 1. Denote
by S(G) the set of all support vertices in G and let nS(G) be the cardinality of S(G). For notational convenience we denote
Ω(G)∪ S(G) by J(G). The diameter diam(G) of a connected graph G is the maximum distance between two vertices of G, that
is diam(G) = maxu,v∈V (G) dG(u, v).
A set D ⊆ V (G) is a dominating set (DS) of G if for every vertex v ∈ V (G)− D, there exists a vertex u ∈ D such that v and

u are adjacent. The minimum cardinality of a dominating set in G is the domination number denoted γ (G). A minimum DS
of a graph G is called a γ (G)-set.
If G is without an isolated vertex, then a set D ⊆ V (G) is a total dominating set (TDS) of G if for every vertex v ∈ V (G),

there exists a vertex u ∈ D such that v and u are adjacent. The minimum cardinality of a total dominating set in G is the total
domination number denoted γt(G). A minimum TDS of a graph G is called a γt(G)-set.
If G is without an isolated vertex, then a set D ⊆ V (G) is a total outer-connected dominating set (TCDS) of G if D is total

dominating set ofG and the subgraph induced by V (G)−D is connected. Theminimum cardinality of a total outer-connected
dominating set in G is the total outer-connected domination number denoted γtc(G). A minimum TCDS of a graph G is called a
γtc(G)-set. The total outer-connected domination number of a graph is first defined in [1]. For an application, we consider a
computer network in which a core group of fileservers has the ability to communicate directly with every computer outside
the core group. In addition, each fileserver is directly linked to at least one other fileserver and every two computers outside
the core group may communicate with each other without intervention of any of the fileservers to protect the fileservers
from overloading. A smallest core group with these properties is a γtc-set for the graph representing the network.
A set S ⊆ V is a 2-packing if for each pair of vertices u, v ∈ S, NG[u] ∩ NG[v] = ∅.
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Fig. 1. Caterpillar.

Wedenote a path on n vertices by Pn = (v1, . . . , vn). A caterpillar is a tree with the property that the removal of its leaves
results in a path, called the spine of the caterpillar (Fig. 1).
For any graph theoretical parameters λ and µ, we define G to be (λ, µ)-graph if λ(G) = µ(G). In this paper we provide

a constructive characterization of (γt , γtc)-trees. We give a lower bound for the total outer-connected domination numbers
of trees and we characterize the extremal trees. For any unexplained terms and symbols see [2].

2. A characterization of (γt, γtc)-trees

In our characterization of (γt , γtc)-trees we will need the following two observations. The first one has been taken
from [3].

Observation 1 ([3]). Let T be a tree that is not a star. Then there exists a γt(T )-set that contains no leaf. �

Observation 2. Let T be a tree with n(T ) ≥ 3. Then each support vertex is in every γt(T )-set. �

Before we give and prove the main result of this section, we make the following observation for a graph G and the total
outer-connected domination number.

Proposition 3. If G is a graph without an isolated vertex and γtc(G) ≤ n(G)− 2, then each leaf and each support vertex belong
to every minimum total outer-connected dominating set of G.
Proof. Since every total outer-connected dominating set is a total dominating set and every support vertex belongs to every
total dominating set, we conclude that each support vertex belong to every total outer-connected dominating set. Therefore,
if a leaf does not belong to a minimum total outer-connected dominating set D of G, then since G[V (G) − D] is connected,
γtc(G) = |D| = n(G)− 1, a contradiction. �

Let O be the following operation defined on a tree T .
• Operation O. Assume x ∈ V (T )− J(T ). Then add a path (y1, y2, y3) and the edge xy1.

Let T be the family of trees such that T = {T : T is obtained from P6 by a finite sequence of operations O} ∪ {P2, P3}
(Fig. 2).
We show first that each tree in the family T has equal total domination number and total outer-connected domination

number. We begin with a straightforward observation.

Fig. 2. Tree T belonging to the family T .

Observation 4. If a tree T with n(T ) ≥ 4 belongs to the family T , then
1. Each vertex of S(T ) is of degree 2.
2. S(T ) is a dominating set of T .
3. If u and v are distinct vertices of S(T ), then dT (u, v) ≥ 3 and therefore S(T ) is a 2-packing.

Corollary 5. If T with n(T ) ≥ 4 belongs to the family T , then γ (T ) = |S(T )| and γt(T ) = |J(T )|.
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Lemma 6. If a tree T belongs to the family T , then T is a (γt , γtc)-tree.

Proof. We proceed by induction on the number of operations s(T ) required to construct the tree T . If s(T ) = 0, then
T ∈ {P2, P3, P6} and obviously T is a (γt , γtc)-tree. Moreover, if T = P6, then J(T ) is a γtc(T )-set. Assume now that T is
a tree belonging to the family T with s(T ) = k for some positive integer k and each tree T ′ ∈ T with s(T ′) < k and with
n(T ′) ≥ 4 is a (γt , γtc)-tree in which J(T ′) is a γtc(T ′)-set. Then T can be obtained from a tree T ′ belonging to T by operation
O, where x ∈ V (T ′)− J(T ′) and we add a path (y1, y2, y3) and the edge xy1. Then y3 is a leaf in T and y2 is a support vertex
and thus J(T ) = J(T ′)∪ {y2, y3}. Moreover, V (T )− {x, y1} is a total outer-connected dominating set of T and for this reason
Proposition 3 implies that y2 and y3 belong to every γtc(T )-set. Hence γtc(T ) ≥ |J(T )| = |J(T ′)| + 2 = γtc(T ′) + 2. Since
x does not belong to a γtc(T ′)-set, namely J(T ′), we conclude that γtc(T ) = γtc(T ′) + 2. By the induction hypothesis and
Corollary 5, γtc(T ′) = γt(T ′) = |J(T ′)|. In this way γtc(T ) = |J(T )| and in particular, γt(T ) = γtc(T ). �

We show next that every (γt , γtc)-tree belongs to the family T .

Lemma 7. If T is a (γt , γtc)-tree, then T belongs to the family T .

Proof. It is easy to verify that the statement is true for all trees T with diameter less than 5. For this reason from now on we
consider only trees T with diameter greater than or equal to 5.
Let T be a (γt , γtc)-tree.We proceed by induction on the number of vertices n(T ) of a (γt , γtc)-tree. Let T be a (γt , γtc)-tree

and assume that the result holds for all trees on n(T ) − 1 and fewer vertices. Let P = (s0, s1, . . . , sl), l ≥ 5, be a longest
path in T and let Dtc be a γtc(T )-set. As T is a (γt , γtc)-tree and n(T ) ≥ 6, we conclude that γtc(T ) ≤ n(T ) − 2 and thus by
Proposition 3 all leaves and all support vertices of T belong to Dtc . If dT (s1) > 2, then s1 is a neighbour of at least two leaves
of T . Then Dtc−{s0} is a TDS of T and so γtc(T ) > γt(T ), a contradiction. Hence dT (s1) = 2. Similarly, if s2 is a support vertex,
then again Dtc − {s0} is a TDS of T , contradiction.
Suppose dT (s2) > 2 and let A be the set of support vertices adjacent to s2 and let B be the set of all leaves which are

neighbours of any vertex belonging to A. Then A∪B ⊆ Dtc , but (Dtc −B)∪{s2} is a TDS of T of cardinality smaller than γt(T ),
a contradiction. Therefore dT (s1) = dT (s2) = 2.
Suppose s3 ∈ Dtc . Then s2 ∈ Dtc , because s0, s1 ∈ Dtc . However in this situation Dtc − {s0} is a TDS of T of cardinality

smaller than γt(T ), a contradiction. Thus s3 6∈ Dtc and for this reason s3 is not a support vertex. If s2 ∈ Dtc , then again
Dtc − {s0} is a TDS of T , a contradiction. Hence s2 6∈ Dtc , either.
If dT (s3) = 2, then s4 ∈ Dtc and γtc(T ) = n(T )− 2. Since diam(T ) ≥ 5 and γt(T ) = n(T )− 2, Observations 1 and 2 imply

that T is a path P6. Of course P6 ∈ T , so we assume that dT (s3) > 2.
Denote T ′ = T − {s0, s1, s2}. Certainly γtc(T ′) ≤ γtc(T )− 2, because Dtc − {s0, s1} is a TCDS of T ′. On the other hand, any

γt(T ′)-set may be extended to a TDS of T by adding to it s0 and s1, so γt(T ) ≤ γt(T ′)+ 2. In this way

γt(T )− 2 ≤ γt(T ′) ≤ γtc(T ′) ≤ γtc(T )− 2 = γt(T )− 2.

Consequently, we must have equalities throughout this inequality chain. In particular, T ′ is a (γt , γtc)-tree and by the
induction hypothesis, T ′ ∈ T . As s3 is not a support vertex nor a leaf in T ′, we conclude that T may be obtained from T ′
by operation O. �

As an immediate consequence of Lemmas 6 and 7 we have the following characterization of (γt , γtc)-trees.

Theorem 8. A tree T is a (γt , γtc)-tree if and only if T belongs to the family T .

3. Lower bound for the total outer-connected numbers of trees

In this section we give a lower bound for the total outer-connected domination numbers of trees and we characterize
the extremal trees.

Theorem 9. If T 6= K1,k is a tree with at least 3 vertices or T = K2, then γtc(T ) ≥
⌈
n(T )+n1(T )

2

⌉
.

Proof. Let T 6= K1,k be a tree with at least 3 vertices or T = K2. We consider three cases.

Case 1. If γtc(T ) = n(T ), then T = K2 and the inequality γtc(T ) ≥
⌈
n(T )+n1(T )

2

⌉
holds.

Case 2. If γtc(T ) = n(T ) − 1, then n(T ) ≥ 3 and since T is not a star we conclude that n(T ) ≥ n1(T ) + 2. Hence
γtc(T ) = n(T )− 1 = 2n(T )−2

2 ≥

⌈
n(T )+n1(T )

2

⌉
.

Case 3. If γtc(T ) ≤ n(T )−2, then letDtc be a γtc(T )-set. By Proposition 3, J(T ) ⊆ Dtc . Since T [V (T )−Dtc] is connected, each
vertex ofDtc , which is not a leaf, dominates atmost one vertex of V (T )−Dtc . For this reason, γtc(T ) ≥

⌈
n(T )−n1(T )

2

⌉
+n1 =⌈

n(T )+n1(T )
2

⌉
. �



J. Cyman, J. Raczek / Discrete Applied Mathematics 157 (2009) 3198–3202 3201

Fig. 3. Trees belonging to the familyR.

Now we characterize all trees T for which γtc(T ) =
⌈
n(T )+n1(T )

2

⌉
. For this reason we defineA to be the family of all trees

obtained froma tree T ′withV (T ′) = {v1, . . . , vn(T ′)}, n(T ′) ≥ 2 by attaching to each vertex of T ′ a starK1,mi , i = 1, . . . , n(T
′),

where vi is joined to a vertex of degreemi of K1,mi (see Fig. 3).
LetB be the family of all trees obtained from a tree T ∈ A by attaching a star K1,m to exactly one vertex of V (T )− J(T ),

say v, by adding the edge joining v to the vertex of degreem of the star K1,m (see Fig. 3).
Let C be the family of all trees obtained from a tree T ′ with V (T ′) = {v1, . . . , vn(T ′)}, n(T ′) ≥ 2, by attaching to n(T ′)− 1

vertices of T ′ stars K1,mi , i = 1, . . . , n(T
′)− 1, where vi is joined to a vertex of degreemi in K1,mi , and attaching a caterpillar

Tc , diam(Tc) = 3, where vn(T ′) is joined to a support vertex of Tc (see Fig. 3).
LetD be the family of all trees obtained from a tree T ′ with V (T ′) = {v1, . . . , vn(T ′)}, n(T ′) ≥ 2, by attaching to n(T ′)− 1

vertices of T ′ stars K1,mi , i = 1, . . . , n(T
′)− 1, where vi is joined to a vertex of degree mi in K1,mi , and attaching a star K1,m,

m ≥ 2, where vn(T ′) is joined to a leaf of K1,m (see Fig. 3).
Define E to be the family of all caterpillars of diameter 3 or 4.
Finally, letR = A ∪B ∪ C ∪D ∪ E ∪ {K2}.

Theorem 10. If T is a tree with at least 2 vertices, then γtc(T ) =
⌈
n(T )+n1(T )

2

⌉
if and only if T belongs to the familyR.

Proof. First we prove that if T ∈ R, then γtc(T ) =
⌈
n(T )+n1(T )

2

⌉
.

If T ∈ A ∪ B ∪ C, then certainly J(T ) is a TCDS set of T and hence γtc(T ) ≤ nS(T ) + n1(T ). Moreover, if T ∈ A, then
nS(T ) = |V (T )− J(T )| and if T ∈ B ∪ C, then nS(T ) = |V (T )− J(T )| + 1. Thus

2γtc(T ) ≤ 2nS(T )+ 2n1(T )
≤ |V (T )− J(T )| + nS(T )+ 2n1(T )+ 1
≤ n(T )+ n1(T )+ 1.

Therefore, γtc(T ) ≤
⌊
n(T )+n1(T )+1

2

⌋
=

⌈
n(T )+n1(T )

2

⌉
and Theorem 9 implies that γtc(T ) =

⌈
n(T )+n1(T )

2

⌉
.

If T ∈ D , then it is possible to see that γtc(T ) ≤ nS(T )+ n1(T )+ 1 and nS(T ) ≤ |V (T )− J(T )| − 1. Thus

2γtc(T ) ≤ 2nS(T )+ 2n1(T )+ 2
≤ |V (T )− J(T )| + nS(T )+ 2n1(T )+ 1
≤ n(T )+ n1(T )+ 1.

Therefore, γtc(T ) ≤
⌊
n(T )+n1(T )+1

2

⌋
=

⌈
n(T )+n1(T )

2

⌉
and Theorem 9 implies that γtc(T ) =

⌈
n(T )+n1(T )

2

⌉
.

If T ∈ E is a caterpillar of diameter 3 or 4, then n(T ) = n1(T )+2 or n(T ) = n1(T )+3, respectively. Since γtc(T ) = n(T )−1
for every tree T ∈ E , the result follows.
If T = K2, then obviously γtc(T ) = 2 =

⌈
n(T )+n1(T )

2

⌉
.

Now let T be a tree such that γtc(T ) =
⌈
n(T )+n1(T )

2

⌉
and denote by Dtc a γtc(T )-set.

Case 1. If γtc(T ) =
⌈
n(T )+n1(T )

2

⌉
= n(T ), then obviously T = K2 ∈ R.

Case 2. If γtc(T ) =
⌈
n(T )+n1(T )

2

⌉
= n(T )− 1, then n(T ) = n1(T )+ 2 or n(T ) = n1(T )+ 3. Therefore, T is a caterpillar of

diameter 3 or 4 and thus T ∈ R.
Case 3. If γtc(T ) =

⌈
n(T )+n1(T )

2

⌉
≤ n(T ) − 2, then by Proposition 3, J(T ) ⊆ Dtc . Let a be the number of connected

components of the subgraph induced by Dtc . Each connected component of T [Dtc] contains a support vertex of T , so

a ≤ nS(T ) ≤ γtc(T )− n1(T ) =
⌈
n(T )− n1(T )

2

⌉
.
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Since the graph T [V (T )− Dtc] is connected, at most one vertex from each connected component of T [Dtc] is adjacent to
a vertex of V (T )− Dtc . Hence,

a ≥ n(T )− γtc(T ) = n(T )−
⌈
n(T )+ n1(T )

2

⌉
=

⌊
n(T )− n1(T )

2

⌋
.

Therefore⌊
n(T )− n1(T )

2

⌋
≤ a ≤ nS(T ) ≤

⌈
n(T )− n1(T )

2

⌉
and we consider four subcases.
Subcase 3.1.

⌊
n(T )−n1(T )

2

⌋
= a = nS(T ) =

⌈
n(T )−n1(T )

2

⌉
. Then J(T ) = Dtc and each connected component of T [Dtc]

contains exactly one support vertex of T . Moreover, each support vertex dominates exactly one vertex of V (T ) − J(T )
and each vertex of V (T ) − J(T ) is adjacent to exactly one support vertex. Therefore T may be obtained from a tree
T ′ = T [V (T ) − J(T )] with V (T ′) = V (T ) − J(T ) = {v1, . . . , vn(T ′)}, n(T ′) ≥ 2, by attaching to each vertex of T ′ a star
K1,mi , i = 1, . . . , n(T

′), where vi is joined to a vertex of degreemi in K1,mi . Thus, T ∈ A ⊆ R.

Subcase 3.2.
⌊
n(T )−n1(T )

2

⌋
< a = nS(T ) =

⌈
n(T )−n1(T )

2

⌉
. Then J(T ) = Dtc and each connected component of T [Dtc]

contains exactly one support vertex of T . Moreover, each support vertex dominates exactly one vertex of V (T ) − J(T )
and n(T )− γtc(T )− 1 vertices of V (T )− J(T ) is adjacent to exactly one support vertex and one vertex of V (T )− J(T ),
say v, is adjacent to exactly two support vertices, say x and y. Therefore, T may be obtained from a tree T ′ ∈ A,
T ′ = T [(V (T )− NT [y]) ∪ {v}], by attaching a star K1,m to v by adding the edge joining v to the vertex of degree m
of the star K1,m (that is y). Thus, T ∈ B ⊆ R.

Subcase 3.3.
⌊
n(T )−n1(T )

2

⌋
= a < nS(T ) =

⌈
n(T )−n1(T )

2

⌉
. Then J(T ) = Dtc . Moreover, a − 1 connected components of

T [Dtc] contains exactly one support vertex of T and one connected component of T [Dtc] contains exactly two support
vertices of T . Further, each vertex of V (T )− J(T ) is adjacent to exactly one support vertex and since T is connected, we
conclude that exactly one support vertex from each connected component of T [Dtc] dominates a vertex of V (T ) − Dtc .
Therefore T may be obtained from a tree T ′ = T [V (T )− J(T )]with V (T ′) = {v1, . . . , vn(T ′)}, n(T ′) ≥ 2, by attaching to
n(T ′)−1 vertices of T ′ stars K1,mi , i = 1, . . . , n(T

′)−1, where vi is joined to a vertex of degreemi in K1,mi , and attaching
caterpillar Tc , diam(Tc) = 3, where vn(T ′) is joined to a support vertex of Tc . Thus, T ∈ D ⊆ R.

Subcase 3.4.
⌊
n(T )−n1(T )

2

⌋
= a = nS(T ) <

⌈
n(T )−n1(T )

2

⌉
. Then Dtc − J(T ) contains exactly one vertex, and each connected

component of T [Dtc] contains exactly one support vertex of T . Moreover, each support vertex dominates exactly one
vertex of V (T ) − J(T ) and each vertex of V (T ) − J(T ) is adjacent to exactly one support vertex. Therefore T may be
obtained from a tree T ′ = T [V (T )− Dtc ] with V (T ′) = {v1, . . . , vn(T ′)}, n(T ′) ≥ 2, by attaching to n(T ′)− 1 vertices of
T ′ stars K1,mi , i = 1, . . . , n(T

′)− 1, where vi is joined to a vertex of degreemi in K1,mi , and attaching a star K1,m,m ≥ 2,
where vn(T ′) is joined to a leaf of K1,m. Thus, T ∈ C ⊆ R. �
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