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ABSTRACT
In environmental data sets, the occurrence of a high concentration of an unusual pollutant, more formally known as
an anomaly, may indicate air quality problems. Thus, a critical understanding of the behavior of anomalies is
increasingly becoming very important for air pollution investigations. This study was conducted to detect anomalies
in daily PM10 functional data, to investigate the patterns of behavior as well as to identify possible factors that
determine PM10 anomalies at three selected air quality monitoring stations (Klang, Kuala Selangor and Petaling Jaya)
in the Klang Valley, Malaysia. The statistical method employed to detect these anomalies consisted of a combination
of the robust projection pursuit and the robust Mahalanobis distance methods using air quality data recorded from
2005 to 2010. Analysis of obtained anomalous PM10 profiles showed that data recorded during El Nino years (2005,
2006 and 2009) contained the highest frequency of anomalies. More frequent anomalies appeared during the
southwest (SW) monsoon which occurs in the months of July and August as well as during the northeast (NE)
monsoon in February. A lesser number of anomalies were also observed during weekends compared to weekdays.
The weekend and monsoonal effect phenomena were shown to be significantly existent at all stations while wind
speed was positively associated with extreme PM10 anomalies at the Klang and Petaling Jaya stations. In conclusion,
anomalies detection was found useful for air pollution investigation in this study. The findings of this study imply
that the location and background of a station, as well as wind speed, seasonal (monsoon) and weekdays–weekend
variations play important role in influencing PM10 anomalies.
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1. Introduction

Particulate matter is the main pollutant in ambient air,
particularly in urban areas (Wrobel et al., 2000; Acero et al., 2012).
In normal conditions, particulate matter usually originates from
natural and anthropogenic sources such as sea spray, road dust,
soil, motor vehicle usage, industrial activities, domestic activities,
and biomass burning (Schauer et al., 1996; Keuken et al., 2013).
Particulate matter could also be generated through the accumula
tion of small–sized particles or via secondary interactions between
gases and ions (Shon et al., 2012). Measurement of particulate
matter is usually based on its aerodynamic diameter. Generally,
particulate matter with a diameter size below 10 μm is referred to
as PM10 while particulate matter with a diameter size of less than
2.5 μm is referred to as PM2.5. PM10 has long been recognized as
the main parameter for determining particulate matter in
Malaysia. Additionally, it has been consistently used as the
principal specification for the calculation of the Malaysian Air
Pollution Index (API) (Afroz et al., 2003; Awang et al., 2000).
Elevated concentrations of PM10 have also been implicated in
respiratory mortality, particularly in busy areas such as the Klang
Valley (Mahiyuddin et al., 2013).

PM10 has been found to have a significant connection with
haze episodes from biomass burning, a challenge which has
become both typical and reoccurring in Southeast Asia since the
1980s (Abas et al., 2004; Field et al., 2009). Local anthropogenic

activities involving, for example, motor vehicle usage and industrial
activity are the major sources of PM10 pollution during non–haze
periods, particularly in the Klang Valley region. Meteorological
factors also contribute to the amount of particulate matter in the
region (Juneng et al., 2011; Dominick et al., 2012). Higher
concentrations of particulate matter have been recorded during
the dry season, notably during the El Nino/Southern Oscillation
(ENSO) events (Matsueda et al., 1999; Mahmud, 2009). The wind
direction from the southwest which comes from Sumatra between
July and September brings a high amount of particulate matter to
the Klang Valley. The concentration of particulate matter is also
influenced by local wind direction e.g. sea and land breezes and
the movement of wind within the valley. The amount of rain during
the rainy season (northeast monsoon) plays an important role in
reducing the quantity of particulate matter in the ambient air.
Other factors, such as activities on weekdays and weekends also
influence the amount of particulate matter in the Klang Valley
(Azmi et al., 2010).

Understanding the behavior of anomaly occurrences is
becoming more important in air pollution investigation. The term
“anomalies” refers to a small portion of the data set that is unusual
or dissimilar to the rest of the data. Anomalies may consist of noisy
data due to random errors; alternatively, they may be irregular
items of data resulting from unusual or unexpected events which
may indicate abnormal behavior (Torres et al., 2011). Intensive
study of anomalies helps in identifying potential sources of the
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occurrences. “Anomaly or outlier detection” refers to statistical
techniques used to detect abnormal data or outliers (Muniz et al.,
2012). Basically, in environmental research and other fields, outlier
detection is among the most important tasks in data analysis
(Filzmoser, 2005; Garces and Sbarbaro, 2011). The practical
application of this technique ranges from its usage in detecting
financial fraud (Sharma and Panigrahi, 2012), network intrusion
(Garcia–Teodoro et al., 2009; Davis and Clark, 2011), system health
monitoring (Hauskrecht et al., 2013), criminal incidence analysis
(Lin and Brown, 2006) and many other aspects. On the other hand,
anomaly detection is less applied to environmental data particu
larly during the monitoring of air pollution whereas the application
is important because it could be used to evaluate polluted air in an
area (Torres et al., 2011). Furthermore, as supported by Hawkins et
al. (2002), it is reasonable to assume values for possibly polluted
air behaving as outliers or anomalies.

Several studies that focuses on air pollutant variations in the
Klang Valley region have been conducted (Azmi et al. 2010; Juneng
et al., 2011; Ahamad et al., 2014). Noticeably in those studies, the
employment of functional data was less applied. A previous study
by Shaadan et al. (2012) highlighted the advantage of functional
data approach in assessing and comparing the PM10 behavior
during and between the two extreme haze years (1997 and 2005)
that have been reported in Malaysia. Nevertheless, for this study,
besides aiming to provide a complementary technique for the
evaluation of air pollution problem, functional data were further
extrapolated to increase understanding for PM10 anomalies and
the associated influential factors.

In specific, the objective of this study is to detect and analyze
the profiles of anomalies in daily PM10 functional data as well as to
investigate possible factors associated with the existence of
anomalies at three air quality monitoring stations (Klang, Kuala
Selangor and Petaling Jaya) with differing locational backgrounds in
the Klang Valley region of the Malaysian Peninsular.

2. Methodology

2.1. Description of data and study location

The Klang Valley region is considered to be the heartland of
Malaysia's industrial and commercial sectors with a high–density
multi–racial population. The climate of Malaysia is very much
influenced by two major types of monsoon seasons; the southwest
(SW) and the northeast (NE), as well as another two inter–
monsoon periods. During the SW monsoon, which is reported to
occur from late May until September, drier weather conditions are
normally experienced. Meanwhile, the NE monsoon which takes
place between November and March receives a higher precipi
tation level, particularly during the first few months of the season.

The air pollutant and meteorological variable of concern in
this study are PM10 and wind speed, respectively. The data were
made available by the Air Quality Division, Department of
Environment Malaysia (DOE). To ensure for reliability of the
measurement process, continuous monitoring and calibration of
the equipment was carried out by Alam Sekitar Sdn Bhd (ASMA), a
private company mandated by the DOE for this purpose. Daily by
hourly PM10 in (μg m–3) was recorded using – ray attenuation
mass monitor (BAM–1020) while wind speed data in (km h–1) was
determined using Met One 010C sensor.

Three selected air quality monitoring stations; Klang (S1),
Kuala Selangor (S2) and Petaling Jaya (S3) which are located within
the Klang Valley region of Peninsular Malaysia were involved in this
study. Table 1 describes background information and the data
while Figure 1 shows the location of the sampling stations. Klang
air monitoring station is located in the city centre and is in close
proximity to a busy, traffic–laden industrialized area, surrounded
by main roads and a busy port (Port Klang). Kuala Selangor air

monitoring station is located in a residential area, on the outskirts
of a small town which is both near the coast and to the main road.
Meanwhile, Petaling Jaya air monitoring station is the nearest
station to Kuala Lumpur city centre and is surrounded by
industries, residential and commercial areas as well as a heavily
congested road.

Figure 1. Location of air quality monitoring stations.

Missing data were treated using the column median value
computed from the available data. The method utilized was chosen
due to a considerably small percentage of missing values (<5%).
This approach is supported by Acuna and Rodriguez (2004). Since
the study set out to detect anomalies in the form of functional data
(curves), 2 192 (N) daily PM10 curves were used for analysis of data
obtained at each station. The curve data at time [hour (t)] and at
any point (j) is defined as follows:

(1)

Data processing and analysis were conducted using the free R
software (R Development Core Team, 2008) together with
"rainbow" (Shang and Hyndman, 2013) and "fda" packages
(Ramsay et al., 2013).

2.2. Data analysis

Data analysis in this study involved several stages. The first
stage involved data conversion from point values into functional or
curve forms. The second stage focused on the detection of
anomalies in PM10 functional data at the three selected stations.
This was subsequently followed by an assessment of the effec
tiveness of the preferred detection method and profile
construction wherein detected anomalies were extracted and
summarized. Finally, a statistical test was conducted to ascertain a
phenomenon that may be indicated by the anomaly profile and
also to investigate the association between anomalies and wind
speed.

Data conversion from points to functional data. Hourly recorded
data were converted into daily i functional data, xi(t) using basis
function expansion given by the following equation:

(2)
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Table 1. Data and the station information

Station Background Longitude (°) Latitude (°) Missing Data (%)

Klang (S1) Urban N03°00.597' E101°24.507' 2.17
Kuala Selangor (S2) Sub urban N03°19.592' E101°15.532' 1.94
Petaling Jaya (S3) Industry N03°06.553' E101°38.322' 2.62

which, consists of a linear combination of K, independent basis
function k(t) and the basis coefficient k. Although various kinds
of basis function can be used in the modeling process, determining
which basis is the best is dependent on the nature of the data.
Fourier–basis, for example, is suitable for periodic data while spline
is more appropriate for non–periodic data (Ramsay and Silverman,
2006). The appropriate value of K is determined using Bayesian
Information Criteria (BIC) based on the construction of the mean
functional data from the data set (Huang and Shen, 2004). The
appropriate K is the one that gives the minimum BIC. In this study,
data conversion was conducted using the b–spline basis with the
number of basis, K, equal to 15 for Klang and 17 for both Kuala
Selangor and Petaling Jaya air monitoring stations. Further
information on the theory and application of the statistical
approaches in functional data can be obtained from Ramsay and
Silverman (2002; 2006).

Anomaly detection. The multivariate robust Mahalanobis distance
method reported by Hyndman and Shang (2010) was used for the
detection of anomalies in this study. Since computation using the
robust Mahalanobis distance method adopts a multivariate
approach, n equally spaced discretized points on the curve that
span across the curves interval are needed to represent a
functional data. As required, some trade off were considered in
choosing the appropriate value of n. A small n ensures stability in
the algorithm computation while a large n better approximates the
curve. However, a too large n incurs problem in the computation of
multivariate statistics due to the singularity of covariance matrix
(Liebl, 2013).

The robust, multivariate Mahalanobis distance approach
consists of two sub–procedures. First is the projection pursuit
procedure and second is the computation of the measures for
curve outlyingness. The aim of the first procedure is to search for
specific linear projections of the discretized curves. Using principal
component analysis (PCA), the discretized curves were projected
into p dimensional space. Considering a matrix X of size N rows by
n columns, the search for the projected curves follows the eigen
equation:

(3)

where, V is the sample variance–covariance matrix, that is
V=N–1 XT X, the term u is an eigenvector of V and is an eigenvalue
of V. The solution can be obtained by finding the first p projected
weight vector (i.e. eigenvector) that maximizes the variance in the
data. The projected scores is given by , , …

. Eigenvactors are orthogonal to each other; the first is
contributed to by the largest variation in the data set, the second
by the second largest variation and so on.

In the second procedure, by considering the first two
projections (i.e. principal component) that describes two major
proportions of variation in the data set, the squared robust
Mahalanobis distance for each curve, D2(xi) was computed. This
was achieved using the projected scores obtained from the first
procedure where the new matrix data set was defined to be
X=[s1, s2] of bivariate covariates. The term D2(xi) is a measure of
the outlyingness of a curve. The larger the value, the more outlying
a curve is from the centre of the group. The computation for
formula D2(xi) for each curve is as follows:

(4)

where, xi is a vector of measured points for curve , is the
location estimator (i.e. mean vector) and matrix is the robust
estimate of the covariance matrix of X. Given the assumption that
the data were generated from a chi–squared distribution, the cut–
off point to differentiate between anomalous and non–anomalous
curve was based on the critical value of the 1– ,p2, that is,
predefined quantile of the distribution with p degree of freedom
(Filzmoser, 2005). The cut–off point was determined based on the
choice of . Lower values indicated higher cut–off points which
resulted into lower percentages of detected anomalies. In this
study, anomalies were detected when their distance exceeded the
critical value 0.99,p2 which is a measure of the outlyingness of a
curve with =0.01. The larger the squared value of the robust
Mahalanobis distance, the more outlying the curve was from the
centre of the group.

The robust estimate of the covariance matrix was taken as the
covariance of the optimal subsample h. The subsample was
considered optimum if it had the minimum determinant of the
covariance matrix, more formally known as the minimum
covariance determinant (MCD) approach (Rousseeuw and Van
Driessen, 1999). The value of h was assumed to be the minimum
number of curves which must not be outlying. Using MCD, the
outlying points were ignored in the computation process. MCD was
defined as follows:

(5)

where, L is the matrix of the subsample h that has the minimum
determinant of the covariance matrix with h N p

and , thus is the
sample covariance estimate. The discussed method was favored
due to the convincing application results for detecting functional
outliers as reported by Hyndman and Shang (2010), and also due
to the efficiency of the approach in handling large data sets
(Rousseeuw and Van Driessen, 1999).

3. Results and Discussion

The main goal of the analysis was to detect anomalies.
Anomalies with all hours of the day which lie above the median
levels when detected have increasingly become an issue of
concern due to their potential impact on human health. These
anomalies are known as red anomalies (RA). The second goal was
to investigate the effectiveness of the employed anomaly
detection method followed by an establishment of the anomaly
profiles and finally an examination of the possible existence of a
phenomenon that might be indicated by the profile as well as the
influence of wind speed on PM10 anomalies.

3.1. Descriptive statistics of anomalies

A prior analysis was conducted to determine the appropriate
number of n discretized function to be used in the multivariate
computation for detecting anomalies. Based on the computation
for the percentage of RA (Pred), the results in Table 2 show that the
choice of n=40 was appropriate for the data in the Klang and
Petaling Jaya stations, while n=50 was suitable for the Kuala
Selangor station. These values yielded identical results or very
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small difference in deviance when n (the size of discretized points)
increased. Furthermore, ranging from 20 to 70 in size, there was
not much difference in the deviance of the overall mean . The
anomaly detection for the data set was then conducted using the
determined size of the discretized function.

Based on the analysis conducted during the six year study
period, the percentage of frequency of anomaly occurrence was
found to be 6.80% for Klang, 9.04% for Kuala Selangor and 5.20%
for Petaling Jaya monitoring station. Figure 2a shows that the
maximum level for all of the detected anomalies was above the
maximum level of the median curve. Thus, the results indicate that
none of the anomaly curves was totally below the median curve.
On the other hand, the percentage of RA was found to be the
highest at the sub–urban site (Kuala Selangor) (3.15%) followed by
the industrial site (Petaling Jaya) (2.46%), while the lowest

percentage was recorded at the urban site (Klang) (1.14%). The
larger percentage of abnormal days of PM10 levels at a quieter area
such as Kuala Selangor, suggests a stronger influence from non–
local sources, particularly transboundary pollution. Both Kuala
Selangor and Klang are located downwind and near to the Island of
Sumatra, while Petaling Jaya is further downwind towards the
central part of the Klang Valley region. Even though Abas et al.
(2004) stated that transboundary pollution is the major source of
pollution during haze incidences, background sources and
meteorological factors are also believed to relate to high anomaly
occurrences (Lee et al., 2011). Therefore, with respect to the
station's background, the results suggest that apart from the
transported haze, emissions from heavy traffic along with
industrial activity at Klang and Petaling Jaya exacerbate the
conditions. Ultimately, this makes them poorer in terms of air
quality.

Figure 2. Behavior of the maximum level of anomalies (a) and the RA curves in which each line represent the detected diurnal PM10 anomaly
and the solid bold curve at the bottom is the median curve (b).
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Table 2. Different sizes of (n) discretized points on the curve and the estimated statistics mean and results

Station

Klang Kuala Selangor Petaling Jaya

Size (n) Deviance Pred Deviance Pred Deviance Pred
20 67.323 57.985 51.462
30 67.029 0.293 1.32 57.808 0.178 3.33 51.421 0.041 2.65
40 66.883 0.146 1.14 57.721 0.087 3.24 51.401 0.020 2.46
50 66.795 0.088 1.14 57.670 0.051 3.15 51.390 0.012 2.51
60 66.736 0.059 1.14 57.636 0.034 3.15 51.381 0.008 2.46
70 66.694 0.042 1.14 57.612 0.024 3.15 51.376 0.006 2.46
Size (n) n=40 n=50 n=40
Frequency of
anomaly 149 (6.80) 198 (9.04) 114 (5.20)

Figure 2b shows the functional form of the detected RA. The
diurnal levels of RA anomalies fluctuate with unstable direction
with the majority of them exhibiting peaks during day time at Klang
and Petaling Jaya stations. Meanwhile, the peak at Kuala Selangor
occurred during the night time. It is also shown that a few of the
severest RA at Klang and Petaling Jaya shared the same diurnal
pattern of maximum peak that occurred after midday at around
3:00 to 5:00 pm. Kuala Selangor experienced the most extreme RA
that reached a peak at midnight and a minimum at 12:00 noon.

3.2. Examining the effectiveness of the method used in detecting
anomalies

The effectiveness of the anomaly detection method employed
in this study was also investigated so that further analysis and
conclusions could be drawn. Here, the effectiveness of the method
is defined as the ability of the method to detect anomalies with
date matches with the period of the reported haze incidences that
have occurred in the country. Not only is the date, the magnitude
of the concentration levels also considered to show that those days
are anomaly. According to Tangang et al. (2010), several serious
haze episodes have occurred in various parts of the Malaysian
region, including those that occurred in 1982–83, 1987, 1991,
2002, 2004, 2005, 2006 and 2009. Due to the limited information
on the reported incidences available, only a group of several top
anomaly curves that lies at the upper percentile of the distribution
were sampled and fed into the analysis. These detected anomalies
were believed to be the consequence of abnormal events. As
reported in Afroz et al. (2003), high PM10 levels often associated
with haze incidences in Malaysia. Thus, we inferred that the most
significant anomalous behavior occurred as a result of the severe
haze incidents that were reported. From the data used in the
analysis, some dates and periods of reported incidences were
taken from the Malaysian Environmental Quality Report for year
2005, 2006 and 2009 (DOE, 2006; DOE, 2007; DOE, 2010). The
information was recorded and summarized in the first three
columns in Table 3. The dates of occurrence of the top 20
anomalies detected from the data (2005–2010) at all the three air
quality monitoring stations are reported in the rest of the columns
(Table 3) including the maximum (point value) of the concentration
level.

Remarkably, the results in Table 3 have shown that the
detected time of anomaly occurrences match with the recorded
time and period of the haze incidences that had been reported.
The severity ranking (number in bracket) of the detected anomaly
curves was determined using the computed Mahalanobis distance
value D(xi) while the maximum level ever achieved indicated those
detected days were anomalies since all of them contained high
PM10 concentration level whereby their maximum level was far
above the maximum of the median curve (i.e. Klang=73 μg m–3,
Kuala Selangor=55 μg m–3 and Petaling Jaya=49 μg m–3). The
ranking result has shown that 10th August 2005 (indicated by
number 1 in brackets) was the most severely polluted day at the

Klang and Kuala Selangor stations while it was 11th August 2005 at
the Petaling Jaya station. Based on these findings, the results
support the effectiveness of the applied anomaly detection
method used in this study. These results revealed that the
significant top 20 anomalous level is mostly dominant during the
SW monsoon season with the majority of the severe incidences
occurring in the year 2005. The drier climate during the SW
monsoon and a more serious forest fire in Sumatra, are believed to
be the main reasons for this. In accordance with the study
conducted by Fuller and Murphy (2006), the forest clearing fire is
strongly linked to the monsoonal system, where the dry season is
the favored season for burning activity.

3.3. The influence of wind variable on the severity of anomaly
curves

Variations in air pollutant concentrations are strongly related
with variations in meteorological changes (Chang and Lee, 2008).
Juneng et al. (2011) using the regression model showed that
meteorological factors, including: temperature, humidity and wind
speed are significant in modulating the variation of PM10 over the
Klang Valley region during the southwest (SW) monsoon. The
relationship between local wind speed and average PM10 level was
found to be negative at all air monitoring stations, namely: Klang,
Kuala Selangor and Petaling Jaya. However, since the model used
focused on the average PM10 data, it does not explain the extreme
value observations.

In this study, in order to examine the possible contribution of
meteorological factors, particularly focusing on wind and the
diurnal fluctuations of the extreme anomaly, two graphs were
plotted (as depicted in Figure 3); a sample of 10 most extreme
PM10 curves and the graph of the corresponding wind speed
curves. Obtained results indicated that wind speed positively
influenced the extreme PM10 anomalies at Klang and Petaling Jaya.
On the contrary, the relationship was negative at Kuala Selangor.
At the 5% significance level, Spearman Correlation Coefficient
analysis provided evidence of a positive relationship between wind
speed and extreme PM10 anomalies at the Klang with a coefficient
value r=0.39 and a corresponding p–value=0.03. A positive
relationship (r=0.66, p–value=0.00) between wind speed and
extreme PM10 anomalies was also observed for Petaling Jaya. On
the other hand, a negative correlation was observed between wind
speed and extreme PM10 anomalies at Kuala Selangor (r=–0.74,
p–value=1.00).

3.4. The profile of anomaly occurrences with respect to an
annual, monthly and day–of–the–week basis

All of the anomalies detected in the data set have also been
extracted and investigated to identify and study the patterns of
abnormal behavior of daily PM10. Hence, several profiles of
anomaly occurrences were used to describe and summarize the
changes, both relating to time (temporal: on an annual, monthly
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and day–of–the–week basis) and stations (spatial), see Figure 4.
Noticeably, the trend of the frequency of anomaly occurrences at
all three stations indicated that the years 2005, 2006 and 2009
were the most affected and that 2010 was the least affected by
abnormal PM10 levels (Figure 4a). In terms of individual stations,
Klang and Petaling Jaya were observed to have experienced the
most frequent anomaly occurrences in the year 2005, while Kuala
Selangor encountered them in the year 2006. In general, Kuala
Selangor could be said to be the most prone station in terms of the
possibility of being affected by anomalous PM10 behavior, followed
by Klang and the least prone station; Petaling Jaya. The reason
could be due to the influential factor of warmer and drier
temperature during the El Nino period. The increase in the forest
fires activity in the Southeast Asian Maritime Continent during the
dry season (Reid et al., 2012) consequently exacerbated the PM10
pollution to degrading levels.

The highest frequency of occurrence was also observed in the
drier weather period, namely the SW monsoon. In the case of
Klang, this was in August, whilst for Kuala Selangor and Petaling
Jaya, this occurred in July as is shown in Figure 4b. A secondary
peak of occurrence took place during the NE monsoon in Klang and
Kuala Selangor, while Petaling Jaya station exhibited two secondary
peaks; one in the month of February and the other in the month of

April during the inter–monsoon period. The graph also shows that
almost zero anomalies were obtained in November. This could be
attributed to the wash–out effect from the higher precipitation
levels during this time (at the early NE monsoon). The results
clearly indicate the "monsoonal effect" on the frequency of
anomaly occurrences.

On a weekly scale, Figure 4c shows that the frequencies of
anomalies fluctuate with an increasing pattern from Monday to
Friday at Kuala Selangor and Petaling Jaya station. The frequencies
however drop on Saturday and Sunday. On the other hand, only a
slight increase in frequency between Friday and Saturday was
observed at Klang station, this was then followed by a drop in the
value on Sunday. The main road to Kuala Lumpur (the capital city
of Malaysia), which links many districts, such as Kuala Langat,
Banting, Kuala Selangor, etc., is located in Klang. Since Saturday is a
school holiday, the high number of anomalies could be due to
short vacations or mini trip activity. It is possible that the
background of the station may lead to the depletion rate of PM10
at Klang station being lower than was observed at the other
stations. Based on these results, the increase in frequency during
weekdays (Monday to Friday) and the decrease during the
weekend (Saturday and Sunday) may indicate the existence of the
"weekend effect" phenomenon.

(a)

(b)

(c)

Figure 3. Behavior of the extreme PM10 anomalies (i) and wind speed (ii) at Klang (a), Kuala Selangor (b) and
Petaling Jaya (c).
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Additively, the monthly and day–of–week profile of the
anomaly occurrences indicated the potential existence of the
“monsoonal effect" and the "weekend effect" phenomena at the
study locations. Thus, using the mean distribution of PM10
concentration levels, the hypotheses of significant differences in
the mean PM10 levels between the SW and NE monsoons and
between weekdays and weekends were tested. In this study, PM10
“weekend effect” phenomena was defined as the difference in the
PM10 level between weekdays (Monday to Friday) and the
weekend (Saturday and Sunday). During the weekend, the
emissions of anthropogenic precursors are believed to decrease
from weekday values because major sources of precursors, such as
motor vehicles and power plants, may be less active on weekends.

On the whole, t–test analysis of the mean level (p<0.05)
provided evidence that the average diurnal PM10 level during the
SW monsoon was significantly higher than during the NE monsoon.
The p–value obtained for the test of hypothesis on the "weekend
effect" also produced the same results. It was thus established that
the phenomenon exists at all considered stations. The t–test

results only represent the difference in the overall hours.
Specifically, by an hourly scale, as shown by the functional mean of
the PM10 concentration level in Figure 5a, significantly higher levels
were observed at all hours of the day except hours between
10:00 am and 12:00 noon at the Klang station. For the Kuala
Selangor and Petaling Jaya stations, the levels were always lower
during the NE monsoon as compared to the SW monsoon at all
hours of the day.

On a temporal basis, the functional, descriptive statistical
mean of the diurnal level between the weekdays and weekend
(see Figure 5b) has shown that the dominant difference in the level
occurring after dawn until midnight (i.e. during anthropogenic
activity time) was always higher on weekdays than weekends at
both Klang and Petaling Jaya stations. On the other hand, the same
pattern was observed to occur across the hours of the day at Kuala
Selangor station. Of the three stations, the "weekend effect"
phenomenon in Petaling Jaya was far more significant. It is
believed that this was due to the active emission sources on
weekdays as compared to weekends.

Figure 4. Annual (a), monthly (b) and day–of–week (c) profile of anomaly occurrences.
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Figure 5. Functional mean of PM10 diurnal level between the SW and NE monsoon (a) and
between the weekdays and weekend (b).

4. Summary and Conclusion

A combination of the robust projection pursuit and
Mahalanobis distance method used by Hyndman and Shang (2010)
were employed to identify the daily PM10 anomalies in the form of
curves or functional data at three selected air quality monitoring
stations in the Klang Valley region of the Malaysian Peninsular. This
study shows that anomalies detection was a useful statistical
technique in studying and investigating abnormalities in the daily
PM10 process system. Using functional data analysis, the whole
structure of daily diurnal patterns of anomalies could be visualized.
It is also shown that functional data for extreme anomalies and
wind speed offers a solution to investigate the relationship
between two extreme data. The approach could overcome the
problem facing by Juneng et al. (2011) due to the incapability of
regression method used.

The detected anomalies from the data set represent
interesting annual, monthly and day–of–the–week patterns of
behavior in their frequency of occurrence. Years with El Nino
events, such as 2005, 2006 and 2009, resulted in the highest
frequency of occurrences. The dry season characterized by the SW
monsoon was the dominant period of anomalies, with the months
of July and August being the most frequent months where
anomalies occurred. Transboundary sources were identified as
being a major influence. Another interesting peak was in the

month of February during the NE monsoon season where the
causes were attributed to local sources. The increasing pattern in
the frequency of anomalies during weekdays compared to week
ends indicated the impact of active sources of PM10 such as motor
vehicles.

The study has also provided evidence to demonstrate the
existence of the “monsoonal effect” and “weekend effect”
phenomena at the study locations. Of the three stations, Kuala
Selangor was found to experience the most significant “monsoonal
effects” while Petaling Jaya experienced the most significant
“weekend effect”. Wind speed was shown to positively influence
the extreme anomalies at the Klang and Petaling Jaya stations.

Based on the study findings, it was found that the stations'
location and background, wind speed along with seasonal
(monsoon) and weekdays–weekend variation play important role
in influencing PM10 anomalies. In addition, the profile of anomalies
could be utilized as a guideline for analyzing the effectiveness of
current air quality control regulations or even for the planning of
new mitigation policies. Given the appropriateness of the
application, we suggest the incorporation of anomaly detection as
an important step in data quality control systems as well as in
efforts aimed at air pollution monitoring.
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