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We study the formation of baryons as composed of quarks and diquarks in hot and dense hadronic
matter in a Nambu–Jona-Lasinio (NJL)-type model. We first solve the Dyson–Schwinger equation for the
diquark propagator and then use this to solve the Dyson–Schwinger equation for the baryon propagator.
We find that stable baryon resonances exist only in the phase of broken chiral symmetry. In the chirally
symmetric phase, we do not find a pole in the baryon propagator. In the color-superconducting phase,
there is a pole, but it has a large decay width. The diquark does not need to be stable in order to form
a stable baryon, a feature typical for so-called Borromean states. Varying the strength of the diquark
coupling constant, we also find similarities to the properties of an Efimov state.

© 2011 Elsevier B.V. Open access under CC BY license.
A baryon is a color-singlet bound state of three constituent
quarks. Since the interaction between two quarks is attractive in
the color-antitriplet channel, baryon formation can be regarded as
a two-step process: first, two quarks combine to form a diquark
with color-antitriplet quantum numbers, and then this diquark
combines with another color-triplet quark to form a color-singlet
bound state [1–9].

At extremely high baryonic densities and low temperatures
quarks form Cooper pairs in the attractive color-antitriplet chan-
nel, leading to the phenomenon of color superconductivity [10–13]
(for recent reviews, see e.g. Refs. [14,15]). Because of asymptotic
freedom, the interaction is weak and, just like in BCS theory, the
Cooper pair wave function has a correlation length that exceeds
the interparticle distance. However, as the density is lowered, the
interaction strength increases and the Cooper pair becomes more
and more localized [16,17]. Eventually, Cooper pairs will form
tightly bound molecular diquark states [18]. These may pick up
another quark with the right color to form a color-singlet baryon.
This is what must happen across the deconfinement transition into
the hadronic phase. Understanding the nature of the transition
between dense hadronic and quark matter is one of the scien-
tific goals of the Compressed Baryonic Matter (CBM) experiment
planned at the Facility for Antiproton and Ion Research (FAIR) [19].
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In this Letter we investigate the formation and dissociation of
baryons in different regions of the phase diagram of strongly in-
teracting matter: the phase of broken chiral symmetry (hadronic
phase), the phase of restored chiral symmetry (the quark–gluon
plasma) above and below the dissociation boundary for diquarks,
and the phase where quark matter is a color superconductor. We
use an NJL-type model [20,21] for two quark flavors and employ
the following strategy. First, we compute the full propagator for
the scalar diquark state via solving a Dyson–Schwinger equation.
With the diquark propagator and an additional quark propagator,
we then solve a Dyson–Schwinger equation for the baryon propa-
gator.

Our approach bears some similarities to previous studies of
diquark and baryon formation [22–26]. These works also consid-
ered an NJL-type model, but they solved the full Faddeev equa-
tion instead of a (simpler) Dyson–Schwinger equation to obtain
baryon states. The difference is that in the Faddeev equation the
coupling between quark and diquark is not assumed to be local:
a non-static quark can be exchanged between them. Our work is
based on the cruder approximation of a local quark–diquark cou-
pling. These works also considered the axial-vector diquark state,
not only the scalar one, and thus were able to investigate also
excited baryon states. On the other hand, in those works only
the zero-temperature case was studied, while we also consider
non-zero temperature. Moreover, we do not assume the diquark
to be a well-defined quasi-particle in order to solve the Dyson–
Schwinger equation (an approximation employed in the aforemen-
tioned works in order to solve the Faddeev equation). We shall
see that diquarks can also be unstable, but still give rise to stable
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baryons, a typical feature of a Borromean state also encountered in
atomic and nuclear physics. Varying the diquark coupling strength,
we also find that our baryon has properties which bear similarities
to those of an Efimov state. We use natural units h̄ = c = kB = 1;
the metric tensor is gμν = diag(+,−,−,−).

The Lagrangian of the two-flavor NJL model with diquark–
diquark interactions reads

LNJL = ψ
(
iγμ∂μ − m̂0 + μ̂γ0

)
ψ

+ G S
[
(ψψ)2 + (ψ iγ5τψ)2]

+ G D [ψ iγ5τ2 JaψC ][ψC iγ5τ2 Jaψ]. (1)

Here, we have suppressed the color indices in the fundamen-
tal representation, a = 1,2,3, and the flavor indices, α = u,d,
in the quark spinors ψ ≡ ψaα . The bare mass matrix is m̂0 =
diag(m(0)

u ,m(0)

d ) and the chemical potential matrix is μ̂ =
diag(μu,μd), τs (s = 1,2,3) are the Pauli matrices in flavor space,
( Ja)bc = −iεabc are the antisymmetric color matrices, G S and G D

are coupling constants for quark–antiquark and quark–quark in-
teractions, respectively. In principle, G D can be related to G S via
a Fierz transformation, but we choose to keep it as a free param-
eter, allowing to explore a wider range of potentially interesting
phenomena within our effective model for the strong interaction.

In the following, we neglect the contribution from the isovec-
tor quark–antiquark channel, ψ iγ5τψ = 0. We also decompose the
scalar quark current in terms of a condensate part and a fluctua-
tion, ψ̄αψα = σα + δα , where σα = 〈ψαψα〉 is the chiral conden-
sate, and we work in the mean-field approximation, i.e., we neglect
terms of order O (δ2

α). Similarly, we decompose the diquark current
as ψ iγ5τ2 JaψC = (Δa + δa)/(2G D) and drop the quadratic term
in δa , where the diquark condensate is Δa = 2G D〈ψ iγ5τ2 JaψC 〉.
The diquark condensate fluctuation can be introduced by the re-
placement Δa → Δa + ϕa and keeping quadratic terms in the fluc-
tuation ϕa . The above operation is equivalent to performing the
Hubbard–Stratonovich transformation in the diquark sector. The
Lagrangian (1) now becomes

LNJL ≈ −1

2
Ψ S−1Ψ − 1

4G D

∑
a

|Δa|2 − G S(σu + σd)
2

− 1

8G D

(
ϕ2

aR + ϕ2
aI

) + 1

2
ΨϕaiΓ̂aiΨ. (2)

Here Ψ = (ψ,ψC )T and Ψ = (ψ,ψC ) are quark spinors in the
Nambu–Gorkov (NG) basis. The charge-conjugate spinors are de-
fined by ψC = Cψ T and ψC = ψ T C with C = iγ 2γ 0. The com-
plex diquark fluctuation ϕa has been decomposed in terms of its
real and imaginary parts, ϕa = (ϕaR + iϕaI )/

√
2, with color indices

a = 1,2,3. The inverse fermion propagator S−1 in the NG basis is
given by

S−1(P ) = −
(

Pμγ μ + μ̂γ 0 − m̂ iγ5τ2 JaΔ
†
a

iγ5τ2 JaΔa Pμγ μ − μ̂γ 0 − m̂

)
, (3)

where m̂ = diag(mu,md) is the quark mass matrix with correc-
tions from chiral condensates, mi = m(0)

i − 2G S (σu + σd) with
i = u,d. The quark–quark–diquark vertices Γ̂ai are given by Γ̂aR =

i√
2
γ5τ2 Jaτ

NG
1 , Γ̂aI = i√

2
γ5τ2 Jaτ

NG
2 , where τNG

s (s = 1,2,3) are

Pauli matrices in NG space. In the following, without loss of gener-
ality we choose the diquark condensate to be Δa = δa3Δ3. Note
that we only consider the scalar channel for the diquark con-
densate, as we are only interested in the lowest baryon state,
not the higher-lying excited ones. Including the axial-vector chan-
nel is straightforward, but will not modify our results qualita-
tively. Finally, we remark that the tadpole term ϕaΔ

∗
a + ϕ∗

a Δa ,
which in principle also appears in Eq. (2), is cancelled by the
term ϕaψC iγ5τ2 Jaψ +ϕ∗

a ψ iγ5τ2 JaψC at the one-loop level, where
ψC ψ +ψψC contracts and forms a quark loop in the NG basis. The
cancellation condition is just the gap equation for Δ.

We now add the baryon field to our Lagrangian. We assume the
baryon to be generated by an interaction term between two quark
and two diquark fields,

L B = G Bϕ
†
aψ̄aψbϕb

	 − 1

2G B
BB + 1

2
BΓ̂BiΨaϕai + 1

2
ϕaiΨ aΓ̂

∗
BiB. (4)

Here, we decomposed ψaϕa = 〈ψaϕa〉 + βa , defined the baryonic
field as B = G B〈ψaϕa〉, and neglected terms of order O (β2

a ). The
baryonic fields in the NG basis are then denoted by B = (B, Bc)

T

and B = (B, Bc). The baryon–quark–diquark vertices are Γ̂BR =
1√
2

1NG and Γ̂BI = i 1√
2
τNG

3 , respectively. The sum of the Lagrangians

(2) and (4) is the starting point for our further treatment. In the
following, for the sake of simplicity we assume exact isospin sym-
metry and we work in the chiral limit, i.e., σu = σd ≡ σ , thus
mu = md = mq , μu = μd = μq , and m(0)

u = m(0)

d ≡ 0.
We now derive the full diquark propagator via the Dyson–

Schwinger equation,

D−1
i,a (p0,p) = − 1

4G D
− Πi,a(p0,p), (5)

where p0 = i2πnT are the bosonic Matsubara frequencies (n =
0,±1,±2, . . .), i, j = R, I , and a,b = 1,2,3 are fundamental col-
ors. The full propagator Di,a and the self-energy Πi,a only carry
one index i = R, I and one color index a, because they are diag-
onal in the space of R, I and in color space. The self-energy has
the property ΠR/I,a = 1

2 (Πa
0 ± Πa

1 ), where Πa
0 and Πa

1 depend on
the diagonal and the off-diagonal parts of the quark propagator,
respectively, and Πa

1 = δa3Π
3
1 . The expressions for Πa

0 (p0,p) and
Πa

1 (p0,p) are

Π
1,2
0 = 2

∫
d3k

(2π)3
ck,p+k

×
[

e′
1ε

e′
k + ξ e′

k

2e′
1ε

e′
k

1 − f (e′
1ε

e′
k ) − f (ξ e

p+k)

p0 − e′
1ε

e′
k − ξ e

p+k

+ e1ε
e
p+k + ξ e

p+k

2e1ε
e
p+k

1 − f (ξ e′
k ) − f (e1ε

e
p+k)

p0 − ξ e′
k − e1ε

e
p+k

]
,

Π3
0 = 4

∫
d3k

(2π)3

e′
1ε

e′
k + ξ e′

k

2e′
1ε

e′
k

e1ε
e
p+k + ξ e

p+k

2e1ε
e
p+k

× 1 − f (e′
1ε

e′
k ) − f (e1ε

e
p+k)

p0 − e′
1ε

e′
k − e1ε

e
p+k

ck,p+k,

Π
1,2
1 = 0,

Π3
1 = −

∫
d3k

(2π)3

Δ2
3

e1e′
1ε

e
kε

e′
p+k

× 1 − f (e1ε
e
k ) − f (e′

1ε
e′
p+k)

p0 − e1ε
e
k − e′

1ε
e′
p+k

ck,p+k, (6)

where summations over e, e′, e1, e′
1 = ±1 are implied, f (x) =

1/(ex/T + 1) is the Fermi–Dirac distribution, Ek =
√

k2 + m2
q , ξ e

k =
eEk − μ, εe =

√
(ξ e)2 + Δ2, and ck,p+k = 1 + ee′ k·(p+k)+m2

q .
k k Ek E p+k
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Fig. 1. The phase diagram obtained within our model. For explanations see text. (For
interpretation of the references to color in this figure, the reader is referred to the
web version of this Letter.)

Some simple properties of D−1
i,a are: (1) D−1

R,3 �= D−1
I,3 when

Δ3 �= 0; (2) D−1
i,1 = D−1

j,2 for any i, j = R, I; (3) D−1
i,1 = D−1

i,2 = D−1
i,3 =

D−1 when Δ3 = 0 for any i = R, I . We also have Πa
1 = 0 when

Δa = 0. The spectral density for diquarks is then given by

ρi,a(ω,p) = 1

π

Im D−1
i,a (ω + iη,p)

[Re D−1
i,a (ω + iη,p)]2 + [Im D−1

i,a (ω + iη,p)]2
,

(7)

where we analytically continued p0 → ω + iη with real ω and η
a small positive number. We have similar properties for the spec-
tral densities as for D−1

i,a . With the spectral density, we can obtain
the full propagator via the dispersion relation

Di,a(p0,p) =
∞∫

−∞
dω

ρi,a(ω,p)

ω − p0
. (8)

From the Lagrangian (4) the 11-component in NG space of the
inverse baryon propagator is S−1

B = −1/(2G B) − Σ , where

Σ(P ) = −1

4

∑
a

∫
K

Sa
11(P − K )

[
D R,a(K ) + D I,a(K )

]
(9)

is the 11-component of the baryon self-energy. The quark propa-
gator in NG space, Sa

11, is diagonal in color space. In the presence
of a non-vanishing diquark condensate, S1

11 = S2
11 �= S3

11. If the di-
quark condensate vanishes, S1

11 = S2
11 = S3

11 and D R,a = D I,b for
any a,b. In order to evaluate Σ , we insert Eq. (8) into Eq. (9).
Since we are interested in baryons at rest, we shall take the
p = 0 limit of the positive energy component of S−1

B , S−1
B,+(p0,

p = 0) = 1
2 Tr[S−1

B Λ+
p=0γ

0], where Λs
p is the energy projector Λs

p =
1
2 [1 + s(γ0γ · p + γ0MB)/E p], with E p =

√
p2 + M2

B and s = ±1. In
the homogeneous limit, p = 0, the energy projector assumes a sim-
ple form, Λs

p=0 = 1
2 (1 + sγ0), which is independent of MB . Then,

we obtain the spectral density as

ρB(ω,p) = 1

π

Im S−1
B,+(ω + iη,0)

[Re S−1
B,+(ω + iη,0)]2 + [Im S−1

B,+(ω + iη,0)]2
,

(10)

where we have again analytically continued p0 → ω + iη.
In our calculations for Figs. 1–6, we choose the following pa-

rameters: G S = 5.1 GeV−2, Λ = 0.65 GeV (momentum cutoff). For
Figs. 1 and 6, we vary G D , in order to investigate the effect of the
diquark coupling constant on the boundaries of the diquark dis-
sociation and the color-superconducting (CSC) phase and on the
Fig. 2. Diquark spectral densities for different values of T and μq . The upper panel
corresponds to the point A in the phase diagram with (T ,μq) = (0.03,0.25). The
middle panel corresponds to the point B in the phase diagram with (T ,μq) =
(0.03,0.33). The lower panel is in the chiral symmetric phase, corresponding to
the point D in the phase diagram with (T ,μq) = (0.15,0.36). For all panels we
have ρ ≡ ρR = ρI . The red solid lines are for p = 0, the blue dashed and brown
dash-dotted lines are for p = 0.2 and p = 0.4, respectively. All units in GeV. (For
interpretation of the references to color in this figure, the reader is referred to the
web version of this Letter.)

baryon formation. For Figs. 2–5, we set G D = 3.11 GeV−2. This
value is in the weak-coupling region, so the diquark is unstable in
the phase of broken chiral symmetry. Nevertheless, we shall show
that a quark and an unstable diquark can form a stable baryon
in this phase. For Figs. 4–6, we choose G B = 10.04 GeV−1. The
baryon coupling constant G B is actually the static approximation
for an intermediate quark propagator in the Faddeev equation. This
approximation allows us to investigate baryon properties also at
non-zero temperature and density. We fix G B to obtain a baryon
mass of 940 MeV in the vacuum.

In the phase diagram of Fig. 1, we choose four sets of val-
ues for temperature and quark chemical potential, (T ,μq) =
(0.03,0.25), (0.03,0.33), (0.03,0.36), and (0.15,0.36), all in GeVs.
They correspond to points A, B, C, and D. The red solid line
separates the regions (indicated by χSB/χSR) where chiral sym-
metry is broken/restored; CSC denotes the color-superconducting
phase. The blue dashed lines show the diquark dissociation bound-
aries for three values of the diquark coupling constant, G D =
3.11,3.8,4.025 (in units of GeV−2). Below a diquark dissociation
line, the equation Re D−1(ω,p = 0) = 0 has a real solution ω, the
so-called diquark pole. The corresponding regions in Fig. 1 are
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Fig. 3. Diquark spectral densities for different values of T and μq . The upper, middle
and lower panels are ρR,3, ρI,3 and ρI/R,1/2 in the CSC phase, respectively, cor-
responding to the point C in the phase diagram with (T ,μq) = (0.03,0.36). The
red solid lines are for p = 0, the blue dashed and brown dash-dotted lines are for
p = 0.2 and p = 0.4, respectively. All units in GeV. (For interpretation of the refer-
ences to color in this figure, the reader is referred to the web version of this Letter.)

filled with light blue, green, and magenta color, respectively. These
poles also exist in the CSC phases, however, for the sake of clarity
we choose not to color the respective regions. The CSC phases are
bounded by the red solid line from the left and by the dash-dotted
lines from above (from bottom to top for G D = 3.11,3.8,4.025,
respectively). Note that the diquark coupling constants we have
chosen here are in the weak-coupling or BCS regime. As we in-
crease G D , Bose–Einstein condensation of diquarks could take
place in the region below the dissociation lines, provided the bare
quark mass is non-zero [18,27–32]. Note that in Ref. [18], a van-
ishing decay width was imposed as an additional criterion for the
location of the dissociation boundary.

The numerical results for the spectral densities are presented
in Figs. 2–3. The upper panel of Fig. 2 shows the diquark spec-
tral densities in the phase of broken chiral symmetry (point A of
Fig. 1). In the homogeneous limit (p = 0, red solid line), no di-
quark poles exist (since G D = 3.11 GeV−2 is too small), and the
curves are smooth. The middle panel shows the diquark spectral
densities in the phase of restored chiral symmetry, below the dis-
sociation boundary, but above the CSC phase (point B in Fig. 1).
In the homogeneous limit, there is one sharp peak at ω = 0. The
non-zero width of this peak implies that the diquark is unstable.
Fig. 4. The real (blue dashed) and imaginary (red solid) parts of the inverse propaga-
tors for baryons as functions of energy ω at different T and μq . From top to bottom,
the first panel: T = 0.03 and μq = 0.25 (point A). The second panel: T = 0.03 and
μq = 0.33 (point B). The third panel: T = 0.15 and μq = 0.36 (point D). The fourth
panel: T = 0.03 and μq = 0.36 (point C). All units in GeV. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this
Letter.)

When temperature grows, the diquarks dissociate, so the peak is
replaced by a broad bump shown in the lower panel (correspond-
ing to point D in Fig. 1). In the three panels (from top to bottom)
of Fig. 3 we show ρR,3, ρI,3 and ρi,1/2 in the CSC phase (point C
in Fig. 1), respectively. For ρI,3 there are δ-function-like peaks in
the range |ω| < 2Δ, indicating stable diquarks. For ρR,3 and ρi,1/2,
these peaks attain a small width. Also, as p increases, all peaks be-
come wider. Note that the spectral densities are not odd functions
of ω, because μq is non-zero. We see that stable diquarks only
exist in the CSC region. Unstable diquark poles outside the CSC re-



J.-c. Wang et al. / Physics Letters B 704 (2011) 347–353 351
Fig. 5. The baryon spectral densities at different values of T and μq as functions
of ω + 3μq for p = 0. Four values of μq are chosen for each panel, 0.29 GeV (red
solid), 0.30 GeV (blue dashed), 0.31 GeV (brown dash-dotted) and 0.32 GeV (light
blue dash-dot-dotted). In the fourth panel (from top to bottom) we show the result
for T = 0.03 GeV and μq = 0.36 GeV (point C of Fig. 1). (For interpretation of the
references to color in this figure, the reader is referred to the web version of this
Letter.)

gion are actually the diquark fluctuations discussed in Ref. [33].
One can also see from the lower two panels that there are five
Nambu–Goldstone (NG) modes which have poles at ω = 0 for zero
momenta. In the lowest panel, there are four NG modes, i.e., the
real and imaginary scalar fields with red and green color. In the
middle panel, there is one NG mode for the imaginary scalar field
with blue color. These existence of these NG modes is due to the
validity of the following equations: 1

2 ΠI/R,1/2(0,0) + 1
4G D

= 0 and
1
2 ΠI,3(0,0) + 1

4G D
= 0.

In Fig. 4 we show the real and imaginary parts of the inverse
retarded Greens function for baryons (positive energy component),
Fig. 6. The quantity ωB + 3(μq − mq) as a function of the inverse renormalized
coupling 1/Gr at T = μq = 0. In the shaded region, i.e., below the blue curve,
baryons are stable. The red curve inside this region is given by MB,phys −3mq , where
MB,phys is the physical mass of the baryon. (For interpretation of the references to
color in this figure, the reader is referred to the web version of this Letter.)

again at points A, B, C, and D in the phase diagram of Fig. 1. In the
phase of broken chiral symmetry with mq �= 0 and Δ = 0 (point A),
there are no diquark condensates or resonances but there are sta-
ble baryon resonances: in the first panel (from top to bottom), we
see that Re S−1

B+(ωB ,0) = 0 has a solution at ωB + 3μq ≈ 0.94 GeV,
i.e., close to the rest mass of the nucleon. There is a region of ωB ∈
[−3(mq +μq),3(mq −μq)] or MB ∈ [−3mq,3mq], where the imag-
inary part Im S−1

B+(ωB ,0) is very small (smaller than 10−6 GeV) in
the homogeneous limit. The position is just inside this region, i.e.,
MB < 3mq: the baryon weighs less than its constituents. It is there-
fore stable, although its constituents by themselves are unbound,
like in a Borromean state in atomic or nuclear physics.

The second panel shows the case with diquark resonances but
outside the CSC phase (point B). There is no positive energy baryon
pole in this case. In the region of higher temperatures and quark
chemical potentials where chiral symmetry is restored and where
there are neither diquark condensates nor resonances (point D),
there are also no baryon resonances and the absolute value of
Im S−1

B+ is very large. This case is shown in the third panel. In the
CSC phase (point C), there are baryon poles but with large imagi-
nary parts, indicating unstable baryon resonances, as shown in the
fourth panel. This is confirmed by a broad bump in the baryon
spectral density in the fourth panel of Fig. 5.

The results for the baryon spectral density at different val-
ues of T and μq are presented in Fig. 5. In the first and second
panels (from top to bottom), where T = 0.01,0.03 GeV, we ob-
serve that the baryon spectral density hardly changes with respect
to its width or peak position when varying the chemical poten-
tial from 0.29 to 0.32 GeV. In the third panel with T = 0.05 GeV
the peak position shows a small increase with increasing μq . For
these larger temperatures, however, the width shows a dramatic
increase: the curves for (T ,μq) = (0.05,0.31), (0.05,0.32) GeV
are not even visible on the current scale, implying the disap-
pearance of the baryon resonances. For the curves still visible
at T = 0.05 GeV, the widths are very large indicating highly
unstable baryon resonances. In the CSC phase with (T ,μq) =
(0.03,0.36) GeV (the fourth panel) the baryon resonance is also
quite unstable, since the peak is very low and broad on the scale
of the other panels in this figure.

In Fig. 6 we vary the diquark coupling constant in order to in-
vestigate where the baryon is stable at T = μq = 0. We choose as
x-axis the renormalized coupling Gr defined in Eq. (40) of Ref. [17].
The advantage of using Gr instead of G D is that the existence of
stable diquark bound states is determined by the sign of Gr : for
Gr > 0 we have diquark bound states, for Gr < 0 they do not exist.
The shaded region in Fig. 6 indicates where baryons are stable,
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Fig. 7. The diquark spectral density (upper panel) and the imaginary part of the
inverse baryon propagator (lower panel). The red solid lines are results for G D =
5.95 GeV−2 and the blue dashed lines are for G D = 3.11 GeV−2. (For interpretation
of the references to color in this figure, the reader is referred to the web version of
this Letter.)

i.e., where the imaginary part of the inverse baryon propagator
vanishes, or where the spectral density may exhibit a δ-function-
like peak (provided the real part also vanishes inside this region).
Above the blue curve the system is in a three-quark state (for weak
diquark coupling) or in a quark–diquark state (for strong diquark
coupling). At moderately weak negative Gr the diquark is not sta-
ble, but, as indicated by the red curve, we obtain a stable baryonic
bound state with mass MB,phys < 3mq , where MB,phys is defined as
the location of the peak position of the baryon spectral density. If
we increase Gr towards positive values, i.e., in the range where di-
quarks are stable, the pole energy of a stable baryonic bound state
must lie in the range [−(ωD + 2μq) − mq,ωD + 2μq + mq] (ωD is
the energy of the diquark at p = 0). The upper boundary of this
range corresponds to the blue curve which is consequently given
by ωD + 2μq − 2mq .

The threshold for stable baryons shown in Fig. 6 by the
blue curve is similar to the boundary for Efimov states in non-
relativistic cold atom physics: there, the boundary is proportional
to −1/a2

s , where as is the scattering length. In our case, Gr ∼ as ,
cf. Eq. (39) of Ref. [17]. The curvature of the boundary in Fig. 6
indeed indicates a quadratic behavior as a function of Gr .

The red curve for the baryon bound state was computed with
a fixed coupling constant G B . There are some similarities between
this state and an Efimov state. Also there, the latter cannot form,
if the two-body coupling constant is too weak, i.e., for small neg-
ative Gr . On the other hand, for a very strong two-body coupling,
i.e., for small positive Gr , there may be a competition between
the two-body bound state and the three-body bound state. There
are also differences to an Efimov state, for instance, in Fig. 6 the
baryon bound state does not cross the decay threshold for posi-
tive Gr . We perceive this to be an artifact of a fixed quark–diquark
coupling G B in our model. In a full calculation the quark–diquark
coupling G B should vary proportional to the inverse (dressed)
mass of the quark exchanged between quark and diquark [26].
Then, G B will also become a function of the diquark coupling con-
stant G D . A characteristics of Efimov physics is an infinite tower
of higher-lying excited states. In order to show that they also oc-
cur in our case, we would have to solve an eigenvalue equation for
baryonic bound states. This is a subject for future investigations.

In order to see the interplay between the stable diquark and
baryon more explicitly, we present in Fig. 7 the diquark spectral
density and the imaginary part of the inverse baryon propagator
for T = μq = 0 GeV. For a strong diquark coupling (red solid line),
one finds two components in the spectral density, a continuous
component ρc and a pole one,

ρδ(ω,p) = A(p)δ
[
ω − ωp(p)

] − A(p)δ
[
ω + ωp(p)

]
, (11)

where the amplitude is given by A(p) = (∂ ReΠ/∂ω)−1|ω=ωp(p) ,
and ωp(p) is the energy of the pole with p = |p|. If the diquark
coupling is weak (blue dashed line), only the continuous compo-
nent remains, indicating an unstable diquark. Both components are
taken into account in calculating the baryon self-energy. From the
imaginary part of the inverse baryon propagator, one finds a region
MB ∈ [−3mq,3mq] where Im S−1

B,+ = 0 GeV in the weak-coupling

case G D = 3.11 GeV−2 (blue dashed line), where a stable baryon
can be formed. In the strong-coupling case G D = 5.95 GeV−2 (red
solid line), two additional bumps appear which overlap with the
window MB ∈ [−3mq,3mq]. Since non-zero Im S−1

B,+ indicates un-
stable baryons, the region for stable baryons is reduced. This shows
that the interplay between pole and continuum part of the di-
quark spectral density is an important ingredient in the formation
of baryons. Neglecting the latter and taking only the pole part
into account misses important physics (such as the formation of
a Borromean-type stable baryon from an unstable diquark and
a quark).

Finally, we would like to make some comparison to previous
works. In the Faddeev approach [22,23], it is assumed that the
baryon is stable and the baryonic T -matrix has a separable form,
which reduces the full Faddeev equation to the Bethe–Salpeter
equation (BSE) for the baryonic vertex. Furthermore, for numeri-
cal simplicity it is also assumed that the diquark is stable. Thus,
the baryon mass can be obtained via solving an eigen-equation
(i.e., BSE) for the baryonic vertex. In this approach, the effect of
temperature was so far neglected due to the increase in numer-
ical complexity. An unstable diquark would also make the equa-
tion numerically hard to solve. Thus, so far the baryon was only
treated as a stable bound state of a quark and a stable diquark.
Since the baryon is stable by assumption, the properties of baryon
resonances cannot be obtained in the Faddeev approach, where
the baryon dissociation condition is simply realized by the con-
dition that the baryon mass exceeds the sum of quark and diquark
masses. However, this baryon dissociation condition is not correct
in the CSC region where quarks are gapped. The correct way is to
find if there are δ-function-like peaks in the baryon spectral den-
sity, as done in this Letter. Our static approximation simplifies the
Faddeev equation to an RPA-type quasi-fermion BSE, so the baryon
formation and dissociation at non-zero temperature and chemical
potential is amenable to treatment. As we have shown, we have
calculated the full baryonic spectral densities in different phases,
from which the baryon dissociation condition is correctly obtained.

The authors of Refs. [24,25] also used the static approximation
in order to simplify the Faddeev equation, but they focus on differ-
ent issues. For the diquark propagator, they used the proper-time
regularization method which introduces an effective confinement,
but the method is not applicable to non-zero temperature. The di-
quark T -matrix is approximated by a constant term 1/4G D plus
pole terms, which is equivalent to taking a stable diquark, while
we employ the full spectral density of the diquark. There is some
difference between our results and theirs. At low temperatures we
also calculated the baryon mass as a function of chemical po-
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tential: we find only a slight decrease of the baryon mass with
chemical potential, while they obtain a significant decrease. The
reason is that we did not include vector mesons and thus do not
obtain large baryon number densities. Also we did not find a way
of introducing confinement at non-zero temperature. We plan to
look at these issues in a future study. In Ref. [26], the static ap-
proximation and a stable diquark are used. The authors considered
a three-flavor NJL model, and the baryon mass is found to decrease
by 25% at normal nuclear matter density. We also plan to extend
our model to the three-flavor case and study the properties of nu-
clear matter in the future.

In conclusion, we used an NJL-type model to compute the full
diquark propagator and its spectral density in different regions of
the phase diagram of strongly interacting matter. Baryon formation
and dissociation in dense nuclear and quark matter is then stud-
ied via the baryon poles and spectral densities, incorporating the
previously obtained diquark propagator. We find that stable baryon
resonances with zero width are present in the phase of broken chi-
ral symmetry. There are no baryon poles in the chirally symmetric
phase. In the CSC phase, baryon poles exist, but they are found
to be unstable due to a sizable width. We also pointed out that
the stable baryon states found by us have some similarities to Bor-
romean and Efimov states in atomic or nuclear physics.
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