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of landslides with various types, including highly disrupted shallow slides and rock falls, deep-seated landslides
and large-scale rock avalanches. Post-earthquake high resolution aerial photographs and satellite images, as well
as a series of pre-earthquake high resolution satellite images were collected to construct a detailed, accurate,
objective, and complete coseismic landslide database/inventory, which was validated by field investigation in
selected areas. Based on the aerial photographs (0.2 or 0.6 m resolution) that partly cover the affected area
and pre-earthquake satellite images, 14,580 coseismic landslides were recognized and mapped. In those areas
without post-earthquake aerial photographs coverage, we mapped 7,948 more coseismic landslides based on
post-earthquake satellite images (Rapideye images with 5 m resolution and ZY-3 images including panchromatic
images with 2.1 m resolution and multi-spectral images with 5.8 m resolution) and pre-earthquake satellite
images. The 22,528 coseismic landslides, with a horizontal projection area of 18.88 km? and an estimated total
volume of 41.56 x 10° m>, were distributed in a nearly elliptic area of about 5,400 km?. Correlations between
coseismic landslide abundances and topographic, geologic, and seismic factors were analyzed on 15,546
landslides of area >100 m?. Scatter plots between regional slope angle and landslide abundances in generalized
homogeneous lithology combinations show no obvious relationship is present between them, which challenges
the conclusions of previous studies. Combining the Lushan earthquake-triggered landslides with other events on
reverse and/or thrust faults such as the 1999 Chi-Chi and 2008 Wenchuan shocks, we found that coseismic land-
slides tend to occur in areas enveloped by two or more imbricated reverse and/or thrust faults, rather than only
along the seismogenic fault. The Lushan event shows a higher ability of triggering landslides compared with other
earthquakes of similar magnitudes, which is likely due to the steep and rugged topography and fractured and
densely jointed lithology resulted from long-term tectonic activity. The blind reverse seismogenic fault is likely
also another significant factor. Based on detailed coseismic landslide inventory maps and databases of several re-
cent major earthquakes such as the 2008 Wenchuan, 2010 Haiti, 2010 Yushu, and 2013 Lushan temblors, we sug-
gest that the empirical correlations between earthquake magnitude and coseismic landslides need to be updated.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Through the history of earthquake-triggered landslides study, re-
searchers have been working hard to understand the fundamentals of
earthquake-triggered landslide occurrences, mechanisms, and distribu-
tions. Researchers have endeavored to discover the spatial distribution
patterns of these landslides and their controlling factors. Constructing
an objective and complete coseismic landslide inventory or database is
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important. The 1811 New Madrid, Missouri, earthquake is probably the
first event with such an inventory (Keefer, 1984, 2002; Jibson and
Keefer, 1989). Researchers successively constructed coseismic landslide
inventories or databases of various types, including maps from retrospec-
tive studies, paper-based maps, and digital vector maps (Keefer, 2002),
and alias database. Their quality and quantity are not always satisfactory
due to limitations of remote sensing and GIS technologies in the past, ran-
domness of earthquake occurrence, and the lack of uniform criteria. In re-
cent years, the criteria of landslide inventorying have been proposed and
gradually improved (Liao and Lee, 2000; Keefer, 2002; Harp et al,, 2011;
Guzzetti et al., 2012; Xu, 2014a). They can guide researchers to produce
detailed and complete landslide inventories and to carry out subsequent
objective scientific studies concerning landslide distribution (Gorum
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etal, 2011; Meunier et al., 2013; Tatard and Grasso, 2013; Xu, 2014b; Xu
and Xu, 2014a), susceptibility, hazard, and risk assessments (Lee et al.,
2008; C. Xu et al., 2013a, b), landform evolution (Parker et al., 2011; G.
Li et al., 2014; Xu et al., 2014a; Y. Li et al., 2014), relation with debris
flows (Tang et al., 2012; Zhou and Tang, 2014), and post-earthquake veg-
etation recovery (Khattak et al., 2010; Wang et al.,, 2014). It should be
noted that in previous publications “landslide inventory” is a more com-
mon expression than “landslide database”. This is because only landslide
distribution or an inventory map was available for an old event when ad-
vanced GIS technology was absent, for example, the 1970 Peru (Plafker
et al,, 1971), the 1976 Friuli, Italy (Govi, 1977), the 1976 Guatemala
(Harp et al,, 1981), and the May 1980, Mammoth Lakes, California
(Harp et al,, 1984) earthquakes. Later, the development of GIS resulted
in quite a few landslide databases for individual events, such as the
1994 Northridge, California (Harp and Jibson, 1995), the 1999 Chi-chi,
Taiwan (Liao and Lee, 2000), the 2008 Wenchuan, China (C. Xu et al,,
2009a; Dai et al., 2011a; Gorum et al., 2011; Xu et al., 2014b), the 2010
Yushu, China (Xu and Xu, 2014a), the 2010 Haiti (Gorum et al., 2013;
Xu et al., 2014c), and the 2013 Minxian, China (Xu et al., 2014d) earth-
quakes. The database related to the Northridge earthquake is probably
the first GIS-based digital landslide database, in which an individual land-
slide corresponds to one record. The record can also include attributes
such as landslide area, volume, length, width, height, slope angle, aspect,
and lithology. However, the landslide database is still more popular than
landslide inventory due to personal habits of researchers. Nevertheless, in
our opinion, “landslide database” is more appropriate than “landslide
inventory” for a set of GIS-based landslide records since the 1994
Northridge, California event.

Here we briefly describe the historical and state of art of earthquake-
triggered landslide inventory or database. Keefer (1984) collected 40
individual earthquake events that occurred before 1980 and correlated
earthquake magnitudes with the landslide-distribution area, maximum
distance from the epicenter, and distance from fault-rupture zones for
those events. He also drew corresponding upper margins to represent
the maximum values of indexes of earthquake-triggered landslides for
the events of certain magnitude. Subsequently, Rodriguez et al. (1999)
slightly adjusted the margins based on 36 individual shocks of 1980 to
1997. Although more events were added to verify the reliabilities of
these margins (Liao and Lee, 2000; Bozzano et al., 2004; Jibson et al.,
2004a; Khazai and Sitar, 2004; Agnesi et al., 2005; Keefer et al., 2006;
Dai et al., 2011a; Xu and Xu, 2014a; Xu et al., 2014b), the binary corre-
lations between earthquake magnitudes and earthquake-triggered
landslides remain rough, and cannot clearly reveal the spatial distribu-
tion patterns of earthquake-triggered landslides and how the control-
ling factors work. More and more researchers realized that a detailed
and complete inventory or database of earthquake-triggered landslides
is very useful (Keefer, 2002; Harp et al., 2011; Xu, 2014a).

In recent years, a series of detailed and complete earthquake-triggered
landslide inventories or databases were constructed and correlations be-
tween earthquake-triggered landslides and topographic, geologic, and
seismic factors were analyzed (Xu, 2014a; Xu et al., 2014b; and references
therein). The inventory of landslides triggered by the 1994 Northridge,
USA, Mw 6.7 earthquake is considered to be the first published detailed
digital coseismic landslide inventory (Harp and Jibson, 1995; Keefer,
2002). The inventory was compiled based on visual interpretation of
high-resolution aerial photographs. The resultant database registered
about 11,000 coseismic landslides, covering about 23.8 km? and distribut-
ed in an area about 11,000 km?. The 1999 Chi-Chi, Taiwan Mw 7.6 earth-
quake also triggered tens of thousands of landslides. Liao and Lee (2000)
delineated 9,272 coseismic landslides in an area of 11,000 km? based
mainly on visual interpretations of SPOT 4 satellite images. The landslides
covered an area about 127.8 km?. Later, a more detailed inventory was
produced by visual interpretation of high-resolution aerial photographs
(Wang et al., 2002). Many small-scaled landslides that cannot be identi-
fied on SPOT 4 images were detected and mapped. It shows the earth-
quake triggered at least 26,000 landslides in a total area about 170 km?

(Wang et al., 2002). In addition, Lin et al. (2009) also presented a database
for the earthquake-triggered landslides and the total area is only about
86 km?. Therefore, it is likely that there are significant omission (false neg-
ative) errors. The landslides triggered by the 2008 Wenchuan, China
earthquake received unprecedented attention. The coseismic landslides
directly resulted in about 20,000 deaths (Yin et al.,, 2009). Among the
landslides, there are many large-scaled landslides (Chigira et al., 2010;
Dai et al., 2011b; Huang et al., 2012a, b) resulted in serious disasters,
and even destroyed half of a county (Yin et al., 2009, 2015). Quite a few
landslide databases related to the earthquake were produced (C. Xu
et al., 2009a,b; Huang and Li, 2009; Qi et al,, 2010; Xu et al,, 2010,
2014b; Gorum et al.,, 2011; Parker et al., 2011; W.L. Li et al., 2013a; G. Li
et al,, 2014), including point- and polygon-based databases using visual
interpretation or automatic extraction. The most detailed one registers
197,481 individual coseismic landslides, covering an area about
1,160 km?, being distributed in 110,000 km? (Xu et al., 2014b). Most of
the landslides (196,007 pieces) are distributed in an area about
44,000 km?. In addition, an inventory of 828 coseismic landslide dams
was also produced (Fan et al., 2012a,b). The most complete and detailed
database (Xu et al., 2014b) has the largest number of landslides related
to an individual great earthquake ever reported so far, and also include
the database of the coseismic landslide dams. In addition, several earlier
versions of the database have also been released (C. Xu et al., 2009a,b;
Dai et al., 2011a). The detailed landslide database or the earlier versions
have been widely used in subsequent studies: spatial analyses of
coseismic landslides (C. Xu et al., 2009a,b; Dai et al., 2011a; Xu and Xu,
2012; Yuan et al., 2013; Xu et al., 2014b); susceptibility and hazard assess-
ments based on bivariate statistics including weight of evidence (Xu et al.,
2012a) and weight index (C. Xu et al.,, 2013a), logistic regression (C. Xu
et al., 2013b), artificial neural network (Xu et al,, 2012b), support vector
machines (Xu et al.,, 2012¢), and Newmark’s method (X.L. Chen et al.,
2014a); seismic intensity inversions (C. Xu et al., 2013c); and landscape
changes of an earthquake affected area (Xu and Xu, 2013; Xu et al.,
2014a). After the 2010 Port-au-Prince, Haiti, Mw 7.0 earthquake, plenty
of high-resolution satellite images were accessible and available on the
Google Earth platform. Several detailed coseismic landslide databases
were constructed and spatial distribution analyses were performed
(Gorum et al., 2013; Xu et al., 2014c). For the 2010 Yushu, China, Mw
6.9 earthquake, 2,036 coseismic landslides were delineated based on visu-
al interpretation of very high resolution (0.2 or 0.4 m) aerial photographs
and high resolution (2.5 m) satellite images, as well as selected field
checking (C. Xu et al., 2013d; Xu and Xu, 2014a). This inventory is unprec-
edentedly detailed and complete for earthquakes generated by strike-slip
faults. Other events with coseismic landslide databases include the 2005
Kashmir Mw 7.6 (Sato et al., 2007; Kamp et al., 2008; Owen et al.,
2008), the 2004 Mid-Niigata, Japan, Mw 6.6 (Sato et al., 2005), the 2003
Lefkada, Greece, Mw 6.3 (Papathanassiou et al., 2013), the 2002 Alaska,
USA, Mw 7.9 (Jibson et al., 2004b; Gorum et al., 2014), and the 2013
Minxian, China, Mw 5.9 (Xu et al., 2014d) earthquakes. These databases
can help assess and mitigate landslide hazards in earthquake affected
areas.

On April 20, 2013, an earthquake of Mw 6.6 (after the USGS) or Ms
7.0 (after the China Earthquake Network Center) struck Lushan County,
Sichuan Province of China. As of 14:30 (Beijing Time) of April 24, 2013,
this earthquake caused 196 deaths, 21 missing, and 11,470 injuries. As
of 14:00 April 23, 2013 of Beijing time, a total of 3,509 aftershocks
were recorded, the largest one is Ms 5.4. Similar to the main shock,
almost all the aftershocks are of reverse- or thrust-faulting as shown
by focal mechanism solutions (X.W. Xu et al., 2013a; J.S. Lei et al.,
2014). This event not only resulted in serious casualties and property
losses, but also triggered a larger number of landslides, which are of
various types, including shallow highly disrupted rock falls and slides,
and deep-seated landslides and large-scale rock avalanches (C. Xu
etal, 2013e; Xu et al, 2015). A series of coseismic databases or invento-
ry maps were produced (Table 1). Most of the published databases or
inventory maps are emergent products that were finished in a short
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Table 1

List of previous incomplete inventories of landslides triggered by the Lushan earthquake.
Type LN LA LDA Density References

(km?)  (km?) (km~2)

Point 1,469 10,000 0.15 Wang (2015)
Point 421 320 1.32 Feng et al. (2013)
Polygon 703 1.2 122.11 5.76 Chang et al. (2013)
Polygon 1,379 5.85 6,651 0.2 Suet al. (2013)
Point 1,129 2200 0.51 X.L. Chen et al. (2014b)
Point 2231 1300 1.72 Zhou et al. (2014)
Point 1,460 Cui et al. (2014)
Point 1337 X.Z.Liet al. (2014)
Polygon 381 0.81 59.04 6.45 Zhang et al. (2013)
Point 2,037 W.L Liet al. (2013b)
Point 688 200 344 Xu and Xiao (2013)
Point 3,883 2000 1.9 C. Xu et al. (2013e)
Point 15,640 2000 7.8 Xu(2013a)

Note: LN: landslide number; LA: landslide (areal) area, LDA: landslide distribution area.

time, which are helpful for quickly assessing the hazards caused by the
landslides. However, none of them is detailed or complete. The pres-
ences of significant omission (false negative) errors are apparent.
Based on an emergent coseismic landslide database (C. Xu et al,,
2013e), we produced a more detailed one using available post-
earthquake aerial photographs (Xu et al., 2015). The original inventory
map registered 3,880 landslides (C. Xu et al,, 2013e) and 11,760 more
landslides were recognized by more careful visual interpretation of
the same aerial photographs (Xu et al., 2015). However, this landslide
inventory map remains incomplete because the post-earthquake aerial
photographs do not cover the entire affected area.

The purpose of this paper is to construct a more detailed, objective
and complete landslide database related to the 2013 Lushan event
based on the previous incomplete database and supplementary remote
sensing data, including post-earthquake high-resolution Rapideye and
ZY-3 satellite images. The resulted coseismic landslide inventory map
was then validated by field inspection in selected areas. This study
also focuses on the correlation between the distribution of coseismic
landslides and topographic, geologic, and seismic factors. In addition,
several issues are discussed, including correlations between topography
and coseismic landslide abundance in generalized homogeneous lithol-
ogy combinations, the distribution pattern of coseismic landslides relat-
ed to earthquakes occurred on imbricated reverse and/or thrust faults,
and the higher capability of the Lushan earthquake to trigger landslides.

2. Geologic setting

The collision of the Indian and Eurasian plates resulted in the uplift
of the Tibetan Plateau and eastward motion of a series of blocks in this
highland (Chen et al., 2000; Tapponnier et al., 2001; Wang et al,,
2001; Gan et al., 2007). Obstructed by the rigid Sichuan Basin, the
Longmenshan thrust zone formed along the boundary between the
Tibetan Plateau and Sichuan Basin (Xu et al., 2008), at which the
accumulated strain is released during frequent earthquakes (X.W. Xu
et al.,, 2009; Zhang et al., 2010). Both the 2008 Wenchuan and the
2013 Lushan temblors occurred on this northeast-trending fault zone.
The epicenter of the Lushan event is located only 85 km southwest of
the 2008 Wenchuan shock (Fig. 1).

The Longmenshan thrust zone is composed of three main thrust fault
systems, which are the Maoxian-Wenchuan fault (also called back-range
fault), the Yingxiu-Beichuan fault (also called central fault), and the
Guanxian-Jiangyou fault (also called front-range fault) from northwest
to southeast. In addition, a fault buried by the piedmont, southeast of
the three faults, showing features of forward-propagating deformation,
is also considered as a secondary fault of the Longmenshan thrust zone
(Chen et al., 1994; Deng et al., 1994; Royden et al., 1997; Clark and
Royden, 2000). Furthermore, the three fault systems aforementioned
contain sub-faults (Fig. 1). For example, the Qingchuan-Pingwu fault
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Fig. 1. Tectonic setting of the Longmenshan thrust belt and the affected areas of the
Wenchuan and Lushan earthquakes. LE: Lushan earthquake epicenter; WE: Wenchuan
earthquake epicenter; LMSTZ: the Longmenshan thrust zone; YBF: the Yingxiu-Beichuan
fault; QPF: the Qingchuan-Pingwu fault; MWF: the Maoxian-Wenchuan fault; HYF: the
Huya fault; LRBF: the Longriba fault; MJF: the Minjiang fault; XF: the Xiaoyudong fault;
YWEF: the Yanjing-Wulong fault; LQSF: the Longquanshan fault. MAWEL: the main area af-
fected by the Wenchuan earthquake-triggered landslides; MALEL: the main area affected
by the Lushan earthquake-triggered landslides. This area is shown as the white rectangle
in the sub panel in the upper left corner.

and the Maoxian-Wenchuan fault belong to the back-range fault system.
The Yingxiu-Beichuan fault and the Yanjing-Wulong fault are part of the
central fault system. The Guanxian-Jiangyou fault and the Shuangshi-
Dachuan fault are members of the front-range fault system.

The 2013 Lushan earthquake occurred on the southwestern segment
of the Longmenshan thrust zone, whereas the Wenchuan event oc-
curred on the central part of the belt. Although the epicenters of them
are only about 85 km apart, the two events are not considered to be gen-
erated by the same fault. The Wenchuan earthquake was spawned by
the Yingxiu-Beichuan fault, with three surface ruptures on three faults,
i.e. the Yingxiu-Beichuan, Guanxian-Jiangyou, and Xiaoyudong faults
(X.W. Xu et al.,, 2009; Tan et al.,, 2012). The epicenter of the Lushan
event is, on the other hand, located near the Shuangshi-Dachuan fault.
Since there is a nearly 40-km-long rupture gap between the Lushan
and the Wenchuan earthquakes (Chen et al., 2013), most researchers
do not consider the Lushan event to be an aftershock of the Wenchuan
shock, but an independent one (X.W. Xu et al,, 2013b; Jiaetal., 2014; L.C.
Chen et al., 2014). On the other hand, the epicenter of the Lushan quake
is located at the Coulomb stress increasing zones after the 2008
Wenchuan event (Parsons et al., 2008; Toda et al., 2008; Shan et al.,
2013). Therefore, the latter might be an important trigger for the
former. In other words, the 2008 Wenchuan great shock may have
speeded up the occurrence of the 2013 Lushan earthquake.

In the Lushan temblor affected area, there are three major northeast-
striking faults: the Yanjing-Wulong, the Shuanshi-Dachuan, and the
Western Shangli faults from northwest to southeast (Fig. 2). It was orig-
inally proposed that the Shuangshi-Dachuan fault was the seismogenic
fault of the Lushan event based on preferred nodal planes of focal mech-
anism solutions and regional tectonic setting. However, after subse-
quent field investigations, more detailed analyses of seismic waves,
focal mechanism solutions and spatial distribution of aftershocks, it is
suggested that the seismogenic fault of the Lushan quake is a blind
reverse fault southeast of the Shuangshi-Dachuan fault (C.Y. Li et al.,
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Fig. 2. Regional tectonic setting of the Lushan earthquake affected area. YWF, the Yanjing-
Waulong fault; SDF, the Shuangshi-Dachuan fault; WSF, the Western Shangli fault. The solid
black dots are 162 coseismic landslides of area>10,000 m?. Areas of the LNA value ranges
30-87.6km 2, 10-30 km 2, and <10 km~ 2 are 55.47 km?, 385.36 km? and 4955.17 km?,
respectively.

2013; X.W. Xu et al., 2013a). Earthquakes occurred on blind reverse
faults that did not broken the ground surface are quite common, such
as the 2010 Haiti Mw 7.0 (Calais et al., 2010; Hayes et al., 2010), the
1994 Northridge, USA, Mw 6.7 (Hauksson et al., 1995), the 1989 Loma
Prieta, USA, Mw 6.9 (Prentice and Schwartz, 1991; Arnadéttir and
Segall, 1994), and the 1983 Coalinga, California, USA, Mw 6.2 (Stein
and King, 1984) earthquakes. Although continuous ground surface rup-
ture associated with the Lushan event was not seen, brittle compressive
ruptures in cement-covered pavements have been found along a line
from Shuangshi to Taiping and Dachuan, which are generally coincident
with the Shuangshi-Dachuan fault (Han et al., 2013; X.W. Xu et al.,
2013a). Similar compressive phenomena can also be observed along
the line from Lushan to Longmen and Baosheng, and thus a blind
reverse fault (called Lushan-Longmen blind fault) is proposed to exist
in the area (C.Y. Li et al,, 2013; Han et al,, 2013). However, some of the
phenomena likely resulted from shaking rather than actual fault ruptur-
ing, and a seismic investigation showed no evidence for the proposed
Lushan-Longmen blind fault at least in the upper 800 m below the
ground surface (S.X. Lei et al., 2014).

In the Lushan earthquake affected area, two historical earthquakes of
M 2 6.0 with coseismic landslides are documented in history. One is the
M6 shock in September 1327 (30.1°N, 102.7°E) that created a landslide
dam in a river, about 150 m long, 40 m wide, and 10 m high. The
dammed river overtopped after 10 hours after it was blocked
(Disaster Prevention Department of National Seismological Bureau,
1995; Disaster Prevention Department of China Earthquake Administra-
tion, 1999). The other is the Ms 6.2 event on 24 February 1970 (30.65°N,
103.28°E).

On the eastern margin of the Tibetan plateau, the Longmenshan
Mountain rises 6000 m above the Sichuan basin, with a greater topo-
graphic relief than anywhere else on the plateau (Burchfiel et al.,
2008; Royden et al., 2008). The Lushan earthquake affected area is locat-
ed at this high topographic relief area between the Tibetan Plateau and
the Sichuan Basin. The major slope angles of the affected area range
from 20° to 35°. From southeast to northwest, the terrain changes
from plains and low hills to high mountains in the study area. The big

topographic relief and steep hillslopes resulted from rapid crustal uplift
and erosion in this area. The average erosion rate is 0.63-1.17 mm yr
in the affected area since 3-5 Ma (Arne et al., 1997; Richardson et al.,
2008; Li et al., 2012; Cook et al., 2013; Tan et al., 2013). Ya'an City in
the study area registers one of the highest annual precipitation records
in a city in China. The annual precipitation of the city in the Lushan
earthquake affected area is about 1800 mm (China Meteorological
Data Sharing Service System, http://cdc.cma.gov.cn). The affected area
has a subtropical humid monsoonal climate with quite dense vegetation
cover.

3. Data and methods
3.1. Remote sensing images

In this study, we utilize aerial photographs and satellite images to
construct coseismic landslide databases. The pre-earthquake images
used include SPOT-5 images (panchromatic images of 2.5 m and
multi-spectral of 10 m resolutions) collected on 3 June 2009, SPOT-4 im-
ages (panchromatic in 6.25 m and multi-spectral in 12.5 m) on 9 April
2011, Pleiades images (panchromatic in 0.5 m and multi-spectral in
2 m) on 22 January 2013, ZY02C images (panchromatic in 2.36 m and
multi-spectral in 10 m) on 8 March 2013, ZY-3 images (panchromatic
in 2.1 m and multi-spectral in 5.8 m) on 17 November 2012 and 30
March 2013, Landsat-5 images (multi-spectral in 30 m) on 18 March
2010, and images from the Google Earth platform.

The post-earthquake images (Rapideye and ZY-3) include high-
resolution true-color aerial photographs and optical satellite images
(Fig. 3). The aerial photographs of 0.2 and 0.6 m resolutions were
acquired by the ADS80 digital aerial apparatus on unmanned aerial
vehicles that began flying two and a half hours after the main shock to
22 April 2013. The Rapideye multi-spectral images (5 m resolution)
were taken on 26 May 2013 and the ZY-3 panchromatic (2.1 m
resolution) and multi-spectral (5.8 m resolution) images taken on 13
103°0E

g 102°0'E 102°20'E 103°20'E

Vel

103°40E

Fig. 3. Post-earthquake aerial photograph and satellite image coverages and landslides in
the Lushan earthquake affected area. “Coseismic landslides” means landslides triggered by
the 2013 Lushan earthquake. “Pre-existing landslides”: landslides occurred before the
Lushan earthquake excluding the Wenchuan earthquake-triggered landslides in the af-
fected area. “Wenchuan LS”: landslides triggered by the 2008 Wenchuan earthquake.
One-way accumulated expedition routes excluding repeated survey routes during the
field investigations exceed 1,000 km in length.
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May 2013 (Fig. 3). The aerial photographs were ortho-rectified and geo-
referenced, and can be directly used to delineate coseismic landslides.
Before landslide interpretation, the Rapideye and ZY-3 images were
processed with some methods, including system calibration, ortho-
rectification, geometric correction, data fusion, and true-color compos-
ite. All these procedures were performed on the ENVI platform.

3.2. Topographic, geologic, and seismic data

Available digital elevation models (DEMs) of the study area includes
the SRTM DEM of 90 m and the ASTER GDEM of 30 m resolutions.
Although the ASTER GDEM has higher resolution, it contains more
noise and distortion. Therefore, we selected the SRTM DEM for this
study. We resampled this DEM to a DEM of 10 m resolution using the
bilinear method to improve statistical precision on areas of small-scale
landslides. The resampling process would not add local topographic
information, neither would it change the general topographic informa-
tion of the original SRTM DEM data. The common topographic thematic
maps of slope gradients and aspects were derived from the processed
DEM of 10 m resolution. Slope position is a newly proposed factor that
may affect coseismic landslide occurrence (Weiss, 2001; Jenness et al.,
2013). The slope position thematic layer of the study area was extracted
from a database of slope localities of China in Geospatial Data Cloud
(www.gscloud.cn). Drainages of the affected area are extracted from
the 10 m-resolution DEM and manually corrected based on high-
resolution remote sensing images.

Lithology types and distances from faults were selected as the
geological factors affecting earthquake-triggered landslides. The maps
of lithology types and faults were derived from three parcels of the
1:200,000 geologic maps of the Tianquan (no. H-48-13, 30°-30°40'N,
102°-103°E), Qionglai (no. H-48-14, 30°-30°40’N, 103°-104°E), and
Ya'an (no. H-48-19, 29°20'-30°N, 102°-103°E) areas of Sichuan
Province, China. The underlying lithology of the study area was
classified into 12 combinations (Table 2), from new to old, including
(1) Quaternary (Qaal, Qsal, Qspl, Qxfgl, Q,fgl): Holocene river bed,
modern alluvium, alluvium, sandy clay, and gravel; (2) Neogene and
Paleogene (N.Qpd, Esl, E;_omn): coarse conglomerate, siltstone, and
shale; (3) Cretaceous (K.g, Kig2 Kig!, Kaj, Kit): siltstone, silty
mudstone, and feldspar sandstone intercalated with shale; (4) Jurassic
(J3p, J2sn, Jos, J1-221): feldspar sandstone, fine sandstone, interbedded
layer of siltstone and mudstone layers; (5) Triassic (Tsxj, Tsxj%, Tsxj',
Tol, T4j, T+f): sandstone, dolostone, limestone, and dolomitic limestone;
(6) Permian and Carboniferous (Psw, P, Poem, Pyc, Pys, Pox, Pol, Pyy, Py,
P11, P1q + m, G54 3, Cq): quartz sandstone, siltstone, limestone, and
shale; (7) Devonian (D), (Ds, D3, D5_3, D3, D2y, Dog, Dip, D1g, Dy, D3,
D1): limestone, dolostone, quartz and sandstone; (8) Silurian (S), (S,
S3,5,-3,S2, Sol, Sy, Sql): sandy shale, dolomitic limestone, and mudstone;

(9) Ordovician (0), (03, 05_3, 05, 02b, 04, 03, 03, 01, 01h + q): carbona-
ceous shale, siltstone and silty shale, and limestone; (10) Sinian (Sn),
(Zy, Z»d, Z1s, Z1a): dolostone, phyllite, and volcanic breccia; (11) Pre-
Sinian (Pre-Sn), (Pty, Pts, Pths®> ™ 3, Pths®>~2, Pths>~!, Pths®>~2, Pths®>™!,
Pths!, Pth, Ptf): amphibolite metamorphic basalt, chert; and (12) Intru-
sive rocks (I-rocks): granite, diorite, granodiorite, and gabbro.

Seismic data used in this study include the location of the epicenter,
regional peak ground acceleration (PGA), seismic intensity, and the
parameters of the seismogenic fault of the Lushan earthquake. The
epicenter of the Lushan earthquake is located at 30.3°N, 103°E according
to the China Earthquake Network Center (CENC, www.cenc.ac.cn). Al-
though there were a series of real-time vibration data from seismic sta-
tions recorded during the main shock (CSMNC, www.csmnc.net), only a
few of which are near the epicenter (Fig. 2). Therefore, it is difficult to
get PGA values based only on data interpolation from seismic stations
in operation. The US Geological Survey (USGS, www.usgs.gov) released
a series (4 versions) of PGA maps related to the Lushan earthquake (US
Geological Survey, 2013). The Version 1 was only based on a simulation-
based method without considering the geometry of the seismogenic
fault, whereas Version 4 with a moderate objectivity was obtained
from a combination of regional tectonic settings, records from a few
seismic stations, and numerical simulations. The PGA map of version 4
with a moderate uncertainty is more objective and accurate than the
previous versions. Therefore, we used the Version 4 PGA map to corre-
late coseismic landslides with the ground shaking. The “Seismic Intensi-
ty Map of the 2013 Lushan Earthquake” was released by the China
Earthquake Administration several days after the earthquake, mainly
based on field investigations. Since the Lushan event was presumably
caused by breaking of a blind reverse fault without surface ruptures,
we used the preferred nodal plane from several released focal mecha-
nism solutions of the main shock to represent the seismogenic fault of
the earthquake.

3.3. Methods

3.3.1. Landslides detection

The methods for landslide detection include field investigations,
visual interpretation of paper-based stereo-pair aerial photographs
with the aid of stereo microscopes, identification of landslides from a
high resolution DEM (e.g., LIDAR), visual interpretation of high resolu-
tion satellite ortho-images, deformation analysis from multi-temporal
radar images based on InSAR technology, and automatic identification
of landslides from optical remote sensing images (e.g. Keefer, 2002;
Harp et al., 2011; Guzzetti et al., 2012; Xu, 2014a). For earthquake-
triggered landslides, especially shortly after the earthquake, areas
affected by coseismic landslides would always show an obviously differ-
ent appearance from the surrounding areas on optical remote sensing

Table 2

Generalized lithology combinations in the study area.
Types M-SloAng P-SloAng PGA-V EPI-V LAA PGA-N LAA EPI-N LAA

) @) (%) (%) (%)

Quaternary (Q) 8.8 1 7.5 26.7 2.59 0.35 0.1
Neogene (N) and Paleogene (P) 15.6 109 6.2 24.5 3.51 0.57 0.14
Cretaceous (K) 21 17.5 7.5 22,5 3.26 043 0.14
Jurassic(J) 19 174 89 26 1.76 0.2 0.07
Triassic (T) 22.2 22.7 5.5 24.4 4.44 0.81 0.18
Permian (P) and Carboniferous (C) 27 25.6 73 28.8 4.62 0.63 0.16
Devonian (D) 29.6 31 9.5 385 1.72 0.18 0.04
Silurian (S) 29.1 294 9.7 40.1 1.28 0.13 0.03
Ordovician (0) 304 34 11 44.2 1.01 0.09 0.02
Sinian (Sn) 30.5 328 103 46.1 345 0.34 0.07
Pre-Sinian (Pre-Sn) 31.2 339 9.5 32 0.94 0.1 0.03
Intrusive rocks (I-rocks) 31 34.6 9.2 38.7 7.78 0.85 0.2

Note: M-SloAng: mean values of slope angle in homogeneous lithology types; P-SloAng: peak values of slope angle in homogeneous lithology types; PGA-V: PGA value proxies in homoge-
neous lithology types; EPI-V: proxy values of distance from the epicenter in homogeneous lithology types; LAA (%.): landslide area abundance. “PGA-N LAA”: LAA values normalized by PGA-

V, “EPI-N LAA": LAA values normalized by distance from the epicenter (EPI-V).
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images. Coseismic landslides can be easily recognized and detected on
images with high resolutions (~1-10 m or higher), which are almost
comparable with results from field investigations. In addition, landslides
triggered by large earthquakes are usually large in number with high
density and broad distribution, thus it is not realistic to prepare a
detailed coseismic landslide database based only on field investigations.
Therefore, the most suitable method of this study is visual interpretation
of high-resolution remote sensing images, which is then verified by field
inspection in selected areas. With the aid of computer, GIS and remote
sensing technologies, we used a method of syntheses of computer
screen-based visual interpretation of high-resolution aerial photo-
graphs and satellite images on the GIS platform, which has been
shown to be the most objective and best method for this issue (Liao
and Lee, 2000; Dai et al., 2011a; Harp et al., 2011; Gorum et al., 2013;
Xu, 2014a; Xu et al., 2014b, 2014c, 2014d).

The quality of a coseismic landslide inventory map or database
depends upon three aspects, which are the accuracy of geographic loca-
tion of landslides, the amount of omission (false negative) errors and
quantity of commission (false positive) errors. In order to ensure the
geographic location accuracy of the landslides, we collected a series of
actual GPS routes and points from field investigations to correct the
remote sensing images. The deviations between the GPS data and re-
mote sensing images were lower than one grid of the Rapideye and
ZY-3 images (~5 m). In order to limit omission errors, we collected ae-
rial photographs and satellite images of high resolutions that cover the
entire earthquake affected area. Although the aerial photographs of
0.2 and 0.6 m resolutions do not cover the entire earthquake affected
area, we obtained supplementary Rapideye and ZY-3 satellite images
with resolutions of 5 and 2.1 m. This ensured the landslides larger
than 100 m? can clearly be shown on the images. In addition, we used
a computer with screen height of about 300 mm, and zoomed in the
image so that the actual length on the image in a computer screen
was about 300 m. This is equivalent to working on images of a scale
1:1,000, and ensures that almost all landslides clearly displayed on the
images can be recognized, and delineated. To limit commission errors,
we checked every landslide on pre-earthquake images to distinguish
pre-earthquake landslides from coseismic landslides by the methods
mentioned by Xu (2014a). Since the post-earthquake aerial photo-
graphs were taken within three days after the main shock, and the sat-
ellite images were taken within about one month after the main shock,
very few non-seismic landslides occurred after the main shock and
appeared on the images. Although rainfalls did occur during those
days, the number of the landslides triggered by these rainfalls or other
factors after the main shock would be quite limited. Furthermore,
since the post-earthquake images we used were taken shortly after
the main shock, most of the coseismic landslides would preserve their
original shapes, with very few new vegetation covers on landslide
bodies that could affect the visual interpretation.

3.3.2. Field inspection

Although a large number of high-resolution remote sensing images
were available, and the accuracy of inventory maps and databases
based only on visual interpretation of pre- and post- earthquake images
has already become satisfactory (Xu et al., 2014c), we still carried out
filed investigations to validate the coseismic landslide inventory map.
Two stages of filed investigations were performed, which are the emer-
gent field reconnaissance from the day of the main shock to 1 May 2013
(C. Xu et al,, 2013e) and the detailed filed investigation lasting 27 days
from 25 May 2013 (Xu et al., 2015). In total, one-way accumulated
expedition routes excluding repeated survey routes during the two
stages of field investigations exceed 1,000 km in length (Fig. 3; Xu
etal., 2015). The major access of the field area was by car, next by walk-
ing. We were able to observe all coseismic landslides mapped on remote
sensing images that we selected in the field inspection. However, some
very small-scale landslides (<50 m? in area), mostly as blocks rolling
downhill, cannot be observed on the 5 m resolution Rapideye satellite

images, but can usually be seen on the 0.2 and 0.6 m resolution aerial
photographs. Therefore, in order to eliminate the uneven omission
errors with those very small-scaled landslides in the subsequent spatial
distribution analyses, all coseismic landslides of an area less than
100 m? were excluded in the subsequent analysis.

3.3.3. GIS spatial analysis of coseismic landslides

Landslide abundance (or landslide density) is a common index to
measure patterns and characteristics of coseismic landslides. It general-
ly includes three different indexes, which are the landslide number
abundance (LNA), area abundance (LAA), and volume abundance
(LVA). LNA is defined as the number of landslides per square kilometer,
LAA is the percentage of the area affected by the landslides, and LVA is
the average thickness of landslide materials in a given area, which is cal-
culated by dividing the volume of coseismic landslides with the given
area. LNA and LAA are commonly used in previous studies. In earlier
studies, due to the lack of advanced remote sensing and GIS technolo-
gies, it was difficult to determine the boundary and area of coseismic
landslides, thus usually only LNA was calculated (Jibson and Keefer,
1989; Keefer, 2000), with occasionally LAA reported (Tibaldi et al.,
1995). Although LNA is easy to calculate, the scales of coseismic land-
slides cannot be reflected in this parameter. With the maturation of
GIS and remote sensing technologies, more and more coseismic land-
slide inventory maps are polygon-based. Therefore, with a few excep-
tions (Sato et al., 2007; Qi et al., 2010; Gorum et al., 2011), most
recent studies report LAA as the statistical index (Liao and Lee, 2000;
Septlveda et al., 2010; Dai et al., 2011a; C. Xu et al., 2013d; Gorum
et al., 2013, 2014; Basharat et al., 2014; Xu and Xu, 2014a; Xu et al.,
2014b). Although making a polygon-based landslide inventory map is
time-consuming, it is warranted because it is more accurate than
point-based inventory maps for landslides susceptibility and hazard as-
sessments (Xu et al., 2012c). Moreover, landslide “area to volume”
power-law relations have been recently employed in many regions of
the world (ten Brink et al., 2006; Guzzetti et al., 2009; Larsen et al.,
2010; Parker et al., 2011), which make LVA in coseismic landslides
distribution analyses available (Xu and Xu, 2013; Xu et al., 2014c).
Therefore, we selected the three indexes to perform spatial distribution
analyses of the landslides. It should be noted that landslide volume was
calculated based on a simple scaling relationship to convert an individ-
ual landslide area into individual landslide volume:

Vi=axAY (1)

where V; represents the volume of a landslide (i-th landslide) and A; is
the area occupied by the landslide. The two scaling parameters o and
v vary with different landslide types and cases. We assigned oo =
0.146 and y = 1.332, which are derived from various types of landslides
(Larsen et al., 2010) and have been used in previous studies (Parker
et al., 2011; Xu et al., 2014c, 2014e).

4. Analysis and results
4.1. Database of landslides triggered by the Lushan earthquake

We delineated in total 27,259 landslides based on post-earthquake
aerial photographs and satellite images (Rapideye and ZY-3) in the
earthquake affected area (Fig. 3). Of these, 4,731 landslides were con-
firmed to be present before the earthquake based on pre-earthquake
images and do not show any signs of enlargement or remobilization
during the event. The remaining 22,528 landslides, either newly formed
landslides or remobilized or enlarged of old landslides, are considered
as coseismic landslides (Fig. 4). The 22,528 landslides, with 18.88 km?
in total area and 41.56 x 10° m® in total volume, are distributed in an
area about 5,400 km? (Fig. 4). Compared with the landslides triggered
by the 2008 Wenchuan earthquake (Xu, 2013b; Xu et al., 2014b)
which are 197,481 in number, about 1,160 km? in occupying area,
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Fig. 4. a) Inventory map of landslides triggered by the Lushan earthquake. b) the enlarged
area of the black rectangle on (a).

about 6 km? in landslide volume, and about 110,000 km? in landslide
distribution area, the landslides triggered by the Lushan earthquake
equal to about 1/9 in number, 1/60 in occupying area, 1/150 in volume,
and 1/20 in distribution area of those of the Wenchuan event,
respectively.

Among the 22,528 coseismic landslides induced by the Lushan
earthquake, 14,580 landslides were detected from the high resolution
aerial photographs, while 7,948 landslides were recognized on
Rapideye or ZY-3 satellite images. Of these, 162 landslides are of
area > 10,000 m?, 4,378 landslides are between 1,000 and 10,000 m?,
11,006 landslides are between 100 and 1,000 m?, and the remaining
6,982 are <100 m2. Most of the landslides are relatively shallow slides,
typically 1-5 m in depth. Although large-scale deep-seated landslides
and rock avalanches are less than small shallow disrupted landslides,
the former contribute to the total volume of landslide material due to
their large sizes. The largest landslide triggered by the Lushan
earthquake is the Pingtou rock avalanche (or double rock avalanches)
that occurred in the Tangjiagou gully, Damiao village, Baoxing county,
lying on a ridge (30°10'43”N, 102°45'40"E). The rock avalanche, with
a total volume about 1.5 x 10 m?, originated from two connected
parts, formed two movement paths and finally gathered together in
the accumulated area (Xu et al., 2015).

Since almost all the 6,982 small landslides of area < 100 m? were
detected on the aerial photographs with high resolution of 0.2 or
0.6 m, we exclude those small ones in the subsequent analysis. The
6,982 landslides only cover 0.33 km? and moved 0.185 x 10° m*
materials. Although the remaining 15,546 large landslides (area
>100 m?, see the Supplementary material) only accounted for 69% of
the total coseismic landslide number, they dominated the landslide
area and volume, which are 18.55 km? and 41.375 x 10° m?, or
98.25% and 99.55% of the total, respectively. Therefore, the subsequent
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Fig. 5. Curves depicting correlations between cumulative landslide number and the land-
slide area of inventories obtained by different datasets.

spatial analyses with only the large landslides can reflect the predomi-
nant situation of the Lushan earthquake-triggered landslides.

The curves depicting the correlations between the cumulative land-
slide number and the landslide area related to three landslide invento-
ries were prepared (Fig. 5). The first is the landslide database obtained
from the aerial photographs (contains 14,580 landslides), the second
is from Rapideye or ZY-3 images (contains 7,948 landslides), and the
third is the final merged inventory of the first two inventories (contains
22,528 landslides). Although all three curves bend towards horizontal in
small landslides areas, the curve related to the aerial photographs bends
towards horizontal when the area is smaller than about 10-20 m?,
whereas the curve related to the satellite images bends so when the
area is smaller than about 100-200 m?. This difference may be attribut-
ed to the omission of small-scale landslides in the inventory based on
satellite images. Such omission of landslides with area < 200 m? is
perhaps due to coalescing small landslides mapped as one large land-
slide, or the difficulty to observe smaller landslides on the images with
aresolution of about 5 m. Therefore, we selected 100 m? as the landslide
area threshold, which means only landslides of area > 100 m? are used
in the following analyses.

4.2. Correlation of landslide density with controlling factors

To draw the curves of statistical correlations between controlling
factors and the three indexes of landslide abundance on each panel,
the units of LNA, LAA, and LVA are set to be km? or km™2, %o, and mm,
respectively. The topographic controlling factors include elevation,
slope angle, slope aspect, slope position, and distance from drainages.
The geologic factors refer to lithology types and distance from faults.
The seismic factors are PGA, seismic intensity, distance from the epicen-
ter, distance from the probable seismogenic fault, and distance along the
probable seismogenic fault.

4.2.1. Topographic factors

The correlations between the five topographic factors and three
landslide abundance indexes are displayed in Fig. 6. The elevations of
the study area range from 543 to 4,852 m, while almost of the whole
area (4,977 km?, 92.2% of the total) are lower than 3,000 m. All three
curves in each graph show similar tendencies, which indicates that
most landslides of different scales are roughly uniformly distributed in
areas with different elevation intervals and all the three landslide abun-
dance indexes can be used to carry out spatial distribution analysis. The
elevation interval between 1,000 and 1,500 m has the largest landslide
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Fig. 6. Correlations of topographic factors with landslide abundance proxies. a) elevation;
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abundances, which are 4.59 km~2 in LNA, 5.61%. in LAA, and 13.21 mm
in LVA (Fig. 6a). The landslide abundance values gradually decrease at
the elevations higher than 1,500 m.

The slope angle is an essential impact parameter to coseismic land-
slides occurrence. In general, the higher the slope angle, the higher the
probability of earthquake-triggered landslides. The slope angle of the
study area ranges from 0° to 82° which is divided into 11 classes with
an interval of 5°. Slope angles of most of the study area (4,182 km?,
77.5%) are between 10° and 40° (Fig. 6b). It seems that the three land-
slide abundance values increase with the slope angle, particularly for
slope angles exceeding 30°. The maximum LNA, LAA, and LVA occurred
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at slope angles higher than 50°, and their values are 5.57 km™2,

9.03%., and 20.94 mm, respectively.

Different slope aspects may have different effects on earthquake-
triggered landslides, because they have varied responses to the slip di-
rection of the seismogenic fault or the propagating direction of seismic
waves (Xu et al., 2014c). Probably, there are differences in vegetation
covers, sunlight and evaporations, precipitations, and soil conditions
on different slope aspects (Kamp et al., 2008; Yalcin, 2008). The slope
aspects in the study are divided into nine kinds, i.e. flat, north (N),
northeast (NE), east (E), southeast (SE), south (S), southwest (SW),
west (W), and northwest (NW). The slope aspect of SE has the largest
area: 923 km?, accounting for 17.1% of the entire study area (Fig. 6¢).
The slope aspect of SW has the largest LAA and LVA (4.08%. and
9.52 mm), whereas the maximum LNA occurred at the slope aspect of
NE (3.27 km™~2). Different from several other earthquakes such as the
2008 Wenchuan (Huang and Li, 2009; Xu et al., 2014b), 2010 Haiti
(Xu et al.,, 2014c), and 2010 Yushu (Xu and Xu, 2014a) earthquakes,
no single slope aspect had an absolutely high landslide abundance for
the Lushan earthquake. A possible reason is that the Lushan earthquake
was generated by a blind reverse fault (X.W. Xu et al., 2013a). A compar-
ison of coseismic landslides triggered by blind fault earthquakes and
surface rupture events shows that the former may trigger abundant
landslides in a larger area (Xu, 2014b), which may make the slope
aspect effect less obvious.

Slope position influenced coseismic landslides in several other
earthquakes (Xu et al., 2012d, 2014b, 2014c, 2014d; Gorum et al,,
2013; Xu and Xu, 2014a). In this study, this factor is classified into six
groups (ridges, upper slopes, middle slopes, flat slopes, lower slopes,
and valleys) following Weiss (2001) and Jenness et al. (2013). Fig. 6a
shows ridges and valleys registered the highest landslide abundances,
whereas the flat slope has lowest landslide abundances. The maximum
LNA, LAA, and LVA are 3.81 km ™2, 4.62%o, and 9.99 mm in valleys, follow-
ed by ridges, which are 3.73 km™?2, 3.86%., and 8.53 mm (Fig. 6d). High
landslide abundance at ridges is probably due to the seismic wave
amplification effect on steep topography and isolated rocks with high
susceptibility to coseismic landslides (Meunier et al., 2008; Xu et al.,
2014d). Valleys may be unstable because of incision by rivers or
accumulated loose and weathered deposits (Xu et al.,, 2014c). Nonethe-
less, due to the largest areal coverage (3,426 km?, 63.5%), the maximum
landslide number, area, and volume values fall in the class of middle
slopes, which are 9743 pieces, 11.95 km?, and 26.78 x 10° m?, or
62.7%, 64.5%, and 64.9 % of the total, respectively. Such a coseismic land-
slide distribution is similar to several other previous events, including
the 2008 Wenchuan (Xu et al., 2014b), 2010 Yushu (Xu and Xu,
2014a), and 2010 Haiti (Xu et al.,, 2014c) earthquakes. However, the
overall correlations between the slope positions and the landslide abun-
dances are also different from previous studies (Gorum et al., 2013; Xu
et al., 2014b, 2014c, 2014d). Unlike the clear relationship between
coseismic landslides and slope angle, the correlations between slope
position and coseismic landslides may change with topographic,
geologic, and seismic conditions.

Coseismic landslides often occur along drainages (Xu and Xu, 2014a;
Xu et al., 2014c). To analyze this, we constructed 11-class buffers from
drainages with a 200 m interval. The maximum LNA, LAA, and LVA
occur at 0-200 m distances from drainages, which are 5.79 km™2,
6.97%., and 14.58 mm, respectively (Fig. 6e). Landslide abundances gen-
erally decrease with increasing distance from the drainage, except for
the distance greater than 2,000 m. The slope position and distance
from drainages have somewhat similar meanings (Xu et al., 2014c).
Ridges generally have long distance from drainages, thus the area of
over 2,000 m distant from drainages has higher landslide abundances.

4.2.2. Geologic factors

Lithology is generally considered as an important factor of landslide
occurrence, for both earthquake-triggered and non-seismic ones. In the
study area, the lithology classes of Cretaceous (K), Devonian (D), and
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Fig. 7. Correlations of geologic factors with landslide abundance proxies. a) generalized
lithology combinations; b) distance from faults.

intrusive rocks cover the largest areas, which are 906, 760, and 917 km?,
or 16.8%, 14.1%, and 17%, respectively. The class of intrusive rocks has
the highest LNA, LAA, and LVA values, which are 5.38 km ™2, 7.78%.,
and 17.25 mm, respectively (Fig. 7a). Such a phenomenon is also ob-
served in the Wenchuan earthquake-triggered landslides (Xu et al.,
2014b), probably because many intrusive rocks crops out along the
Longmenshan fault, and the movement of the fault would have weak-
ened the strength of these rocks. Similar tectonic weakening effects
have also been noticed in previous studies (Kellogg, 2001; Fisher,
2003; Korup, 2004; Osmundsen et al., 2009; Shroder and Weihs, 2010).

Distance from faults or lineaments is often used in non-seismic land-
slide susceptibility assessments (Yilmaz, 2009; Demir et al., 2013;
Pourghasemi et al., 2013), and it is considered that landslide abun-
dances generally decrease with increasing distance from faults. We ex-
tracted faults in the study area from the three sheets of 1:200,000
geologic maps. We divided six classes of distance from faults in 100 m
belts. The result shows no clear correlation between them and even
an opposing tendency is observed (Fig. 7b). All the maximum LNA,
LAA, and LVA occur at distances over 500 m from faults, which are
3.06 km~2, 3.7%., and 8.41 mm, respectively. The possible reason is
that coseismic landslides are controlled by the seismogenic faults rather
than other faults in the area. We also noticed that the class of > 500 m
distance from faults covers the largest area, which is 4,024 km? or
74.6% of the whole study area. The large differences among the areas
of these classes of distances from faults probably resulted in a low statis-
tical significance.

4.2.3. Seismic factors

We selected PGA, seismic intensity, distance from the epicenter, dis-
tance from the probable seismogenic fault, and distance along the fault
to carry out statistical analysis of the coseismic landslides. Generally,
PGA is one of the most important factors related to earthquake-
triggered landslides, as in the cases of the 1999 Chi-Chi (Liao and Lee,
2000; Wang et al., 2002), 2008 Wenchuan (Xu et al., 2014b), 2010
Yushu (Xu and Xu, 2014a), 2010 Haiti (Xu et al., 2012d, 2014c; Gorum
et al, 2013), and 2013 Minxian (Xu et al, 2014d) earthquakes.
Coseismic landslide abundances generally increase with PGA values.
The PGA data of the Lushan earthquake were downloaded from the US
Geological Survey (US Geological Survey, 2013), which were prepared
by a combination of records from several seismic stations and a
simulation-based method. The range of PGA for the study area is from
0.08 to 0.58 g with a 0.04 g interval. Although the curves in Fig. 8a do
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belts). The star in (d) and (e) represents the location of the epicenter.

not show a rigorous positive correlation between PGA values and the
coseismic landslides, the landslide abundance values in classes of
PGA 2 0.2 g are much higher than those in lower PGA classes (Fig. 8a).
The total area of the PGA classes of > 0.2 g covers 2,591 km?, and only
accounts for about 48% of the total. However, the total number, area,
and volume of the coseismic landslides occurring in this area are
13,862 pieces, 16 km?, and 35.65 x 10° m?, or about 89.2%, 86.3%, and
86.4% of the total, respectively.

The seismic intensity information of the study area was extracted
from the “Seismic Intensity Map of the 2013 Lushan Earthquake”
produced by the China Earthquake Administration (CEA, 2013; Fig. 2).
The areas of the seismic intensity zones increase with the decreasing
seismic intensity (Fig. 8b). In general, LNA, LAA, and LVA increase as
the seismic intensity increases except for the VIII zone, probably due
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to the area near the Baoxing County, located in the VII zone but with a
steep topography and thus higher landslide susceptibility. The
maximum landslide abundances occur in the IX zone, which are
10.72 km™2, 10.77%,, and 25.02 mm, respectively.

We also constructed 68 buffers with 1 km distance intervals from the
epicenter (30.3°N, 103°E). The outer belts were truncated where they
intersect with the boundary of the study area. Generally, the landslide
abundance values of the areas 40 km or less from the epicenter are
much higher than other areas (Fig. 8c). Although the largest distance
of a landslide from the epicenter is about 68 km, the area of 0-40 km
distance registers most landslides: 14,827 in number, 17.41 km? in
area, and 38.82 x 10° m® in volume, or 95.4%, 94%, and 94.1% of the
total, respectively.

The seismogenic fault is considered to play a very important role in
inducing earthquake-triggered landslides. Coseismic landslides were
strongly controlled by seismogenic faults in many earthquake events,
such as the 2002 Denali, Alaska (Harp et al., 2003; Jibson et al., 2004b;
Gorum et al., 2014), 2008 Wenchuan (Gorum et al., 2011; Xu et al,,
2014b), 2010 Yushu (C. Xu et al., 2013d; Xu and Xu, 2014a), and 2013
Minxian (Xu et al., 2014d) earthquakes. Although coseismic landslides
are usually distributed along seismogenic faults, such a relationship
does not always hold, with obvious exceptions such as the 1994
Northridge (Jibson and Harp, 1994; Harp and Jibson, 1996), the Aysén
Fjord, Chile (Sepdilveda et al., 2010), and the 2004 Mid-Niigata, Japan
(Sato et al,, 2005) earthquakes. In addition, in quite a few events includ-
ing the 1999 Chi-Chi (Liao and Lee, 2000; Wang et al., 2002), 2005 Kash-
mir (Sato et al.,2007) and 2007 Lorca, Spain (Alfaro et al., 2012), most of
the coseismic landslides occurred on the hanging walls and were dis-
tributed along the seismogenic faults, but were not directly controlled
by the seismogenic faults. Therefore, we analyzed the correlations be-
tween coseismic landslide abundance values with distance from or
along the probable seismogenic fault. The correlation with distance
from the seismogenic fault may represent the controlling ability of the
fault over the landslides, while that with distance along the fault may
reflect the controlling intensity in different segments of the fault. As
the Lushan earthquake was presumably generated by a blind reverse
fault (X.W. Xu et al., 2013a), and the exact location and ground projec-
tion of the fault is unknown yet, we estimate the parameters of this fault
from the focal mechanism solutions reported by several institutes (e.g.
http://www.globalcmt.org and http://earthquake.usgs.gov, et al.) and
researchers (C.L. Liu et al., 2013; Hu and Jiang, 2013; J. Liu et al., 2013;
Lin et al., 2013; Lv et al,, 2013; Wang et al., 2013; Xie et al., 2013; Zeng
etal., 2013). Combining these data with local geologic setting, the strike
directions of the probable seismogenic fault are in the range of 198°-
222°, mostly 210°-220°. Therefore, an approximate average value of
214° was selected as the strike direction of the probable seismogenic
fault of the Lushan earthquake. The epicenter (30.3°N, 103°E) was se-
lected as the original point to construct belts that are parallel or perpen-
dicular to the probable seismogenic fault. In other words, two groups of
belts that strike in 214° and 124° were constructed. Considering the
shape of the study area, the width of the 214° belts is set to be 1 km,
whereas the width of the 124° belts was set to be 2 km. The 214°-
trending 1-km-width belts were numbered from northwest to south-
east as 1 to 68 (Fig. 8d) and the epicenter is located between the belts
47 and 48. The landslide abundances in the belts 24-54 are much higher
than those in other areas (Fig. 8d). This 31 km wide, northeast-
southwest trending area registers most of the coseismic landslides:
13,104 in number, 15.88 km? in area, and 35.93 x 10° m? in volume,
or 84.3%, 85.7%, and 87.1% of the total, respectively. The 124° 2-km-
width belts from southwest to northeast were numbered 1 to 51
(Fig. 8e) and the epicenter is located between the belts 32 and 33. The
landslide abundances in areas of the belts 17-45 (29 belts) are much
higher than those in other areas (Fig. 8e). This 58 km wide,
northwest-southeast trending area registers most of the coseismic
landslides: 14,461 in number, 17.02 km? in area, and 38.01 x 10° m?
in volume, or 93%, 91.9%, and 92.1% of the total, respectively.

5. Discussion
5.1. Lithology, topography, and coseismic landslides

Lithology and slope angle are considered to play important roles in
occurrence of landslides, including both earthquake-triggered and
non-seismic ones. It is generally accepted that the steeper the topogra-
phy, or the lower the rock strength, the higher the probability of
earthquake-triggered landslides. However, the areas where hard rocks
crop out generally have steeper topography than trhe areas with soft
rocks. Thus, on a regional scale, the rock strength and slope angle may
be a couple of contradictory factors affecting landslide occurrence. How-
ever, several previous studies (Korup, 2008; Korup and Schlunegger,
2009; Clarke and Burbank, 2010) pointed out that information of re-
gional slope angle in selected homogeneous rock types can be used as
a proxy for landslide susceptibility. Landslides tend to occur on slopes
inclined slightly steeper (Gorum et al., 2013). The peaks of distributions
of slope angle are used as the information proxy of slope angle on
regional scales (Korup, 2008; Korup and Schlunegger, 2009; Gorum
et al., 2013). In order to comprehensively explore the correlations
between the two contradictory factors for coseismic landslide occur-
rence, both peak and mean values of slope angle, LAA in generalized
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homogeneous lithology combinations were calculated (Table 1) and the
values were plotted (Fig. 9a). Unlike previous studies, these points are
unexpectedly very scattered, and there is no clear relationship between
the mean or peak values of slope angle and landslide area abundance for
generalized homogeneous lithology combinations (Fig. 9a). It should be
noted that most of the previous studies on this issue (Korup, 2008;
Korup and Schlunegger, 2009; Clarke and Burbank, 2010) did not
focus on landslides triggered by an individual earthquake. Compared
with historical or pre-historical landslides on regional scales, landslides
triggered by an individual earthquake were not only affected by slope
and lithology type, but also strongly affected by earthquake sources.
Therefore, we normalized the landslide area abundance values by PGA
values and distance from the epicenter. The method for normalizing is
to take the mean and peak values divided by the PGA values (the real
values from 0.08 g to > 0.52 g are substituted by the class number
from 1 to 12) or the distance from the epicenter in homogeneous lithol-
ogy types. In this way, we can eliminate the effects of the earthquake
sources on LAA in homogeneous lithology types. However, the resulting
points are still very scattered, without any obvious correlations
(Fig. 9b,c). Therefore, we suggest that although the information of
slope angle of homogeneous lithology types can represent the rock
strength, it may not represent the landslide susceptibility of the litholo-
gy type.

5.2. Imbricated reverse and/or thrust seismogenic faults and coseismic
landslides

There are many similarities between the 2008 Wenchuan and 2013
Lushan earthquakes. Both occurred on northeast-striking faults of the
Longmenshan thrust zone; the topography of the earthquake affected
areas of both events is very steep, and the seismogenic faults of both
events are dominated by reverse motion. However, the spatial distribu-
tion patterns of coseismic landslides triggered by the two events are
quite different. For the 2008 Wenchuan earthquake, most of coseismic
landslides are concentrated along the seismogenic fault, mostly in the
hanging wall of the fault (Xu et al., 2014b). Overall, the seismogenic
fault of the Wenchuan earthquake can be considered as a linear core
of the energy released during the earthquake, and the coseismic land-
slide abundance generally decreases with increasing distance from the
seismogenic fault. However, the Lushan earthquake occurred likely on
a blind reverse fault that did not rupture to the surface (X.W. Xu et al.,
2013a). Xu (2014b) constructed two simple models to illustrate the dif-
ferences in spatial patterns of landslides triggered by earthquakes on re-
verse faults with or without surface ruptures. For those with surface
ruptures such as the 2008 Wenchuan earthquake, the hanging wall is
characterized by strong ground shaking and significant deformation in
a small area near the seismogenic fault, thus the coseismic landslides
are distributed along and near the fault, mostly on the hanging wall.
For earthquakes produced by blind faults such as the 2013 Lushan
earthquake, the coseismic deformation, which is an important factor
for coseismic landslides (Moro et al., 2007), would be absorbed by the
overlying crust in a large area. Therefore, the landslides triggered by
such earthquakes are generally quite dispersed.

The Longmenshan thrust zone is characterized by a series of
imbricated reverse or thrust faults. During major earthquakes, more
than one fault may rupture. For example, during the 2008 Wenchuan
earthquake, although most of the energy is released by the rupture of
the Yingxiu-Beichuan fault, the Guanxian-Jiangyou fault also ruptured
(Fig. 2). As a result, whereas most of the coseismic landslides occurred
in the hanging wall of the Yingxiu-Beichuan fault, many landslides
also took place in the area between the two faults (the hanging wall
of the Guanxian-Jiangyou fault but the footwall of the Yingxiu-
Beichuan fault). The seismogenic fault of the Lushan earthquake is a
northeast-striking blind reverse fault. The major northeast-striking
Shuangshi-Dachuan fault may also release part of the energy because
a series of tensional ground fissures, landslides, bedrock collapses and

liquefactions occurred near the fault (X.W. Xu et al., 2013a; Xu and
Xu, 2014b). Similar to the Wenchuan event, the spatial distribution of
the Lushan earthquake-triggered landslides can be explained using
the spatial distribution of the structures in the affected area. The energy
may have been released not only by the blind reverse seismogenic fault
(X.W. Xu et al, 2013a), but also by the neighboring Shuangshi-
Daichuan fault (Xu and Xu, 2014b), as well as other sub-faults parallel
to the seismogenic fault in the vicinity.

Besides the 2008 Wenchuan earthquake and the 2013 Lushan earth-
quake, the 1999 Chi-Chi earthquake also shows similarity of the fault
structure, topography, and coseismic landslides. The Chelungpu fault,
the seismogenic fault of the Chi-Chi event, ruptured the surface for
over 90 km (Chen et al., 2001; Lee et al., 2002). Most of the coseismic
landslides, however, occurred in the area between the Shuangtung,
Shuilikeng, and Lishan faults (Liao and Lee, 2000; Wang et al., 2002),
which form a typical imbricated fold-and-thrust belt together with the
Chelungpu fault. Although these faults did not rupture during the earth-
quake, they may also contribute to the coseismic landslide occurrence
by absorbing seismic energy (Wang et al., 2000) or releasing stress.

Based on the correlations between the regional tectonics and the
coseismic landslides related to the three earthquakes (Wenchuan,
Lushan, and Chi-chi), we suggest that earthquakes that occurred on an
imbricated reverse fault system may be affected by multiple sub-
faults, and therefore the coseismic landslides would occur along the im-
bricated fault belt, rather than only one sub-fault (Fig. 10). The spatial
distribution patterns of coseismic landslides would be affected by the
differences of earthquake energy release on different sub-faults of the
imbricated reverse fault system.

5.3. Landslide triggering ability of the blind reverse fault during the Lushan
earthquake

The coseismic landslide distribution area is often used to measure
the landslide triggering ability of an earthquake. Here the correlation
between earthquake magnitudes and distribution areas of coseismic
landslides of earthquakes worldwide is presented (Fig. 11), where the
solid and dashed lines are the two upper margins determined by
Keefer (1984) and Rodriguez et al. (1999). Almost all earthquakes are
located under the dashed line from Rodriguez et al. (1999) except for
the 1988 Saguenay, Canada, Mw 5.8 earthquake and the 2008
Wenchuan, China, Mw 7.9 earthquake, with earthquake-triggered land-
slides distribution areas of 45,000 km? (Rodriguez et al., 1999) and
110,000 km? (Xu et al., 2014b), respectively. The coseismic landslide
distribution area related to the Lushan earthquake is about 5,400 km?.
This event is located beneath, but very close to the upper margin
drawn by Keefer (1984). Although the point of the Lushan event is
beneath the two proposed upper margins, the area is larger than the
most of the earthquakes with similar magnitudes. However, the
absolute value of coseismic landslide distribution area related to an
earthquake is difficult to obtain, since sometimes there will be a few
coseismic landslides on high landslide susceptibility slopes very far
away from the earthquake source (Alfaro et al., 2012; Jibson and Harp,
2012; Xu et al,, 2014b,d).

Mountain belt

CLDA .
Plain

Fig. 10. Schematic model illustrating the distribution of landslides triggered by earth-
quakes on imbricated reverse and thrust faults. CLDA: Coseismic landslide-distribution
area.
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et al. (1999). The dashed line is from Rodriguez et al. (1999) and the solid line is from
Keefer (1984).

Therefore, the landslide area and landslide number are also used to
compare the landslides triggered by the Lushan earthquake with those
by other earthquakes. The published information of landslide area relat-
ed to individual earthquakes is much less than the landslide distribution
area. We collected the data of 13 earthquakes from the literature (Harp
et al., 1984; Pearce and O'Loughlin, 1985; Harp and Jibson, 1995;
Murphy, 1995; Liao and Lee, 2000; Jibson et al., 2004b; Sato et al.,
2005, 2007; Wang et al., 2007; Kamp et al., 2008; Yagi et al., 2009;
Septlveda et al., 2010; Gorum et al., 2014) and our previous studies
(Xu, 20144, 2014b; Xu and Xu, 2014a; Xu et al., 2014b, ¢, d) (Fig. 12).
Then, we correlated the total landslide areas with earthquake magni-
tudes based on these 13 individual earthquake events, such as the
1929 Murchison, New Zealand, Mw 7.7 earthquake (Pearce and
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O'Loughlin, 1985) and the 2013 Minxian, China, Mw 5.9 earthquake
(Xu et al.,, 2014d). The points are drawn and the power-law regression
curve is produced using the least square method (Fig. 12a). The curve
has an R? value of 0.6914. The point for the Lushan earthquake-
triggered landslides is above the regression curve. Based on the line,
the coseismic landslide area related to an Mw 6.6 earthquake should
be about 10 km?, which is about half of the actual landslide area
(18.88 km?) related to the Lushan earthquake. The correlation between
the landslide number and earthquake magnitudes is also shown
(Fig. 12b). The number of the landslides (area > 100 m?, 15,546 pieces)
triggered by the Lushan earthquake is also above the regression line
from the 13 events. However, the regression is not very good, with R?
only 0.1931. This is likely because the landslide number may differ sig-
nificantly among landslide inventory maps prepared by different inter-
preters, since a coalescing landslide may be considered as either a single
landslide or several landslides, whereas no such differences would
occur to the landslide area (Xu, 2014b). In addition, Keefer (1994) pro-
posed a regression relationship between the seismic moment (M,) and
the total volume (V) of landslides related to an individual earthquake as

V= M0/1018.9i0.13 (1)

where M, is measured in dyne cm™ ! and V is in m. The correlation has
been applied to several studies, such as Parise (2000), and also been
used to compare results from the formula with actual landslide volumes
from detailed landslide databases related to individual earthquakes,
such as the 2010 Haiti event (Xu et al., 2014c). The seismic moment of
the Lushan earthquake is 1.02 x 10%® dyne cm~! (Global Centroid Mo-
ment Tensor Catalog, http://www.globalcmt.org/CMTsearch.html, last
accessed in July 2014). Based on the regression formula, the total
coseismic landslide volume of the Lushan earthquake can be calculated
as 12.84 x 10°m?® (9.52 x 10° - 17.32 x 10° m?). The volume calculated
from our detailed coseismic landslide inventory and the “area to vol-
ume” scaling relationship (Larsen et al., 2010) suggest the volume of
landslides triggered by the Lushan earthquake is 41.56 x 10° m?,
which is about three times that from the regression formula (Keefer,
1994). Therefore, the distribution area, areal area, number, and volume
of the landslides triggered by the Lushan earthquake are higher than the
values from most of earthquakes with similar magnitudes or calculated
by the regression formula. This indicates the Lushan earthquake has
higher landslide triggering ability. We infer that the blind reverse
seismogenic fault (Xu, 2014b), the imbricated structure in the
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Fig. 12. Correlations of earthquake magnitude with coseismic landslides related to 13 individual earthquake events. a) landslide area; b) landslide number. 1, Mw 5.9 Minxian-Zhangxian,
China, of 2013 (Xu et al., 2014d); 2, Mw 6.1 Mammoth Lakes, USA, of 1980 (Harp et al., 1984; Xu, 2014a); 3, Mw 6.2 Aysén Fjord, Chile, of 2007 (Septilveda et al., 2010); 4, Mw 6.6 Mid-
Niigata, Japan, of 2004 (Sato et al., 2005; Wang et al., 2007; Xu, 2014b); 5, Mw 6.7 Northridge, USA, of 1994 (Harp and Jibson, 1995); 6, Mw 6.9 Iwate-Miyagi Nairiku, Japan, of 2008 (Yagi
etal., 2009; Xu,2014b); 7, Mw 6.9 Yushu, China, of 2010 (Xu and Xu, 2014a); 8, Mw 7.0 Port-au-Prince, Haiti, o 2010 (Xu, 2014b; Xu et al., 2014c); 9, Mw 7.6 Chi-Chi, Taiwan, of 1999 (Liao
and Lee, 2000); 10, Mw 7.6 Kashmir of 2005 (Sato et al., 2007; Kamp et al., 2008; Xu, 2014b); 11, Mw 7.7 Murchison, New Zealand, of 1929 (Pearce and O'Loughlin, 1985); 12, Mw 7.9
Wenchuan, China, of 2008 (Xu et al., 2014b); 13, Mw 7.9 Denali, Alaska, USA, of 2002 (Jibson et al., 2004b; Gorum et al., 2014).
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earthquake source area, the steep and rugged topography, and a
fractured and densely jointed lithology resulted from prolonged
tectonic activity all contribute to the large amount of the Lushan
earthquake-triggered landslides.

6. Conclusions

In this study, we compiled the first detailed inventory of 22,528
landslides triggered by the 2013 Lushan, China Mw 6.6 earthquake.
These coseismic landslides are distributed in a nearly ellipse area of
about 5,400 km?, with a horizontal projection area of 18.88 km? and a
total volume of 41.56 x 10° m>. The major axis of this ellipse is in north-
east direction, consistent with the striking direction of the presumable
seismogenic fault. Correlation analysis between coseismic landslides
and topographic, geologic, and seismic factors was performed for the
14,580 landslides of area > 100 m2. The results show that the elevations
ranging from 1,000 to 1,500 m a.s.l. have the highest landslide
abundance values. The landslide abundance increases with slope
angle. Although the effect of slope aspect on these landslides is less
obvious, the maximum landslide number, area, and volume occur at
the southeast slope aspect, which is similar to the 2008 Wenchuan
earthquake-triggered landslides. Ridges and valleys are loci with rela-
tively higher landslide abundances. Areas with intrusive underlying
bedrocks register the highest landslide abundances. There are no obvi-
ous correlations between coseismic landslides and distance from faults
as previously suggested. Most of the coseismic landslides occurred in
the areas of PGA values >0.2 g or within 40 km distance around the
epicenter. Correlations between coseismic landslide abundances and
the probable seismogenic fault show that the coseismic landslides are
generally concentrated within a 31 x 58 km? rectangle area with a
long axis trending northeast. This result can assist future hazard assess-
ment, mitigation, and prevention of landslides and debris flows of the
earthquake struck area. In addition, the Lushan earthquake shows a
higher ability of triggering landslides compared with other quakes of
similar magnitudes. This suggests that the empirical correlations
between earthquake magnitude and coseismic landslide may need to
be modified based on recently published detailed coseismic landslide
inventory maps, such as those related to the 2008 Wenchuan, 2010
Haiti, and 2010 Yushu earthquakes. It is clear that more accurate and
detailed individual earthquake event-based landslide inventory maps
or databases are warranted to facilitate better understanding of the
topographic, geologic, and seismic factors that control coseismic
landslides.
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002. These data include Google maps of the most important areas de-
scribed in this article.
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