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SUMMARY

HIV-1 encodes the accessory protein Vif, which
hijacks a host Cullin-RING ubiquitin ligase (CRL)
complex as well as the non-canonical cofactor
CBFb, to antagonize APOBEC3 antiviral proteins.
Non-canonical cofactor recruitment to CRL com-
plexes by viral factors, to date, has only been attrib-
uted to HIV-1 Vif. To further study this phenomenon,
we employed a comparative approach combining
proteomic, biochemical, structural, and virological
techniques to investigate Vif complexes across the
lentivirus genus, including primate (HIV-1 and simian
immunodeficiency virus macaque [SIVmac]) and
non-primate (FIV, BIV, and MVV) viruses. We find
that CBFb is completely dispensable for the activity
of non-primate lentiviral Vif proteins. Furthermore,
we find that BIV Vif requires no cofactor and that
MVV Vif requires a novel cofactor, cyclophilin A
(CYPA), for stable CRL complex formation and anti-
APOBEC3 activity. We propose modular conserva-
tion of Vif complexes allows for potential exaptation
of functions through the acquisition of non-CRL-
associated host cofactors while preserving anti-
APOBEC3 activity.
INTRODUCTION

Virusesmust overcome host challenges to replicate successfully

in an infected host. These challenges include not only the

mechanics of viral entry, genome replication, assembly, and

budding but also a variety of host-defined replication barriers,
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both innate and adaptive. During productive infection, viral pro-

teins rewire the host cell through a series of protein-protein

interactions (PPIs) to promote viral replication. Systematic and

unbiasedmapping of these host-pathogen interactions can yield

novel information concerning both viral biology and the endoge-

nous functions of hijacked host factors.

An effective method for mapping host-pathogen interactions

involves affinity purification of epitope-tagged viral proteins

from host cells followed by mass spectrometry (AP-MS) to iden-

tify interacting host factors. This approach has been used tomap

global host-pathogen PPIs for HIV-1 (Jäger et al., 2012a), herpes

(Davis et al., 2015), and hepatitis C (Ramage et al., 2015), as well

as to study the PPIs of individual viral proteins in HPV (Tan et al.,

2012; White et al., 2012a, 2012b), influenza (York et al., 2014),

and picornaviruses (Greninger et al., 2012). Historically, these

types of proteomic analyses have focused on a single virus or

closely related sets of viruses and typically from the same

(human) host.

In this study, we devised a strategy for the systematic,

comparative analysis of host-pathogen PPIs focusing on the

well-characterized lentivirus genus to analyze the complexes

formed by representative Vif proteins from different lentiviral

clades, including that of HIV-1. HIV-1 Vif is required for patho-

genesis in vivo and serves as the virus’ defense against

host antiviral APOBEC3 (A3) proteins. In the absence of Vif,

members of the A3 family of restriction factors package into

budding virions, where they interfere with reverse transcription

and induce lethal G-to-A hypermutation in viral cDNA (Harris

et al., 2003; Iwatani et al., 2007; Mangeat et al., 2003; Zhang

et al., 2003). HIV-1 Vif overcomes this replication block by

acting as an adaptor between the A3 proteins and an endoge-

nous ubiquitin ligase complex that catalyzes poly-ubiquitylation

of the A3 proteins, resulting in their subsequent proteasomal

degradation (Hultquist et al., 2011; Sheehy et al., 2002, 2003;

Yu et al., 2003).
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The HIV-1 Vif E3 ligase complex is composed of the endog-

enous CRL5 members, including Cullin-5 (CUL5), elongin B

(ELOB), elongin C (ELOC), and RING-box protein 2 (RBX2),

but also requires the additional Vif-dependent recruitment of

a non-canonical cofactor, core-binding factor, beta subunit

(CBFb) (Guo et al., 2014; Jäger et al., 2012b; Zhang et al.,

2012). CBFb heterodimerizes with members of the RUNX

family of transcription factors, serving to both stabilize RUNX

steady-state levels and to enhance DNA-binding affinity (Huang

et al., 2001; Tahirov et al., 2001). Recruitment of CBFb serves

to stabilize HIV-1 Vif and is required for HIV-1 Vif A3 degrada-

tion activity in vivo (Hultquist et al., 2012; Jäger et al., 2012b;

Kim et al., 2013; Miyagi et al., 2014; Zhang et al., 2012). Recent

work has shown that this recruitment alters endogenous RUNX

activity through competitive binding of HIV-1 Vif to CBFb,

potentially to the benefit of the virus (Kim et al., 2013; Klase

et al., 2014).

We chose to focus our comparative study on Vif for three pri-

mary reasons. First, a Vif protein is expressed in four of the five

major lentiviral clades, each of which is known to mediate the

proteasomal degradation of the cognate host A3 proteins (Larue

et al., 2010). Second, unlike ubiquitously conserved lentiviral

components such as Gag or Pol, Vif is not known to be required

for the mechanics of viral replication and thus is potentially less

constrained over the course of virus evolution. Third, whereas

the mechanism of HIV-1 Vif-mediated A3 degradation is well

characterized, little is known about the requirements for Vif pro-

teins from other clades. Whereas recruitment of ELOC is

assumed based on the conserved BC-box motif, it is unknown

whether these Vif proteins recruit the same core E3 ligase com-

plex and whether they require recruitment of a non-canonical E3

ligase component such as CBFb. In fact, recent work has sug-

gested that other factors may be required for Vif stability and

function in non-primate lentiviruses (Ai et al., 2014; Zhang

et al., 2014a, b).

Here, we report a comparative proteomics strategy for the

study of orthologous host-pathogen PPIs, which we subse-

quently use to analyze the complexes formed by representative

Vif proteins from different lentiviral clades, including primate len-

tiviruses (HIV-1 and simian immunodeficiency virus macaque

[SIVmac]), bovine immunodeficiency virus (BIV), feline immuno-

deficiency virus (FIV), and the ovine-tropic maedi-visna virus

(MVV). We find that, whereas all lentiviral Vif orthologs can hijack

the CRL5 complex in human cells, only primate lentiviral Vif pro-

teins hijack CBFb and require it for A3 degradation. Whereas

one non-primate lentiviral Vif, from BIV, appears to operate

independently of any non-canonical cofactors, another Vif,

from MVV, requires a novel non-canonical cofactor, cyclophilin

A (CYPA), for in vitro reconstitution and in vivo A3-degrading ac-

tivity. These results demonstrate an unexpected mechanistic

flexibility in viral rewiring of the host cell despite the mainte-

nance of a conserved activity. They furthermore suggest a

modular conservation of host-pathogen interactions whereby

novel PPIs may be formed with novel partners to serve the

same functional purpose yet with potentially new orthogonal

roles. We predict that the use of modular conservation to allow

for mechanistic flexibility may be a generalizable model for viral

protein evolution.
C

RESULTS

Divergent Vif Proteins Interact with a Conserved Host
CRL Complex
All known lentiviruses express a Vif protein except for equine in-

fectious anemia virus and the extinct rabbit endogenous lenti-

virus RELIK (Katzourakis et al., 2007; Kawakami et al., 1987).

The Vif protein from each lentivirus is known to perform at least

one conserved function, degradation of the restrictive A3 pro-

teins from the cognate host (Hultquist et al., 2011; Larue et al.,

2010; Sheehy et al., 2003; Yu et al., 2003). Despite this conserva-

tion in function, the primary sequence of these proteins is highly

divergent, sharing no more than 25% identity of alignable resi-

dues between any pair (Figures 1A and S1A). The only obvious

conserved motif is the ELOC-binding BC-box, which is known

to be essential for A3 degradation. This has led to the hypothesis

that each Vif protein mediates A3 degradation by recruitment of

the same CRL5 complex, but a systematic characterization of

each lentivirus’ Vif complex had not previously been carried out.

In order to determine which host factors are physically bound

to Vif proteins across the lentivirus phylogeny, we employed an

unbiased proteomic approach using AP-MS to study five diver-

gent Vif proteins from MVV, BIV, FIV, SIVmac, and HIV-1 (Table

S1). Affinity tags comprising 23Strep or 33Flag were fused to

either the amino (N) or carboxy (C) terminus of the Vif proteins,

and tagged Vif constructs were either transiently expressed in

HEK293T cells or used to make stable, doxycycline-inducible

Jurkat T cell lines (Figure 1B). Tagged Vif proteins were affinity

purified and eluates subjected to SDS-PAGE and silver staining

(Figure 1C) and then analyzed by liquid chromatography coupled

with tandem mass spectrometry (LC-MS/MS) to identify co-

purified host factors (Jäger et al., 2012a). Putative interactions

identified by AP-MS were scored using the significance analysis

of interactome (SAINT) algorithm (Choi et al., 2011), and interac-

tions with a SAINT probability scoreR0.9 in at least one Vif data

set were included (Table S2). Prey scores were then organized

by cell line and hierarchically clustered by correlation (Fig-

ure S2A). Within this data set, we observe expected interactions

with CRL complex proteins, including CUL2, CUL5, ELOB,

ELOC, RBX2, and RBX1, strongly suggesting a generally con-

served mechanism for A3 proteasomal degradation among Vif

proteins (Figure 1D). We observe within the data set a termi-

nus-specific effect on Vif-CULLIN specificity between CUL2

and CUL5, particularly with the non-primate lentivirus Vif pro-

teins (Figures 1D, 1E, and S2B–S2D).

The association of Vif with CBFb was only observed for pri-

mate lentivirus Vif proteins (SIVmac and HIV-1) in the AP-MS

data sets for both HEK293T cells and Jurkat T cells (Figure 1D),

an observation confirmed by immunoblot analysis (Figures 1E

and S2B). To test whether Vif proteins not observed to physically

interact with CBFb were still functionally regulated by the factor,

we employed a single-cycle HIV-1 infectivity assay testing for

Vif-mediated A3 degradation in the presence and absence of

CBFb (Figure 2A). We observed that HIV-1 and SIVmac require

CBFb for Vif-mediated rescue of HIV-1 infectivity from A3

restriction (Figures 2B and 2C), as previously reported (Hultquist

et al., 2012; Jäger et al., 2012b). Conversely and consistent

with the AP-MS results, the non-primate lentivirus Vif proteins
ell Reports 11, 1236–1250, May 26, 2015 ª2015 The Authors 1237



Figure 1. Proteomic Analysis of Lentiviral Vif Proteins

(A) Percent identity and percent similarity matrix of Vif proteins used in this study. The distance tree was generated fromGagpol protein sequence of viruses, with

bootstrap support values.

(B) Flow chart of affinity purification-mass spectrometry (AP-MS) pipeline used to identify Vif-interacting host proteins.

(C) Representative silver-stained SDS-PAGE of eluates from a Vif-Strep purification in transiently transfected HEK293T cells. Asterisks indicate Vif proteins.

(D) Cullin ubiquitin ring ligase (CRL) complex proteins identified in AP-MS experiments, colored by SAINT score and clustered hierarchically by correlation.

(E) Immunoblot of a Strep affinity purification of Strep-tagged Vif proteins transiently expressed in HEK293T cells, probing for CRL proteins highlighted in (D).

See also Figures S1 and S2 and Tables S1 and S2.
(MVV, BIV, and FIV) showed no dependence onCBFb for activity,

eliciting equivalent ability to rescue HIV-1 infectivity from A3 re-

striction both in the presence and in the absence of CBFb (Fig-

ures 2D–2F). This finding agrees with recently reported data for

MVV, BIV, and FIV Vif proteins (Ai et al., 2014; Han et al., 2014;

Zhang et al., 2014a, 2014b).

BIV Vif Assembles a CRL Complex without a
Non-canonical Cofactor
Having observed no dependence of the non-primate Vif proteins

on CBFb for the in vivo degradation of cognate A3 proteins, we

asked whether the corresponding Vif-CRL complexes might

reconstitute in vitro without CBFb or other additional host fac-

tors. We have shown previously that HIV-1 Vif requires CBFb to

form a stable complex with ELOB and ELOC and CUL5/RBX2

in vitro (Figures 2G and 2H; Jäger et al., 2012b). Unexpectedly,
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BIV Vif formed a stable trimer with ELOB and ELOC alone with

no other cofactors required as assessed by size-exclusion chro-

matography (Figure 2G). This trimer readily associated with the

CUL5/RBX2 scaffold (Figures 2G and 2H) to form an active com-

plex capable of poly-ubiquitylating Myc-tagged bovine A3Z3

(BtA3Z3) (Figure 2I). The level of ubiquitylation was comparable

to HIV-1 Vif-CRL-mediated ubiquitylation of Myc-tagged human

A3F CTD domain (HsA3F-CTD) (Figure 2I). Reconstitution of

active BIV Vif-CRL5 complex thus confirmed that only the endog-

enous CRL5 complex is required for BIV Vif activity, in stark

contrast with the primate lentiviral Vif proteins that require the

additional recruitment of CBFb for equivalent activity.

CYPA Implicated as an MVV Vif Host Cofactor
Whereas we successfully reconstituted the BIV Vif-CRL5 com-

plex without a non-canonical host cofactor, we were unable to



Figure 2. Vif Dependence on CBFb Is Primate Lentivirus Specific

(A) Schema of single-round infection assay.

(B–F) Infectivity assays described in (A), using Vif proteins and cognate A3 proteins. Bars represent mean ± SE of GFP expression from virus reporter lines. Viral,

A3, and CBFb proteins are detected by immunoblot. VLPs, virus-like particles.

(G) UV absorbance curves are shown for gel filtration of CUL5-RBX2 (C5R2) alone or mixed with an excess of indicated Vif complexes (BIV VCB, Vif-ELOB-ELOC;

HIV-1 VCBC, Vif-ELOB-ELOC-CBFb). Peaks are observed at earlier elution volumes when C5R2 is mixed with Vif complexes, indicating E3 complex formation.

(H) Coomassie-blue-stained SDS-PAGE of peak fractions collected from gel filtration runs shown in (G).

(I) Immunoblot of ubiquitylation reactionswith either HIV-1 Vif or BIV Vif E3, usingmyc-taggedC-terminal domain of humanA3F (Myc-HsA3F CTD) or bovine A3Z3

(Myc-BtA3Z3) as substrate, respectively. Me-Ub, methylated ubiquitin; Ub, ubiquitin.

Cell Reports 11, 1236–1250, May 26, 2015 ª2015 The Authors 1239



Figure 3. CYPA Is Tightly and Uniquely Associated with MVV Vif

(A) Cartoon of double affinity purification experiment.

(B) LC-MS/MS mass spectrometry results from the double purification of 23Strep-tagged Vif proteins and 33Flag-tagged CUL5. Bars indicate peptide percent

coverage of proteins identified in eluates after second purification step.

(C) Immunoblot of input lysates and first and second purification eluates used for MS analysis in (B).

(D) Heatmap of AP-MS data for CYPA in HEK293T and Jurkat T cell lines. Color indicates SAINT score.

(E) Re-probing of immunoblot of Strep affinity purification shown in Figure 1F; ELOC is shown as a control for CRL complex interaction.

(F) Strep purification of MVV Vif from transient transfection of ovine FLK cells. CYPA, ELOC, and Vif are detected by immunoblot.
do so with the other non-primate lentiviral Vif complexes (MVV

and FIV). Both MVV Vif-ELOB-ELOC and FIV Vif-ELOB-ELOC

complexes aggregated during size-exclusion chromatography

after purification, mimicking behavior observed with HIV-1 Vif

in the absence of CBFb (Figures S3A and S3B; Kim et al.,

2013). These data suggested additional host cofactors are

required for stable complex formation of the MVV Vif and FIV

Vif CRL5 complexes.

To identify the missing components of the non-primate Vif-

CRL5 complexes, we utilized a double affinity-tag purification

approach (He et al., 2010; Jäger et al., 2012b). We co-

transfected HEK293T cells with 23Strep-tagged Vif proteins

and 33Flag-tagged CUL5 and then performed two-step tandem

affinity purification, initially purifying Vif then CUL5 (Figure 3A).
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Eluates were then subjected to LC-MS/MS analysis. In each

sample, we identified high peptide coverage of the Vif and

CUL5 baits as well as of proteins associated with the CRL5 com-

plex (ELOB, ELOC, RBX2, and NEDD8; Figures 3B and 3C).

Consistent with our previous data, peptides from CBFb were

only observed in the SIVmac and HIV-1 Vif samples. Although

we failed to identify likely cofactors in the FIV Vif sample, we

did observe a highly abundant non-CRL5 complex host factor

in the MVV sample: the peptidyl-prolyl isomerase CYPA (Fischer

et al., 1984, 1989; Takahashi et al., 1989; Figures 3B and 3C).

CYPA has been reported previously to interact with HIV-1

Capsid (Luban et al., 1993; Thali et al., 1994) but has never before

been implicated to play a direct role in Vif biology. Re-examining

our Vif single-purification AP-MS data set (Table S2), we



observed that CYPA has a specific and highly scoring interaction

with only MVV Vif in both HEK293T cells and Jurkat T cells (Fig-

ures 3D and 3E). To verify that the CYPA-MVV Vif interaction is

not an artifact of expression in human cells, we performed an

affinity purification of MVV Vif in natural host sheep (ovine) FLK

cells and observed a strong association with endogenous ovine

CYPA (Figure 3F).

Identification of MVV Vif Residues P21, P24 as a Likely
CYPA Binding Site
After identifying CYPA as a likely member of the MVV Vif-

hijacked CRL5 complex, we performed a limited alanine scan

of MVV Vif focusing on proline residues, the substrate of CYPA

peptidyl-prolyl isomerase activity. We co-expressed Strep-

tagged MVV Vif constructs with 33Flag-tagged CYPA in

HEK293T cells and performed a Flag immunoprecipitation, as-

saying mutants for co-purification of CYPA (Figure 4A). We

identified twoMVV Vif mutants that were deficient in CYPA bind-

ing: P21A/P24A and P192A. In addition, a BC-box mutant

(SLQ::AAA) unable to interact with ELOC also was deficient in

CYPA binding, suggesting that at least partial assembly of the

Vif-hijacked ubiquitin ligase complex is required for stable inter-

action between MVV Vif and CYPA. We focused on the P21/P24

region as the site of CYPA binding as the sequence is unique

within sheep (MVV) and the closely related goat (CAEV)-infecting

lentivirus Vif proteins (Figure 4B), whereas the P192 residue is

potentially conserved across the broader genus (Figure S1).

Indeed, we observe that CAEV Vif is able to co-purify CYPA

in an analogous manner to MVV (Figure S4A), confirming our

suspicion that the MVV/CAEV clade-specific P21/P24 region is

important for CYPA binding.

MVV Vif 21PxxP24 Region Binds CYPA Active Site
To determine whether the P21/P24 region of MVV Vif is directly

responsible for binding CYPA, we performed NMR shift experi-

ments on CYPA in the presence of a Vif peptide. 2D 15N-1H

chemical shift correlation spectroscopy was performed on

labeled CYPA in the unbound state and in the presence of

increasing concentrations of a MVV Vif peptide containing both

P21 and P24 (MVV Vif17–26). The addition of the Vif peptide (up

to 300 mM) induced significant chemical shift perturbations on

the protein spectrum, although saturation was not reached

even at the highest Vif concentration and a binding constant

could not be determined (Figure 4D). Mapping of the resonances

that disappeared upon addition of the MVV Vif peptide indicated

that the peptide binds to the active site of CYPA (Figures 4C

and 4D). Additional residues surrounding the active site were

observed to enter slow exchange mode or displayed peak

broadening (Figure S3C).

To independently verify that MVV Vif interacts with CYPA via

the active site of the enzyme, we treated cells expressing 23

Strep-tagged MVV Vif with the CYPA inhibitor cyclosporine A

(CsA), which binds to the active site of CYPA and competes for

substrate binding (Figure 4C; Takahashi et al., 1989; Thériault

et al., 1993). Performing a titration of CsA treatment followed

by affinity purification of MVV Vif, we observed a loss of MVV

Vif binding to CYPA in the 5–10 mM range, with corresponding

weakening of ELOC binding (Figure 4E). The CsA concentration
C

required to disrupt CYPA interaction with MVV Vif is about an

order of magnitude greater than our observed concentration

required for disrupting the interaction between CYPA and

HIV-1 Capsid (Figure S4B). Whereas HIV-1 Capsid binds to

CYPA, we find that MVV Capsid does not (Figure S4C). From

these experiments, we conclude that MVV Vif binds directly to

the CYPA binding site via the 21PxxP24 motif.

CYPA Is Critical for MVV Vif-CRL5 Reconstitution
After observing the CYPA-MVV Vif interaction in vivo, we revis-

ited reconstitution of the MVV Vif-CRL5 complex with the addi-

tion of CYPA, in a manner analogous to HIV-1 Vif and CBFb

(Jäger et al., 2012b). CYPA rescued MVV Vif-ELOB-ELOC com-

plex stability (Figures 4F and 4G) and allowed for the formation of

a stable complex with CUL5-RBX, capable of ubiquitylating

ovine A3Z3, but not human A3H, in vitro (Figure 4H).

To determine whether MVV Vif-CYPA-CRL5 complex con-

forms to a similar macromolecular organization as the HIV-1

Vif-CBFb-CRL5 complex, small-angle X-ray scattering (SAXS)

analysis was performed on the reconstituted MVV Vif-CYPA-

CRL5 complex as well as HIV-1 Vif1–174-CBFb-CRL5. Both com-

plexes were monodisperse and well folded under the SAXS

experimental conditions, therefore suitable for envelope genera-

tion (Figures S5A–S5C). The pairwise distribution function re-

vealed that both HIV-1 and MVV complexes have similar

maximal dimensions (Dmax), with values of 190 Å and 200 Å,

respectively (Figures 4I; Table S3). Analysis of the resulting enve-

lopes revealed that, despite different complex constituents, the

overall surface of the macromolecular assemblies is quite similar

with an overall elongated E3 ring-ligase conformation. To deter-

mine how well the SAXS envelopes fit the available structure

data, a model of HIV-1 Vif-CRL5 was generated. Whereas the

HIV-1 Vif-CRL5 model was relatively well fit into its experimental

SAXS envelope, with a chi value of 1.89 (Figure S5D), there was a

slightly poorer fit into the experimentally determined MVV Vif-

CRL5 envelope, possibly due to differences in substrate recep-

tor structure (Figure 4J). This likely reflects different folding of

CYPA and CBFb and possibly of MVV and HIV-1 Vif proteins.

Correlated Deficiencies in CYPA Binding and A3
Antagonism in MVV Vif Mutants
Wenext askedwhether CYPA also affectedMVV Vif A3 degrada-

tion activity. Focusing our analysis on the P21, P24 putative

CYPA binding site, we co-expressed 33HA-tagged ovine

A3Z2Z3 (OaA3Z2Z3) with 23Strep-tagged wild-type, P21A,

P24A, P21A/P24A, and SLQ::AAA MVV Vif mutants and

observed that the loss of CYPA binding to these mutants corre-

lated with reduction in OaA3Z2Z3 degradation activity (Fig-

ure 5A). To determine whether the loss-of-function MVV Vif

mutants were deficient in forming active CRL complexes or

merely unable to bind substrate due to structurally compro-

mising mutations, we performed co-affinity purification experi-

ments with Strep-tagged MVV Vif mutants in the presence of

HA-tagged OaA3Z2Z3.We observed that bothmutants deficient

in A3 degradation activity (P21A/P24A and SLQ::AAA) bound

OaA3Z2Z3 (Figure 5B), indicating that the mutations prevent

proper assembly of a functional CRL complex without disrupting

substrate binding.
ell Reports 11, 1236–1250, May 26, 2015 ª2015 The Authors 1241



Figure 4. CYPA Is a Component of the MVV Vif-Hijacked CRL Complex

(A) Co-purification testing in vivo interaction between CYPA and either wild-type or mutant MVV Vif. CYPA-Flag and various MVV Vif-Strep constructs are co-

transfected, followed by a Flag immunoprecipitation. Co-purification of MVV Vif constructs is assayed by immunoblot.

(B) Multiple sequence alignment of MVV, CAEV, and the other Vif proteins used in this study (BIV, FIV, SIVmac, and HIV-1) referenced to the first 30 amino acids of

MVV Vif. Residues P21 and P24 are highlighted, as well as the region used for the CYPA-binding assay in (D). Residues are colored by percent identity.

(legend continued on next page)
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To test the importance of the MVV Vif-CYPA interaction for

viral infectivity in vivo, we performed a spreading infection with

MVV strain KV1772 in primary sheep macrophages with wild-

type, P21A, P24A, P21A / P24A, or vif-null strains. Whereas all

mutants showed reproducibly diminished spreading kinetics

compared to wild-type virus, the P21A/P24A mutant showed a

greater spreading defect than the individual P21A and P24Amu-

tations, copying the severe spreading defect observed with the

SLQ::AAA and vif-null viruses (Figure 5C). The assay was also

performed in primary sheep choroid plexus (SCP) cells with

similar results (Figure S6E). After spread, we cloned and

sequenced the integrated proviruses in each infection to deter-

mine whether viral restriction correlated with G-to-A mutational

load indicative of A3 antiviral activity. We observed significant in-

creases in G-to-A mutations in P21A/P24A (p = 1.41 3 10�4),

SLQ::AAA (p = 5.27 3 10�5), and Dvif (p = 1.84 3 10�5) MVV

compared to wild-type using a one-sided Wilcoxon rank-sum

test (SCP cell results; Figure 5D). No significant increase in

mutations was observed for either the P21A or the P24A single

mutations relative to wild-type (Figures 5D and S7A–S7C). The

tri-nucleotide sequence preferences of the G-to-A mutations

were similar across all conditions (G(G/A)A), again strongly indic-

ative of A3-mediated mutation (Figures 5E and S7D).

CYPA Is Required for Ovine A3 Degradation by MVV Vif
We tested MVV Vif dependence on CYPA for A3 degradation ac-

tivity using aCYPA knockdown in human cells but were unable to

achieve a knockdown sufficient to prevent either OaA3 degrada-

tion or MVV Vif-CRL complex formation using polyclonal lines

(data not shown). Titration experiments using CsA showed

limited but reproducible inhibition of OaA3Z2Z3 degradation by

MVV Vif, increasing with CsA concentration until about 5 mM

when toxicity became apparent (Figure S4B). Importantly, the in-

hibition was not observed with HIV-1 Vif and its cognate sub-

strate, human A3G (HsA3G) (Figure S4C).

Due to lack of efficacy of either CYPA knockdowns or CsA

treatments individually, we attempted to inhibit MVV Vif by

combining both protocols, treating a monoclonal CYPA knock-

down line with 2 mMCsA and comparing MVV Vif A3 degradation

activity to a non-targeting control line. We observed amodest in-

hibition of Vif-mediated OaA3Z2Z3 degradation in the knock-

down line compared to the control line without CsA treatment.

In contrast, we observe near-complete inhibition of MVV Vif

degradation activity in CYPA knockdown cells treated with
(C) 2D 15N-1H chemical shift mapping of CYPA in the presence ofMVV Vif17–26 pep

S99, A101, Q111, F112, E120, W121, and K125 (orange sticks) shift and then dis

(D) Column 1: representative example of a CYPA residue (G135) that is not affecte

S99 undergo significant chemical shift and intensity reduction. The bars are scal

(E) Affinity purification ofMVV Vif in the presence of a titration of CsA. Co-purificatio

mutants are used as controls for ELOC and CYPA binding, respectively. E, ethan

(F) UV absorbance curves are shown for gel filtration of CUL5-RBX2 (C5R2) alon

ELOC-CYPA). Peaks are observed at earlier elution volumes when C5R2 is mixe

(G) Coomassie-blue-stained SDS-PAGE of peak fractions collected from gel filtr

(H) Immunoblot of methyl-ubiquitylation reactions with MVV E3 and either myc-t

(I) Pair distance distribution function, P(r), calculated from SAXS intensity data.

(J) Molecular envelopes of HIV-1 Vif1–174-CBFb-CRL5 (left) and MVV Vif-CYPA-CR

envelopes.

See also Figures S3 and S5 and Table S3.

C

CsA (Figure 6A, lanes 9 and 10). HIV-1 Vif A3 degradation activity

was not affected by CsA treatment in either the knockdown or

the control line (Figure S4D), indicating the combination of

CYPA knockdown and CsA treatment was specifically and

cooperatively interfering with the MVV Vif-CYPA interaction.

Given that drug and shRNA treatments can have off-target

effects, we next performed ovine A3 degradation assays in an

isogenic system using a Jurkat T cell line andCYPA�/� knockout

(KO) line (Braaten and Luban, 2001). Immunoblots confirmed the

lack of CYPA expression in the Jurkat CYPA�/� KO line

compared to the parental Jurkat E6-1 CYPA+/+ line (Figure 6B).

The KO line or the parental line was then nucleofected with an

HA-tagged OaA3Z2Z3 expression construct in the presence or

absence of Strep-tagged MVV Vif and Flag-tagged CYPA

complementation (Figure 6B). We observe a complete loss of

MVV Vif-mediated degradation of OaA3Z2Z3 in the CYPA�/�

KO line (Figure 6C, top, lanes 5 and 6), which can be rescued

upon complementation with exogenous CYPA (Figure 6C, top,

lanes 7 and 8). We were unable to detect expression of MVV

Vif in the CYPA�/� KO line without exogenous CYPA comple-

mentation, suggesting MVV Vif stability depends on CYPA pres-

ence in vivo. This closely mimics the stability requirements of

HIV-1 Vif on CBFb and is consistent with our in vitro reconstitu-

tion results withMVV Vif. We did not observe any dependence on

exogenous CYPA expression for MVV Vif A3 degradation activity

in the parental Jurkat E6-1 CYPA+/+ line (Figure 6C, bottom) and

did not observe any dependence on CYPA for A3 degradation

activity for HIV-1 Vif and HsA3G in either cell line (Figure 6D).

Lastly, we assessed whether or not various active-site mu-

tants of CYPA could also rescue MVV function in the KO back-

ground. We tested three CYPA mutants—R55K, F113W, and

H126A—all located within the active site of CYPA and previously

reported to affect activity (Figure S7A; Bosco et al., 2010). We

found that two mutants, R55K and F113W, failed to rescue

MVV Vif A3 degradation activity in the CYPA�/� KO line and

that a third mutant, H126A, was able to rescue activity as effi-

ciently as wild-type CYPA (Figure 6E). Similar results were ob-

tained in the monoclonal CYPA knockdown line (Figure S7B).

We additionally tested the CYPA mutants for MVV Vif binding

through in vitro reconstitution and found that all three were

capable of forming a stable MVV Vif-ELOB-ELOC-CYPA com-

plex (Figures S7C and S7D). Whereas it is possible that the

lack of R55K and F113W rescue of MVV Vif activity is due to a

weakening of binding in vivo, the in vitro binding data suggest
tide. The resonances of Y48, R55, I56, I57, F60, M61, C62, Q63, G65, G72, L98,

appear upon addition of the Vif peptide. CsA is labeled in blue. PDB: 1CWA.

d by the presence of the MVV Vif peptide. Column 2: by comparison, R55 and

ed to the intensity of the HSQC peak at the corresponding Vif concentration.

n of endogenous Vif interactors is assayed by immunoblot. BC-box and proline

ol.

e or mixed with an excess of indicated Vif complexes (MVV VCBC, Vif-ELOB-

d with Vif complexes, indicating E3 complex formation.

ation runs shown in (F).

agged human A3H (Myc-HsA3H) or ovine A3Z3 (Myc-OaA3-Z3).

L5 (right) calculated from P(r). An HIV-1 E3 model was superimposed into both
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Figure 5. MVV Vif Mutants Deficient in CYPA Binding Are Deficient in A3 Antagonism and Cannot Promote MVV Infectivity In Situ

(A) Co-transfection of HA-tagged ovine A3Z2Z3 (OaA3Z2Z3-HA) and either wild-type or proline mutant MVV Vif. A3 stability in the presence of Vif is assayed by

immunoblot.

(B) Co-affinity purification between OaA3Z2Z3 and MVV Vif constructs that were deficient in OaA3Z2Z3 destabilization in (A). Interaction between A3 and Vif

proteins is assayed by immunoblotting.

(C) MVV spreading assay in ovine primary macrophage cells. Lysates were harvested at various time points post-infection, and virus genome copies were

quantified using TaqMan-based real-time PCR, mean ± SE (n = 3).

(D) Hypermutation assay ofMVV strain KV1772.MVVswith either wild-type ormutant vifwere subjected to a single-cycle infection assay in primary sheep choroid

plexus (SCP) cells, and produced viruses were then used to infect SCP cells, generated pro-viruses cloned, and assayed for A3-mediated G-to-A mutations.

Wild-type, P24A: n = 20; P21A: n = 16; P21A/P24A: n = 17; SLQ::AAA: n = 19;Dvif: n = 10. Significance valueswere determined by a one-sidedWilcoxon rank-sum

test compared to wild-type; no annotated p value indicates p value > 0.05.

(E) Tri-nucleotide context of G-to-A mutations measured in (C). Other refers to any GNN tri-nucleotide other than GGA or GAA.

See also Figure S6.
CYPA isomerase activity is important for MVV Vif A3 degradation

activity.

DISCUSSION

The retrovirus family infects a diverse set of mammalian hosts,

with each viral lineage required to evolve a mechanism to over-

come the host challenge to infection presented by A3 proteins.

Solutions to this A3 host challenge by retroviruses include the

lentivirus protein Vif that induces the proteasomal degradation

of A3 proteins (Larue et al., 2010; Sheehy et al., 2002; Yu et al.,

2003), sequestration of A3 proteins away from virions by the

foamy virus protein Bet (Löchelt et al., 2005), or preventing

A3 binding to virion proteins in HTLV-1 (Derse et al., 2007).

Even within lentiviruses, the equine infectious anemia virus

has evolved a Vif-independent, non-degrading mechanism

of escaping A3 restriction (Bogerd et al., 2008). Through a
1244 Cell Reports 11, 1236–1250, May 26, 2015 ª2015 The Authors
series of proteomic, virological, biochemical, and structural

approaches targeting five evolutionarily distinct lentiviral Vif

proteins from HIV-1, SIVmac, MVV, BIV, and FIV, we present

data consistent with a model of high biochemical plasticity at

the molecular level but ‘‘modular conservation’’ due to their

conserved function of ubiquitylation and subsequent proteaso-

mal degradation of host A3 restriction factors (Figure 7).

Using AP-MS, we identified a conserved core ubiquitin ligase

complex—CUL5-ELOB-ELOC-RBX2—involved in Vif-mediated

degradation of host A3 proteins. For a functional complex,

HIV-1 and SIVmac Vif proteins additionally require the host

cofactor CBFb for both complex assembly and activity (Han

et al., 2014; Hultquist et al., 2012; Zhang et al., 2012). Our data

both identify theCBFb interactionwith HIV-1 and SIVmac Vif pro-

teins and demonstrate their dependence on this cofactor for A3

degradation activity. The interaction with CBFb was not

observed by AP-MS nor was it functionally required for A3



Figure 6. CYPA Is Required for MVV Vif A3 Degradation Activity

(A) Comparison of Vif A3 degradation activity in monoclonal CYPA knockdown versus control cells in the presence or absence of CsA. Cells were transiently

transfected with HA-tagged ovine A3Z2Z3 (OaA3-Z2Z3) and either wild-type or BC-box mutant (SLQ::AAA) Strep-tagged MVV Vif and then treated 6 hr later with

either ethanol (E) or 2 mM CsA overnight. Bars represent HA immunoreactivity normalized first by GAPDH loading control and then to no Vif control for each cell

line; mean ± SE (n = 3). Proteins are detected by immunoblotting.

(B) CYPA immunoblot in Jurkat E6-1 CYPA+/+ ‘‘parental’’ line and derived E6-1 CYPA�/� knockout (KO) line.

(C) Top: Jurkat CYPA�/� KO cells are transiently transfected with HA-tagged OaA3Z2Z3, Strep-tagged MVV Vif, and Flag-tagged CYPA. eGFP is used as

transfection control. Bottom: identical experiment performed in E6-1 CYPA+/+ control line.

(D) Top: JurkatCYPA�/� KO cells are transiently transfected with HA-tagged human A3G (HsA3G), Strep-tagged HIV-1 Vif, and Flag-tagged CYPA. eGFP is used

as transfection control. Bottom: identical experiment performed in E6-1 CYPA+/+ control line.

(E) MVV Vif activity rescue assay using mutants of CYPA. Strep-tagged MVV Vif, HA-tagged OaA3Z2Z3, and various Flag-tagged CYPA constructs are trans-

fected into Jurkat CYPA�/� KO line and Vif activity assessed through A3 stability.

See also Figures S4 and S7.
degradation activity in the non-primate lentiviral Vif proteins,

consistent with recent observations (Ai et al., 2014; Han et al.,

2014; Zhang et al., 2014a, 2014b). We identified one non-

primate lentivirus, BIV, with a Vif protein that requires no non-

canonical host cofactor for both complex assembly and activity

in vitro and identified another, MVV, with a Vif protein that re-

quires a novel non-canonical host cofactor, CYPA, to play a

CBFb-like role in regulating ligase assembly and activity both

in vitro and in vivo. Though no FIV Vif cofactor was identified,

we cannot exclude the possibility that it requires an as of yet

unidentified one.
C

Interaction of MVV Vif with the Non-canonical
Cofactor CYPA
The interaction between MVV Vif and CYPA appears to be

unique among the lentiviruses examined in this study. Through

a combination of targeted mutagenesis and NMR spectros-

copy, we identified a di-proline motif in the N terminus of MVV

Vif, 20GPQLP24, which directly binds the CYPA active site. This

site is uniquely found in MVV and the closely related CAEV Vif

proteins (Figure 4B). The motif bears some resemblance to the

CYPA binding site of HIV-1 Capsid, 89GPIAP93 (Gamble et al.,

1996), a GPxxP motif. However, the strength of the interaction
ell Reports 11, 1236–1250, May 26, 2015 ª2015 The Authors 1245



Figure 7. Modular Conservation of CRL Hijacking and Non-canoni-

cal Cofactor Recruitment by Vif

The host CRL complex hijacked by Vif represents a conserved host-pathogen

interaction module. Vif proteins recruit non-canonical host cofactors in a

lineage-specific manner within the lentivirus genus. Tree from Figure 1A.
between MVV Vif and CYPA appears to be much greater than

that of CYPA and HIV-1 Capsid as assessed by interaction

disruption by CsA treatment (Figures 4E and S5A). Further to

this point, the relatively low affinity measured by NMR spectros-

copy between CYPA and MVV Vif17–28 peptide is incompatible

with the observed stability of the reconstituted MVV Vif-ELOB-

ELOC-CYPA complex. These data suggest the existence of

binding surfaces on MVV Vif in addition to the identified di-pro-

line motif and these surfaces are likely outside of the active site

of CYPA as evidenced by the inefficacy of CsA treatment in dis-

rupting MVV Vif-CYPA interaction or inhibiting MVV Vif anti-A3

activity without complementary knockdown of CYPA (Figure 6A).

Cellular chaperones interact with a large contingent of clients

to catalyze their folding and often interact with their substrates

via general features, such as hydrophobic patches, rather than

specific PPI surfaces or domains (Jaya et al., 2009; Spiess

et al., 2006). The relatively promiscuous interactions of CYPA

combined with a high cellular concentration may have eased

the evolution of MVV Vif to capture CYPA. If the interaction be-

tween the two proteins is mechanistically unrelated to perturbing

endogenous CYPA activities, this may explain the selection of

CYPA by the virus. The capture of CYPA by MVV Vif would

involve transition of the CYPA interaction from a potentially cat-

alytic one in aiding Vif folding to a stoichiometric one in forming a

stable complex. The importance of CYPA catalytic function for

MVV Vif appears to be retained, as twoCYPA active-sitemutants

appear to bind MVV Vif without forming an active A3-degrading

complex (Figure 6E). The one CYPA mutant that was not defi-

cient in this activity, H126A, had been previously shown to be

active with an HIV-1 Capsid substrate (Bosco et al., 2010). This

model of capture would likely not apply to the interaction be-

tween primate lentiviral Vif proteins and CBFb, as the interaction

falls in a specific PPI surface evolved by CBFb to interact with the

runt domain of RUNX transcription factors (Guo et al., 2014).

Cofactor Acquisition as Gain-of-Function Adaptations
Whereas we cannot definitively infer the ancestral form of Vif-

hijacked CRL complex, parsimony suggests the ancestral form

would resemble the BIV Vif-hijacked complex. BIV Vif most re-
1246 Cell Reports 11, 1236–1250, May 26, 2015 ª2015 The Authors
sembles an endogenous BC-box E3 substrate adaptor, which

binds CRL2/5 complexes without the need of non-canonical co-

factors. The parsimony model would imply that the interactions

between Vif and non-canonical host cofactors (MVV-CYPA;

HIV-1/SIVmac-CBFb) are derived interactions that occurred

independently during the evolution of modern lentiviruses. Why

these interactions evolved or what selective advantage they

may grant to the viruses remains unclear. We previously sug-

gested that the interaction between HIV-1 Vif and CBFb may

disrupt the endogenous activities of RUNX transcription factors

(Jäger et al., 2012b) and have shown Vif-mediated interference

of RUNX-controlled genes in T-lymphocytes (Kim et al., 2013).

This ‘‘dual-hijacking’’ may also exist for the MVV-CYPA interac-

tion, although it is worth noting that CYPA is a highly abundant

protein in virtually every cell type, and therefore the secondary

effect would necessarily be one that required relatively small

changes in cellular CYPA abundance or involve local effects

proximate to MVV Vif activity.

Another driving force in the evolution of novel Vif cofactors is

the evolution of the viral proteins’ substrates, the A3 family.

The number of A3 genes in a given mammalian genome varies

widely, from only a single gene in mice to seven members in pri-

mates (Bogerd et al., 2008; Jarmuz et al., 2002; LaRue et al.,

2008; Münk et al., 2008). The acquisition of CBFb as a Vif

cofactor by primate lentiviruses coincides with the expansion

of A3 family of proteins in primates, and it is possible that the

cofactor acquisition enabled Vif to preserve viral fitness without

the need to evolve another, non-CRL mechanism to recognize

and degrade the larger A3 substrate repertoire (Ai et al., 2014).

A recent structure of the SIV/HIV-2 accessory factor Vpx showed

the co-crystallized Cullin-4A adaptor protein DCAF1 directly

contacts the viral substrate SAMHD1 (Schwefel et al., 2014);

this example may be generalizable to a model of host factors ex-

tending the viral E3 surface for substrate recognition. The A3

expansion-driving cofactor acquisition model would fail to

explain the interaction between MVV Vif and CYPA, as the ovine

genome shows no increase in the number of A3 proteins

compared with the bovine genome and one less than the feline

genome (LaRue et al., 2008; Münk et al., 2008). Interestingly,

MVV Vif is observed to have a high promiscuity for A3 proteins,

showing activity against many non-cognate A3s (Larue et al.,

2010), potentially supporting a model of cofactor-mediated sub-

strate expansion.

An intriguing possibility is that non-canonical cofactors act to

increase the evolvability of their Vif partner, enabling Vif proteins

to retain activity with otherwise lethal mutations during transi-

tions to more-fit states. Restriction factors are a major barrier

to zoonosis (Sharp and Hahn, 2011), and a Vif protein able to

adapt more quickly to a new host’s A3 proteins should grant

the lentivirus a competitive advantage in zoonotic transmission,

as well as in populations with diverse restriction factor haplo-

types (Binka et al., 2012; Ooms et al., 2013). Whether gaining

an interaction partner makes a viral protein more robust to muta-

tion is debatable, as the benefits of stabilization via the interac-

tion may be outweighed by the mutational constrains imposed

by the interaction itself. HIV-1 Vif must maintain direct interac-

tions with ELOC, CUL5, multiple A3 proteins, and a large surface

with CBFb to be functional, yet even after the establishment of



the interaction between CBFb and primate lentivirus Vif, it has

recently undergone dramatic sequence changes (Etienne et al.,

2013).

CYPA Potentially Bridges Vif Antagonism of A3 with
TRIM5 Escape
We explored the idea of whether or not the interaction between

CYPA and MVV Vif may be related to the genetic conflict be-

tween lentiviruses and the host restriction factor TRIM5 (Strem-

lau et al., 2004). In HIV-1, CYPA interactionwith the viral capsid is

involved in mitigating the antiviral actions of TRIM5 (Sokolskaja

and Luban, 2006), and some old world primate hosts have

evolved a TRIM5-CYPA fusion protein, TRIMCyp, which uses

its CYPA domain to recruit the TRIM5 domain to the viral core

(Nisole et al., 2004; Sayah et al., 2004). MVV is restricted by

sheep TRIM5 when overexpressed in cell culture, but the mech-

anism by which MVV avoids this restriction in vivo is unknown

(Jáuregui et al., 2012). It remains possible that the interaction be-

tween CYPA andMVV Vif is to allow crosstalk of Vif between two

different host restriction pathways—A3 and TRIM5—particularly

if there exists an as of yet unidentified TRIMCyp gene in the

sheep genome.

In addition to its role in TRIM5-mediated restriction, the inter-

action of CYPA with HIV-1 Capsid has recently been found to be

essential for the virus to evade detection by the innate immune

sensor cGAS and to avoid subsequent activation of the innate

immune response (Lahaye et al., 2013; Rasaiyaah et al., 2013).

Intriguingly, a pair of mutants in MVV Vif and Capsid (P205S

and L120R, respectively) results in a restricted growth pheno-

type, whereas neither mutant alone impacts replication (Gud-

mundsson et al., 2005). Whether or not this is related to the

MVV Vif interaction with CYPA is under investigation.

Modular Conservation and Lineage-Specific
Interactions
We have shown that, despite a generally conserved mechanism

of mediating host A3 degradation by ubiquitylation and subse-

quent proteasomal degradation, lentiviruses demonstrate sur-

prising plasticity in the biochemical requirements for this activity

through their Vif proteins. Whereas other lentiviruses have been

observed to change viral protein-host substrate interactions (Lim

et al., 2012; Sauter et al., 2009) or the sites of substrate recogni-

tion (Fregoso et al., 2013), Vif is unique in that the viral protein

substrate and the core machinery required for activity appear

to be conserved and yet cofactor interaction partners are varied

and lineage specific. We have previously noted this concept of

modular conservation where the function of biochemical mod-

ules is conserved but the underlying molecular interactions be-

tween the modules have changed significantly. For example,

we have shown that, although genetic interactions between

different species have evolved rapidly, the genetic relationships

within protein complexes, or modules, are highly conserved (Bel-

trao et al., 2010; Roguev et al., 2008; Ryan et al., 2012). In this

vein, it remains to be seen whether or not the Vif paradigm is

generalizable, but it is clear that viral proteins, even in the context

of ‘‘stable’’ interactions with host factors, can still undergo rapid

and surprisingly dramatic changes over the course of virus

evolution.
C

EXPERIMENTAL PROCEDURES

Detailed experimental procedures are available in the Supplemental Experi-

mental Procedures.

Expression Constructs

HIV-1LAI, SIVmac239, BIV, FIV, and MVV vif constructs in pVR1012 (Vical) have

been reported previously (Larue et al., 2010).

Ovine Cells and MVV Infections

SCP cells and sheep-blood-derived macrophages were infected with RT-

normalized wild-type and mutant viruses for spreading infection assays. Sam-

ples were taken daily for Taqman qPCR.

Affinity Purifications

Affinity purifications (AP) were generally performed as described previously

(Jäger et al., 2012a).

Mass Spectrometry Data and Analysis

Digested peptide mixtures were analyzed on either a Thermo Scientific Velos

Pro or a Thermo Scientific LTQ XL ion trap mass spectrometry system. Data

were searched against a database containing SwissProt human protein se-

quences. Interactions were scored using the SAINT algorithm (Choi et al.,

2011) with prey-identified spectral counts.

In Vitro Reconstitution and Ubiquitylation Assays

Vif complexes for in vitro work were produced by co-expression in BL21-

Star(DE3)pLysS cells. CUL5-RBX2 and all ubiquitin and Nedd8 pathway com-

ponents used in ubiquitylation assays were obtained as previously described

(Stanley et al., 2012).

CYPA Knockdown and Cyclosporine Treatment

CYPA knockdown lines were generated in HEK293T cells using pLKO.1-

derived lentiviruses encoding an shRNA-targeting CYPA (TRCN0000049277).

For assays involving CsA (no. 9973; Cell Signaling Technology), cells were

treated with 2–5 mM CsA 4–6 hr post-transfection to prevent potential loss in

transfection efficiency.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2015.04.038.

AUTHOR CONTRIBUTIONS

J.R.K. conceived theprojectwithN.J.K. andR.S.H., performedaffinity purifica-

tions, scoredmass spectrometry data, created stable cell lines, and performed

CsA assays, knockdown assays, and Jurkat nucleofection experiments. D.J.S.

performed in vitro reconstitution of Vif-CRL complexes and ubiquitylation as-

says. J.F.H. performed single-cycle HIV-1 infectivity assays and assisted

with Jurkat nucleofection experiments. J.R.J., B.W.N., T.L.J., and K.E.F.-S.

performed MS sample preparation, machine runs, and data searching. N.M.,

S.R.J., H.I.G., and A.A. performed MVV virology assays. J.M.B. generated

SAXS envelopes of Vif-CRL5 complexes. S.B. performed NMR experiments.

M.L. purified A3 proteins for in vitro ubiquitylation assays. W.L.B. sequenced

MVV proviral sequences for hypermutation assays. J.R.K. wrote the manu-

script with assistance from J.F.H. and N.J.K. Manuscript editors were J.R.K.,

D.J.S., J.F.H., J.M.B., S.B., J.S.F., R.S.H., V.A., J.D.G., and N.J.K.

ACKNOWLEDGMENTS

The authors wish to thank members of the N.J.K., J.D.G., J.S.F., R.S.H., and

V.A. labs; P. Hartley for assisting in stable line generation; R. LaRue for cloning

of MVV, BIV, FIV, and SIVmac Vif plasmids; S. Jäger, S. Chen, M. Eckhardt,
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