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part of the operating context on which self-organisation is based.

This paper describes a novel technique by which wireless devices such as sensor nodes
can deduce their own mobility status, based on analysis of patterns in their local neigh-
bourhood. The Self-Detection of Mobility Status algorithm (SDMS) uses a reinforcement

Cyi/r‘évreri&sensm networks learning inspired mechanism to combine the indications from five mobility metrics. For
Self-detection of mobility many systems in which a neighbour table is maintained through regular status messages
Mobility models and metrics or other interaction, the technique incurs no additional communication overhead. The tech-
Reinforcement learning nique does not require that nodes have additional information such as absolute or relative
Lévy Flights locations, or neighbourhood node density.

The work considers systems with heterogeneous time-variant mobility models, in which
a subset of nodes follows a random walk mobility model, another subset follows a ran-
dom waypoint mobility model (i.e. has intermittent movement), some nodes have group
mobility and there is a static subset.
We simulate these heterogeneous mobility systems and evaluate the performance of SDMS
against a number of metrics and in a wide variety of system configurations.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Wireless sensor networks (WSN) and ubiquitous computing are rapidly increasing in popularity and diversity. Both types
of system comprise a mixture of fixed and mobile (or movable) devices. Whilst the two types of system have different
core functionalities; the former being primarily concerned with sensing some characteristics of the environment in which
it is deployed, and the latter being concerned with using the environment as a means of contextualisation; they both
are increasingly concerned with mobile devices. There is also a clear trend in increasing number, variety and capabilities
of mobile computing devices and, as a result, there is increasing diversity in the way these devices are used. For many
applications of these systems the mobility status of devices forms part of the operating context on which self-organisation
is based. Detecting and classifying mobility is complex as there are a wide variety of mobility characteristics, and several
models for describing patterns of mobility are popular, although not necessarily sufficiently representative.

Traditionally sensor nodes in WSN are considered to have fixed mobility characteristics for the great majority of imple-
mentations. In applications where sensors are physically attached to the infrastructure (e.g. monitoring vibration in a bridge)
it is adequate to assume no mobility. The static model may be expanded by introducing mobility in three levels [1] of the
sensor network system. It can be the case where the sensors themselves move and collect information, the event monitored
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Fig. 1. A summary of mobility models applied in WSN research.

by the network is mobile, or a mobile sink node gathers information from sensors by visiting them and finally relaying the
collected data to the sink node.

In some applications such as Zebranet [2] in which sensors are fixed to animals, or other obviously movable objects;
mobility is assumed. In cases such as Zebranet, no model of mobility will be perfect, but it is clear that there will be
periods of movement punctuated by periods where the node is stationary. Some work assumes mobility status to be implicit
in the placement of the sensor (so a sensor attached to a vehicle is mobile and one attached to a building is not, as in [3])
however, vehicles are often static for long periods, and when moving have a very wide range of movement characteristics.

This paper proposes that mobility should be considered a dynamic attribute of sensors and wireless computing devices
and that for reasons of scalability, low latency and low communications cost, must be dynamically and locally detected.
There are circumstances where assumptions of static and/or global mobility models can be unreliable and this can lead to
incorrect or at best inefficient behaviour. In particular, intermittent mobility patterns can be problematic; for example in
dynamic clustering, a potentially destabilising situation arises if a node advertises its local cluster and recruits neighbours
to it, and then moves off. We suggest that mobility awareness can potentially improve correctness and optimisation in a
variety of service and application scenarios.

In order that intermittent mobility can be detected we suggest that it is important to identify mobility patterns on two
temporal scales: instantaneous and medium term trend. Group mobility, if detected, offers potential for temporary clustering
and cooperation amongst mobile nodes. [4] provides an example (selection of cluster heads) where nodes’ class of mobility,
if known, can be taken into account.

This work is concerned with automatic, localised, autonomous and low-cost Self-Detection of Mobility Status (SDMS) for
nodes in WSN and other related ubiquitous and pervasive applications in which networks self-organise. As more-varied and
widespread deployments occur there is a growing need for application behaviour to be contextualised by dynamic mobility
status. The mobility information calculated by the proposed algorithm can be used for several purposes, examples include:
optimising the performance of protocols sensitive to dynamic environments (such as routing); and assisting vendor-specific
services such as service discovery and customisation for individuals or groups of mobile users.

This paper is organised as follows: Section 2 discusses background and related work, Section 3 describes the SDMS
algorithm, Section 4 deals with the simulation model and evaluates the algorithm’s performance. We then conclude in
Section 5 and identify areas for further investigation in Section 6.

2. Background and related work
2.1. Mobility models

Several mobility models are commonly used to describe patterns of mobility in WSN. In this paper we use these popular
models, briefly discussed below, to analyse the performance of our proposed algorithm.

Mobility models can be divided into three primary categories: random [5], deterministic and social [6] mobility models.
A summary of the mobility models is presented in Fig. 1.

Random mobility models define arbitrary movement without constraints and can be further subdivided into entity and
group mobility models. In an entity model nodes are moving within a defined area with a randomly chosen speed, direc-
tion and pause time. Some of the entity mobility models are random waypoint, random walk, random direction. Variants
include city section, Voronoi, freeway and Manhattan models. Group mobility, described by for example the RPGM model
(see below), encompasses a mobile reference point in which mobile nodes belonging to the same group exhibit similar
mobility characteristics such as speed and direction (e.g., group searching for a target scenario). Random models, unlike
social and deterministic mobility models, assume open, unobstructed areas in which nodes are free to move according to
the constraints of the mobility model. In real-world scenarios, it is rare that groups of people are located in completely
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unobstructed areas; there are typically buildings, vegetation, benches, cars, and other objects that obstruct one’s path. Ad-
ditionally, it is unlikely to be the case that people follow random trajectories. On campuses people tend to follow provided
pathways, in cities people follow sidewalks, in buildings people are confined to hallways, etc. While occasionally individuals
may stray from the provided pathways, the majority of movement typically occurs along these paths. The models used in
our analysis are defined in more detail in the following:

e Random Waypoint Model (RWP): This model includes pause times between changes in direction and/or speed [6]. A mo-
bile node (MN) begins by staying in one location for a certain period of time (i.e.,, a pause time). Once this time
expires, the MN chooses a random destination in the simulation area and a speed that is uniformly distributed between
[minspeed, maxspeed]. The MN then travels toward the newly chosen destination at the selected speed. Upon arrival, the
MN pauses for a specified time period before starting the process again. The RWP model is not universally popular as
some believe it to be unrealistic [7], but it has been widely used in many analyses in MANETs research.

e Random Walk Model (RWK): This model [6] is a simplified version of the Random Waypoint mobility model where pause
time between the random motions is set to zero.

e Lévy Flight Mobility Model is a type of random walk in which the increments are distributed according to a heavy-tailed
probability distribution. After a large number of steps, the distance from the origin of the random walk tends to a stable
distribution.

e Reference Point Group Model (RPGM): This model represents the random motion of a group of MNs as well as the random
motion of each individual MN within the group [6]. Group movements are based upon the path travelled by a logical
centre for the group. The logical centre for the group is used to calculate group motion via a group motion vector. The
motion of the group centre completely characterises the movement of its corresponding group of MNs, including their
direction and speed. Individual MNs randomly move about their own pre-defined reference points, whose movements
depend on the group movement. As the individual reference points move from time t to t + 1, their locations are
updated according to the group’s logical centre. Once the updated reference points at t 4+ 1 are calculated, they are
combined with a random motion vector, to represent the random motion of each MN about its individual reference
point.

The social mobility models are based on relationships between people. This class of model defines the movement between
different social groups. It is not difficult to see by eye that the random mobility models generate behaviour that is most
unhumanlike. To use the social relationships among individuals, groups of hosts need to be defined that move together.
Sociability factors indicate the attitude of an individual towards interaction with others. A host that belongs to a cloud
moves inside it towards a goal (i.e.,, a point randomly chosen in the cloud space) using the standard random waypoint
model. When a host reaches a goal, it also implicitly reaches a decision point about whether to remain within the cloud
and, if leaving, to where it should go. Mobility models founded on the relationships between people have been presented
in [5] and [6].

e A community based mobility model is based on the social network theory [8]. One of the inputs of this model is the social
network that links the individuals carrying the mobile devices; this is used to generate realistic synthetic network
structures. This model allows collections of hosts to be grouped together in a way that is based on social relationships
among the individuals. This grouping is only then mapped to topographical space, with topography biased by the
strength of social ties. The movements of the hosts are also driven by social relationships among them.

e Recent work into human mobility patterns has identified Lévy Flights [9] as a possible representation of mobility. The
distribution follows a power law and is long-tailed such that the movement tends to consist of many small localised
steps, punctuated by fewer longer steps to a new vicinity. However the current studies such as [10] have focussed on
mobile phone usage data. Here the positional granularity is that of the mobile phone network cell spacing, and the tem-
poral granularity is dependent on call event occurrence and thus the data is an incomplete record of movement. The
findings seem to indicate that the Lévy Flight partially describes the movement patterns, although the larger displace-
ments are statistically fewer than expected. This interesting work raises issues for mobility within the smaller distance
scales of typical WSNs. In particular we envisage Lévy Flights (Fig. 2A) could help represent movement in WSNs at two
levels: (1) the trajectory is within the WSN boundary (Fig. 2B); (2) the WSN is a vicinity through which the trajectory
passes (Fig. 2C). We take these possibilities into account in our simulations and the analysis of results in Section 4.

The deterministic mobility models predefine the ability of a node to move intentionally and can be divided into two classes:
predictable; and controlled (or robotic) mobility models. In predictable mobility patterns the mobility path of the mobile
nodes is known deterministically according to the application scenario and is actively controlled in real time. Predictable
mobility enables a whole new set of possibilities in sensor networks where nodes can be deployed at optimal locations
for monitoring in industrial application scenarios. Another ‘predictable mobility’ scenario is public transportation vehicles
(buses, shuttles and trains), which can act as mobile data collectors in WSNs. In controlled models, the path of the mobile
node is defined to optimise the protocol performance. An application scenario is the motion of data collector nodes (intel-
ligent mobile nodes) in the WSN to disseminate data. This type of node acts as an agent for collecting and routing data
generated on the sensor nodes. Sensors are assigned weights based on the amount of data they generate and the latency of
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Fig. 2. Lévy Flights and their possible relationship to mobility in WSNs. A: A flight at the scale of a city, in line with the work in [10]. B: A possible flight
at the level of a single WSN, for example visiting shops within a shopping mall. C: A possible hybrid case where a mobile device is carried on a flight that
passes through a WSN that can detect it.

the data already present on the sensor. The weights assigned to the sensors are used as a basis for deciding the motion of
the data collector.

In the presence of mobility an appropriate selection of relevant mobility models should be taken in to account for the
protocol performance evaluations. This is to ensure that the various characteristics of mobility present in the studied system
are represented in the evaluation. We have used a number of the discussed mobility models to create different scenarios to
measure the accuracy of the algorithm proposed in this paper.

2.2. Mobility status as dynamic context

This section discusses application scenarios in which mobility information adds value, and related work that has applied
sensor nodes’ local mobility status to improve performance.

Sensor nodes’ continuously locally determined mobility status could facilitate improved effectiveness of WSN applications
in various ways. Examples include:

1. Identifying potential data mules to carry data between isolated groups of devices [11], as in ‘pocket switching’ with
mobile phones [12]. In [13] sensor nodes on vehicles are used to convey data between networks in a town environment
where mobility status is implied by object type, i.e. vehicle implies mobile.

2. A node’s mobility status may serve as context information to a WSN application, e.g. logging the pattern of movement
of the equipment that the sensor is attached to. This relates to applications in which the sensor location contextualises
sensed data, see for example [14]. In location-sensitive applications, dynamic mobility knowledge may be necessary for
correct operation.

3. WSN routing uses knowledge of nodes’ locations or relative positions to efficiently route messages, e.g. [15,16]. Route
reliability could be improved by avoiding routing via moving or likely-to-move nodes.

4. Dynamic mobility information can enhance cluster management; e.g. [17] assumes static topologies for simplicity when
selecting the ‘centre’ node of a cluster as the cluster head - undetected mobility could be destabilising.

5. Dynamic sensor mobility status can potentially complement the use of relative sensor position data in object tracking
applications, such as described in [18].

6. The mobility status of nodes can be integrated to give a neighbourhood-level or possibly global measure of mobility.
There may be opportunities to perform high-level or application tuning based on the extent of detected mobility at the
system level. Examples include de-tuning in more volatile conditions, or increasing beacon messaging when there is a
higher degree of mobility, as nodes are in contact for shorter periods of time. Mobility detection based on early work
towards SDMS was explored in the Emergent Cluster Overlay protocol (ECO) [19]. ECO self-configures WSN nodes into
clusters of a dynamic application-specified size, and automatically allocates cluster heads. Dynamically detected mobility
state information is used to prevent a mobile node being selected as a cluster head and thus prevents instability arising
from ephemeral clusters being advertised (as the mobile node passes by). When a node detects either itself, or a
neighbour is mobile the status message beaconing rate is increased.

As discussed above, previous work includes some systems that do differentiate between mobile and static nodes, but this
is generally either based on pre-assigned device types (such as fitted to vehicles vs roadside equipment as in [3]) or based
on more-powerful nodes equipped with GPS and sustainable (solar) power supplies as in [2], where mobility is implicit in
the application. However, typical sensor nodes are low power, low cost devices designed to be deployed in large numbers,
as such, these devices typically do not have in-built GPS and may even be deployed in situations (such as underground
tunnels, within dense buildings or under sea; attached to oil-platforms, small underwater vessels, etc.) where GPS reception
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is not available. It is also attractive to be able to deploy nodes without having to explicitly configure individuals based on
their placement.

This work proposes a novel mobility detection method which is suitable for deployment on the simplest of sensor
platforms as it deduces mobility status based only on information contained in local-neighbour tables built up through
neighbour discovery mechanisms and receipt of status or heartbeat messages.

The SDMS algorithm is based on patterns (of neighbour discovery, disconnection, mean association longevity, etc.) in
the makeup of a node’s local neighbourhood. Our approach is clearly differentiated from techniques based solely on the
statistical information of the physical link durations. For example, analysis of random waypoint based on the physical link
duration and stability is discussed in [20]. Relying on the physical link duration statistics can hide the details of the mobility
model. The SDMS approach is general enough to cover different mobility models.

In addition to identifying individual mobility status, SDMS is able to detect situations where the node is part of a small
group travelling together - for example co-located on a moving trolley or vehicle. Instantaneous mobility status and mobility
trend information are made available to higher level self-organisation protocols which can use the information to improve
their correctness, efficiency or optimality.

3. The SDMS algorithm

Mobility detection mechanisms estimate the level and the direction of mobility in wireless self-organised networks.
Three categories of mobility estimation method are identified in the literature:

e Received signal strength indication, derived from physical layer measurements.
e Predicting from historical values based on underlying localisation mechanisms.
e Calculating from messages received from neighbours.

The first mechanism can design a lightweight mobility estimation mechanism. However signal issues such as reflection,
multipath and shadowing result in inaccurate distance measurements. The second method relies on a localisation mecha-
nism which provides more accurate estimation at the expense of high computational cost. This method is not suitable for
low computational resource sensor nodes, and also requires an accurate time reference to measure time of arrival (ToA)
of the packets. A two-way ranging method has relaxed this requirement by doubling the cost of packets to measure ToA
between two nodes.

The proposed SDMS algorithm fits into the third category which requires nodes to announce their presence at regular
intervals. Mobility estimation accuracy improves as the interval between updates is reduced [21], however this is a mech-
anistic tuning aspect, outside of the algorithm itself. The level of required accuracy depends on the sensitivity of protocols
that take this information as input for their operation.

SDMS is designed to operate in systems containing a mix of static and mobile nodes, in which nodes are not explicitly
aware of their mobility and mobility is not implicit by the type or ID of the sensor. Low-budget, small footprint and low-
power WSN nodes do not have location or mobility detection sensors. In addition to detecting relative mobility between
pairs of nodes (this could be described as first order mobility detectable from interaction), SDMS combines several mobility
metrics to detect absolute mobility (i.e. this could be described as second order mobility, as detected from interaction). This
operates on a completely distributed and autonomic basis, with each node determining its own mobility state and requiring
no a priori mobility information.

A node may be sometimes mobile and sometimes stationary; for example it may be attached to an object that is moved
around inside an environment (hospital, airport, factory, shopping mall, etc.) but is also left in a fixed position for lengthy
periods; thus the mobility attribute must be dynamically determined. Nodes may travel in groups either permanently or
temporarily. Examples include: several items with attached sensors may be placed on the same trolley or conveyor belt;
vehicles with sensors may be caught up in slow moving traffic; sensors on a tractor and trailer which can be linked together;
and sensors carried by people or animals that may sometimes flock together.

3.1. Software architecture

SDMS is designed to support protocols that are used to build a stack of functionality, with primitive services and in-
strumentation at the low levels and applications which use the provided information at higher levels. In this way several
protocols can share the same information and more-importantly, the communication costs. The algorithm provides mobil-
ity status information to higher level self-organisation protocols via a simple API or via shared variables if integrated at
the code level (as is intended, for efficiency). Fig. 3 shows the placement of SDMS into a sensor node software stack. The
shaded block represents the SDMS interface by which the generated mobility state indicators are made available to any of
the protocols in the higher layers.

Knowledge of mobility status is based on characteristics of the node’s neighbourhood including for example the ratio of
long-term to short-term neighbours, and the rate of new-neighbour discovery. These mobility metrics are derived from the
neighbour table with very low computational cost as explained in Sections 3.4, 3.5, and 3.6.
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Fig. 3. SDMS as part of a sensor node software stack.
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Fig. 4. Logical architecture of the protocol stack.

The algorithm requires that some form of single hop heartbeat/beacon/status messages are regularly broadcasted in
order that neighbour tables are kept up to date. Examples of WSN self-organisation protocols where this ‘status message’
functionality is explicitly provided include the Emergent Graph Colouring algorithm [22] and the Emergent Cluster Overlay
protocol [19]. For SDMS purposes, the content of such a message only needs to include a unique node ID. If such status
messaging functionality is already present in the system, SDMS introduces no further communication requirement. However
it is necessary that the maintenance of the name table includes adding time-of-receipt timestamps and recording the time
that each neighbour is originally discovered; these values need to be stored in the neighbour table. Note that a sleeping or
dormant node can only be detected by SDMS if it continues to generate status messages.

The mobility estimation information derived from the status message information in the network layer can be used to
adapt the behaviour (e.g. transmission rate) of the application layer protocols. Therefore the proposed algorithm can be
described as a cross-layer solution as illustrated in Fig. 4.

3.2. Mobility model parameters

Random mobility models define arbitrary movement without constraints and can be further subdivided into individual
and group mobility models [6]. In an entity model nodes are moving within a defined area with a randomly chosen speed,
direction and pause time. We chose random waypoint and random walk (each with random direction) models for our
analysis. Group mobility models encompass a mobile reference point in which mobile nodes belonging to the same group
exhibit similar mobility characteristics such as speed and direction (e.g. group searching for a target scenario). To maximise
the utility of the mobility status information to higher layer protocols, SDMS provides two types of mobility parameters.
Instantaneous and Trend models operate at each node; patterns in the instantaneous mobility state influence the trend
mobility state.

Instantaneous mobility Three mobility states (‘I-states’) are defined {I-ST, I-RWK, I-RWK-G} with the following meanings:
[-ST (the node is STationary at this moment); I-RWK (Random-WalK, the individual node is moving independently of other
nodes at this moment); and I-RWK-G (the node is moving as part of a Group with at least one other node at this moment).
By continuously integrating recent instantaneous mobility states over time the node’s mobility trend is determined.

Trend mobility Three mobility states (‘T-states’) are defined {T-ST, T-RWK, T-RWP} with the following meanings: T-ST (the
node has been predominantly stationary recently at the instantaneous level); T-RWK (the node has been predominantly
mobile recently at the instantaneous level); and T-RWP (Random WayPoint, the node has recently had long or many periods
of movement punctuated by long or many periods of being stationary).

The Actual mobility status of a node is used in the model to control the node’s movement, and to determine the pre-
diction accuracy of the algorithm. Five actual-mobility categories are defined {A-ST, A-RWK, A-RWK-G, A-RWP, A-RWP-G}
with the following meanings: A-ST (the node is always STationary); A-RWK (the individual node follows a Random-WalK
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independently); A-RWK-G (the individual node follows a Random-WalK as part of a group); A-RWP (the node has periods
of movement punctuated by periods of being stationary, and moves independently); A-RWP-G (the node has periods of
movement punctuated by periods of being stationary, and moves as part of a group).

3.3. Mobility metrics

To find a node-local, mobility model independent and efficient solution, we investigated a wide variety of neighbourhood-
related local metrics of mobility status. These are derived or inferred entirely from information in the neighbour table
(including the occurrence of updates, and timestamps of message receipt). The considered metrics include: neighbour degree
(number of neighbours), the rate of new-neighbour discovery, the rate of existing neighbour disconnection, the length of
intervals when no neighbour table updates occur (indicating temporary isolation), the number of long-term neighbours, the
ratio of new to long-term neighbours, and the mean time neighbours remain in contact.

The various metrics were compared in terms of their ability to distinguish between stationary and mobile nodes, nodes
moving in groups, and also punctuated mobility where nodes or groups of nodes have intermittent movement. The metrics
were evaluated over a wide environment state space by varying: the mean speed of mobile node movement; the mean
randomness of trajectories (with trajectory change intervals of between 3 and 300 seconds); the mean neighbour degree;
the proportion of nodes that have each of the various classes of mobility; and for intermittently-mobile nodes, the ratio
between periods moving and pause-time.

The simulation investigation revealed that each mobility metric has different strengths in different circumstances and
also that no single metric could reliably distinguish between all the different mobility classes under all circumstances. To
avoid over-complex tuning issues, metrics that offered only marginal benefits were discarded. The final configuration is
stable over a wide range of conditions and uses five mobility metrics in combination:

1. Occurrence of isolation periods. Isolation is defined as a period in which no neighbour table updates occur, i.e. no
messages are received. This can help to detect isolated static nodes, and is a strong negative indicator for group mem-
bership.

2. The number of long-term neighbours (i.e. number of neighbours that are continuously known to the node since its start
up time). The existence of such is an excellent negative indicator for independently mobile nodes with either continuous
or intermittent mobility.

3. The fraction of total neighbours that are long-term known. This is found to be a very good discriminator between
[-ST and I-RWK-G nodes in topologies with certain density characteristics (where the former tend to have a majority
of long-term neighbours and the latter tend to have a smaller fraction of long-term neighbours and a higher rate of
new-neighbour discover and disconnect events).

4. Neighbour longevity index (the mean time all current neighbours have been continuously known). This was found
to be one of the best metrics when used alone. This is a good general differentiator between all three I-states and
is particularly good at detecting I-RWK nodes at low movement speed. The interpretation of the values is fuzzy and
requires careful tuning: high values indicate I-ST nodes and low values indicate I-RWK otherwise [-RWK-G is indicated.

5. Neighbourhood changes (link changes, i.e. neighbour discovery and disconnection). This metric combines the number
of new neighbours discovered recently and the exponentially smoothed disconnect rate, where nodes move out of
communication range and lose contact. This metric can identify temporary isolation and contributes to the classification
of static nodes in sparse parts of a topology which only have neighbours when a mobile node or group passes by.

3.4. Operation

SDMS operates autonomously on each sensor node. Nodes are not initially aware of their physical or logical locations
with respect to their neighbourhood. When a node receives a beacon/status message it either discovers a new neighbour or
gets an update of the state of a previously known neighbour. The algorithm operates continuously, i.e. even if a steady state
is reached it is not recognised as such, and there is no termination point; due to the dynamic nature of the system and the
fundamental notion that we consider mobility to be time variant. Neighbour details are removed from the neighbour table
if they are not heard from for a period greater than two times the normal beacon (status) message period Tgeacon-

Fig. 5 provides a block-level overview of the algorithm.

SDMS operates in three stages.

Stage 1 is metric generation (box B in Fig. 5), based on information held in the neighbour table (box A in Fig. 5). For
some metrics this involves exponential smoothing of the series of instantaneous values (this aspect is discussed later).

Stage 2 is the determination of instantaneous mobility state (I-state). To achieve this, the algorithm uses a reinforcement
learning inspired mechanism to combine the indications from the five mobility metrics.

On a periodic basis an instantaneous Confidence Value (CV) is determined for each I-state. These CVs represent the level
of belief that the node is currently in the respective mobility state.

Each of the metrics described in Section 3.3 contributes to the confidence of being in one or more of the I-states. This is
because the individual metrics are not perfect discriminators under all conditions, so with regard to the metric values the



312

Metric
generation

Determine
instantaneous
mobility state

Determine
trend
mobility state

~

R. Anthony, M. Ghassemian / Journal of Computer and System Sciences 77 (2011) 305-321

B| Metrics
A generation
and pre-
Neighbour_’ processing
table data (some are
exponentially
smoothed
measures)
c E
Fuzzy, tility- Self-stabilisation
based aggregation| p pc;sr:;prr?;;etis;?g
of metric values mur inal
into CVs. Exponentially N argina oF e
See tables 1 - 5 for smooth changes in & I-State
) = . = values (< 10% {I-ST
details of the CVs to yield . a ’
mapping between CFs differentiation) do | I-RWK,
the values of the not cause |-state | I-RWK-G}
- changes — thus
metrics and the .
CVs preventing
’ oscillation
G
Maintain T-state is determined
exponentiall from the static and
P y RWK state integrals.
smoothed - :
. RWP (intermittent
integrals of I- e N e e T-State
mobility) is indicated
ST and I- =P where there is weak m== {T-ST,
RWK states differentiation between T-RWK,
(I-RWK and - T-RWP}
the static and RWK
I-RWK-G are integrals, signifyin
combined for grass, signitying
this purpose) recent alternation
between |-states.

Fig. 5. Block-level overview of the SDMS algorithm.

states can overlap. This is why the five metrics are needed; each has particular utility within a subset of the discrimination
state-space and collectively they cover all the possibilities.

The combination of the mobility metrics uses a fuzzy logic technique (box C in Fig. 5). The value of each metric either
increases, decreases or leaves unchanged the CVs (which are initialised to O at the start of each evaluation step), based on
pre-defined weight-mapping matrices which are shown in Tables 1-5.

A Confidence Factor (CF) is maintained for each I-state by exponentially smoothing the sequence of CV values (box D in
Fig. 5). This decouples the causal events from direct state transitions and enables recent patterns in behaviour to influence

Table 1
CV update matrix for the ‘isolation’ metric.

Isolation (indicated by a threshold
period since last message received)

Effect on instantaneous confidence values (CV)

[-STey [-RWK-Gey -RWKcy
True +0.2 —0.5 +0.1
False no effect no effect no effect

Table 2

CV update matrix for ‘number of long-term neighbours’ metric.

Number of ‘long-term’ neighbours Effect on instantaneous confidence values (CV)

I-STev I-RWK-Gcy I-RWKcv
0 no effect no effect +0.2
>1 +0.1 +0.1 no effect
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Table 3
CV update matrix for ‘proportion of long-term neighbours’ metric.
Proportion of neighbours that are Effect on instantaneous confidence values (CV)
‘long-term’ I-STey -RWK-Gey 1-RWKcy
>0.00, <0.30 no effect +0.1 no effect
>0.30, <0.50 +0.1 +0.1 no effect
>0.50, <1.00 +0.1 no effect no effect
Table 4
CV update matrix for ‘neighbour longevity’ metric.
Neighbour longevity metric value Effect on instantaneous confidence values (CV)

I-STcy [-RWK-Gey I-RWKcy
>0.70, <1.00 +0.2 no effect no effect
>0.40, <0.70 +0.1 +0.2 no effect
>0.25, <040 no effect +0.1 +0.2
>0.00, <0.25 no effect no effect +0.2

Table 5
CV update matrix for ‘neighbourhood changes’ metric.
Recent neighbourhood changes Effect on instantaneous confidence values (CV)
I-STey I-RWK-Gey I-RWKcy
Number of new neighbours =0 AND +0.5 no effect no effect
neighbour disconnect rate < 0.1
otherwise no effect no effect no effect

the outcome. A simple self-stabilisation technique is used to reduce oscillation caused by flipping between detected mobility
states in marginal cases (box E in Fig. 5). An I-state change only occurs when one CF has a differential of at least 10% over
both of the other I-state CFs (1).

[-state; = I-ST where CFist > CFrwi * 1.1 and CFst > CFrwig * 1.1
[-RWK where CFrgwk > CFrst * 1.1 and CFjrwk > CFirwi.g * 1.1
I-RWK-G  where CFrwi.¢ > CF.st*1.1 and CFLrwk-g > CFirwi * 1.1
I-state;_; otherwise (1)

Stage 3 is the determination of the longer-term mobility trend indication (T-state). This is derived from the aggregation
of instantaneous I-state values over time (box F in Fig. 5), yielding trend mobility indicators T-STtrenp and T-RWKtrenp. The
longer-term mobility trend prediction is not concerned with group mobility, since this attribute can be determined from the
current I[-state value. Instead, at the longer term trend level it is more interesting for applications to be able to differentiate
between stationary, mobile, and punctuated mobility, as these three states map onto popular identifiable mobility models.
Since the I-RWK and I-RWK-G states both indicate instantaneous mobility they are combined for the purpose of trend
mobility determination.

Where there is strong differentiation between the T-STtrenp and T-RWKrrenp values then the higher value determines
the mobility trend, T-ST or T-RWK respectively. However, weak differentiation implies that there have been some periods of
movement and some static periods (i.e. punctuated mobility) thus the T-RWP trend is indicated (box G in Fig. 5). This is a
fuzzy aspect which required careful tuning for differentiation optimised for a wide range of conditions, see (2).

T-state = T-ST where T-STtrenp = 2 T-RWKr1RreND

T-RWK where T—RWKTREND >4T'STTREND
T-RWP otherwise (2)

3.5. Tuning parameters

The SDMS algorithm has several tuning parameters which allow the approach to be customised for specific environments,
such as where it is known that any mobile nodes will move at a certain speed, or what the proportion of nodes that are
mobile will be. The various weights by which the metrics update the CVs (see Tables 1-5) can be adjusted to favour
particular metrics. However, the values presented in this paper have been carefully determined so as to provide accurate
predictions over a wide space of mobility scenarios (as explored in the evaluation section later) and thus ensure general
applicability.
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Table 6
Configuration of the exponential smoothing.
Metric Smoothing Responsiveness to turning points, in
factor terms of lag, which approximates to
o 1/ sample periods
SDMS Stage 1: Neighbourhood change (‘Neighbour disconnect’ 0.25 4
subcomponent of metric)
SDMS Stage 2: CV values smoothing to determine CF values 0.125 8
SDMS Stage 3: Trend prediction 0.025 40

An exponential smoothing technique has been used within each of the three stages of the algorithm’s operation. This
particular technique has been used to achieve a moving average in which the most recent value has constant weight
and older values have correspondingly decreasing weight. This is important because the algorithm is designed to operate
continuously, and with the type of prediction desired, the more-recent behaviour has higher value in the prediction process.

The smoothed value of the metric approximates to

m=aX;+(1—a)Xem1 + (1 — )’ X2+ (1 — ) Xe—3 +--- (3)

where m is the moving average, « is the smoothing factor (0 <« < 1), X is the value of the metric concerned and t is the
sample time.

Selection of the smoothing factors provides another tuning opportunity. However, care must be taken when choosing
values of o; higher values make the function more sensitive to individual events, but can lead to unstable predictions.
On the other hand lower values provide better smoothing as they ‘increase the memory’ of the function, but at the same
time increase lag (which approximates to 1/« sample periods). The smoothing factors used (see Table 6) were selected
carefully to provide a suitable compromise between sensitivity to events and smoothing effect appropriate at each level of
the algorithm’s operation so that the overall behaviour is optimised for a wide range of system conditions. The selection
of these values was based on analysis of simulation results at the algorithm development stage. In each case, the tuning
process focussed on finding the largest o that gave satisfactory results, because the predictions need to be as timely as
possible for use in WSNs. For example, the trend prediction uses a smaller value of « so that the trend prediction takes
into account a longer recent history (and gives a more stable result, as the effects of sudden changes are throttled), whereas
it was found that a much larger smoothing factor could be used with the CF values (making the I-state predictions more
responsive) without any significant degradation in accuracy.

3.6. Resource efficiency

The use of fuzzy aggregation of metrics and an exponential smoothing technique ensures that the algorithm is very
efficient in terms of resource usage; requiring the storage of one floating point number for each CV and CF value. The
exponential smoothing lends itself to a lightweight codification in which it is necessary to retain only the most recent
moving average value (m) and not the history of recent values as with other moving average techniques; saving memory.
The function (3) is codified as an iterative method (4).

Meyp1 =aXer1 + (1 —a)m; (4)

Processing overheads and latency are improved by not having to work through a table of historic values. A small amount of
additional processing and storage is associated with the generation of the five mobility detection metrics. The data storage
overhead for the algorithm is of the order of 150 bytes (assuming a floating point number requires 4 bytes), including
weight values but not including the neighbour table. These considerations are very important for WSN nodes where resource
efficiency is a major concern.

In [23] a hybrid network comprising an IEEE 802.11 wireless LAN and an ad hoc routing scheme is proposed in which
topology construction is mainly achieved using periodic beacons. As an observation, the overhead of the topology discovery
process is reported to be a linear function of the beacon rate. SDMS is based on such beacons for estimating the mobility
information required for adaptation of the behaviour (e.g. transmission rate) of the application layer protocols. Hence, in
systems where such beaconing is already present in lower layer protocols, no extra overhead is generated to the network
for the proposed mechanisms. Where the beacon must be provided specifically for SDMS the overhead is one minimum
sized packet per node per second.

4. Analysis

This section describes the simulation analysis of our proposed algorithm. We implemented a simulator [24] as the first
step to collect independent measurement to study the effect and accuracy of the proposed algorithm.
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4.1. The simulation model

The current simulation model assumes that all nodes have the same radio communication range. This is realistic for
typical current WSN deployments, but is not a limitation of the algorithm (exploration of heterogeneous radio transmission
power is left for further work). Randomly generated topologies containing up to 1000 nodes are supported.

Protocol-level events such as message receipt occur on a timescale of the order of 1000 ms (i.e. the value of Tgeacon for
the simulation experiments). To ensure highly accurate simulation, including effects such as short message delay, the model
operates in fine-grained discrete steps each representing 1 ms of elapsed time.

SDMS has been designed to cope with various degrees and types of mobility. To analyse the performance of the proposed
algorithm we have applied a selection of the mobility models described in Section 2.1. The model has been designed to be
highly flexible, supporting a very wide exploration of the algorithm’s performance in a wide variety of system configurations.
The model can be user configured via the user interface (in GUI mode) and for repeatable and detailed investigation, via
scripts in command line mode. The scripts enable multiple simulation runs and automatic generation of means and standard
deviation values over all the runs.

Configurable mobility parameters of the simulation model include: the number of nodes in each actual-mobility category
{A-ST, A-RWK, A-RWK-G, A-RWP, A-RWP-G}; mean speed of movement; and mean trajectory randomness. For A-RWP mobile
nodes the mean duty-cycle between the pause time and periods of movement can be adjusted. Nodes can be grouped in
pairs or triples to investigate the performance of the detection of group mobility.

The model is dimensionless, node cell radius is in arbitrary units. This allows any particular technology to be evaluated
by attributing some range value to the cell radius unit.

4.2. Evaluation

SDMS is evaluated in terms of its accuracy in determining mobility-status under wide-ranging topological conditions,
designed to be broad enough to represent the various mobility models discussed in Section 2.1. In this regard, the sensitivity
to five specific important real-world WSN deployment parameters: speed of mobile node movement, the proportion of nodes
that are mobile, the neighbour degree, the system scale and the extent of randomness of the trajectories of moving nodes;
is investigated.

The algorithm is evaluated in isolation of other services and therefore periodic (Tgeacon = 1000 ms) status messages are
added to support neighbour table updates. This beaconing rate ensures sufficiently fine-grained operation to reflect the rate
of typical application-level events arising from node mobility, whilst avoiding excessive communication overheads.

The first three experiments described in this section are based on systems of 100 nodes. Due to the non-deterministic
nature of the target systems; results are based on mean values over thirty simulation runs, each with a new randomly-
generated topology.

In graph legends, the symbol » signifies that the trace shows the mean fraction of nodes with the actual mobility state
shown left of the symbol who correctly determine their mobility to be the I-state or T-state shown right of the symbol.

4.2.1. Sensitivity to speed of movement

This experiment examines the impact of dynamically changing neighbourhoods as nodes move in and out of range of
each other over a wide range of movement speeds. As the model is dimensionless (in particular the node radius value),
the speed parameter simply controls the rate of progressing the node along its trajectory in terms of the number of model
timesteps (NT) between position updates (recall that the simulation has a very fine-grained 1-ms tick, to prevent simulation-
level artefacts from affecting accuracy at the much coarser-grained level of interesting events such as beacon messages at
Tgeacon). However, the speed parameter can be mapped to real values depending on the transmission range attributed to
the cell radius values. (5) relates the speed parameter to the model behaviour:

NT =50+ ((100 — S) * 10) (5)

where S is the mean speed of movement parameter, 0 < S < 100. Thus at S =0 the node moves 1 distance unit every 1050
model timesteps, whilst at S =100 the node moves 1 distance unit every 50 model timesteps (for this experiment the node
radius was fixed for all nodes at 80 distance units). A random offset in the range +20% is added to the system-wide value
of S for each specific node’s speed value.

Fig. 6 shows that algorithm’s sensitivity to the mean speed of movement varies for the different mobility classes. The
speed values S {0 ... 100} represent the limits of the wide range tested (where 0 means the slowest movement speed
tested, but this does not mean that nodes were stationary, see (5)).

The algorithm performs well at detecting independent mobile nodes (RWK and RWP), and at differentiating between
stationary and mobile nodes across the full range of tested node movement speeds. However, there is a general improvement
in correct mobility-state detection as movement speed is increased. As the detection of mobility is based on detected
changes in the local neighbourhood, it is generally more difficult to detect moving nodes at slower speeds. Similarly, at
higher speeds, some stationary nodes encounter a high rate of discovery of passing mobile nodes and thus it becomes more
difficult to separate out the stationary nodes (it can appear locally that it is the stationary node that is moving past the
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Fig. 6. Performance sensitivity to movement speed.

others in some circumstances). It was found that, due to the pattern of movement of RWP nodes, it can be difficult to
distinguish between T-RWP and T-RWK states. At slower speeds the stop-start pattern was well-detected by the metrics
collectively, but as node mobility speed increases there is an increasing tendency to classify RWP nodes as having RWK
mobility trends and under some circumstances the latter trend can actually be more representative. Thus for RWP nodes
the trend predictions of T-RWK and T-RWP can both be considered correct in general, and thus a single combined curve
T(RWK+RWP) is plotted (this convention has been followed in all of the results presented). The detection of group mobility
is harder generally (see the lower four traces), but good performance is achieved at the higher mobility speeds. At slower
speeds these moving groups are harder to detect than independently moving nodes, and can be miss-identified as being
stationary at times when they temporarily have a higher ratio of long-term known neighbours.

Generally, performance improves as the distance moved between beacon messages increases. Thus improved accuracy is
achieved where nodes move relatively faster or where the interval between beacons is longer, which is a good indicator for
scalability.

4.2.2. Sensitivity to general level of mobility

This experiment explores the significance of the ratio of mobile nodes (independent and in small groups) versus static
nodes, in systems of 100 nodes.

Fig. 7 reveals highly reliable classification of independently mobile nodes (RWK and RWP) which is unaffected by the
proportion of mobile nodes (in the wide range investigated). As the proportion of mobile nodes exceeds 40% some static
nodes are mistakenly classified as being mobile, as they can detect high numbers of mobile nodes passing through (and
hence a high rate of new-neighbour discovery). However, static nodes are still correctly identified 70% of the time when as
many as 60% of nodes are mobile. Detection of groups (RWK-G and RWP-G) is found to be more difficult across the range,
improving slightly when a larger proportion of nodes are mobile.

4.2.3. Sensitivity to neighbour degree

This experiment with 100-node systems focuses on the effect of changing the packing density of nodes in the topology
(measured in terms of the neighbour degree; i.e. the mean number of neighbours that nodes have). This impacts on the rate
at which new-neighbour discoveries occur when nodes are moving.

We have considered that the number of neighbours of each node needs to grow in accordance with ® (logn) if connectiv-
ity is to be maintained (where n is the number of nodes) as shown by Xue and Kumar [25]. This means that the neighbour
degree lower and upper bounds for pair connection are 0.074logn and 5.1774logn respectively. Taking this result into
account, in our investigation the neighbour degree is varied from 2 to 7 (keeping within the connectivity bounds).

Fig. 8 shows that the recognition performance is good over all neighbour-degree values, for all categories of mobility
status with general improvement in higher density topologies. This is because more beacon messages are received (from
both stationary and mobile neighbours), and thus provides a better information base.

For a given topology, the neighbour degree is dependent on the radio communication range. The issues of heterogeneous
communication range and adjustable transmission power are left for further work.

4.2.4. Scalability
The previous experiments were based on 100-node systems. Here we investigate the effect of increasing system size.



R. Anthony, M. Ghassemian / Journal of Computer and System Sciences 77 (2011) 305-321 317

100 1

©
o
L

o]
o
L

~
o
L

[o2}
o
L

Mobility state detection accuracy
(% of time correct, per node)
a
o

40 A
30
——ASTPIST e A-STPT-ST
20 - —&— A-RWK» |-RWK &= A-RWK» T-RWK
—&— A-RWK_GPI-RWK_G === A-RWK_GP T-RWK
10 4 —o— A-RWPMI-RWK —-©--- A-RWP» T(RWK+RWP)
—*— A-RWP_GPI-RWK_G ---¥--- A-RWP_GP T(RWK+RWP)
0 T T T T T \
0 10 50 60

20 ) 30 40
Total proportion of RWK and RWP nodes (%)

Fig. 7. Sensitivity to the proportion of mobile nodes.

100 1& 5 =3 S =
95 A
>
Q —
Co
238 90 A
g6
&
c g
S
88 85
D =
© 38
Lo
L E
» S
2% 80 1
X
e
= —AST»IST e A-STH-T-ST
75 4 —&— A-RWK» |-RWK --&--- A-RWKP»-T-RWK
__________________________________________ —&— A-RWK_G»I-RWK_G - A-RWK_GP T-RWK
—&— A-RWPP|-RWK === A-RWP P T(RWK+RWP)
7 —%— A-RWP_GMI-RWK_G -==3%¢-=- A-RWP_G W T(RWK+RWP)
20 3.0 4.0 5.0 6.0 7.0

Neighbour Degree'

Fig. 8. Sensitivity to neighbour degree.

Fig. 9 reveals that the algorithm performs significantly better at higher scale, for similar reasons that it performs better
at higher densities (see Section 4.2.3).

There are noticeable problems detecting static nodes correctly in certain circumstances, more common in smaller sys-
tems. The random topologies generated in our experiments can lead to locally sparse areas in which static nodes have few
fixed neighbours and thus detect themselves to be mobile when numbers of mobile nodes pass by. This problem occurs less
frequently as scale and/or density is increased.

4.2.5. Sensitivity to randomness of trajectory

This experiment investigates the sensitivity of the mobility detection to the extent of randomness in trajectories. Here
we take into consideration the fact that the mobility models include the notion of randomised trajectory, but do not specify
bounds or other characteristics in this regard. We suppose that in a real-world situation it is the combination of the un-
derlying mobility model and the specific environment that would determine the actual randomness. For example consider
the different patterns that would arise from a tourist loosely following a ‘circular city walk’ (where the path can be locally
linear and where there is a low probability of revisiting the points of interest), contrasted with a criss-crossing path visiting
each shoe shop in a given shopping mall several times, comparing products.

Trajectory Randomness (TR) is defined in the model as the rate (in terms of simulation steps) that moving nodes change
their trajectories. Performance of the algorithm is evaluated over a wide range of trajectory change intervals. A TR value
of 1 represents a short-term constant trajectory (this actually translates into a maximum of 300,000 simulation steps,
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equivalent to 300 seconds, in the same trajectory before selecting a new movement direction). A TR value of 100 represents
a maximally random trajectory in which the movement follows a fast-changing, seemingly chaotic pattern (this actually
translates into selecting a new movement direction as frequently as every 3 seconds). This value range covers all realistic
scenarios as well as extremely random and effectively constant trajectories.

For each specific node a random adjustment of up to +20% is added to the TR change interval to break symmetry and
ensure that collective behaviour is realistic.

Fig. 10 indicates that the prediction accuracy for some mobility categories falls slightly as TR increases. Very high values
of TR can lead to a node ‘hovering’ about a small area. This could be realistic within a WSN at the scale of a school, hospital
or shopping mall for example, where people will visit one general area at a time, and whilst in that area will make small
localised movements that may not be detectable by changes in proximity to other WSN nodes using our approach. As a
result, the A-RWP-G instantaneous mobility is found to be the hardest to correctly identify; there is a tendency for the
nodes to be misclassified as static. However, for many applications this is acceptable because at these times we consider
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that the people associated with the mobile devices are effectively stationary; the logical connectivity does not change if the
movement is sufficiently small that the same neighbour devices are maintained (this scenario is aligned with Fig. 2B, Lévy
Flights). The trend-level prediction for the A-RWP-G category is much better but still poor relative to the other mobility
classes.

The results show that the algorithm is generally insensitive to TR extent, and thus is applicable over a wide range of
mobility scenarios.

4.2.6. Summary of results

The algorithm has been evaluated over a wide range of conditions, to stress it and determine the boundaries of its
effectiveness. However, it is expected that realistic scenarios form a more restricted subset of circumstances - for example
in terms of the ratio of moving to static nodes, as well as in terms of movement speed and trajectory randomness. Within
the wider range of values explored, there are combinations of environmental factors in which the algorithm is found to
struggle to clearly differentiate between all classes of mobility. However, when the more restricted, realistic scenarios are
considered, the algorithm is found to achieve good performance, justified in the sense that the level of differentiation
achieved has high value to applications so that they can adjust behaviour accordingly. The performance is achieved using
only a small amount of information and at very low cost in terms of communication overhead, processing and storage (as
discussed in Section 3.6).

4.3. Comparison with other schemes

The starting point for the current work was the exploration of the use of engineered emergence techniques to self-
organise wireless sensor nodes into clusters of a dynamically specified size, based on application requirements [19]. In that
work, the concept of a mobile node was introduced to evaluate its effect on the formation of clusters. This investigation led
to two extensions to the self-organising cluster technique used: (1) a way to locally detect mobility was introduced, so that
each node could dynamically determine whether it was moving or not; and (2) adjustments to increase the beaconing rate
are automatically done when either a node detects that it is mobile, or that one of its neighbours is. However, the focus
of that work was on the ability to build correct-sized clusters rather than the accuracy of mobility detection, and only a
maximum of one node was moving at any time. The current work involves a much more sophisticated mobility detection
algorithm, and the investigation is focussed on the mobility detection correctness under different circumstances.

Other schemes in which mobility detection has been investigated include:

MMAC [26] illustrates a useful application of mobility information. It uses detected mobility patterns to adapt nodes
transmission rights (dynamic time frame based access) and thus makes the MAC protocol more efficient than a fixed frame
time approach when some nodes are mobile. However the protocol assumes that nodes are aware of their location and
thus this approach discounts the overhead that such an assumption hides. The technique operates at the MAC layer, as the
estimation of mobility state is derived from Received Signal Strength Indicator (RSSI) values or time of arrival (ToA). Detected
changes in the two-hop neighbourhood are used to adapt the size of the frames. In [26], MMAC was compared with other
MAC protocols: CSMA, TRAMA [27] and S-MAC [28]. MMAC outperformed the other protocols in terms of percentage of
packets received and energy efficiency, but it is beaten dramatically (by a factor in the order of 100) in terms of delivery
delay by the contention-based CSMA and S-MAC, because of the latency introduced by the random scheduling in MMAC.

MS-MAC [29] is an extension of S-MAC to support mobility. To decrease the time a sensor node needs to join a virtual
cluster, a sensor node increases the rate at which it checks for new schedules depending on the estimated movement around
the sensor node. To estimate movement, each sensor node records RSSI values for each neighbour and uses any changes as
indications of sensor node movement. The calculation of mobility extent is based on the maximum estimated movement
speed amongst the neighbours of one node. The frequency of SYNC messages (which are effectively the same as a beacon)
will become higher as the calculated mobility speed increases. When the network is static the SYNC messages are sent every
2 minutes and they last for 10 seconds as in S-MAC. Estimated mobility information is included in SYNC messages. Thus the
relative speed of one node can impact the two-hop neighbourhood measurement of mobility, also termed the ‘active zone’.

MAC feedback carrying information has also been used in link estimation and therefore neighbour discovery. Nonethe-
less, the use of MAC feedback has mainly been for saving energy in link estimation compared to frequent broadcast beacon
exchanges. Some protocols, such as [30], use a combination of broadcast-based and MAC-feedback-based link estimation.
They found that overhead is reduced by 25% and utilisation of network capacity is increased by 14%. However, the commu-
nication overheads of such an approach are dependent on the wireless technology used, as well as the amount of content
transmitted, and also whether the messages are transmitted solely for the mobility estimation purpose, or whether they are
more general status messages used to maintain the neighbour table and therefore are not a direct additional cost (this is
the situation with SDMS).

While the MAC layer mobility estimation is reported to be more energy efficient in [31,32], broadcast beacons can be
used as the basis of link estimation in low-power sensor networks. This is an important consideration because link esti-
mation accuracy significantly affects routing performance. The testbed measurements show that MAC layer link estimation
and routing greatly improves the sensed-event reliability (by 18.75%) and energy efficiency (by a factor of 1.96) over purely
beacon-based approaches. These results provide empirical evidence of the tradeoff between accuracy and energy efficiency
of beacon-based estimation and the MAC layer link estimation.
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5. Conclusions

This work has presented a technique for potentially mobile nodes to self-detect their mobility status and pattern in WSN
and ubiquitous applications.

WSN sensor nodes tend to be resource constrained. For this reason SDMS has been designed to be highly efficient in
terms of communication overhead and computational requirements. This helps to preserve battery power and to enhance
scalability by minimising the use of network bandwidth. Efficiency can be further enhanced by integrating the algorithm
with some other WSN self-organisation mechanisms, re-using existing communication and data structures. SDMS uses only
information from the neighbour table at the node (and thus if this table is already maintained by another protocol in the
software stack, SDMS does not impose any additional communication cost). The algorithm is platform independent and does
not require any direct negotiation between nodes, or any external information such as GPS data, user input, or hardcoded
mobility status (e.g. for initially fixed nodes).

Our work targets systems in which devices’ mobility patterns, both immediate and trend, change over time. We consider
that in order to support self-organisation, self-optimisation and scalability, the mobility characteristics should be dynamically
and locally detected.

We initially chose two of the most generic and commonly applicable mobility models (RWK and RWP) that together
represent most real systems to some extent. We have also studied group-mobility variations of each.

The performance of SDMS has been evaluated under a wide range of topological conditions using a sophisticated simu-
lation model. The algorithm is able to differentiate between stationary and independently mobile nodes with a high degree
of reliability. The detection of small groups of nodes travelling together has been investigated. This is more difficult because
such groups have some characteristics of mobile nodes and some of static nodes. A further scenario that has been inves-
tigated is that of nodes having intermittent mobility. This impacts on the value of immediate mobility state for prediction
purposes, hence SDMS also provides mobility trend prediction. The combination of groups and intermittent mobility further
compounds the detection problem; this is one of several areas of focus for continuing work.

This algorithm fundamentally detects relative mobility, so it is most effective in situations where there is mix of moving
and stationary nodes, and most valuable where individual nodes movement is otherwise unpredictable but important to
detect. The empirical results confirm that the algorithm’s performance is indeed correspondingly better in the zone of
scenarios in which it is more valuable.

Overall, our experiments show that the accuracy of the approach improves in line with the complexity of the system,
i.e. it is better at detecting mobility characteristics when the nodes are moving faster, and also that performance improves
in more-dense and larger scale systems. This is very encouraging and we now intend to extend the work to include some
more specialised mobility models that relate to specific applications.

This work has shown that it is possible to infer mobility status based only on learnt neighbourhood characteristics
typically available from neighbour tables and beacon messages. Information concerning instantaneous and trend mobility
state can thus be made available to higher level self-organisation protocols, improving their correctness and efficiency in
various application-context specific ways.

6. Further work

The combined state-space of mobility characteristics, self-organising behaviour in networks of wireless and mobile de-
vices, and the requirements and behaviour of ubiquitous applications is so wide that it is not possible to capture all aspects
in a single investigation. There are many aspects of mobility and of its detection, characterisation and use as context to
drive self-optimisation that are beyond the scope of this paper.

With respect to models of mobility, a main area of interest for us is to investigate the extent to which Lévy Flights (as
well as the other models) can be used to describe and predict device mobility in WSNs and ubiquitous applications within
bounded places such as factories, warehouses, hospitals, etc. In particular we want to find out whether the well-known
models that have been explored at the level of cities also apply at the level of WSNs.

We are also interested in limitations of the well-known mobility models themselves: in particular we are interested in
the possibility of hybrid models that are more representative of human movement; this is particularly relevant for ubiqui-
tous computing and pervasive applications. While we have considered random walk and random waypoint entity and group
mobility models for our analysis; in real-world scenarios it is rare that groups of people are located in completely unob-
structed areas. Additionally, it is unlikely to be the case that people follow random trajectories. In this regard we investigated
how our technique performs under a range of different trajectory randomness conditions and we intend to continue this
investigation further. We plan to test the accuracy of the proposed algorithm with application specific mobility scenarios.

An assumption in our current model, as with most other models of WSN, is that of homogeneous sensor nodes with
respect to radio communication range. This is realistic for typical current WSN deployments, but will be less so in the
future. Adjustable power wireless modules are becoming more commonplace and their increasing popularity is driven in
part by the need for smart power management. We intend to investigate the impact of heterogeneous radio transmission
power on our algorithm’s performance.
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