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Early structures of the cytochrome bc1 complex revealed heterogeneity in the position of the soluble portion of
the Rieske iron sulfur protein subunit, implicating a movement of this domain during function. Subsequent bio-
chemical and biophysical works have firmly established that the motion of this subunit acts in the capacity of a
conformationally assisted electron transfer step during the already complicated catalytic mechanism described
within the modified version of Peter Mitchells Q cycle. How the movement of this subunit is initiated or how
the frequency of its motion is controlled as a function of other steps during the catalysis remain topics of debate
within the active research communities. This review addresses the historical aspects of the discovery and de-
scription of this movement, while attempting to provide a context for the involvement of conformational motion
in the catalysis and efficiency of the enzyme. This article is part of a Special Issue entitled: Respiratory complex III
and related bc complexes.

© 2013 Elsevier B.V. All rights reserved.
1. Background

The Rieske/cytochrome (cyt) b complex family of enzymes plays a
central role in bioenergetic electron transport chains that carry out the
task of oxidative and photophosphorylation. The two main branches
of this family include the cyt bc1 complex-type enzymes best known
for their roles in respiratory (and purple bacterial photosynthetic) ET
chains and the cyt b6f complexes, which are typically found linking the
respiratory and photosynthetic ET chains in plant chloroplasts and
cyanobacteria. While the overall protein structural and cofactor archi-
tecture of these two families of complexes differ somewhat, the struc-
tures and their dynamics are loosely similar when it comes to the
primary substrate oxidation reactions [1,2].

The cyt bc1 complexes, on which this review will focus, all have the
same catalytic core of three transmembrane subunits [3]. The central
nucleus of the complex is a homodimer of the multi-transmembrane
spanning proteinsubunit cytochrome b, named for its coordination of
two b-type hemes. The two hemes, termed bL and bH for their low and
high potentials, respectively, are found towards either the P or N side
of the membrane within which they are embedded, explaining the
alternate naming convention in the cytochrome b6f complexes. A cyt b
monomer harbors two binding sites for quinone moieties adjacent to
either heme, where one site is associated with oxidation of a hydroqui-
none (Qo site) and the other site (Qi site) serves in the reduction of a
tory complex III and related bc
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quinone or semi-quinone molecule at the opposite side of the mem-
brane. Each cyt b is associated with the lone transmembrane domain,
or anchor, of the remaining two cofactor containing subunits, named
the cyt c1 and FeS for presence of a c-type cytochrome or a “Rieske”
type [2Fe\2S] cluster in their soluble domains, respectively [3,4,2,5].

As the formal name implies, the family of enzymes serves to oxidize
a hydroquinone (at the Qo) site and reduce a soluble acceptor molecule
(typically cytochrome c, plastocyanin, or a high potential iron protein).
The mechanism of this oxidation and reduction is carried out by amod-
ified formofMitchell's proposedQ cycle. ThemodifiedQ cycle aswe un-
derstand it now, involves the oxidation of a hydroquinone at the Qo site
where one of the two electrons is funneled to a high potential chain and
the second to a low potential electron transport chain, who's final elec-
tron acceptors are located at opposing sides of the bioenergetic mem-
brane [6–13]. The high potential chain is comprised of the [2Fe\2S]
cluster of the FeS subunit and c-type heme of the cyt c1 subunit, eventu-
ally being passed to a soluble mobile electron carrier cyt c molecule,
whereas the low potential chain is comprised of the bL, the bH and the
quinone bound at the Qi site (Fig. 1). Several structures solved at the
atomic level not only reiterated the nearly identical architecture of all
of the catalytic homodimeric cores for this protein family. Further,
these structures also hinted at the presence of a rotational and transla-
tional movement of the soluble portion of the FeS subunit, as it was
either disordered, at the Qo site or near the cyt c1 surface depending
upon the occupancy or the Qi site [14–19,3,1,20] (Fig. 2). The presence
of this movement and its import during multiple turnovers of the Qo

site was subsequently proven using complimentary biochemical ap-
proaches [21] and the elegant suggestion that the large scale domain
movement acted as an intra-complex electron shuttle overcoming a
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Fig. 1. Cartoonmodel of the turnover of the cyt bc1 complex depicting the high (blue) and
low (red) ET chains.
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long inter-cofactor distance and unfavorable ET rate [22–26]. Since ini-
tial findings describing the domain movement and its function, many
subsequent studies have dealt with whether this conformation change
assisted ET reaction is controlled or even regulated in the context of
the enzymes turnover. Specifically, questions of whether the domain
movement is choreographed during the complicated sequence of
events surrounding hydroquinone oxidation and subsequent Qo site
turnovers, or whether it is simply a tethered electron shuttle capable
of diffusing at a rate slow enough to avoid short circuits and fast enough
to not be rate limiting have remained.

2. FeS domain movement mechanics

How is the FeS head domain thought to move from the cyt b surface
to the cyt c1 surface? Shortly after the first series of structures were
made available steered molecular dynamics was used to indicate that
the rotational displacement was a feasible mechanism within the time
Fig. 2.Movement of the Rieske head domain as evidenced by
constraints required for catalytic turnover [27]. This theory-based
study revealed several potential interactions that could help stabilize in-
termediate positions observed in the coordinate files and help to guide
the FeS subunit from the Qo site at the cyt b surface to the surface of the
cyt c1 many of which were later verified experimentally [22–25,28,26].
Concurrent studies by the Yu lab, in which cysteine mutations in the
cyt b and FeS head domain were able to abolish cyt c reduction in the
presence of thiol reducing agents were able to prove conclusively that
the motion of the FeS head domain was necessary for efficient electron
transfer in the high potential chain of the enzyme and formultiple turn-
overs of the Qo site to take place [21].

The atomic structures of themammalian cyt bc1 solved with various
Qo site occupants did envision subtle changes in the structure of the
small α-helix formed in the amino acid sequence connecting the head
domain and the transmembrane domain when the FeS metal center
was near the cyt c1 surface. This region became more coil-like when
the head domain was near the Qo site. Thus, this region became
known as the “hinge” region of the FeS subunit implying that stabilizing
this helical formation may be involved in promoting the movement of
the head domain away from the surface of the cyt b. The structural
changes in this region were subsequently confirmed indirectly by
monitoring the protease accessibility of this site when differing Q0 site
inhibitors known to change the FeS head domain position were intro-
duced [29]. Several mutations in this hinge region have been made
that had significant influence on the kinetics of cyt c re-reduction. The
most well characterized are a series of amino acid insertions designed
to extend the length of this loop with the aim of slowing the movement
of the FeS head domain from the cyt b surface to thecyt c1. This suite of
mutations are often referred to as the +Ala insertion mutants (+1, 2
or 3 alanine residues). As it turns out, these mutants were integral in
providing a biochemical mechanism for the domain movement and
also in providing the first kinetic constraints associated with the move-
ment during the catalytic cycle of the enzyme [23,24,26]. Thcs changes
in the [2Fe\2S] cluster Em were documented with altered equilibrium
positions of the FeS position [24,28,30].

Interestingly, gain of function revertants to the + Ala hingeregion
insertions were also isolated in which the resulting loci were found to
be well away from the initial insertional mutations in the protein's se-
quence. These revertants implied that an intrinsic control over the equi-
librium FeS head domain position was imparted by regions of the cyt b
distant from the FeS head domain binding site at the cyt b surface.
A number of the isolated mutations were found in the sequence of
the cyt b subunit with specific legions found in the ef and cd extrinsic
inter-transmembrane loops [23–25,28,31,32] as postulated by [27].

Due to the manifold technical constraints of this system, there has
been very little work done to elucidate the biophysical forces involved
with the head domain movement or how it is initiated. However, in
general it is believed that the oxidation of the hydroquinone reduces
the binding affinity of the head domain for the cyt b surface and the for-
mation of the hinge helical region allows for the equilibrium position of
solved structures with differing molecules in the Qo site.
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the soluble domain to favor those positions along the rotational dis-
placement necessary for efficient reduction of the c-type heme of the
cyt c1 subunit. One attractive hypothesis that has been put forth is that
the FeS head domain movement following hydroquinone oxidation is
the result of a “spring loaded mechanism” [33]. In this theory, Crofts
and coworkers have suggested that the strong hydrogen bond formed
between the -nitrogen of the [2Fe–2S] cluster coordinating histidine
and the hydroquinone at the Qo site prior to the oxidation reaction
is the bulk of the energy needed to facilitate binding of the FeS head
domain to the cyt b surface. In essence, they have suggested that this
bond represents the catch in a spring loaded mechanism, where,
when the hydrogen bond is broken via the electron transfer from QH2

to the [2Fe\2S] cluster, the “catch” is released and the spring, in the
form of the hinge region helix formation, is sprung. This would unleash
the potential energy of the spring, the inherent energy associated with
forming the hinge region helix, thereby, sending the head domain
vaulting off towards the cyt c1 surface.

The spring loaded mechanism is an intuitively pleasing explanation
for how the domain movement is controlled within the complicated
catalytic cycle of the enzyme. However, the “strong” hydrogen bond hy-
pothesis is basedmostly upon observations of the headdomainwith the
inhibitor stigmatellin, a molecule with very high affinity and thus very
stable bondwith the FeS head domain. The presence of a similar hydro-
gen bonding of the [2Fe\2S] cluster with the native substrate as with
the inhibitor has beendocumented using pulsed EPR techniques, yet,
differences in the influence of each hydrogen bond on the metal center
Em indicate that the bonds do not convey equivalent influences on the
participating [2Fe\2S] cluster coordinating histidine residue [34–36].
These differences may be explained by differences in the relative num-
ber of FeS head domains found at theQo sitewith each Qo site inhabiting
molecule, with stigmatellin causing essentially 100% of the FeS head do-
main to at the proximal position versus somewhat less with native Q.
This idea is reinforced by observations that the environment of the cyt
b surface itself plays a role in altering the [2Fe–2S] cluster Em. In fact,
the affinity of the head domain for the cyt b surface remains high even
when Q is oxidized and the [2Fe\2S] cluster is reduced and even in
the absence of an interaction between the Qo site occupant at all as
evidenced by oriented EPR analyses [37,30]. Owing then to the propen-
sity of the FeS head domain to be located at the cyt b surface [38], the
energetics driving the release of the head domain from the surfaceof
the cyt b may be somewhat more complex than the simple release of
the head domain upon QH2 oxidation and loss of Qo site occupant
[2Fe\2S] cluster interactions. The nature of the “spring”, then, has yet
to be fully realized. In order to understand what other forces may be
at work in controlling this domain movement, other investigators
have focused on the role of various interactions of the head domain at
the Qo site as well as along its trajectory form cyt xtitb to cyt c1 surface
as a means to understand how the movement is controlled or enacted.

3. Regions known to influence the FeS movement

As stated previously, the + Ala(n) insertion gain of function muta-
tions exposed several interactions of the FeS head domain with the
surface of the cyt b along the domainmovement trajectory [23]. Several
of these interactions were proposed from the aforementioned steered
molecular dynamics simulations studies. However, the reversion of
the +1Ala insertion mutant, +1Ala/L286F, was the first experimental
evidence as to the role of the extrinsic ef loop which lies directly along
the projected trajectory of the rotational displacement of the FeS head
domain. These observations have been further borne out in cyt bc1 com-
plexes derived from various organismal sources, where the rate of
photo initiated cyt c re-reduction were analyzed [39,31].

In effect, this loop can be thought of as the major barrier to this
large scale conformational diffusion as the loop sits like a flap partially
covering the more hydrophobic chasm that is the Qo site. Darrouzet
et al. came to the conclusion that bulky residues at the center of this
extrinsic loop could effectively limit the rotational displacement away
from the cyt b surface [23,25]. They also confirmed the proposal in
[27] that residues in the ef loop are required to rotate out of the way
of the FeS head domain in order for a complete translational rotation
fromcyt b to cyt c1 surface to take place. The + Ala(n)/L286F doublemu-
tants also revealed the role of the ef loop in limiting the FeS headdomain
equilibrium position to be near the Qo site. When the gain of function
L286F mutation was introduced into the +1Ala and +2Ala insertion
mutants the raisedmidpoint potential of the [2Fe\2S] cluster observed
in the parent strains was eliminated. This is correlated to an increased
occupancy of the FeS head domain at the Qo site pocket of the cyt b
[23,25].In essence the ef loop appears to act as a valve for release of
the FeS head domain from the cyt b surface to and fro from the cyt c1
surface [23,25,39,31].

Gain of function revertants have also led to the discovery of additional
sites away from the Qo site forming cyt b surface [40–42,23–25,43].
Specifically, mutations generated in the FeS subunit that diminished
formation of the Qo site cyt b/QH2/FeS complex yielded gain of function
mutations located in the hinge region of the FeS subunit, again indicating
the importance of this stretch of the ef loop in forming the proper active
site [ES] complex [42,40].

Additional sites that are even more distant from the Qo site can also
influence the equilibrium FeS head domain position or Qo site inhibitor
binding [44–49,37,50,29,28,30,51]. Surprisingly, the nature and extent
of the occupancy of the Qi site, some 30 Å has been shown to influence
the residency of FeS head domain at the the Qo site or the cyt b surface
proximal positions. This distant site influence over the equilibrium
FeS head domain position was first hinted at using proteolytic cleavage
assays of the FeS hinge region and the corresponding changes in the
[2Fe\2S] Em.

A more direct measurement of the Qi mediated changes in the
FeS head domain position used orientationally dependent EPR spectra
of ordered chromatophore membrane from Rhodobacter capsulatus,
which revealed that the ensemble environments of the [2Fe\2S] cluster
are altered as a function of inhibitor binding at the Qi site and even in
the absence of Qi site function [51,37,30]. In this case, addition of the
Qi site inhibitor antimycin A caused a heterogeneous orientation of
the metal cluster versus the membrane plane, which in turn had a
muchmore diverse set of spectral transition positions and shapes. Sub-
sequent, application of oriented EPR techniques to antimycin A treated
ordered membrane samples using the FeS head domain movement
constrained + Alan mutants revealed two distinct populations of
[2Fe\2S] cluster environments. This implied that one half of the FeS
head domains remained tightly associated with the proximal cyt b,
while the other half was free to explore alternative positions and envi-
ronments [51,37]. The findings associated with changes in distance
of the FeS versus the cyt b or cyt c were later confirmed via the use of
distance dependent EPR measurements, where inter-paramagnetic dis-
tance changes implied that half of the [2Fe\2S] clusters changed their
relative distance from the paramagnetic oxidized cyt c1 heme iron [50].

These observations fueled hypotheses [52] that the dimeric turnover
of the enzyme occurred via an alternating mechanism where each
monomer turned over individually. Models were proposed in [51]
which the alternation of sites was induced by the formation of a
semiquinone species (represented by antimycin A binding) at the Qi

site of one monomer. The authors postulated that the presence of a
semiquinone at the Qi site of one monomer may facilitate that mono-
mers FeS head domain to be found away from the cyt b surface, thus in-
creasing the likelihood that oxidation of a hydroquinone would take
place in the opposite monomer. This model implied a natural rationale
for the postulated equilibration of electrons between the cyt b branches
of the homodimer. A structural explanation for how this coupling may
be carried out fromQi to position of the FeS head domainwas presented
in [53] and is summarized in Fig. 3. Still other work using the atomic
structures as a guiding principle, generated mutations in loops that
make up the surface of the cyt b at the Qo site, where the investigators
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Fig. 3. Proposed scheme for Qi site mediated changes in the equilibrium FeS head domain position.
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found that the ability of these loops to slide or move at the surface as a
function of the hydroquinone oxidation state at the Qo influenced the
position or efficiency of the FeS movement [32]. In all, it appears that
the factors determining FeS head domain occupancy at the cyt b surface
are more complicated than any one theory put forth thus far.

4. Implications for movement on Qo site efficiency

Despite all of the evidence that movement of various portions of the
cyt b influence the steady state position and frequency of the FeS do-
main movement, it remains unclear what if any the role of these lets
call them fine tuning controls over the movement play in the catalytic
mechanism of the enzyme or its control. For instance, while it is clear
that the Qi site occupancy influences roughly half of the FeS subunits
positions, it is not clear why the enzyme would need to limit oxidation
to either monomer of the dimer [51,50].

Several hypotheses have been raised regarding this issue with re-
spect to whether electrons are free to equilibrate or not in the ET chains
of the two cyt bmonomers, but the general argument is that the kinetics
of the ET reactions are predominantly controlled by the thermodynamic
driving forces of the cofactors and their distances fromone another [54].
This view would seem to preclude aneed for any change in the binding
affinity of the FeS head domain for either oxidation–reduction relevant
surface, i.e. the cyt b or cyt c surfaces, as the cyt b cofactor distance
does not change. Additionally, FeS head domain trajectory oscillation
should be well within the kinetic constraints placed on the system
by the relatively slow ET rate from one bL to another across the
monomer–monomer interface. Regardless, looking at the data collected
from several labs showing a clear influence of distinct regions of the en-
zyme on the FeS equilibrium position, a purely kinetic description of
control is difficult to reconcile as it is curious to envisionwhy such com-
plicatedmechanismsdesigned to control the changes in the steady state
position of the head domain would be conserved in through organisms.

Thus, while we do not understand why the control of the head
domain position is needed, it is present regardless of our perception
of its necessity. Based upon this logic, it is easy to rationalize that we
may not fully understand all of the conditions from which the enzyme
must guard against deleterious side reactions during the course of the

image of Fig.�3
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enzyme's workday in a cellular environment. Conversely, one might
argue that the control of this movement may be a case of biological
over-engineering, for which there is very little selective pressure
exerted or where the interwoven nature of the control mechanisms
and the necessary structural requirements of the homodimeric enzyme
precludes specific selective pressure of presumably “fine” tuning control
mechanisms. It goes without saying that as we understand more and
more about how and electrons are re-distributed within the dimeric
complex and how fast, it is likely that we might in fact stumble upon
the necessary reason for why the mobility of the FeS head domain
needs to be controlled at all.
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