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A comparison study was carried out with the purpose of verifying when the adaptive neuro-fuzzy inference
system (ANFIS), artificial neural network (ANN), generalized linear model (GLM), and multiple linear regres-
sion (MLR) models are appropriate for prediction of soil wet aggregate stability (as quantified by the mean
weight diameter, MWD) in a highly mountainous watershed (Bazoft watershed, southwestern Iran). Three
different sets of easily available properties were used as inputs. The first set (denoted as SP) consisted of
soil properties including clay content, calcium carbonate equivalent, and soil organic matter content. The sec-
ond set (denoted as TVA) included topographic attributes (slope and aspect) and the normalized difference
vegetation index (NDVI). The third set (denoted as STV) was a combination of soil properties, slope, and
NDVI. The ANN and ANFIS models predicted MWD more accurately than the GLM and MLR models. Estima-
tion of MWD using TVA data set resulted in the lowest model efficiency values. The observed model efficiency
values for the developed MLR, GLM, ANN, and ANFIS models using the SP data set were 60.76, 62.98, 77.68
and 77.15, respectively. Adding slope and NDVI to soil data (i.e. STV data set) improved the predictions of
all four methods. The obtained correlation coefficient values between the predicted and measured MWD
for the developed MLR, GLM, ANN, and ANFIS models using STV data set were 0.24, 0.35, 0.84 and 0.73, re-
spectively. In conclusion, the ANN and ANFIS models showed greater potential in predicting soil aggregate
stability from soil and site characteristics, whereas linear regression methods did not perform well.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Soil aggregate stability is a key factor of soil resistivity tomechanical
stresses, including the impacts of rainfall and surface runoff, and thus to
water erosion (Canasveras et al., 2010). When soil aggregates break
down, finer particles are produced, which are easily carried away by
wind and water flow and which upon re-sedimentation tend to clog
soil pores, leading to the formation of soil crusts (Kirkby and Morgan,
1980; Renard et al., 1997; Yan et al., 2008). Reducing infiltration, this
sealing effect enhances surface runoff and thus promotes further
water erosion. Hence, aggregate stability is an important factor in soil
erosion.

Various indicators have been proposed to characterize and quantify
soil aggregate stability, for example percentage of water-stable aggre-
gates (WSA), mean weight diameter (MWD) and geometric mean
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diameter (GMD) of aggregates, and water-dispersible clay (WDC) con-
tent (Calero et al., 2008; Le Bissonnais, 1996). Unfortunately, the exper-
imental methods available to determine these indicators are laborious,
time-consuming and difficult to standardize (Canasveras et al., 2010).
Therefore, it would be advantageous if aggregate stability could be pre-
dicted indirectly from more easily available data.

General soil propertiesmost closely correlatedwith soil aggregate sta-
bility are the contents of clay, calcium carbonate, and organic matter
(Canasveras et al., 2010). Clay particles are considered as cementing
agents for aggregationbecause of their high specific surface area, high cat-
ion exchange capacity (CEC), and consequently, high physical and chem-
ical activity. Soil organicmatter content can affect soil structure as well as
soil aggregate stability in different ways: the transient aggregating effect
of polysaccharides on micro-aggregates, increased aggregate coherence
against slaking due to hydrophobic materials, the temporarily stabilizing
effect of roots and hyphae onmacro-aggregates, and the persistent effect
of polymers and aromatic compounds on micro-aggregates. Calcium car-
bonate contents also influence soil aggregation through their cementing
effects and preventing aggregate dispersion (Amezketa, 1999).

Indirectly, also topography and vegetation characteristics affect
aggregate stability, in particular through their influence on the dy-
namics of soil structure and soil properties such as clay mineralogy,
icense.
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SOM, carbonate concentration, texture, soil water content, and plant
development (Canton et al., 2009). Furthermore, slope and aspect
may influence the rate of weathering and erodibility of soils and
thus soil aggregate stability (Bronick and Lal, 2005).

Functions translating suchdata into predictions of soil aggregate sta-
bility can be derived by a variety of methods. In contrast to widespread
applications of conventional regressionmodels to predict soil aggregate
stability indirectly from other data; artificial intelligence systems such
as artificial neural networks (ANNs) and adaptive neuro-fuzzy infer-
ence system (ANFIS) have not been exploited for this purpose, although
they have shown much potential in similar applications (Azamathulla
et al., 2009; Bocco et al., 2010; Gago et al., 2010; Huading et al., 2007;
Huang et al., 2010; Kisi et al., 2009; Uno et al., 2005).

ANNs are computing systemsmade up of a number of simple, highly
interconnected processing elements, also called neurons. Generally, an
ANN is made of an input layer, one or several hidden layers (HLs), and
an output layer of neurons (Tracey et al., 2011). The input layer neurons
receive the input information from the outside environment and trans-
mit it to hidden layer. Each neuron of a subsequent layer first computes
a linear combination of the outputs from all neurons of the previous
layer and then adds a bias to it. Furthermore, each neuron of a HL ap-
plies a specific nonlinear function, called activation function, to this lin-
ear combination plus bias. The coefficients of the linear combinations
and the biases are called weights (Bocco et al., 2010; Saridemir, 2009;
Sobhani et al., 2010; Turan et al., 2011).

ANFIS is a scheme that uses the learning capability of ANNs to derive
fuzzy IF–THEN rules with appropriate fuzzy set membership functions
(Jang and Sun, 1995; Tay and Zhang, 1999). The main strength of
ANFIS in comparison with ANNs is that it generates linguistically inter-
pretable IF–THEN rules (Sobhani et al., 2010). ANFISmodels capture the
relationship between input and output data by establishing fuzzy lan-
guage rules, while ANNs do so in form of trained connection weights.
Furthermore, it is reported that constructing an ANFIS model is less
time-consuming than an ANNmodel (Azamathulla et al., 2009).

The objectives of this study were to: i) compare the capabilities of
ANFIS, ANN, generalized linear model (GLM), and multiple linear re-
gression (MLR) to derive pedotransfer functions (PTFs) between soil ag-
gregate stability and various sets of input variables, and ii) use the PTFs
for prediction of aggregate stability using another set of soil samples
collected from the same area. For this purpose, three different sets of
easily available data including soil properties alone, topographic attri-
butes and vegetation index, and a combination of soil properties and to-
pographic and vegetation attributes were used as inputs. The current
comparison study in using different soft computing techniques and
also different data sets for MWD estimation can be a valuable source
of information for othermodelers. Discussions of advantages and disad-
vantages are also given in different point of view for all the methods.

2. Materials and methods

2.1. Study area description

The study areawas part of the Bazoftwatershed (31° 37′ to 32° 39′N
and 49° 34′ to 50° 32′ E), which is located in the northern part of the
Karun river basin in central Iran. The major river in the watershed is
the Ab-Bazoft, which joins the Karun River at the outlet of the water-
shed. The elevation ranges from 880 m a.s.l. in the south of the water-
shed to 4300 m a.s.l. on the Zardkuh Mountain in the north. The
long-term average rainfall of the region varies between 500 and
1400 mm per year, and the average temperature varies between 8
and 20 °C. Thewatershed is highlymountainouswhere themost slopes
are between 40 and 70%, covering about 46% of the watershed. The
dominant slope shape is convex. Approximately 56% of the watershed
area is covered by pastures, the rest by forests and bare lands. Quercus
brantii is the dominating forest tree species, and Astragalus sp. is the
most abundant pasture plant.
Old terrace deposits (Qt1) are dominant geological unit having
moderate susceptibility toweathering and erosionwith somemarls en-
richment with gypsiferous and sandstone (mp1) (Iranian Geological
Organization, 2006). Majority of the soils include Calcic Argixerolls,
Typic Calcixerepts, Typic Xerorthents, Typic Cryorthents, and Typic
Haploxerolls in the watershed (Soil Survey Staff, 2006) which are dom-
inated by calcareous materials. Soils are less than 5 cm deep on steep
slopes andmore than 150 cmdeep in the valley bottoms. Themain tex-
tural classes are silt loam, loam, silty clay loam, clay loam, and silty clay.
The dominant physiographic units are mountains, hills, plateaus and
upper traces, alluvial plains, and gravelly colluvial fans.

2.2. Soil sampling and measurements

A stratified random samplingwas designed using digital geology, to-
pography, and land use maps in the environment of ILWIS 3.4 software
(ITC, University of Twente, Netherlands) for proper selection of soil
sampling locations in all of the land uses. Thus, land use type was indi-
rectly taken into account in the soil sampling. In other words, the land
use directly or indirectly affects the soil properties (like texture, calcium
carbonate, and organic matter) as well as vegetation cover (as quanti-
fied by NDVI) which were used as predictors in the PTFs. A total of
160 soil samples were collected from the top 5 cm of soil surface from
all major land unit tracts. The positions of the sampling points were
identified in the field using GPS (model: 76CSx).

The soil samples were air-dried and ground to pass a 2-mm sieve.
Soil organic matter (SOM) content was determined by the Walkley–
Black method with dichromate extraction and titrimetric quantization
(Nelson and Sommers, 1986). Clay content (b2 μm) was measured by
means of sieving and sedimentation using the procedure described by
Gee and Bauder (1986), and calcium carbonate equivalent (CCE) was
determined by the back-titration method (Nelson, 1982).

The soil samples for aggregate stability assessment were taken from
the same locations and brought to the laboratory in such a way that
minimum structural deformation and/or destruction occurred. Follow-
ing van Bavel (1950) method, as modified by Kemper and Rosenau
(1986), was used to parameterize the mean weight diameter (MWD)
of wet-sieved aggregates. Briefly, 50 g of the b4.75 mm aggregates
were placed on the topmost of a stack of sieves with descending mesh
size (2, 1, 0.5, and 0.25 mm) from top to bottom. The samples were
first immersed in distilled water and then sieved by moving the sieve
set vertically. The soil retained by each sieve was dried at 105 °C for
24 h, weighed and corrected for sand/gravel particles to obtain the pro-
portion of water-stable aggregates. TheMWD(mm) ofwater-stable ag-
gregates was calculated using the following equation:

MWD ¼
Xn
i¼1

wiX i ð1Þ

where Xi is the arithmetic mean diameter of each size fraction (mm)
and wi the proportion of the total water-stable aggregates in the corre-
sponding size fraction after deducting the weight of sand/gravel parti-
cles (upon dispersion and passing through the same sieve) as
indicated above.

2.3. Topographic and vegetation attributes

The topographic attributes, including slope and aspect, were deter-
mined using a 20 m by 20 m digital elevation model (DEM). The slope
of each cell represents the maximum rate of elevation change between
the cell and its neighbor cells. The aspect represents the direction of
slope, i.e. of themaximum rate of elevation change in down-slopedirec-
tion. The normalized difference vegetation index (NDVI) was used to
quantify the vegetation cover. It was derived from an IRS-1D satellite
photo taken in April 2008 with a spatial resolution of 24 m by 24 m
(Indian Space Applications Centre, 2002).
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2.4. Data sets

The following three data sets were used as model inputs for
predicting soil aggregate stability (Table 1). The first set (denoted as
SP) consisted of the soil properties CCE, SOM, and clay content, the sec-
ond data set (denoted as TVA) included the topographic attributes slope
and aspect and the vegetation index (NDVI), and the third data set (de-
noted as STV) was constructed using additional topographic and vege-
tation attributes slope and NDVI along with soil properties CCE, SOM,
and clay content.

Descriptive statistics of the experimental data including mean,
minimum, maximum, range, standard deviation (SD), variance, and
skewness were determined using the statistical software SPSS (IBM
Com., Chicago, USA). Scatter plot matrices, displaying relationships
among the data (i.e. clay, SOM, CCE, NDVI, slope, aspect, and MWD),
were obtained using VisuLab (ETH University, Zurich, Switzerland).
All input data were normalized to a range of 0.1–0.9 using the follow-
ing equation:

xi ¼ 0:8� x−xminð Þ
xmax−xminð Þ

� �
þ 0:1: ð2Þ

Each data set was then divided into three subsets of training, testing,
and verification. The training subset was randomly chosen from 60% of
the total set of the data and the remaining samples (40% of the data)
were used equally in two parts as the testing and validation sets.

2.5. Multiple linear regression (MLR)

Linear regression is one of the oldest statistical techniques, and has
long beenused inmany researches (Guisan et al., 2002). The basic linear
regression model has the form:

Y ¼ α þ XTβ þ ε ð3Þ

where Y denotes the dependent variable,α is a constant called the inter-
cept,X = (X1,…, Xn) is a vector of explanatory variables,β = {β1,…,βn}
is the vector of regression coefficients (one for each explanatory vari-
able), and ε represents random measured errors as well as any other
variation not explained by the linear model. When calibrating a regres-
sion model, one tries to minimize the unexplained variation by the use
of one of the estimation techniques such as the least-squares (LS) algo-
rithm (Guisan et al., 2002). In this study, the statistical software SAS
(Cary, NC., USA) was used to develop the MLR models.

2.6. Generalized linear model (GLM)

GLMs are one of the mathematical extensions of linear regression
models that account for nonlinearity and inhomogeneous variance
structures in the data (Hastie and Tibshirani, 1990). In concept, a GLM
is based on an assumed relationship (called a link function, see below)
between the mean of the dependent variable and the linear combina-
tion of the explanatory variables. Data may be assumed to be from sev-
eral families of probability distributions, including binomial, Poisson,
negative binomial, or gamma distribution, many of which better fit
the non-normal error structures of most data (Guisan et al., 2002).
Table 1
Input data sets used in developing the MWD prediction models using MLR, GLM, ANN,
and ANFIS techniques.

Input data set name Inputs

SP Clay, SOM, and CCE
TVA Aspect, Slope, and NDVI
STV Clay, SOM, CCE, Slope, and NDVI

Clay: clay content, SOM: soil organic matter content, CCE: calcium carbonate equivalent
content, and NDVI: normalized difference vegetation index.
In GLMs, the predictor variables Xj, (j = 1, …, n) are combined to
produce a linear predictor LP which is related to the expected value
μ = E(Y) of the response variable Y through a link function g(E(Y)),
such as:

g E Yð Þð Þ ¼ LP ¼ α þ XTβ ð5Þ

where α, X, and β are those previously described in Eq. (3).
In contrast to classical linear models, which presuppose a Gaussian

(i.e. normal) distribution and an identity link, the distribution of Y in a
GLMmay be any of the exponential family distributions (e.g. Gaussian,
Poisson or binomial) and the link function may be any monotonic dif-
ferentiable function like logarithm or logit (McCullagh and Nelder,
1989). The variance of Y depends on μ = E(Y) through the variance
function V(μ), giving Var(Y) = φV(μ), where φ is a scale (also known
as a dispersion) parameter. When the scale parameter is expected to
be higher than the value anticipated under the chosen distribution
(i.e. over-dispersion), it can be estimated using the quasi-likelihood
which is an extension of generalized least-squares (Davison, 2001). In
this study, the SPSS Clementine (IBM Com., Chicago, USA) software
was used to develop the GLMmodels.

2.7. Artificial neural networks (ANNs)

For neural network analysis, we used the multilayer perceptron
(MLP) with back-propagation (BP) learning rule, which is the most
commonly used neural network structure in ecological modeling
and soil science (Bocco et al., 2010; Tracey et al., 2011). As the output
of the MLP network, the MWD, was calculated as (Juang et al., 1999):

MWD ¼ f 2 B0 þ
Xn
k¼1

wkf 1 BHk þ
Xm
i¼1

wikPi½ �
 !" #( )

ð6Þ

where B0 is the bias at the output layer;wk is the weight of connection
between neuron k of the hidden layer and the single output layer
neuron; BHk is the bias at neuron k of the hidden layer (k = 1,…,n);
wik is the weight of connection between input variable i (i = 1,…,
m) and neuron k of the hidden layer; Pi is the input variable i; f1(hk)
is the transfer function of the neurons in the hidden layer; and
f2(hk) is the transfer function of the neuron in the output layer. Both
transfer functions f1(hk) and f2(hk) adopted were sigmoid functions
in this study given by:

f N λð Þ ¼ 1
1þ e−λ N ¼ 1;2 ð7Þ

The numbers of neurons and epochs were determined by trial and
error. For the constructed ANN model using SP data set, 6 hidden neu-
rons and an epoch set number at 50000 gave a satisfactory result (eval-
uated in term of network performance). Five hidden neurons and an
epoch set number at 25000 for the TVA data set and 9 hidden neurons
and an epoch set number at 5000 for the STV data set also gave satisfac-
tory results. Neural network analyseswere performed usingMatLab 7.6,
Neural Networks Toolbox (Mathworks, Inc., Natick, MA, USA).

2.8. Adaptive neuro-fuzzy inference system (ANFIS)

ANFIS is a hybrid scheme that uses the learning capability of the ar-
tificial neural network to derive the fuzzy IF–THEN rules with appropri-
ate membership functions worked out from the training pairs, which in
turn leads to the inference (Jang and Sun, 1995; Tay and Zhang, 1999).
In fact, ANFIS incorporates the human-like reasoning style of fuzzy sys-
tems through the use of fuzzy sets and a linguistic model consisting of a
set of IF–THEN fuzzy rules. The difference between the common neural
networks and the ANFIS is that, while the former captures the underly-
ing dependency in the formof the trained connectionweights, the latter



Table 2
Summary statistics of soil properties, topographic and vegetation attributes used in de-
veloping the MWD prediction models.

Parameter Descriptive statistics

Mean Minimum Maximum Variance SD Skewness

Clay (%) 31.07 8.0 53.60 70.91 8.42 −0.23
SOM (%) 2.57 0.22 6.33 1.69 1.30 0.49
CCE (%) 25.29 0.25 80.65 447.06 21.14 0.61
Slope (%) 28.33 3.10 80.61 237.09 15.40 0.62
NDVI 0.13 −0.31 0.47 0.006 0.08 −0.66
Aspect 171.82 8.87 356.85 10162.83 100.81 −0.03

Clay: clay content, SOM: soil organic matter content, CCE: calcium carbonate equivalent
content, NDVI: normalized difference vegetation index, MWD: mean weight diameter,
and SD: standard deviation.
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does so by establishing the fuzzy language rules. The main strength of
ANFIS models is that they are universal approximators with the ability
to solicit interpretable IF–THEN rules (Sobhani et al., 2010). Detailed de-
scription of ANFIS theory is discussed more in reviews (Azamathulla et
al., 2009; Jang and Sun, 1995; Sobhani et al., 2010; Takagi and Sugeno,
1985; Tay and Zhang, 1999).

In a preliminary analysis, we evaluated a command genfis1with dif-
ferent types of membership functions (including gbellmf, gaussmf,
gauss2mf, psigmf, dsigmf, pimf, trapmf, and trimf) and different num-
bers of epochs to get the best training performance with minimum
squared error. The command genfis1 generates a Sugeno-type FIS struc-
ture as initial conditions (initialization of the membership function pa-
rameters) for ANFIS training. Hybrid learning algorithm was also
employed to optimize the learning procedure of the ANFIS models in
each trial. The hybrid learning algorithm is a combination of the
least-squares method and the back-propagation gradient descent
method for training FIS membership function parameters in emulating
a training data set. Finally, the generalized bell-shape fuzzy member-
ship function (i.e. gbellmf) with 3 numbers of membership functions
was used for the adaptive system analysis.

2.9. Statistical parameters

The performances of the developed models were evaluated using
various standard statistical performance evaluation criteria. The sta-
tistical measures were included the root mean square error (RMSE),
model efficiency factor (MEF), absolute error percentage (AEP), and
correlation coefficient (R) between the measured and predicted
MWD values. The RMSE, MEF, and AEP statistics are defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

P xið Þ−M xið Þ½ �2
vuut ð17Þ

MEF ¼ 1−

Xn
i¼1

P xið Þ−M xið Þ½ �2

Xn
i¼1

M xið Þ−M xið Þ� �2 ð18Þ

AEP ¼

Xn
i¼1

P xið Þ−M xið Þj j

Xn
i¼1

M xið Þ
� 100 ð19Þ

where P(xi) denotes the predicted value of observation i, M(xi) is the
measured value of observation i, M is the mean of measured values,
and n is the total number of observations.

3. Results and discussion

3.1. Descriptive statistics

Table 2 revealed that there was little variability in the sample dis-
tributions of the variables used in this study to develop the MWD
prediction models, indicating that their values were all normally dis-
tributed. Fig. 1 also shows the scatter plot matrices displaying inter-
relations between the input variables (i.e. Clay, SOM, CCE, slope, and
NDVI) andMWD. This figure revealed the dependencies between the
MWD and input variables; however, the existing patterns and trends
seem to be relatively complex and intricate. In other words, although
variation in change of MWD seems to be depended on the changes in
the other investigated characteristics, the nature of the relationships
is not simply understandable. Nevertheless, it appears that the inves-
tigated soil properties, topographic and vegetation attributes may
directly or indirectly affect the aggregate stability in the studied
sites and thus soft computing techniques might be useful to be used
to derive the functions translating such data into predictions of soil ag-
gregate stability.

3.2. Soil aggregate stability prediction

3.2.1. MLR model
The MLR model had lower prediction efficiency in comparison with

the other investigatedmethods. UsingMLRwith only topographic attri-
butes and vegetation index as input data (i.e. TVA data set) resulted in
the lowest correlation coefficient (R) between the measured and pre-
dicted MWD values among the other proposed MLR models (Figs. 2, 3,
and 4). Prediction capability of the constructed MLR model using SP
datawas better than that using TVA data and a higher R andMEF values
obtained (Figs. 2 and 3; Tables 3 and 4). The AEP value for the
constructedMLRmodel using TVA data set was 16.20% (Table 4). Addi-
tion of slope and NDVI to soil properties (i.e. STV data set) had no con-
siderable effect on the prediction accuracy, however, a slightly higher R
value of 0.24 obtained and AEP was lower than the proposed MLR
models using SP and TVA data sets (Fig. 4 and Table 5). According to
the evaluation indices, it appears that the conventional regression
models were to some extent poor in predicting soil aggregate stability
in the studied region.

3.2.2. GLM model
The MEF, AEP, and RMSE values for the constructed GLM model

using SP data set were 62.98, 15.93, and 10.45%, respectively (Table 3).
The proposed GLM model using topographic and vegetation properties
alone (i.e. TVA data set) had the lowest R andMEF among the other pro-
posed generalized linear models similar to the obtained results for MLR
technique (Figs. 2, 3, and 4; Tables 3, 4, and 5). Furthermore, the coeffi-
cient of correlation between the measured and predicted MWD values
for the constructed GLMmodel using STV data set was 0.34 and a higher
MEF value of 64.23 obtained (Fig. 4 and Table 5). These results suggest a
relatively better performance of GLM technique for predicting MWD in
comparison with MLR technique. However, it appears that this tech-
nique also fail to be reliable for predicting soil aggregate stability in the
study area.

3.2.3. ANN model
The best developed ANN model using different input data sets was

the constructed model using a combination of soil properties, topo-
graphic and vegetation attributes together (i.e. STV data set) which
had the highest model efficiency factor (MEF = 89.10) among the de-
veloped neural networkmodels (Table 5). It also gave a greater correla-
tion coefficient of 0.84 and lower AEP and MSE values of 10.04 and
6.26%, respectively (Fig. 4 and Table 5). Using the soil information
alone (i.e. SP data set) resulted in a highermodel efficiency and R values
than that using the information from topographic and vegetation attri-
butes alone (i.e. TVA data set). The observed MEF, AEP, RMSE, and R
values for the constructed ANN model using SP data were 77.68,



Fig. 1. Scatter plot matrices displaying the relationships between the analyzed variables; mean weight diameter (MWD), clay content (Clay), soil organic matter content (SOM),
calcium carbonate equivalent content (CCE), slope (Slope), and normalized difference vegetation index (NDVI).
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13.03, 8.11% and 0.77, respectively, whereas they were 70.01, 15.13,
10.37%, and 0.53 for the constructed ANN model using TVA data
(Figs. 3 and 4; Tables 3 and 4). It appears that ANN technique may
have an acceptable performance for the prediction ofMWD in the stud-
ied sites, especially, when a combination of soil properties, topographic
and vegetation attributes together are used as input variables.

3.2.4. ANFIS model
The obtained evaluation criteria and correlation coefficient values

showed that ANFIS may be a suitable tool for the prediction MWD,
especially, when its accuracy is compared with that of conventional
regression techniques. The MEF, AEP, and RMSE values for the
Fig. 2. Relationships between the normalized predicted and measured MWD values for th
developed ANFIS model using SP data set were 77.15, 11.43%, and
8.21, respectively (Table 3). Constructed ANFIS model using TVA
data set had the lowest R among the proposed ANFIS models similar
to the obtained results for other approaches (Figs. 2, 3, and 4). Fur-
thermore, the model efficiency factor for this model was consider-
ably lower than the other developed ANFIS models (Tables 3, 4, and
5). Adding slope and NDVI to soil properties (i.e. STV data set) in-
creased the MEF in comparison with SP data set; however, the in-
creases were not noticeable (Table 5). The coefficient of correlation
between the measured and predicted MWD values for the proposed
ANFIS using STV data set was 0.73 while it was 0.70 for SP data set
(Figs. 2 and 4). These results suggest a greater influence of soil
e test sample sets of constructed MLR, GLM, ANN, and ANFIS models using soil data.

image of Fig.�2


Fig. 3. Relationships between the normalized predicted and measured MWD values for the test sample sets of constructed MLR, GLM, ANN, and ANFIS models using topographic and
vegetation data.
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properties than topographic and vegetation attributes as inputs of
the models in MWD prediction by neuro-fuzzy approach.

In other studies, Turan et al. (2011) used ANNs for modeling of
adsorption of Cu (II) from industrial leachate by pumice and con-
cluded that by the use of ANNs removal of Cu (II) from aqueous
leachate effectively improved up to about 98%. Huading et al.
(2007) found that a combination of GIS and neural networks was
useful for assessing wind erosion hazard in Inner Mongolia, China.
Bocco et al. (2010) evaluated the potential use of linear models and
neural networks in estimating solar radiation and obtained better es-
timation results using neural networks. Gago et al. (2010) concluded
that ANNs are useful alternatives to the traditional statistical meth-
odology for analyzing plant data. Azamathulla et al. (2009) reported
that an ANFIS-based approach could accurately predict the bed-load
of moderately-sized rivers. Mashrei et al. (2010) indicated that ANN
model was more useful than ANFIS model for prediction the moment
Fig. 4. Relationships between the normalized predicted and measured MWD values for the t
topographic, and vegetation data.
capacity of ferrocement members since the ANN training and testing
results were closely in agreement with the experimental results.
Cevik and Ozturk (2009) found that their proposed neuro-fuzzy
model could accurately predict the shear strength of reinforced con-
crete beams.

3.3. Comparisons and discussions

The comparison of the four methods (i.e. MLR, GLM, ANN, and
ANFIS) demonstrates that ANFIS and ANNmethods providemore accu-
rate predictions of MWD than MLR and GLM methods. However, the
statistical parameters of the results obtained from the studied models
show that ANN technique ismore feasible thanANFIS technique, partic-
ularly, when a combination of soil properties, topographic and vegeta-
tion attributes together (i.e. STV data set) is used to build the models.
This might be due to the larger amount of data that are required for
est sample sets of constructed MLR, GLM, ANN, and ANFIS models using combined soil,

image of Fig.�3
image of Fig.�4


Table 3
Comparison of performances of the proposed models for the MWD prediction using
soil data.

Model type Evaluation criterion

MEF AEP RMSE (%)

MLR 60.76 16.70 8.21
GLM 62.98 15.93 10.45
ANN 77.68 13.03 8.11
ANFIS 77.15 11.43 8.21

MEF: model efficiency factor, AEP: absolute error percentage, RMSE: root mean square
error, MLR: multiple linear regression, GLM: generalized linear model, ANN: artificial
neural network, and ANFIS: adaptive neuro-fuzzy inference system.

Table 5
Comparison of performances of the proposed models for the MWD prediction using
combined soil, topographic, and vegetation data.

Model type Evaluation criterion

MEF AEP RMSE (%)

MLR 62.15 16.01 10.52
GLM 64.23 15.30 10.22
ANN 89.10 10.04 6.26
ANFIS 81.16 13.93 7.43

MEF: model efficiency factor, AEP: absolute error percentage, RMSE: root mean square
error, MLR: multiple linear regression, GLM: generalized linear model, ANN: artificial
neural network, and ANFIS: adaptive neuro-fuzzy inference system.
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developing a sustainable regressionmodel comparing to intelligent sys-
tems. Furthermore, only the linear effects of the predictors on the de-
pendent variable can be extracted by linear models while in many
cases the effectsmay not be linear in the nature.Meanwhile, neural net-
works and neuro-fuzzy models are suitable for modeling nonlinear re-
lationships and their major advantage is that these methods can be
developed without knowing the exact form of analytical function on
which the model should be built. Nevertheless, the physical effects of
the variables in ANN and ANFIS models cannot be interpreted via the
parameters of the model unlike the regression model which is one of
the main disadvantages of these intelligence models over regression
model. The physical meaning of the relationship can be only shown by
using regression model at hand.

The comparison of performance of the constructedmodels using dif-
ferent input data sets to predict MWD also demonstrates that use of a
combination of soil properties, topographic and vegetation attributes
together (i.e. STV data set) as input data set might give more accurate
prediction results. This is evident from a lower RMSE and AEP and a
higher R and MEF values (see Tables 3, 4, and 5 and Figs. 2, 3, and 4).

On the other hand, the proposed ANN models were, in general,
more feasible than the ANFIS models in predicting MWD when the
evaluation criteria are compared. However, the predictive capability
of the constructed ANN model using soil properties alone was not
higher than that of the ANFIS model (see Tables 3, 4, and 5). As it
can be seen in Fig. 1, the existing patterns and trends among the
input variables and the output (MWD) are relatively complex and in-
tricate. It appears that, the ANNmodel was more capable in extracting
the existing patterns among the input variables and the output. Neu-
ral networks, in fact, can extract the patterns and detect the trends
that are too complex to be noticed by either humans or other comput-
er techniques because of their remarkable ability to derive a general
solution from complicated or imprecise data (Yilmaz and Kaynar,
2011). These artificial networks have the capability of learning from
examples and are capable to solve intricate, nonlinear problems and
problems which are very tedious to solve by conventional methods.
In addition, when a data stream is analyzed using a neural network,
it is possible to detect the important predictive patterns that are not
previously apparent to a non-expert (Yilmaz and Kaynar, 2011).
Finally, all these indicate that ANFIS approach may not always be a
better choice for predicting soil aggregate stability.
Table 4
Comparison of performances of the proposed models for the MWD prediction using to-
pographic and vegetation data.

Model type Evaluation criterion

MEF AEP RMSE (%)

MLR 60.44 16.20 10.37
GLM 61.43 15.74 10.62
ANN 70.01 15.13 10.37
ANFIS 63.23 17.67 10.37

MEF: model efficiency factor, AEP: absolute error percentage, RMSE: root mean square
error, MLR: multiple linear regression, GLM: generalized linear model, ANN: artificial
neural network, and ANFIS: adaptive neuro-fuzzy inference system.
4. Conclusion

The pixel-scale soil aggregate stability predicted using the devel-
opedmodels demonstrates the usefulness of incorporating topographic
and vegetation information along with the soil properties as predictors.
However, it is essential question to ask which developed model here is
preferable for the prediction of MWD according to the obtained results.
The answer of this question depends on howmuch error, works and ef-
forts, and expenses for the MWD prediction would be acceptable. For
instance, if a relatively less work and experiments are considered and
as well as a high error rate would be acceptable then the constructed
ANNmodel with topographic and vegetation data would be preferable,
because themodel can be constructed simply since the topographic and
vegetation data can be easily extracted from a digital elevation model
map and a satellite photo. On the other hand, if the researcher looks
for a prediction which has smallest error rate and highest efficiency
then the constructed ANNmodelwith a combination of soil, topograph-
ic and vegetation attributes together as input data set can be used.

Nevertheless, the physical effects of the variables in ANN model
cannot be interpreted via the parameters of the model unlike the re-
gression model which is one of the main disadvantages of ANNmodel
over regression model. The physical meaning of the relationship can
be only shown by using regression model at hand. Thus, if it is needed
to explain the physical effects of the variables on MWD prediction
then the MLR model with a combination of soil data, topographic
and vegetation attributes together as input data set can be used. It
is also concluded that the ANN and ANFIS models showed greater po-
tential in predicting soil aggregate stability from soil and site charac-
teristics, whereas traditional regression methods (i.e. the MLR and
GLM models) did not perform well.
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