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Abstract

It is well known that the resistance distance between two arbitrary vertices in an electrical network can be obtained in terms
of the eigenvalues and eigenvectors of the combinatorial Laplacian matrix associated with the network. By studying this matrix,
people have proved many properties of resistance distances. But in recent years, the other kind of matrix, named the normalized
Laplacian, which is consistent with the matrix in spectral geometry and random walks [Chung, F.R.K., Spectral Graph Theory,
American Mathematical Society: Providence, RI, 1997], has engendered people’s attention. For many people think the quantities
based on this matrix may more faithfully reflect the structure and properties of a graph. In this paper, we not only show the resistance
distance can be naturally expressed in terms of the normalized Laplacian eigenvalues and eigenvectors of G, but also introduce a
new index which is closely related to the spectrum of the normalized Laplacian. Finally we find a non-trivial relation between the
well-known Kirchhoff index and the new index.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Resistance distance; Normalized Laplacian matrix; Random walks

1. Introduction

The resistance distance is a novel distance function on a graph proposed by Klein and Randic [9]. The term resistance
distance was used because of the physical interpretation: one imagines unit resistors on each edge of a graph G and
takes the resistance distance between vertices i and j of G to be the effective resistance between vertices i and j, denoted
by rij . This resistance distance is in fact intrinsic to the graph, with some nice purely mathematical interpretations and
other interpretations [11,12]. On the other hand, there is the long recognized shortest path distance function which
has been extensively studied and found many applications [5,14]. For these two distance functions, the shortest-path
might be imagined to be more relevant when there is corpuscular communication (along edges) between two vertices,
whereas the resistance distance might be imagined to be more relevant when the communication is wave-like. That the
communication of many things is rather wave-like, such as, chemical communication in molecules and information
communication in networks, suggests a substantial potential for applications, beyond the traditional electrical ones. So
in recent years, the resistance distance was much studied, especially in the chemical literature [1,2,7–9,13,16,20–22],
the method they used is the standard method within the theory of electrical networks, that is, computing the resistance
distance is via the Moore-Penrose generalized inverse of the (combinatorial) Laplacian matrix L = D − A, where
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A is the adjacency matrix of G and D is the diagonal matrix in which the ith diagonal entry is di (the degree of
vertex i). Many results have been obtained by studying the combinatorial Laplacian, for example, the “Kirchhoff
index” (a structure-descriptor)

Kf =
∑
i<j

rij = n

n∑
k=2

1

�k

,

where 0 = �1 < �2 � · · · ��n(n�2) are the eigenvalues of L.
In this paper, we will use the intimate relations between random walks on graphs and electrical networks [6,18,3]

to study the resistance distance. Along this line, so far there are relatively little work [17,10] had been done. Although
that, those work had suggested that simple random walks based quantities should prove of further use, not yet fully
recognized in many areas, for example, in chemical graph theory, the authors (including Klein, D.J.) of paper [10] said
“Simple random walks with each step taken independently and randomly naturally are anticipated as a basis for novel
chemical graph theory”. Here we show the resistance distance rij can be naturally expressed in terms of the normalized
Laplacian [4] eigenvalues and eigenvectors, which is consistent with the transition probability matrix of random walks
and introduce a new index of a graph based on this matrix. Finally, we find an invertible matrix which is connected
with the normalized Laplacian eigenvalues and eigenvectors. By studying this matrix, we verify some properties of the
resistance matrix, and find a relation between the “Kirchhoff index” and the new index. To this end, in the following
sections, we first present some definitions of random walks and relevant results, while at the same time, remind readers
of a few results from the normalized Laplacian spectral theory.

2. The normalized Laplacian and a new index

Throughout this paper, the standard notation for a simple connected graph G is used. The vertex set is V (G) and the
edge is E(G), and n(�2), m denote the vertex and edge number respectively.

On a graph G = (V (G), E(G)), we can define the random walks on G as the Markov chain Xn, n�0, that from its
current vertex i jumps to the neighboring vertex j with probability pij = 1/di , where di is the degree of the degree i.
Apparently the transition probability matrix P = (pij )=D−1A is a stochastic matrix. The hitting time Tj of the vertex
j is the number of jumps the walk needs to reach j. The expected value of Tj when the walk is started at the vertex i
is denoted by EiTj . The expected commute time between vertices i and j is defined by EiTj + EjTi . Then there is an
elegant relation between commute times and resistance distances [3,18]:

EiTj + EjTi = 2mrij . (1)

The normalized Laplacian matrix of G defined to be

L = I − D1/2PD−1/2,

that is L = D−1/2LD−1/2. For regular graphs (i.e., having all vertices of the same degree) L and L are basically the
same (up to a scale factor), but for general graphs there is much difference between them. Evidently L is Hermitian
and similar to I − P , so the eigenvalues of L are non-negative, we label them so that 0 = �1 < �2 � · · · ��n, and
v1, . . . , vn are the corresponding mutually orthogonal eigenvectors of unit length. For clearness, let

vi = (vi1, vi2, . . . , vin)
t ,

where t indicates transposition, V = (v1, v2, . . . , vn). Then we have
(i)

V tLV = diag[�1, �2, . . . , �n], (2)

and V is an orthogonal matrix, that is

n∑
k=1

vikvjk =
n∑

k=1

vkivkj =
{

1 if i = j,

0 otherwise.
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(ii)

Lij =
n∑

k=1

�kvkivkj =
n∑

k=2

�kvkivkj . (3)

Let 1 and 0 be the n-dimensional column vectors whose components are equal to unity and zero, respectively. Then

(I − P)1 = 0.

This means the eigenvector v1 is of the form

v1i =√
di/2m, i = 1, . . . , n.

For convenience, we present some fundamental results about the spectrum of L, for more details see [4].

Theorem 2.1. For a graph G = (V (G), E(G)), we have

(i) If G is a not a complete graph, then 1/2ml < �2 �1, where l is the diameter of G;
(ii) n/(n − 1)��n �2 with �n = 2 if and only if G is bipartite;

(iii)
∏n

i=1di

∏n
k=2�k = 2m�(G), where �(G) is the number of spanning trees of G.

For the notations as above, we have the following:

Theorem 2.2 (Lovász [15]). For graph G = (V (G), E(G)), ∀i, j ∈ V ,

EiTj + EjTi = 2m

n∑
k=2

1

�k

(
vkj√
dj

− vki√
di

)2

.

So by Eq. (1), we naturally obtain that:

Theorem 2.3. For graph G = (V (G), E(G)), ∀i, j ∈ V ,

rij =
n∑

k=2

1

�k

(
vkj√
dj

− vki√
di

)2

.

Using Theorem 2.1(i)(ii) along with the orthogonality of the matrix V = (vij ), we get:

Corollary 2.4. For graph G = (V (G), E(G)), ∀i, j ∈ V (i �= j)

1

2

(
1

di

+ 1

dj

)
� 1

�n

(
1

di

+ 1

dj

)
�rij � 1

�2

(
1

di

+ 1

dj

)
�2ml

(
1

di

+ 1

dj

)
.

As we pointed out in the introduction, the “Kirchhoff index” Kf =∑
i<j rij is closely related to the spectrum of

L, that is Kf = n
∑n

k=2(1/�k), this equality is first proved in [7,21], the authors presented the other proof. Here, we
introduce a new graph index related to resistance distance, defined by

K ′f =
∑
i<j

didj rij ,

in the following, we prove this new index can be expressed by the spectrum of L.

Theorem 2.5. For graph G = (V (G), E(G)), i, j ∈ V

K ′f =
∑
i<j

didj rij = 2m

n∑
k=2

1

�k

.
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Proof.

∑
i<j

didj rij = 1

2

∑
i,j∈V

didj rij

= 1

2

n∑
i=1

di

n∑
k=2

1

�k

⎛
⎝ n∑

j=1

v2
kj − 2

vki√
di

n∑
j=1

vkj

√
dj + 2m

v2
ki

di

⎞
⎠

= 1

2

n∑
i=1

di

n∑
k=2

1

�k

(
1 + 2m

v2
ki

di

)

= 2m

n∑
k=2

1

�k

.

Since the new index is related to the spectrum of L, we naturally think the new index K ′f is worthy of studying. Here
we only consider the relations between Kf and K ′f . These two graph invariants are generally quite different, though
by definitions, Kf �K ′f , especially if a graph is d-regular, then K ′f = d2Kf . In the next section, we will give a
non-trivial relation between K ′f and Kf. �

3. A relation between K ′f and Kf

In this section, by studying an invertible matrix X, which is connected to the eigenvalues and eigenvectors of the
normalized Laplacian matrix, we obtain some properties of the distance matrix. Then using those properties, we find
a relation between K ′f and Kf.

Theorem 3.1. For a graph G= (V (G), E(G)), let X = (D −A+ (1/2m)DJD)−1, where J denote the square matrix
of order n with all entries equal to 1. Then for any i, j ∈ V

rij = xii + xjj − 2xij .

Proof. By Eq. (2), we have

V tD1/2(I − P)D−1/2V = diag[�1, �2, . . . , �n],

whence

V tD1/2 1

2m
JDD−1/2V = V tD1/2 1

2m
JD1/2V = diag[1, 0, . . . , 0],

so

(
I − P + 1

2m
JD

)−1

= D−1/2V diag

[
1,

1

�2
, . . . ,

1

�n

]
V tD1/2,

X =
(

D − A + 1

2m
DJD

)−1

=
(

I − P + 1

2m
JD

)−1

D−1

= D−1/2V diag

[
1,

1

�2
, . . . ,

1

�n

]
V tD−1/2. (4)



658 H. Chen, F. Zhang / Discrete Applied Mathematics 155 (2007) 654–661

Then

xij = v1iv1j√
didj

+
n∑

k=2

1

�k

vkivkj√
didj

= 1

2m
+

n∑
k=2

1

�k

vkivkj√
didj

.

So by Theorem 2.3, we have

rij = xii + xjj − 2xij . �

Now by studying the matrix X, we will determine some properties of the resistance matrix R = (rij ), which is a
symmetric matrix with zero diagonals. Firstly,

xii = 1

2m
+

n∑
k=2

1

�k

v2
ki

di

,

so
n∑

i=1

dixii = 1 +
n∑

k=2

1

�k

. (5)

Secondly by the above theorem, R can be written as

R = diag[x11, x22, . . . , xnn]J + Jdiag[x11, x22, . . . , xnn] − 2X.

So

V tD1/2RD1/2V = V tD1/2 diag[x11, x22, . . . , xnn]JD1/2V

+ V tD1/2Jdiag[x11, x22, . . . , xnn]D1/2V − 2V tD1/2XD1/2V .

By Eq. (4), we have

V tD1/2XD1/2V = diag

[
1,

1

�2
, . . . ,

1

�n

]
.

whence

V tD1/2 diag[x11, x22, . . . , xnn]JD1/2V =

⎛
⎜⎜⎝

∑n
i=1dixii 0 · · · 0∑n

i=1
√

2mdixiiv2i 0 · · · 0
...

...
. . .

...∑n
i=1

√
2mdixiivni 0 · · · 0

⎞
⎟⎟⎠

V tD1/2J diag[x11, x22, . . . , xnn]D1/2V

=

⎛
⎜⎜⎝
∑n

i=1dixii

∑n
i=1

√
2mdixiiv2i · · · ∑n

i=1
√

2mdixiivni

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎞
⎟⎟⎠

After this preparatory work, we can easily get the following:

Theorem 3.2. For a graph G = (V (G), E(G)), the determinant of its resistance matrix

det R = (−2)n−1

2m�(G)

(
S + 2

n∑
k=2

1

�k

)
,

where S = m(y11, y22, . . . , ynn)L(y11, y22, . . . , ynn)
t and yii =∑n

k=2 (1/�k)v
2
ki/di .
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Proof. From above, we have

V tD1/2RD1/2V =

⎛
⎜⎜⎜⎜⎜⎝

2
∑n

i=1dixii − 2
∑n

i=1
√

2mdixiiv2i · · · ∑n
i=1

√
2mdixiivni∑n

i=1
√

2mdixiiv2i − 2

�2
· · · 0

...
...

. . .
...∑n

i=1
√

2mdixiivni 0 · · · − 2

�n

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2
∑n

k=2
1

�k

+ m
∑n

k=2�k

(∑n
i=1

√
dixiivki

)2 ∑n
i=1

√
2mdixiiv2i · · · ∑n

i=1
√

2mdixiivni

0 − 2

�2
· · · 0

...
...

. . .
...

0 0 · · · − 2

�n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where we use Eq. (5). Therefore

det R = (−2)n−1∏n
i=1di

∏n
k=2�k

⎛
⎝2

n∑
k=2

1

�k

+ m

n∑
k=2

�k

(
n∑

i=1

√
dixiivki

)2
⎞
⎠ .

Then by Theorem 2.1(iii), we get

(−2)n−1

2m�(G)

⎛
⎝2

n∑
k=2

1

�k

+ m

n∑
k=2

�k

(
n∑

i=1

√
dixiivki

)2
⎞
⎠ .

Let S = m
∑n

k=2 �k(
∑n

i=1
√

dixiivki)
2, then by Eq. (3), we have

S = m

n∑
k=2

n∑
i=1

n∑
j=1

�k(
√

dixiivki)(
√

djxjj vkj )

= m

n∑
i=1

n∑
j=1

xiixjj

√
di

√
dj

(
n∑

k=2

�kvkivkj

)

= m

n∑
i=1

n∑
j=1

xiixjj

√
di

√
djLij = m

n∑
i=1

n∑
j=1

xiixjjLij

= m(x11, x22, . . . , xnn)L(x11, x22, . . . , xnn)
t .

Thence (x11, x22, . . . , xnn) = (y11, y22, . . . , ynn) + (1/2m, 1/2m, . . . , 1/2m) So the result

S = m(y11, y22, . . . , ynn)L(y11, y22, . . . , ynn)
t

is obtained. �

This theorem implies that det R is always different from zero, in other words the resistance matrix is nonsingular;
and the sign of det R depends only on the parity of the number of vertices of G. Furthermore the resistance matrix
has a single positive eigenvalue, and n − 1 negative eigenvalues. This property was obtained earlier [21] by using the
invertible matrix (L + (1/n)J )−1.

So from a knowledge of linear algebra [19], if we introduce the inner product (a, b) = aRbt in n-dimensional real
vector space, then we obtain a Lorentz space Ln. In Ln a vector a is said to be positive if (a, a) > 0, and for any two
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row vectors a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), if one of them is positive vector, then

(aRbt)2 �(aRat)(bRbt), (6)

with equality holding if and only if b = �a, where � is a constant.
By this inequality, we can easily obtain the following:

Theorem 3.3. For a graph G = (V (G), E(G)), Kf and K ′f satisfy

Kf �
(

n

4m
+ 1

2�

)2

K ′f ,

where � is the minimum degree of G, the equality holds if and only if G is regular.

Proof. In Eq. (7), let a = (d1, d2, . . . , dn), b = (1, 1, . . . , 1), then

aRat =
n∑

i,j=1

didj rij = 2K ′f, bRbt = 2Kf ;

and a is a positive vector, whence

aRbt =
n∑

i=1

n∑
j=1

dirij

=
n∑

j=1

n∑
k=2

1

�k

(
1 + 2m

v2
kj

dj

)

�
(

n + 2m

�

) n∑
k=2

1

�k

=
(

n

2m
+ 1

�

)
K ′f .

So

4K ′f Kf �
(

n

2m
+ 1

�

)2

K ′f 2,

that is

Kf �
(

n

4m
+ 1

2�

)2

K ′f ,

and the equality holds if and only if d1 = d2 = · · · = dn, i.e., G is regular. �
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[8] D.J. Klein, M. Randić, J. Math. Chem. 12 (1993) 81–85.
[9] D.J. Klein, Commun. Math. Comput. Chem. (MATCH) 36 (1996) 7–27.

[10] D.J. Klein, H.Y. Zhu, J. Math. Chem. 23 (1998) 179–195.
[11] D.J. Klein, O. Ivanciuc, J. Math. Chem. (2001) 271.
[12] D.J. Klein, Croat. Chem. Acta. 75 (2002) 633.



H. Chen, F. Zhang / Discrete Applied Mathematics 155 (2007) 654–661 661
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