
Discrete Applied Mathematics 10 (1985) 165-177 

North-Holland 

165 

FIRST FIT DECREASING SCHEDULING ON 

UNIFORM MULTIPROCESSORS 

Manfred KUNDE and Horst STEPPAT 

Institut fiir Informatik und Praktische Mathematik, Universitiit Kiel, Olshausenstr. 40-60, 

D-2300 Kiel, W. Germany 

Received 15 January 1984 

Independent tasks are nonpreemptively scheduled on mr2 processors which are assumed to 

have different speeds. The purpose of this paper is to show that the worst case ratio of the multifit 

algorithm MF, which is based on the bin-packing method FFD (first fit decreasing), depends on 

the order of the processors and that the MF has a better worst case behaviour than the well-known 

LPT algorithm for certain processor configurations. 

1. Introduction and basic notations 

Scheduling independent tasks on a nonpreemptive multiprocessor system is one 

of the fundamental problems in deterministic scheduling theory. In this paper we 

regard uniform multiprocessor systems, a generalization of the classical homo- 

geneous systems [l,lO,ll]. 

Formally, there is a finite set .Y= {T,, . . . , T,} of tasks, each having an execution 

time p(T,) and a set of m 2 2 processors with speeds s,,s2, . . . ,s,~. Without loss of 

generality we might assume that all s,> 1. The m-tuple of speeds is abbreviated by 

Sm=(s,,.*., s,). A (nonpreemptive) schedule for a task set Y- and a multiprocessor 

system S,, is an m-tuple LZ(./;S,) = (Pi, . . . . P,) of m disjoint subsets of .i with 

u:“, ;=. 1 ;, ___ P I P 1 -=I cm, denotes that subset which is executed on the ith proces- 

sor. Then the finishing time or maximum completion time of n(.<.S,,) is given by 

dJ(n(.YTS,)) = max ,D(Pj)/Si, 
I CICI1, 

where p(X) = C TEX p(T) for any XC 71 

For given .i and S,,, let A be an algorithm constructing a schedule fl,(.JS,,,) 

whose finishing time is denoted by 

It would be most desirable to find an algorithm OP that efficiently produces 

optimum schedules c~)~~(,;/;S~) satisfying 

uo,(.~T/;s,) 5 o(fl(.~yS,,,)) for all possible schedules L7. 

0166-218X/85/$3.30 I% 1985, Elsevier Science Publishers B.V. (North-Holland) 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82054489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


166 M. Kunde, H. Steppal 

But determining an optimum schedule is NP-hard [ 14,151 and thus finding computa- 

tional tractable optimum algorithms is unlikely. These bad circumstances make us 

seek efficient heuristics generating ‘near optimum’ schedules. 

A measure of the quality of a heuristic algorithm A is the so called m-processor 

performance ratio (worst case ratio) which we analyse for various classes of uniform 

multiprocessors. In order to show that the performance ratio of some algorithms 

depends on the arrangement of the processors we distinguish seven classes: 

UNIF= {S,, / m12, Sm=(sl ,..., s,,)}, 

the class of all uniform processor systems, 

INC = {S,,, 1 m12, Sm=(sl ,..., s,,?), ~IS~I.S~I~..~S~}, 

the class containing those S, with increasing speeds, and 

DEC = {S,, 1 mr2, S,=(s, ,..., s,,,), .s,~.s~L~~~~s,L~}, 

the class consisting of those S,, with decreasing speeds. 

As important subclasses we consider uniform processor systems consisting of only 

one processor with a high speed and the remaining processors with all the same, 

slower speed. 

INCl = {S,, j mk2, S,,=(l)..., I,s,~), s,rlj 

DECl = {S,, / m22, S,=(s, l,..., l), s,~l} 

UNIFl = {S, 1 m22, S,=(s, ,..., s,,), Ii, lrism, 

Vj, lljlm, j#i, si=l, sj21). 

The very important class of homogeneous processors we denote by 

HOM = {S,,, 1 m22, &=(I, . . . . l)}. 

If CLASS is any of the defined multiprocessor classes, then the m-processor perfor- 

mance ratio of a scheduling algorithm A (with respect to CLASS) is defined by 

R&4, CLASS) = sup 
cc)/i(.K&,) 

OOPVY $,,I 

all task sets -7; all S,, E CLASS . 

1 

The order of the processors could also be considered to be part of the algorithm; 

however, the concept of processor classes is more profitable to a uniform repre- 

sentation. 

One of the first and famous heuristics is the LPT algorithm [5,6] which allocates 

the largest, not yet assigned task to that processor which completes its execution 

earliest. This algorithm satisfies 

and 
R,(LPT, HOM) =4/3 - 1/(3m) [6] 

R,(LPT, UNIF) = R,(LPT, INC) = R,,,(LPT, DEC) 5 2 - 2/(m + 1) 151. 

It is easily seen that the performance ratio of the LPT is independent of the order 



First fit decreasing scheduling 167 

of the processors. Determining the exact ratio in this case is still an open question, 

but it is known that 

lim R,(LPT, UNIF) 2 3/2 151. m-m 

Moreover it was shown in the same paper that 

R,(LPT, INCl) = R2(LPT, DECl) = (fl+ 1)/4 
and 

4/3 5 R,(LPT, INCl) = R,(LPT, DECl) I 3/2- 1/2m for m 2 3. 

As an improvement to the LPT the so called multifit algorithm MF was presented 

in [2]. It is based on the bin-packing algorithm FFD (First Fit Decreasing) [4] and 

was originally developed for homogeneous multiprocessors with worst case bound 

R,(MF, HOM) 5 1.22 PI. 

A generalization of this method to arbitrary uniform machines leads to a further 

improvement of the LPT. It was shown that 

R,(MF, INC) = (l/i;l+ 1)/4 [Kunde, unpublished], 

(fl + 1)/4 I R,(MF, INC) I 312 - 1/(2m) for m = 4,5 [7,%131, 

1.341 I R,(MF, INC) I 7/5 for m16 131. 

Moreover for the case where all but one processor have the same speed we get the 

exact bounds 

R,(MF, INCl) = fi/2 171 
and 

R,(MF, INCl) = (l/i7+ 1)/4 for mr3 [7,91. 

Hence for all mz2 we obtain 

R,(MF,INCl)<R,n(LPT,INC1) and R,(MF,INC)<R,(LPT,INC). 

In this paper we show that in contrast to the LPT the performance ratio of the 

MF strongly depends on the order of processors. If the processors are ordered by 

decreasing speeds, then it can be shown that 

and 

R,(MF, DECl) = (l/i;?+ 1)/4 

4/3 I & + & (8m2 - 8m + 1)“2 5 R,(MF, DECl) 5 l/z for m 2 3. 

Hence the following inequalities hold for all m 2 2 

R,(MF, INCl) < R,(MF, DECl) 5 R,(MF, UNIFl). 

In the more general case where the processors might have different speeds we prove 
that lim m_m R,(MF, DEC) 2 3/2 and 



168 hf. Kundz, H. Steppat 

R,,,(MF, INC) < R,,,(MF, DEC) 5 R,(MF, UNIF) for m 12. 

As an upper bound we derive 

R,(MF, DEC) 5 R,(MF, UNIF) I 2 - l/m. 

The results of this and earlier papers show that with respect to the worst case ratio 

the multifit algorithm MF is better than the LPT, an increasing speed order pro- 

vided. It is an open question whether or not the LPT is better than the MF in the 

case of a decreasing speed order. 

2. First fit decreasing scheduling 

The difference between list scheduling [1,6] and scheduling using packing is that, 

apart from a list, a capacity bound is needed [2]. Thus, the problem of finding a 

good a priori bound C emerges. 

Let -7: m, S,,, and a capacity bound C be given. Throughout the paper we assume 

the tasks to be in a decreasing order, that is, p(T,) L ,/J(T*) L ... 2 p(T,). Informally, 

the MF algorithm tries to put the largest, not yet assigned task on the processor with 

the smallest index such that the capacity bound is not violated. In the case S,,, E INC 

this means that one attempts to fill the slowest processors first. 

The following boolean function FFD(./;C, S,,,) gives an exact description of first 

fit decreasing scheduling and tells us whether it is possible to assign all tasks within 

bound C in this manner. 

Boolean function FFD(.;/; C, S,,,) 

begin FFD := true; i := 1; j := 1; 

for k from 1 to m do begin Pk := PI; C, := s;. C end; 

repeat if p(P;) +p(Tj) 5 C, 

then begin P, := P, U {T,}; j :=j + 1; i := 1 end 

else i:=i+l; 

until (j > n or i > m); 

if i > m then FFD := false 

end 

Note that FFD constructs a schedule Z7rrTo = (P,, . . . , P,,) with ~c)(Z7rrn)1 C if 

and only if FFD(.;/,C, S,,,) = true. 

The following lemma will give a first estimation of the magnitude of C such 

that a successful assignment of the tasks is guaranteed. Let S,, = (st, . . . , s,,,) be any 

speed tuple of UNIF and f= {Tr, . . . . T,}, ~(Tr)>...z~(T,). Assume that we have 

rearranged the speeds of S,,, such that s], z.s~> L ... ZS],,,. Let Xk = C:=, p(T,), 

k= l,..., n, denote the sum of the k largest execution times and Y,, = C:=, s;, 

h=l,..., m, be the sum of the h largest speeds. Then a lower and an upper bound 

can be defined in the following way: 



First fit decreasing scheduling 169 

and 

CU(.<&) = (2 - l/m) .CL( q&s,). 

Lemma 2.1. (a) For all C< CL(.;/;S,), FFD(.KC, S,) = false. 
(b) For al/ Cr CU(.;/;S,), FFD(.y;C, S,,) = true. 

Proof. Assume there is a C<CL(./;i;s,) with FFD(.<C, S,) = frue. Then ~c)o~(.y;;S~~)< 

C< CL(X;;S,) contradicts a well-known theorem [ 121. 

Suppose that there is a set of tasks .r={r,, . . ..T.,}, a CrCU(.-/;s,) and an 

S,,1=(q,..., s,) such that FFD(.< C, S,,) =false. Let mz2 and n be minimal with 

this property. If n<m, then CL(.;i;S,)>X,/Y,, and FFD cannot construct a 

valid schedule on the n fastest processors, contradicting the fact that m was 

minimal. In the case n 2 rn let (P,, . . . ,P,) denote the schedule of .y-- {T,} con- 

structed by FFD({T,, . . . . T,_,},C,S,). This means, Cyi=, p(P,>= C::,‘,4T,). From 

FFD(.;/; C, S,,,) =false follows 

(1) ~(Pj)+~(T,)>C.sj for i=l,...,m. 

From the definition of CL(.‘/;S,,) and CU(.<ss,) we immediately get 

(2) C 2 CU(.7;‘;s,) 2 (X, + (l- l/m)X,)/Y,. 

a contradiction. Therefore (b) must hold. 0 

Normally the bound CU( y;;S,) can be improved easily. We want to give bounds 

which are valid for all task sets and for all processor systems of a given class. The 

best expansion factor of a processor class, denoted by CLASS, is defined by 

r,(CLASS)= sup{r / 3.T 3S, E CLASS, FFD(.y;;rooP(.y;‘;S,), S,) =false}. 

The proof of the following technical lemma is similar to that of lemma 2.1 in [2] 

and is therefore omitted. 

Lemma 2.2. 

V.;/; VS, E CLASS, Vr 2 r,(CLASS) FFD(.7;rrWop(.y;s,n), S,,) = true. 

The pure multifit algorithm MF for CLASS works as follows: 

Let C = r,,(CLASS) . w~~(.YT;S,~), apply FFD, then FFD(.yTC, S,) = true. Define 

z7,,(.&&) =Qrb(.7;;Sm). 



170 M. Kunde, H. Steppat 

It is easily seen that R,(MF, CLASS) = r,(CLASS). In the following we will give 

exact values or estimations for some r,. Determining w~~(,Y;&) is well known to 

be NP-hard. Nevertheless we will show that it is possible to construct efficient ver- 

sions MF(k) of the MF with worst case ratio very near to r,. 

Procedure MF(k)(./TsS,) 

begin CL := CL(.y;;S,); CU := CU(.;/;S,); 

for i from 1 to k do 

begin C:= (CL + CU)/2; 

if FFD(.;/;C, S,) then CU := C else CL := C 

end 

end 

This procedure MF(k) is the same one as given in [2] for homogeneous multi- 

processors. From Lemma 2.1 we obtain the lower and the upper bound needed for 

the binary search. The final value CU gives the smallest capacity bound C found 

for which FFD(.YTC, S,) = true. 
The complexity analysis of MF(k) as given in [2] shows that including the initial 

sorting of the tasks O(n log n + knm) steps are needed. Hence the complexity of the 

MF(k) is comparable to that of the LPT where O(n log II + nm) steps are necessary. 

The first theorem demonstrates that even for small k, R,(MF(k), CLASS) very 

closely approaches R,(MF, CLASS). 

Theorem 1 ([2]). For all m ~2 and for all k>O 

R,(MF(k), CLASS) i R,(MF, CLASS) + 2-k. 

Thus it is possible to construct efficient versions MF(k) of the MF with a perfor- 

mance ratio very close to R,(MF,CLASS). 

Before discussing further theorems a short example may illustrate how the multi- 

fit algorithm MF works and how the finishing times of the schedules are influenced 

by the processor configuration. 

Example 2.1. 

.T= (T,, . . . . T,}, p(T;) = 10 for i = 1,2,3,4 

&T,) = 7 for j=5,6, 

~(7-7) = 6. 

Let m = 5; 4 processors with speed 1 and one processor with speed 2. 



First fit decreasing scheduling 171 

s5 qvlF(k)(.;/;SS), f4 2 4 

(1, 1, 1, 192) 10 

(1, 1,1,2, 1) 11.5 

(1, 1,2,1, 1) 13 

(1,2, 1, 1, 1) 13 

(2, 1, 1, 191) 13 

One immediately checks that 

oo,(.<S,) = 10 and o&.;/;Ss) = 11.5. 

Theorem 2. 

(a) R,(MF, DEC) I R,(MF, UNIF) 5 2 - l/m fur m 2 3. 

(b) lim,,+, R,(MF, DEC) I 3/2. 

Proof. (a) With the help of o~~(.Y;;;S~)ZCL [12] we get for all .;i, all r22- l/m 

and all S,EUNIF 

r. oop(.~~Sm) 2 (2 - l/m)CL 2 CU 

and thus, by Lemma 2.1, FFD(.;/;r . o,,(.Y~-;S,,,), S,) = true. That is, 

R,(MF, UNIF) = r,(UNIF) 5 2 - l/m. 

(b) In [5] there is given a general example for the LPT with lim,?,,,R,(LPT, 

UNIF)r3/2. The same example implies lim,n,, R,(MF, DEC) 2 312 as demon- 
strated in [3,13]. 0 

It has been shown that 

R,(MF, INC) = (Jr’l+ 1)/4 [Kunde, unpublished], 

(fl+ 1)/4 5 R,(MF, INC) 5 3/2- 1/(2m) for m = 4,5 [7,8,131, 

1.341 I R,(MF, INC) I 7/5 for m 2 6 131. 

These bounds together with the above mentioned general example [3,5,13] demon- 

strate that R,(MF, INC)<R,(MF, DEC) for all m23. In all these cases (except 

Rs(MF, INC)) the exact worst case ratio for the multifit algorithm MF is as 

unknown as for the LPT. 

Theorem 3. 
(a) R,(MF, DECl) = R,(MF, UNIF) = (fl+ 1)/4. 

(b) (1+1/8m(m-l)+1)/(2m)1R,(MF,DEC1)1~ for mz3. 

The proof of the theorem will be given in the next section. 



172 M. Kunde, H. Steppat 

The real number (0-t I)/4 seems to play an important role in this special field 
of scheduling. It is known that 

R,(LPT, UNIF) = (fl+ 1)/4 ]51 
and 

R,(MF, INCl) = (l/;ir+ 1)/4 for all m 2 3 ]7,91. 

Moreover R,(MF, INC) describes the same value. With Theorem 3(a) and R,(MF, 

INC)=fi/2 [7] the worst case analysis of the MF and the LPT for two uniform 

processors is totally done: 

R,(MF, INC) < R,(MF, DEC) = R,(MF, UNIF) = R,(LPT, UNIF). 

3. Proof of Theorem 3 

For the proof of Theorem 3 we first give a general example establishing the lower 

bounds. The underlying ideas may be understood by the following simple example. 

Example 3.1. m=3, &=(2,1,1), .r={T, ,..., Ts} with 

p(T,) = p(T,) = 3, /G-s) = pu(T4) = p(T,) = 2. 

Processor 

optimum schedule 

c0op(.Y;Sj) = 3. 

Processor 

FFD(.‘;/;C, S,) = false 

FFD(.;/, 4, S,) = true. 

VC<4, 

Example 3.2. This example is also mentioned in [9]. 

mr2, S,,,=(s, 1, 1, . . . . l), s1 =s, .:‘={T,, . . . . T2_]]. Let 



First fit decreasing scheduling 173 

a, = & + & (8m2 - 8m + 1)1’2, 

i=l,...,m-1, 
and 

r=m,...,2m-I, 

m 
s=--a,,,=(1+1/8m(m-1)+1)/4. 

2 

It is easily seen that U+ = (P:, . . . ,P,:‘, with P,+={T,,,..., T2_,} and PL,= 

P?i), i = 1, . . . , m - 1, is an optimum schedule with w~~(.Y;;~) = 1. Moreover, 

a2=(l/i7t 1)/4 and arrl sfi for m 2 3. Hence 

Let C,, be 

(1) 

p(T,) = e.. =~(T,,~,)>~u(T,,)=...=~u(T,,,~i). 

a capacity bound such that a, - 1/2m 5 C,, < a,,. Then we state 

FFD(.;/;C,,, S,,) = false for all m 2 2. 

To prove (1) we first observe that 

~‘~,‘~(~)~il;=4(m-l)/(l+jG(m-l)+l) 

4(m - 1)(1/8m(m - 1) + 1 - 1) 
= 

8m(m-1) 
= a,,, - ; < c,,, . 

That means, that FFD assigns every q, i = 1, . . . , m - 1, to the first processor with 

speed s. But trying to allocate any of the smaller tasks TJ, m <j I 2m - 1, must fail, 

because 

On the other hand, if none of the m smaller tasks can be assigned to the first proces- 

sor, then FFD tries to put two of these tasks on one of the m - 1 slower processors. 

Since for arbitrary i and j, m I i, j I 2m - 1, p(c) + p(T,) = a,,, > C,, this attempt 

again fails. Hence for every m ~2, R,(MF, DECl)ra,,, as stated in Theorem 3. 

We are now going to prove the bounds (fl+ 1)/4 respectively l/z by contra- 

diction. For technical reasons it is useful to have standardized forms of counter- 

examples. Throughout the whole proof we will use the following abbreviations 

s=s,Ll, q = wOp(.~;Sm) and p = rq, where r > 1. 

Definition 1. p, q as above. (.lj;m,S,,,) is called a p/q-counterexample iff 

(1) FFD(Y;p, S,) = false, 
(2) V.ri’ with IX’/ < jY1, VSA with ~c)o~(.f’, Sh) 5 q: FFD(.?, p, SL) = true, 
(3) Vm’, m’<m, V.7: VS,, with o,,(?,S,,)sq: FFD(Ytp,S,,)=true. 



174 M. Kunde, H. Steppat 

That means, a p/q-counterexample is minimal in the number of tasks (condition 

(2)) and minimal in the number of processors (condition (3)). As before let 

.;I= {7-,, . ..) r,,) and p(T,) 2 ... >p(T,). If (.y;;m, S,,,) is a p/q-counterexample, then 

from condition (2) easily follows that FFD({ T,, . . . , T, ]}, p, S,) = true. Let 17 = 

(P,, . . . . P,,) be the partition of (T,, . . . . T,,_ I > generated by FFD with bound p and 

let fl+ = (P:, . . , P,‘) be an optimal partition of .;/T These notations will be used for 

the rest of this paper. 

Definition 2. Let Xand Y be subsets of .% Xdominates Y iff there is a l-l mapping 

f : Y+ X, such that p(T) ‘,v(f(T)) for all T of Y. 

The following two lemmata are proved in [8,13]. 

Lemma 3.1. Let (.yTS,) be a p/q-counterexample. Then a set Pi, 1 <i<m, cannot 
dominate any set Pj’, 1 5 j 5 m, with S; 5 sj* 

Lemma 3.2. Let (./;rn, S,) be a p/q-counterexample. Then 

PU(T,,) > (p - 4) f sj/(m - 1). 
,=I 

These two lemmata enable us to prove the first part of Theorem 3, where we con- 

sider m = 2 processors. In this case p and q are assumed to satisfy p/q? (l/i7 + 1)/4. 

If the number of tasks is n24, then Lemma 3.2 implies 

and thus q > 4(p - q), which immediately yields the contradiction 

(l/i;i+ I)/4 I p/q < 5/4. 

Since the case n 5 2 yields Pl = P2 = 0, we only have to consider the case n = 3. 
Then the FFD rule generates PI = {T,) and P2= {T2}. From p(T2)+p(T3)>p>q 
we know that at most one task is contained in PC. From Lemma 3.1 we derive that 

T, cannot be in P:, and thus Pt = {T,}, and consequently P: = {T,, Tj}. This 

whole situation implies the following inequalities 

(1) wr,dT,)+dT,)>~> 

(2) P~P(T~)>~P-P(T,). 
From (l), (2) and Lemma 3.2 we derive 

(l+s)q>sp+M,)>~p+(l+s)(p-q) 

and thus 

2q>p+2s(p-q) or 2>p/q+2s(p/q-1). 



First fit decreasing scheduling 175 

From (1) we get s>p/q and therefore 

2 > P/4 + 2P/dP/cJ - 1) 

= p/q(2p/q - 1) 2 (I/iT + 1)/4((1/15+ 1)/2 - 1) 

= 9/4+1/77/4-m/4-1/4 = 2, 

which is impossible. 

For the rest of the proof we therefore may assume that m23 and p/q?fi. 

Before making the final conclusions for proving the second part of Theorem 3 

we state our last lemma: 

Lemma 3.3. Let (./Y m, S,) be a p/q-counterexample with S, E DECl and p/q 2 1/z. 

Then P,‘nP,+0 for all i=2 ,..., m. 

Proof. First observe that every P,+, 25 i I m, contains at most two tasks. Other- 

wise we conclude with the help of Lemma 3.2, q?3,u(T,,)> 3(p- q), thus 4q>3p, 

giving us the contradiction l/z< p/q < 4/3. 

Now assume that there is P;+, 21 i sm, with P,' fl P, = 0. We will show that in 

this case a set Pj, j 2 2, exists which dominates P,‘. 

If P,’ contains only one task, then either Pi+= {T,), that is, every Pj, 2~j<m, 

dominates P:, or Pi’+ {T,}. In the second case the assumption implies that Pi’ 

must be subset of a P,, 2<j I m. That is, PJ dominates P,‘. 

If P: = (TV, T,} with x<y, that is, p(T,)zp(T,), then first assume that rY = T, 

and TX@ P,. Hence TX must be an element of a P;, 25jsm. Since p(T,)+p(T,)= 

p(P,‘)s q<p and T, $ P,, another task T with ,D(T)L~(T,) must be contained in 

Pj. Therefore PJ dominates Pi’. 

If Tv# T,,, according to our assumption both tasks have been assigned to slow 

processors by the FFD, that is, there are indices j and k, 2s j, ksm, with T,E Pj 

and Ty E Pk. If j = k, Pj dominates P,‘. Hence two cases are left: 

(a) 2sj<ksm. As FFD did not assign 7; to PI and ,u(T,)+p(T,)rq<p, there 

must have been placed a task T#T, into Pj with ,u(T)?p(T,). Consequently Pj 

dominates P;‘. 

(b) 2sk<jsm. Although p(T,)sq<p, TX was not put into Pk. Therefore 

another task T,, with h<x, that is, p(T,,)r,u(T,), must have been assigned to Pk, 

which therefore dominates P,‘. 

In all cases the assumption leads to dominating sets contradicting Lemma 

3.1. 0 

Now we are able to conclude the proof. For the p/q-counterexample (Y;m, S,) 

with p/qr1/2 two cases are distinguished: 

(a) qz2,u(T,). First observe that (PI ( zrn - 1. This is an immediate consequence 

of the last lemma. In view of Lemma 3.2 we derive 



176 M. Kunde, H. Steppat 

and thus s> (m - l)(p/q - 1). Hence 

q L 2p(T,) > 2(p - q)(m - 1 +s)/(m - 1) 

2 

>2(p-q)$=$2p. 

The last inequality and p/q 2 l/z yield 1 > 2p/q(p/q - 1) L 4 - 2 l/z, a contradiction. 

(b) q< 2,u(T,). In this case every P,+, 2 5 i 5 m, contains exactly one task and by 

Lemma 3.3 it follows that P,’ c P,. Since (.Y;m,Sn7) is a p/q-counterexample, we get 

Ps<,dP,)+P(T,)r c P(P,nP,+)+L4P,~P:)+~(T,) 
r=2 

r(m-l)q+X, whereX=p(P,nP,+)+p(T,). 

That is, we can state the following upper bound for s 

(1) s<(m-l)%+$. 

From P,+cP, for i=2 ,..., m we conclude that Pi II P,’ = 0 for i = 2, . . . , m and 

j=2 , . . . ,m. Hence Pj c P: for j = 2, . . . , m. The task T, obviously is 

PT and thus 
,?1 

@W(Pr+) = c p(P;)+p(P, nP:)+/G). 
r-2 

From the trivial inequalities p(P,)z,u(T,) and p(P,)>p-,u(T,) for 

we obtain p(P,)>p/2 and thus 

an element of 

all i = 2, . . . , m 

2s 2X 
qs > (m - l)p/2 +X or 7<-- 

4 m-l q(m-1)’ 

Combining this formula with (1) we get 

2% 1 1 5-24+- ___ 
4 c > P m-l P 4 ’ 

Since p > q, we conclude (p/q)* < 2, a final contradiction. 

4. Conclusions 

In this paper we have demonstrated that in the case of uniform processors the per- 

formance behaviour of the multifit algorithm depends on the processor configura- 

tion of which LPT is independent. Especially we gave bounds for the worst case 

ratio of the MF for the processor classes DECl, UNIFl and DEC. 

There are still a lot of open questions concerning the exact ratios for the different 

classes. Another open problem is for example whether or not R,(MF,DECl)= 

R,(MF, UNIFl) for every m L 3. 



First fit decreasing scheduling 177 

We were informed by one of the referees that in yet unpublished results D.K. 

Friesen has obtained the following bounds: 

13/11 I &(MF, HOM) 5 6/5, 

1.52 5 lim R,(LPT, UNIF) I 1.67. 
V-CC 

Acknowledgements 

The authors wish to thank the referees for their helpful comments. 

References 

111 

121 

[31 

[41 

[51 

[61 

[71 

PI 

[91 

[lOI 

[Ill 

(121 

[I31 

[I41 

[ISI 

E.G. Coffman, Jr. (ed.), Computer and Job/Shop Scheduling Theory (Wiley, New York, 1976). 

E.G. Coffman, Jr., M.R. Garey and D.S. Johnson, An application of bin-packing to multiproces- 

sor scheduling SIAM J. Comput. 7 (1978) l-17. 

D.K. Friesen and M.A. Langston, Bounds for multifit scheduling on uniform processors, SIAM J. 

Comput. 12 (1983) 60-70. 

M.R. Carey and D.S. Johnson, Approximation algorithms for bin packing problems: A Survey, in: 

G. Ausiello and M. Lucertini, eds., Analysis and Design of Algorithms in Combinatorial Optimiza- 

tion (Springer, New York, 1981) 147-172. 

T. Gonzalez, O.H. Ibarra and S. Sahni, Bounds for LPT schedules on uniform processors, SIAM 

J. Comput. 6 (1977) 155-166. 

R.L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math. 17 (1969) 

416-429. 

M. Kunde, Bounds for multifit scheduling algorithms on uniform multiprocessor systems, Bericht 

8203, Institut fiir Informatik und Praktische Mathematik, Kiei, 1982. 

M. Kunde, A multifit algorithm for uniform multiprocessor scheduling, in: Theoretical Computer 

Science, Proceedings, 1983, Lecture Notes in Computer Science 145 (Springer, New York, 1982) 

175-185. 

M.A. Langston and J.M. Liu, On a special case of uniform processor scheduling, TR CS-83-107, 

Washington State University, Pullman, 1983. 

E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Recent developments in deterministic 

sequencing and scheduling: a survey, in: M.A.H. Dempster et al., ed., Deterministic and Stochastic 

Scheduling (D. Reidel, Dordrecht, 1982) 35-73. 

J.W.S. Liu and C.L. Liu, Bounds on scheduling algorithms for heterogeneous computer systems, 

Information Processing 74 (North-Holland, Amsterdam, 1974) 349-353. 

J.W.S. Liu and A. Yang, Optimal scheduling of independent tasks on heterogeneous computing 

systems, ACM National Conference 1974, 38-45. 

H. Steppat, Packungsalgorithmen fiir die Ablaufplanung in uniformen Mehrprozessorsystemen, 

Diplomarbeit, Kiel 1983. 

J.D. Ullman, NP-complete scheduling problems, J. Comput. System Sci. IO (1975) 384-393. 

J.D. Ullman, Complexity of sequencing problems, in: [l], 139-164. 


